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DVIB: Towards Robust Multimodal Recommender Systems via
Variational Information Bottleneck Distillation
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Abstract
In multimodal recommender systems (MRS), integrating various

modalities helps to model user preferences and item characteristics

more accurately, thereby assisting users in discovering items that

match their interests. Although the introduction of multimodal

information offers opportunities for performance improvement, it

will increase the risks of inherent noise and information redun-

dancy, posing challenges to the robustness of MRS. Many existing

methods typically address these two issues separately either by

introducing perturbations at the model input for robust training

to handle noise or by designing complex network structures to

filter out redundant information. In contrast, we propose the DVIB

framework to simultaneously address both issues in a simple man-

ner. We found that moving the perturbations from the input layer

to the hidden layer, combined with feature self-distillation, can mit-

igate noise and handle information redundancy without altering

the original network architecture. Additionally, we also provide

theoretical evidence for the effectiveness of DVIB, demonstrating

that the framework not only explicitly enhances the robustness

of model training but also implicitly exhibits an information bot-

tleneck effect, which effectively reduces redundant information

during multimodal fusion and improves feature extraction quality.

Extensive experiments show that DVIB consistently improves the

performance of MRS across different datasets and model settings,

and it can complement existing robust training methods, represent-

ing a promising new paradigm in MRS. The code and all models

will be released online.

CCS Concepts
• Information systems → Recommender systems; • Comput-
ing methodologies → Knowledge representation and reason-
ing; Artificial intelligence.

Keywords
Multimodal Recommender System, Robust Training, Variational

Information Bottleneck, Feature Distillation

1 Introduction
Relevance to the Web and to the track. Recommender sys-

tems (RS) are essential for guiding users through the overwhelming

variety of options on the web, uncovering tailored items and ser-

vices [67]. In recent years, deep learning-based approaches [7, 12,

22, 51, 63, 69] have become prevalent in these systems, using histor-

ical interactions to predict preferences and enhance personalization.

With the rise of diverse data like text, images, and videos [16, 18, 66],

multimodal recommender systems (MRS) [42, 73] have emerged to

tackle issues like data scarcity and cold start challenges [75].

Although the introduction of multimodal data provides more

dimensions of user information for RS, enhancing the diversity

Input
Perturbation

Complex Network
Design 

Robust Trianing
Self-distillation

Training

(1) Previous Works
for Inherent Noise

(2) Previous Works for  
Redundant Information

(3) Our Variational Information
Bottleneck Distillation (DVIB)  

Hidden
Perturbation

Useful Information Inherent Noise Redundant Information

Figure 1: The potential risks of MRS and their solutions. (1)
For inherent noise, it is common to add perturbations to
the model’s input and mitigate the impact of noise through
robust training. (2) For redundant information, it can of-
ten be reduced by designing complex network architectures.
(3) Our proposed DVIB framework shifts the perturbation
from the input layer to the hidden layer, combined with
self-distillation. Both Section 3.1 and Section 4 demonstrate,
through theoretical and experimental results, that the pro-
posed framework can mitigate both risks due to the implicit
effect of Variational Information Bottleneck (VIB), improv-
ing model performance without any additional computa-
tional cost during inference.

and accuracy of recommendations, it simultaneously increases two
potential risks that affect the robustness of the RS.

(1) The first risk is the inherent noise. For instance, on e-

commerce platforms, merchants or users may upload some blurry

item images or provide textual information, like descriptions and

comments, that do not completely match the items, introducing

inherent harmful noise to the model [64, 67]. When multimodal

data, such as images and text, are integrated, the risk of models

being further contaminated by harmful noise increases, as different

modalities carry noise. This limits the performance gains brought

by multimodal fusion. There are a variety of methods [3, 9, 11, 35,

40, 46, 58, 59, 62] to mitigate inherent noise, as shown in Fig. 1 (a)

by introducing input perturbation into MRS and conducting robust

training to improve the robustness of MRS.

(2) The second risk is redundant information. Although
multimodal data provide the systemwith rich complementary infor-

mation, they also contain a large amount of irrelevant or duplicate

features [6, 31, 32, 36]. For example, an image of a coat for sale

may include the background from the model’s photoshoot, while

the item description might mention "free delivery," which is unre-

lated to the item itself. When multiple modalities are integrated,

1
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redundant information increases the difficulty for the model to

distinguish effective features within the multimodal data. This in-

terferes with the model’s learning process and reduces its focus on

relevant features. To address redundant information, as shown in

Fig. 1 (b), Many existing MRS systems [31, 33, 36, 49, 52, 54] extract

better features and mitigate information redundancy by proposing

sophisticated model designs.

For this requirement, in this paper, we propose a highly simple-

yet-effective framework, Variational Information Bottleneck
Distillation (DVIB), which can simultaneously handle both

noise and redundant information risks without any additional

computational cost during inference. As shown in Fig. 1 (c) and Sec-

tion 3, DVIB framework shifts the perturbation from the input layer

to the hidden layer, combined with self-distillation. On one hand,

such robust training can explicitly mitigate the impact of inherent

noise. On the other hand, we theoretically demonstrate that DVIB

implicitly possesses the effects of VIB (see Section 3.1). This means

that the DVIB framework can effectively extract task-relevant key

information and filter out redundant information, thereby helping

to improve MRS performance. In Section 4 and 5, we also conduct

extensive experiments demonstrating performance improvements

in various multimodal recommendation systems across different

datasets, validating the effectiveness and compatibility of our frame-

work. Our contributions are summarized as follows:

• We propose the simple-yet-effective DVIB framework, which

can mitigate the inherent noise and redundant information risks

in MRS simultaneously without altering the model architecture,

thereby substantially boosting the robustness of RS.

• We also provide strong theoretical evidence for the relationship

between our framework and variational information bottleneck,

which theoretically supports the effectiveness of the proposed

DVIB.

• Extensive experiments show that DVIB consistently enhances the

MRS performance across different datasets and model settings,

and it’s compatible with some existing robust training methods.

2 Preliminary
Multimodal Recommender Systems (MRS). We define a set of

users U = {𝑢1, 𝑢2, ..., 𝑢 |U | } and a set of items I = {𝑖1, 𝑖2, ..., 𝑖 | I | }.
Each user 𝑢 ∈ U has a subset of items I𝑢 ⊆ I for which they

have shown positive feedback. Each item 𝑖 ∈ I is characterized by

visual features 𝑣𝑖 ∈ V and textual features 𝑡𝑖 ∈ T in this paper.

The multimodal recommendation modelMRS(·) computes the user-

item preference score 𝑦𝑢,𝑖 as follows:

𝑦𝑢,𝑖 = MRS(𝑢, 𝑖, 𝑣𝑖 , 𝑡𝑖 ,I𝑢 | Θ), (1)

where Θ are the model parameters. The score 𝑦𝑢,𝑖 indicates the

likelihood of recommending item 𝑖 to user 𝑢, with higher scores

suggesting a better match.

Given our goal to propose a universal robust enhancement frame-

work for MRS, considering the diverse model structures of MRS,

we need to first formulate MRS from a more high-level perspective,

as illustrated by the black line in Fig. 2. Let’s denote the input from

different modalities as 𝑀𝑖 , where , 𝑖 = 1, 2, .., 𝑛. 𝑌 is the label of

training data and both 𝐻 and 𝑍 are the hidden feature of the MRS.

Subsequently, MRS first undergo two stages: feature fusion and

feature extraction, i.e.,

𝐻 = 𝑓𝜃1 [Fusion(𝑀1, 𝑀2, ..., 𝑀𝑛)], 𝑍 = 𝑓𝜃2 (𝐻 ), (2)

Following the output stage, the loss function is constructed using

Eq. (3). Depending on the various MRS designs, L0 can take on

various forms, such as the Bayesian personalized ranking loss [15,

41, 72], or other supplementary losses [48, 79] to enhance model

performance. In this paper, we uniformly denote the original general

loss function as L0.

L0 ≡ L0 (𝑓𝜃3 (𝑍 ), 𝑌 ) . (3)

The Bounds in the VIB. InMRS training, whenmapping between

training data 𝑋 → 𝑌 , the goal of the VIB is to optimize the neural

network with parameters 𝜃 to impose constraints on the hidden

layer 𝐻 , aiming to improve the robustness of the model [1]. Specifi-

cally, the optimization objective of the VIB is to maximize

𝐼 (𝐻,𝑌 ;𝜃 ) − 𝛽 · 𝐼 (𝐻,𝑋 ;𝜃 ), (4)

where 𝛽 is a constant weight and 𝐼 (𝐴, 𝐵;𝜃 ) represents the mutual

information between 𝐴 and 𝐵. In Eq. (4), 𝐼 (𝐻,𝑌 ;𝜃 ) encourages 𝐻
to contain more information useful for predicting label 𝑌 , while

𝐼 (𝐻,𝑋 ;𝜃 ) encourages 𝐻 to "ignore" information about the input

feature 𝑋 . A hidden feature 𝐻 that satisfies both is considered a

good feature. Since 𝐻 can ignore irrelevant details in 𝑋 that are

unrelated to the target 𝑌 , 𝐻 becomes robust to noise. Additionally,

maximizing the compression of 𝐻 with respect to 𝑋 , it helps mit-

igate information redundancy from 𝑋 . The first commonly used

bound [1] in Eq. (4) is

𝐼 (𝐻,𝑌 ) ≥
∫

𝑑𝑋𝑑𝑌𝑑𝐻𝑝 (𝑋 )𝑝 (𝑌 |𝑋 )𝑝 (𝐻 |𝑋 ) log 𝑝 (𝑌 |𝐻 ), (5)

and for the other term 𝐼 (𝐻,𝑋 ), we have the following bound

𝐼 (𝐻,𝑋 ) ≤
∫

𝑑𝐻𝑑𝑋𝑝 (𝑋 )𝑝 (𝐻 |𝑋 ) log[𝑝 (𝐻 |𝑋 )/𝑟 (𝐻 )], (6)

where 𝑟 (𝐻 ) is a given prior distribution.

3 Methodology
In this section, we detail our proposed DVIB framework in Section

3.1, which is a universal method for enhancing the MRS robustness,

and it requires no extra computational cost during the model in-

ference. Subsequently, we present theoretical support for DVIB’s

efficacy in Section 3.2, showing it not only explicitly enhances ro-

bust training but also implicitly exhibits an information bottleneck

effect, which effectively reduces redundant information and noise

during multimodal fusion and improves feature extraction quality.

3.1 Variational Information Bottleneck
Distillation (DVIB)

Unlike many previous models [3, 9, 46, 59, 62] that perform robust

training at the input layer, our proposed DVIB shifts the pertur-

bations from the input layer to the hidden layer. Combined with

feature self-distillation, we find that this simple training approach,

due to its implicit VIB effect (refer to section 3.2), can effectively

mitigate the risks of inherent noise and information redundancy

simultaneously, without altering the original network architecture.

2
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Figure 2: An overview of the DVIB. The MRS with 𝑛 modali-
ties {𝑀𝑖 }𝑛𝑖=1 typically consists of three stages: feature fusion,
feature extraction, and feature output. The black lines rep-
resent the forward path of the original (Org) MRS. The red
lines indicate the additional algorithms required by DVIB.
1○ and 2○ are the general loss of Org path and extra DVIB
path in Eq. (3) and Eq. (9); 3○ and 4○ are self-distillation loss
in Eq. (10) and regularization term in Eq. (13), respectively.

Specifically, as indicated by the red line in Fig. 2, we build upon

the Org path, i.e. the process of the original MRS, which is based

on Eq. (2) and Eq. (3), by adding some additional steps, including

𝑍𝛿 = 𝑓𝜃2 (𝐻 + 𝛿𝐻 ), (7)

where 𝛿𝐻 represents the perturbations. 𝑓𝜃𝑖 , 𝑖 = 1, 2, 3 are shared in

Org path and extra DVIB path. Additionally, we introduce three

loss functions, i.e.,

LDVIB = LDVIB

0
+ LDVIB

𝑑
+ LDVIB

𝑟 , (8)

where LDVIB

0
,LDVIB

𝑑
,LDVIB

𝑟 are general loss, self-distillation loss,

and regularization term, respectively. The first, similar to Eq. (3),

requires that even with the newly added perturbations, the forward

feature should also be as close to the label as possible. Therefore,

we have

LDVIB

0
≡ 𝛾0 · L0 (𝑓𝜃3 (𝑍𝛿 ), 𝑌 ), (9)

where 𝛾0 ∈ R is a weight. Next, we distill the features obtained

through robust training with added perturbations into the Org path

using self-distillation loss LDVIB

𝑑
. In DVIB, we design the extra

DVIB path shown in Fig. 2 to not participate in themodel’s inference

phase after training. Therefore, we transfer the high-quality features

learned by 𝑍𝑑 to 𝑍 through self-distillation. Specifically, the self-

distillation loss is

LDVIB

𝑑
≡ 𝛾𝑑 · JS(𝑍𝛿 | |𝑍 ) . (10)

where JS is JS-divergence [37] and 𝛾𝑑 is a consistency weight.

Next, we consider the details of the regularization term LDVIB

𝑟 ,

and in this paper,LDVIB

𝑟 is designed by the perturbations 𝛿𝐻 . Specif-

ically, depending on the method of perturbations, DVIB can primar-

ily take two forms. One is perturbations [39] constructed through

constant gaussian noise

𝛿𝐻 ∼ N(𝛿𝐻 ; 0, 𝜎2I), (11)

which we refer to as DVIB𝑐 and 𝜎 is a constant. The other is per-

turbations that self-adjust adaptively, i.e.,

𝛿𝐻 = 𝜙 · 𝜖, 𝜖 ∼ N(𝜖 ; 0, I), (12)

which we call DVIB𝑎 . The 𝜙 ∈ R is a learnable scale. For the

two distinct 𝛿𝐻 shown in Eq. (11) and Eq. (12), their respective

regularization terms LDVIB

𝑟 can be defined as

LDVIB

𝑟 =

{
𝛾𝑟 [𝛼0𝐻⊤𝐻 + 𝛽0

(
𝜙
𝑎 − log

𝜙
𝑎 − 1

)
], if DVIB𝑎

0, if DVIB𝑐

, (13)

where 𝛾𝑟 , 𝛼0, 𝛽0 and 𝑎 are hyperparameters. Here, we use a 3-layers

neural network of 𝐻 to measure the scale 𝜙 , i.e.,

𝜙 = Net𝜙 (𝐻 ) = 𝜎1 (W1 (𝜎2 (W2 (𝜎3 (W3𝐻 ))))), (14)

where𝜎1 is Sigmoid function and𝜎2, 𝜎3 are ReLU.W1 ∈ R𝑑1×1,W2 ∈
R𝑑2×𝑑1 , and W3 ∈ R𝑑3×𝑑2 are learnable matrices. In summary, the

complete process of DVIB is shown in Alg. 1.

Algorithm 1 The details of DVIB framework

Input: As shown in Fig. 2, the input feature 𝑋 and label 𝑌 . The

hidden features 𝐻 and 𝑍 . The learnable parameters Θ = [𝜃1, 𝜃2, 𝜃3].
The hyperparameters 𝜎, 𝛼0, 𝛽0, 𝑎. The network Net𝜙 (·).
Output: Model parameters Θ.

1: Construct loss L0 in Eq. (3) by Eq. (2) ⊲ Original Training

2: if DVIB𝑐 do ⊲ DVIB Training

3: 𝛿𝐻 ∼ N(𝛿𝐻 ; 0, 𝜎2I)
4: Construct regularization terms LDVIB

𝑟 = 0

5: if DVIB𝑎 do
6: 𝛿𝐻 = 𝜙 · 𝜖 = Net𝜙 (𝐻 ) · 𝜖, 𝜖 ∼ N(𝜖 ; 0, I)
7: Construct LDVIB

𝑟 = 𝛾𝑟 [𝛼0𝐻⊤𝐻 + 𝛽0

(
𝜙
𝑎 − log

𝜙
𝑎 − 1

)
]

8: Construct general loss LDVIB

0
in Eq. (9)

9: Construct self-distillation loss LDVIB

𝑑
in Eq. (10)

10: Let LDVIB = LDVIB

0
+ LDVIB

𝑑
+ LDVIB

𝑟

11: Optimize Θ and 𝜙 to minimize LDVIB + L0

12: return Θ

3.2 Theoretical Insight of DVIB
In this section, we present theoretical evidence that both of our

proposed DVIB models, due to its implicit VIB effect, can simulta-

neously mitigate inherent noise and information redundancy. We

will demonstrate this in three steps. First, we show that the regular-

ization term LDVIB

𝑟 in the case of DVIB𝑎 corresponds to imposing

a specific distributional constraint. Next, we prove that DVIB𝑐 is

a special case of DVIB𝑎 . Finally, using the conclusions from the

previous proofs, we analyze the effectiveness of the DVIB frame-

work in addressing information redundancy and noise in a unified

manner. We use notation 𝐴 ∝ 𝐵 to indicate that 𝐴 is approximately

equivalent to 𝐵.

Theorem 3.1. For DVIB𝑎 , minimizing LDVIB
𝑟 = 𝛼0 · 𝐻⊤𝐻 +

𝛽0 ·
(
𝜙
𝑎 − log

𝜙
𝑎 − 1

)
is approximately equivalent to minimize

the KL-divergence between N(𝐻,𝜙I) and N(0, 𝑎I).

Proof. Consider 𝐻 is a 𝑑−dimensional vector, we have

minLDVIB

𝑟 = min𝛼0 · 𝐻⊤𝐻 + 𝛽0 ·
(
𝜙

𝑎
− log

𝜙

𝑎
− 1

)
∝ min𝛼0∥𝐻 ∥2

2
+ 𝛽0 (𝑑

𝜙

𝑎
− log(𝜙

𝑎
)𝑑 − 𝑑).

(15)

Let Σ𝜙 = 𝜙I and Σ𝑎 = 𝑎I, where I is identity matrix, we have

𝑑
𝜙

𝑎
− log(𝜙

𝑎
)𝑑 − 𝑑 = tr(Σ−1𝑎 Σ𝜙 ) − log det(Σ−1𝑎 Σ𝜙 ) − 𝑑. (16)

3
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Therefore, for LDVIB

𝑟 , we have

minLDVIB

𝑟 ∝ min𝛼0∥𝐻 ∥2
2
+ 𝛽0 (𝑑

𝜙

𝑎
− log(𝜙

𝑎
)𝑑 − 𝑑).

∝ min𝐻⊤Σ−1𝑎 𝐻 + 𝛽0 (tr(Σ−1𝑎 Σ𝜙 ) − log det(Σ−1𝑎 Σ𝜙 ) − 𝑑).
∝ minKL(N (𝐻,𝜙I) | |N (0, 𝑎I)) .

(17)

The final step of the above formula is due to the fact that𝐻⊤Σ−1𝑎 𝐻 +
𝛽0 (tr(Σ−1𝑎 Σ𝜙 ) − log det(Σ−1𝑎 Σ𝜙 ) − 𝑑) matches the form of the KL-

divergence formula between two gaussian distribution.

□

Theorem 3.2. As 𝛼0 → 0 and 𝑎 = 𝜎2, DVIB𝑎 tends to-
wards DVIB𝑐 in the sense of minimizing the regularization

term LDVIB
𝑟 = 𝛼0 · 𝐻⊤𝐻 + 𝛽0 ·

(
𝜙
𝑎 − log

𝜙
𝑎 − 1

)
.

Proof. Given the function 𝑔(𝑥) = 𝑥 − log𝑥 − 1, it is noted

that 𝑥 = 1 is the only real solution to 𝑔(𝑥)′ = 0. By analysis, it is

known that 𝑔(𝑥) is monotonically decreasing when 𝑥 ∈ (0, 1) and
monotonically increasing when 𝑥 ∈ [1,∞), meaning 𝑔(𝑥) achieves
its minimum value at 𝑥 = 1.

Therefore, as 𝛼0 → 0 and 𝑎 = 𝜎2, we have:

𝛼0 · 𝐻⊤𝐻 + 𝛽0 ·
(
𝜙

𝑎
− log

𝜙

𝑎
− 1

)
→ 𝛽0 ·

(
𝜙

𝜎2
− log

𝜙

𝜎2
− 1

)
(18)

At this point, the minimum ofminLDVIB

𝑟 is achieved when 𝜙/𝜎2 =
1, which implies 𝜙 = 𝜎2. At this time, Eq. (11) and Eq. (12) are

equivalent.

□

Theorem 3.3. minimizing LDVIB
0

+ LDVIB
𝑟 is approximately

equivalent to maximize the mutual information 𝐼 (𝐻,𝑌 ) and
minimize the mutual information 𝐼 (𝐻,𝑋 ).

Proof. As described in Section 2, the specific design of L0 ≡
L0 (𝑓𝜃3 (𝑍 ), 𝑌 ) depends on different MRS algorithms, but generally,

they all aim for 𝑓𝜃3 (𝑍 ) to be as close to the label 𝑌 as possible.

Therefore, we can assume

L0 ≡ L0 (𝑓𝜃3 (𝑍 ), 𝑌 ) ∝ − log 𝑝 (𝑌 |𝑓𝜃3 (𝑍 )) . (19)

Additionally, according to Theorem 3.2, the regularization terms

of DVIB𝑎 and DVIB𝑐 can be uniformly considered in the form of

LDVIB

𝑟 = 𝛼0 ·𝐻⊤𝐻+𝛽0 ·
(
𝜙
𝑎 − log

𝜙
𝑎 − 1

)
. Hence, forLDVIB

0
+LDVIB

𝑟 ,

according to Theorem 3.1, we have

LDVIB

0
+ LDVIB

𝑟 ∝ L0 (𝑓𝜃3 (𝑍𝛿 ), 𝑌 ) + KL(N (𝐻,𝜙I) | |N (0, 𝑎I))
= L0 (𝑓𝜃3 (𝑓𝜃2 (𝐻 + 𝛿𝐻 )), 𝑌 )
+ KL(N (𝐻,𝜙I) | |N (0, 𝑎I)) .

(20)

FromEq. (19),L0 (𝑓𝜃3 (𝑓𝜃2 (𝐻+𝛿𝐻 )), 𝑌 ) ≈ − log 𝑝 (𝑌 |𝐻 ). Let𝑝 (𝐻 |𝑥) =
N(𝐻,𝜙I) and 𝑟 (𝐻 ) = N(0, 𝑎I). Therefore, Eq. (20) is equivalent to
optimizing follwoing objective function

E(𝑋,𝑌 )∼𝑝 (𝑋,𝑌 ) {E𝐻∼𝑝 (𝐻 |𝑋 ) [− log𝑝 (𝑌 |𝐻 )]}
+ E(𝑋 )∼𝑝 (𝑋 )𝛽0KL(𝑝 (𝐻 |𝑋 ) | |𝑟 (𝐻 )) . (21)

Let 𝑇1 = E(𝑋,𝑌 )∼𝑝 (𝑋,𝑌 )
{
E𝐻∼𝑝 (𝐻 |𝑋 ) [− log𝑝 (𝑌 |𝐻 )]

}
and we set

that 𝑇2 = E𝑋∼𝑝 (𝑋 ) {KL(𝑝 (𝐻 |𝑋 ) | |𝑟 (𝐻 ))}. From Eq. (6) we have

𝑇2 = E𝑋∼𝑝 (𝑋 )KL(𝑝 (𝐻 |𝑋 ) | |𝑟 (𝐻 ))

= E𝑋∼𝑝 (𝑋 )

∫
𝑝 (𝐻 |𝑋 ) log(𝑝 (𝐻 |𝑋 )/𝑟 (𝐻 ))𝑑𝐻 .

=

∫
𝑑𝐻𝑑𝑋𝑝 (𝑋 )𝑝 (𝐻 |𝑋 ) log(𝑝 (𝐻 |𝑋 )/𝑟 (𝐻 )) ≥ 𝐼 (𝐻,𝑋 ).

(22)

Moreover, for 𝑇1, according to Eq. (5), we have

𝑇1 = E(𝑋,𝑌 )∼𝑝 (𝑋,𝑌 )
{
E𝐻∼𝑝 (𝐻 |𝑋 ) [− log𝑝 (𝑌 |𝐻 )]

}
= −E(𝑋,𝑌 )∼𝑝 (𝑋,𝑌 )

{∫
𝑑𝐻𝑝 (𝐻 |𝑋 ) log𝑝 (𝑌 |𝐻 )

}
= −

∫
𝑑𝑋𝑑𝑌𝑑𝐻𝑝 (𝑥)𝑝 (𝑌 |𝑋 )𝑝 (𝐻 |𝑋 ) log𝑝 (𝑌 |𝐻 ) ≥ −𝐼 (𝐻,𝑌 ) .

(23)

□

Thus, according to Theorem 3.3, minimizing the loss function

𝛽0𝑇2 + 𝑇1 helps to minimize the mutual information 𝛽0𝐼 (𝐻,𝑋 ) −
𝐼 (𝐻,𝑌 ). At this point, the mutual information between the hidden

feature 𝐻 and label 𝑌 will be as large as possible, while the mutual

information between 𝐻 and input feature 𝑋 will be as small as

possible. This aligns with the VIB effect mentioned in Section 2,

so our proposed DVIB framework implicitly reduces redundant

information and noise during multimodal fusion and enhances

feature extraction quality. The step of adding perturbations in the

hidden layer for robust training explicitly increases the model’s

ability to resist noise. Meanwhile, the high-quality features obtained

through these effects are distilled to the original network’s forward

features 𝑍 by the self-distillation loss LDVIB

𝑑
, thereby improving

the performance of the MRS.

So far, we have demonstrated the advantages of DVIB, which is

simple, theoretically well-founded, and highly versatile. In the fol-

lowing Section, we will further illustrate DVIB’s ability to enhance

the performance of various MRS from an experimental perspective,

as well as its compatibility with some existing robustness enhance-

ment methods.

4 Experiments
4.1 Experimental Settings
Datasets. We employ three widely-used multimodal datasets from

the Amazon Review Data [28], including Baby, Sports and Clothing.

These datasets consist of both textual and visual features of items,

see Appendix for details. For consistency and rigor in feature extrac-

tion, we follow the established preprocessing procedure outlined

in MMRec [74]. Furthermore, we use the Pinterest dataset [13] to

assess the compatibility of DVIB with some existing robust training

methods [46, 67].

Metrics. To evaluate the performance of MRS, we emphasize Top-5

accuracy since recommendations in the highest-ranking positions

hold greater significance in practical applications [47]. We employ

four widely adopted metrics [14, 45, 61, 73]: Recall (REC), Nor-

malized Discounted Cumulative Gain (NDCG), Precision (PREC),

and Mean Average Precision (MAP). These metrics can provide a

comprehensive evaluation by focusing on different aspects of the
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Models

Baby Sports Clothing

REC NDCG PREC MAP REC NDCG PREC MAP REC NDCG PREC MAP

VBPR [15] 0.0271 0.0177 0.0061 0.0141 0.0365 0.0243 0.0080 0.0197 0.0193 0.0131 0.004 0.0109

VBPR+DVIB𝑐 0.0281 0.0185 0.0064 0.0153 0.0383 0.0259 0.0086 0.021 0.0203 0.014 0.0043 0.0117

Improv. 3.69% 4.52% 4.92% 8.51% 4.93% 6.58% 7.50% 6.60% 5.18% 6.87% 7.50% 7.34%

VBPR+DVIB𝑎 0.0283 0.0188 0.0064 0.0154 0.0384 0.0261 0.0086 0.0214 0.0223 0.0146 0.0046 0.012

Improv. 4.43% 6.21% 4.92% 9.22% 5.21% 7.41% 7.50% 8.63% 15.54% 11.45% 15.00% 10.09%

MMGCN[57] 0.0258 0.0167 0.0058 0.0133 0.0252 0.0161 0.0054 0.0131 0.0143 0.0093 0.003 0.0075

MMGCN+DVIB𝑐 0.0277 0.0181 0.006 0.0151 0.0296 0.0192 0.0067 0.0152 0.0219 0.0139 0.0045 0.0114

Improv. 7.36% 8.38% 3.45% 13.53% 17.46% 19.25% 24.07% 16.03% 53.15% 49.46% 50.00% 52.00%

MMGCN+DVIB𝑎 0.0281 0.0184 0.0064 0.0151 0.030 0.020 0.0067 0.0164 0.0223 0.0144 0.0047 0.0116

Improv. 8.91% 10.18% 10.34% 13.53% 19.05% 24.22% 24.07% 25.19% 55.94% 54.84% 56.67% 54.67%

GRCN[56] 0.0348 0.0237 0.0077 0.0193 0.0384 0.0252 0.0085 0.0205 0.0281 0.018 0.0058 0.0147

GRCN+DVIB𝑐 0.0357 0.0238 0.0078 0.0194 0.0399 0.0267 0.0089 0.0222 0.0299 0.0195 0.0062 0.0159

Improv. 2.59% 0.42% 1.30% 0.52% 3.91% 5.95% 4.71% 8.29% 6.41% 8.33% 6.90% 8.16%

GRCN+DVIB𝑎 0.0364 0.0243 0.0082 0.0198 0.0412 0.0276 0.0091 0.0228 0.0302 0.0199 0.0063 0.0165

Improv. 4.60% 2.53% 6.49% 2.59% 7.29% 9.52% 7.06% 11.22% 7.47% 10.56% 8.62% 12.24%

BM3[79] 0.0345 0.0229 0.0076 0.0189 0.042 0.0278 0.0093 0.0224 0.0282 0.0184 0.0058 0.0152

BM3+DVIB𝑐 0.0359 0.0242 0.0080 0.0196 0.0447 0.0297 0.0098 0.0241 0.0303 0.0198 0.0062 0.0158

Improv. 4.06% 5.68% 5.26% 3.70% 6.43% 6.83% 5.38% 7.59% 7.45% 7.61% 6.90% 3.95%

BM3+DVIB𝑎 0.0365 0.0245 0.0082 0.0198 0.0448 0.0297 0.0099 0.0241 0.0309 0.0204 0.0063 0.0170

Improv. 5.80% 6.99% 7.89% 4.76% 6.67% 6.83% 6.45% 7.59% 9.57% 10.87% 8.62% 11.84%

FREEDOM[77] 0.0379 0.025 0.0083 0.0206 0.0454 0.0293 0.0098 0.0237 0.0395 0.0262 0.0082 0.0216

FREEDOM+DVIB𝑐 0.0391 0.0257 0.0086 0.0212 0.0468 0.0312 0.0102 0.0255 0.0416 0.0272 0.0086 0.0224

Improv. 3.17% 2.80% 3.61% 2.91% 3.08% 6.48% 4.08% 7.59% 5.32% 3.82% 4.88% 3.70%

FREEDOM+DVIB𝑎 0.0399 0.0264 0.0087 0.0218 0.047 0.0313 0.0103 0.0260 0.042 0.0278 0.0087 0.0229

Improv. 5.28% 5.60% 4.82% 5.83% 3.52% 6.83% 5.10% 9.70% 6.33% 6.11% 6.10% 6.02%

Avg Improv. (DVIB𝑐 ) 4.17% 4.36% 3.71% 5.84% 7.16% 9.02% 9.15% 9.22% 15.50% 15.22% 15.23% 15.03%

Avg Improv. (DVIB𝑎) 5.80% 6.30% 6.89% 7.19% 8.35% 10.96% 10.04% 12.47% 18.97% 18.76% 19.00% 18.97%

Table 1: Top-5 recommendation performance of MRS with and without DVIB (DVIB𝑐 for constant noise and DVIB𝑎 for adaptive
noise) on the Baby, Sports, and Clothing datasets. "Improv." indicates the relative improvement of DVIB over the baseline, while
"Avg. Improv." represents the average enhancement across all datasets.

recommendation performance. To compare with the adversarial

training method AMR, Hits Ratio (HR) is adopted as an evaluation

metric to maintain DVIB’s consistency and comparability with the

established benchmark in official result of AMR. All the above-

mentioned metrics range from 0 to 1, the closer to 1 the better.

Baselines. We evaluate DVIB across a variety of recommenda-

tion models, including both multimodal and single-modal systems.

Our multimodal baselines include Bayesian Personalized Ranking

with matrix factorization (VBPR [15]), three graph neural networks

(MMGCN [57], GRCN [56], FREEDOM [77]), and self-supervised

learning methods (BM3 [79]). For single-modal models, we test

DVIB on the self-supervised learning model SelfCF [78] and the

graph-based LayerGCN [76]. To further assess DVIB’s compati-

bility, we conduct experiments combining DVIB with robustness

methods MG [67] and AMR [46], demonstrating that DVIB can

work synergistically with other robustness methods for MRS.

4.2 Overall Performance
Observation #1: DVIB significantly elevates the performance
of various MRS.We assess DVIB’s effectiveness across five mul-

timodal models using three datasets, namely Baby, Sports, and

Clothing. As demonstrated in Table 1, the results consistently un-

derscore the superiority of our approach, with DVIB outperforming

baseline models across all metrics. The greatest improvement is

observed in model MMGCN on dataset Clothing, where DVIB𝑎

achieves an impressive performance boost exceeding 50%. This

notable improvement is attributed to DVIB’s hidden-layer perturba-

tions and self-distillation mechanism reducing its detrimental effect

on recommendation accuracy. It also demonstrates empirically that

DVIB does have potential to filter out redundant information, sharp-

ening the model’s focus on task-relevant features, and validating

its adherence to VIB theory. Together, DVIB makes the model more

robust to capture and leverage meaningful information, resulting

in significantly improved performance across diverse metrics.

Observation #2: Adaptive noise demonstrates clear superior-
ity over constant noise. This advantage is evident empirically as

shown in Table 1. The dynamic nature of adaptive noise in DVIB𝑎

allows themodel to automatically adjust the noise level based on the

complexity and heterogeneity of the data, resulting in consistently

better performance across various models and datasets. This capa-

bility enhances the model’s robustness and generalization, proving

its efficacy in MRS.

5 Analysis
To evaluate the performance and versatility of the DVIB framework,

our analysis focuses on the following five research questions (RQs):

• RQ1: Does DVIB truly mitigate inherent noise in MRS?

• RQ2: Does DVIB truly handle redundancy in MRS?

• RQ3: Is DVIB compatible with other robust training methods?
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• RQ4: How about the training efficiency of DVIB?

• RQ5: Can DVIB enhance single-modal recommender systems?

We mainly consider three MRS, including VBPR [15], MMGCN [57],

BM3 [79] on the dataset Baby for the following analysis.

Models 𝜒 Ori. Noise Decr. ↓
MMGCN

0.01

0.0258 0.0245 5.04%

MMGCN+DVIB𝑐 0.0277 0.0264 4.69%

MMGCN+DVIB𝑎 0.0281 0.0279 0.71%

MMGCN

0.05

0.0258 0.0219 15.12%

MMGCN+DVIB𝑐 0.0277 0.0254 8.30%

MMGCN+DVIB𝑎 0.0281 0.0277 1.42%

Table 2: REC of MMGCN [57] under varying intensities 𝜒 of
Gaussian noise injection into textual and visual modality on
the dataset Baby. The noise intensity is represented by the
standard deviation of Gaussian distribution. "Decr." denotes
the relative comparison to the origin(Ori.) after noise injec-
tion.

Mitigating Inherent Noise and Redundant Information (RQ1
&RQ2). We explicitly verify whether the proposed DVIB can truly

mitigate the impact of inherent noise and redundant information

by incorporating them into MRS.

(1) Inherent Noise. To model with learnable multimodal embedding

layers, such as MMGCN [57], we simulate real-world information

noise by injecting Gaussian noise of varying intensities into the

embeddings. Specifically, the noise injection follows the formula-

tion:

Embnoisy = Emb + 𝜒 · 𝝐, 𝝐 ∼ N(0, I) (24)

where Emb represents the original multimodal embeddings, 𝜒 is the

noise intensity, and 𝜖 is drawn from a standard normal distribution

N(0, I). This noise injection mimics potential distortions or errors

in real-world data, such as blurry item images or incorrect item

textual information, like comments or descriptions. As shown in

Table 2, DVIB consistently outperforms baseline models in both

accuracy and robustness, demonstrating its resilience to noisy in-

puts. Additionally, DVIB𝑎 , which employs adaptive noise, shows

higher robustness compared to DVIB𝑐 , further highlighting the

advantage of the adaptive noise scale mechanism. Therefore, DVIB

does mitigate inherent noise in multimodal data.

(2) Redundant Information. To further validate DVIB’s ability to

handle redundant information, we introduce irrelevant yet harm-

less redundancy into textual and visual modalities. In the textual

modality (TR), we append 30-character random strings (drawn from

a-z, A-Z, 1-9) to half of the samples. In the visual modality (VR),

we augment the original 4096-dimensional visual features with

512-dimensional extra features consisting of absolute values from

N(1, 9) combined with 512-dimensional extra features of zeros

to simulate redundant visual features. The experiment results on

MMGCN are shown in Table 3.We can see that DVIB effectively mit-

igates the negative impacts of both textual and visual redundancy

(TR, VR). Even in scenarios where both types of redundancy are

present (TR+VR), DVIB still maintains stable performance, provid-

ing a clear affirmative answer to its ability for handling redundancy

in multimodal data.

Models Red. Type Ori. w/ Red. Decr. ↓
MMGCN

TR+VR

0.0260 0.0225 15.56%

MMGCN+DVIB𝑐 0.0277 0.0249 11.24%

MMGCN+DVIB𝑎 0.0281 0.0275 2.18%

MMGCN

VR

0.0260 0.0228 14.04%

MMGCN+DVIB𝑐 0.0277 0.0250 10.80%

MMGCN+DVIB𝑎 0.0281 0.0277 1.44%

MMGCN

TR

0.0260 0.0244 6.56%

MMGCN+DVIB𝑐 0.0277 0.0264 4.92%

MMGCN+DVIB𝑎 0.0281 0.0279 0.72%

Table 3: REC of MMGCN [57] with redundancy (Red.) in
textual and visual modalities on the dataset Baby. "Decr." rep-
resents the relative decrease of models (w/ Red.) compared
with the origin(Ori.). MMGCN is evaluated under three re-
dundancy scenarios (Red. Modal): (1) TR+VR (both textual
and visual redundancy), (2) VR (visual redundancy only), and
(3) TR (textual redundancy only).

Models Metrics Ori. AMR AMR+DVIB𝑐 AMR+DVIB𝑎

VBPR [15]

HR 0.1352 0.1395 0.1457 0.1460
NDCG 0.1005 0.1027 0.1048 0.1050

Ori. MG MG+DVIB𝑐 MG+DVIB𝑎

MMGCN [57]

REC 0.0258 0.0263 0.0284 0.0288
NDCG 0.0167 0.0172 0.0184 0.0187
PREC 0.0058 0.0060 0.0062 0.0065
MAP 0.0133 0.0138 0.0153 0.0154

Table 4: Top-5 recommendation performance under different
robust training methods AMR and MG for MRS with and
without DVIB on the dataset Baby.

~ 6× speed up
~ 1.4× speed up

Epoch
0 25 50 75

R
EC

A
LL

0.01

0.02
MMGCN

100 200

0.025

0.030
BM3

Epoch
0

Figure 3: REC of MMGCN [57] and BM3 [79] comparing the
training efficiency. See more results in Appendix.

Compatibility with Robustness Methods (RQ3). To further as-

sess DVIB’s versatility, we investigate its compatibility with existing

robustness-enhancing methods including AMR [46] and MG [67].

The experiment results are shown in Table 4. When combining

robustness methods with DVIB, the results show consistent im-

provements. These results highlight that DVIB is compatible with

robustness-enhancing methods, further validating its flexibility and

compatibility across different strategies for MRS robustness.

Improving Training Efficiency (RQ4). As shown in Fig. 3, we as-

sess the training efficiency of DVIB by tracking its REC as training

progresses. Following the training strategy in Zhou et al. [73], we

set the maximum number of epochs to 1000, with an early stopping

strategy to prevent overfitting. The results in Fig. 3 demonstrate that
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Models

Baby Sports Clothing

REC NDCG PREC MAP REC NDCG PREC MAP REC NDCG PREC MAP

SelfCF [78] 0.0345 0.0226 0.0074 0.0186 0.0421 0.0281 0.0090 0.0232 0.0271 0.0178 0.0057 0.0148

SelfCF+DVIB𝑐 0.0354 0.0234 0.0078 0.0191 0.0428 0.029 0.0092 0.0242 0.0285 0.0186 0.0058 0.0155

Improv. 2.61% 3.54% 5.41% 2.69% 1.66% 3.20% 2.22% 4.31% 5.17% 4.49% 1.75% 4.73%

SelfCF+DVIB𝑎 0.0357 0.0238 0.0078 0.0195 0.0449 0.03 0.0098 0.0249 0.0307 0.0205 0.0063 0.0173

Improv. 3.48% 5.31% 5.41% 4.84% 6.65% 6.76% 8.89% 7.33% 13.28% 15.17% 10.53% 16.89%

LayerGCN [76] 0.0337 0.0223 0.0072 0.0184 0.0394 0.0262 0.0083 0.0214 0.0256 0.0170 0.0051 0.014

LayerGCN+DVIB𝑐 0.0338 0.0227 0.0076 0.0189 0.0399 0.0269 0.0089 0.0219 0.0263 0.0173 0.0054 0.0145

Improv. 0.30% 1.79% 5.56% 2.72% 1.27% 2.67% 7.23% 2.34% 2.73% 1.76% 5.88% 3.57%

LayerGCN+DVIB𝑎 0.0345 0.023 0.0078 0.0192 0.0402 0.0269 0.0087 0.0222 0.0267 0.0175 0.0055 0.0145

Improv. 2.37% 3.14% 8.33% 4.35% 2.03% 2.67% 4.82% 3.74% 4.30% 2.94% 7.84% 3.57%

Avg Improv. (DVIB𝑐 ) 1.45% 2.67% 5.48% 2.70% 1.47% 2.94% 4.73% 3.32% 3.95% 3.13% 3.82% 4.15%

Avg Improv. (DVIB𝑎) 2.93% 4.22% 6.87% 4.59% 4.34% 4.72% 6.85% 5.53% 8.79% 9.05% 9.18% 10.23%

Table 5: Top-5 recommendation performance of baseline single-modal recommender systems with and without DVIB (DVIB𝑐
for constant noise and DVIB𝑎 for adaptive noise) on the Baby, Sports, and Clothing datasets. "Improv." indicates the relative
improvement of DVIB over the baseline, while "Avg. Improv." represents the average enhancement across all datasets. The
DVIB is equally effective for single-modal recommender systems.

the models enhanced by DVIB consistently achieve faster conver-

gence speed, requiring fewer epochs to reach the same performance

levels as their baseline counterparts, and finally achieving superior

results. While DVIB introduces extra computational cost due to

the extra paths (discussed in Section 7), the overall training cost re-

mains acceptable given the substantial gains in convergence speed.

Moreover, it is important to note that DVIB introduces no additional

computational cost during inference, making it highly efficient in

both training and deployment stages.

Improvement on Single-modal Models (RQ5). Single-modal

systems can be viewed as a specific case of MRS, and in addition

to its success in MRS, we further explore whether our DVIB can

improve single-modal models with LayerGCN [76] and SelfCF [78].

As shown in Table 5, DVIB consistently delivers performance gains

across multiple datasets, with the most striking improvement ob-

served in SelfCF on the dataset Clothing, where the MAP score

increased by an impressive 16.89% using the DVIB𝑎 approach. Al-

though single-modal systems are less affected by the inherent noise

and redundant information characteristic of multimodal data, our

method still significantly enhances their robustness and generaliza-

tion capabilities. These results illustrate that DVIB remains highly

effective even in more straightforward, single-modal environments,

which is still consistent with our theory in Section 3.2.

6 Ablation Study
We first investigate the effects of each component in our loss func-

tion, focusing on three specific terms in Eq. (8): general loss, self-

distillation loss, and regularization term. Then, we evaluate the

influence of various perturbation 𝛿𝐻 .

(1) Effects of General Loss LDVIB
0

and L0. To understand the

influence of general loss, we conduct the ablation study on LDVIB

0

and L0 with BM3 on the dataset Baby. The results in Fig. 4 show

that both LDVIB

0
and L0 are essential for maintaining model per-

formance. Removing any one of them will lead to a significant drop

Figure 4: REC and NDCG of BM3 [79] comparison for DVIB
variations on the dataset baby, showing performance with
different loss components: general loss LDVIB

0
and L0.

in performance. This highlights the importance of preserving both

loss components to achieve optimal training outcomes.

(2) Effects of Self-distillation Loss LDVIB
𝑑

. We first experiment

with different consistency weight 𝛾𝑑 in LDVIB

𝑑
. Further analysis is

conducted on using KL-divergence [27] versus JS-divergence [37]

to compute the LDVIB

𝑑
. The results in Fig. 5 show that it’s crucial

to adjust 𝛾𝑑 to balance between original model feature and distilled

knowledge, with certain weights allowing the model to maintain

this balance more effectively. Additionally, the result in Table 6

shows that JS-divergence consistently outperforms KL-Divergence,

as it better balances the asymmetric nature of KL-divergence, mak-

ing it more suitable to handle complex and multimodal distributions

in our proposed DVIB framework.

(3) Effects of Regularization Term LDVIB
𝑟 .We perform two sets

of experiments to assess the impact of LDVIB

𝑟 . First, we vary the

weight𝛾𝑟 ∈ [0, 0.001, 0.01, 0.1, 1] to find the optimal balance between

regularization strength and model flexibility. Second, we investigate

the influence of the parameter 𝑎 in LDVIB

𝑟 , which controls the

relationship between the learnable noise scale 𝜙 and a Gaussian

distribution w.r.t. 𝑎. As observed in Fig. 6, while changes in weight

𝛾𝑟 and the parameter 𝑎 do influence model performance, the impact

is not overly drastic. The weight 𝛾𝑟 of 0.001 consistently yields the

best results, balancing regularization without constraining learning.
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Figure 5: NDCG and REC results with different values of
consistency weight 𝛾𝑑 in self-distillation loss Eq. (10).

Models Divergence REC NDCG PREC MAP

BM3+DVIB𝑐

KL(𝑍 | |𝑍𝑑 ) 0.0346 0.0229 0.0076 0.0188

KL(𝑍𝑑 | |𝑍 ) 0.0344 0.0227 0.0076 0.0187

JS 0.0359 0.0242 0.008 0.0196

BM3+DVIB𝑎

KL(𝑍 | |𝑍𝑑 ) 0.0346 0.0230 0.0076 0.0188

KL(𝑍𝑑 | |𝑍 ) 0.0353 0.0232 0.0078 0.0189

JS 0.0365 0.0245 0.0082 0.0198

VBPR+DVIB𝑐

KL(𝑍 | |𝑍𝑑 ) 0.0263 0.0171 0.0061 0.0148

KL(𝑍𝑑 | |𝑍 ) 0.0253 0.0167 0.0058 0.0147

JS 0.0281 0.0185 0.0064 0.0153

VBPR+DVIB𝑎

KL(𝑍 | |𝑍𝑑 ) 0.0267 0.0177 0.0060 0.0143

KL(𝑍𝑑 | |𝑍 ) 0.0265 0.0177 0.0059 0.0143

JS 0.0283 0.0188 0.0064 0.0154

Table 6: Top-5 performance of BM3 [79] and VBPR [15] un-
der different self-distillation methods. KL(𝑍 | |𝑍𝑑 ) represents
the KL-divergence [27] from the original hidden feature 𝑍
to the perturbed hidden feature 𝑍𝑑 , KL(𝑍𝑑 | |𝑍 ) represents the
KL-divergence from the perturbed hidden feature to the orig-
inal hidden feature, and JS represents the JS-divergence [37]
between the two.

BM3
VBPR VBPR

BM3

Figure 6: Normalized REC of BM3 [79] and VBPR [15] on the
dataset Baby with different values of parameter 𝑎 or regular-
ization term weights (𝛾𝑟 ) as defined in Eq. (13).

For the parameter 𝑎, a value of 0.5 emerges as optimal, indicating

that it helps manage the noise adaptively without overly limiting

the model’s learning capacity. For further details on the data and

analysis, please refer more results in the Appendix.

(4) Different Ways of Perturbations in DVIB𝑐 . We evaluate the

impact of different noise injection methods on model performance.

Guided by the principles of VIB theory, our primary approach in-

volves Gaussian noise, as defined in Eq. (11) and Eq. (12), which

introduces controlled perturbations with the variance dictating the

degree of them. To assess the efficacy of this method, we compare

it against two alternative strategies: dropout [44, 60] and uniform

noise [4]. Dropout randomly removes a portion of network con-

nections during training, introducing perturbations without the

continuous properties of Gaussian noise. In contrast, uniform noise

introduces randomness from a uniform distribution, lacking the cen-

tral tendency around zero, which may lead to different perturbation

characteristics.

The results in Table 7 clearly demonstrate that Gaussian noise is

the most effective method for perturbations in the DVIB framework.

This aligns with the theoretical expectations of VIB, where Gaussian

noise provides controlled perturbations that regularize the model

while preserving robustness. Dropout and uniform noise, lacking

the structured variance and statistical properties of Gaussian noise,

exhibit inferior performance in comparison.

Models Noise REC NDCG PREC MAP

BM3+DVIB𝑐

Gaussian 0.0359 0.0242 0.008 0.0196
Uniform 0.0303 0.0207 0.0067 0.0174

Dropout 0.0312 0.021 0.0069 0.0177

BM3+DVIB𝑎

Gaussian 0.0365 0.0245 0.0082 0.0198
Uniform 0.0347 0.0229 0.0077 0.0191

Dropout 0.0292 0.0198 0.0062 0.016

Table 7: Top-5 performance of BM3 [79] with different pertur-
bation methods, including the effects of Gaussian, Uniform,
and Dropout noise.

7 Limiation
The proposed DVIB method also has some limitations. For instance,

(1) it requires extra computational cost during training. Fortu-

nately, the extra DVIB path in Fig. 2 only adds about 10% to 20%

more training time for various MRS. This path is not involved in

computation during inference, resulting in no extra cost at that

stage. Moreover, Fig. 3 shows that the training efficiency of our

DVIB significantly outperforms that of the baseline. Therefore, the

overall cost of DVIB is acceptable.

(2) The location of the perturbation 𝛿𝐻 . As mentioned in Section

2, different MRS models possess varying network structures, which

may make it difficult to establish a unified rule for determining

the exact layer where perturbation 𝛿𝐻 should be applied. However,

our experiments reveal that in most cases, the optimal position for

introducing noise is after multimodal feature fusion, aligning with

the theoretical expectations outlined in Section 3.2, and this location

is typically straightforward to identify within the network structure.

For more implementation details, please refer to the Appendix.

8 Conclusion
This paper introduces DVIB, simple-yet-effective framework that

mitigates inherent noise and information redundancy risks in vari-

ous MRS without altering the original network architecture. The

effectiveness of DVIB is not only supported by the variational infor-

mation bottleneck theory but also by extensive experiments across

different datasets and model settings, representing a promising new

paradigm in MRS.
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A Related Works
Multimodal Recommender Systems. Traditional recommender

systems [17, 65, 76, 78] primarily model user preferences and item

properties by relying on implicit interaction data, such as ratings

and clicks. However, these systems often face challenges like data

sparsity[8] and cold start [43]. MRS address these limitations by in-

corporating diversemultimodal data, offering richer context for user

preferences and item attributes, which leads to improved recommen-

dation performance [34]. Early approaches predominantly relied

on collaborative filtering [2, 38] and matrix factorization[15, 26].

More recently, deep learning methods, including graph neural net-

works [56, 57, 77], attention mechanisms [20, 24, 49, 68] and self-

supervised learning [79] have been applied.

Robustness of Recommender Systems. Recent studies [10, 34,
53] have increasingly highlighted the vulnerability of RS to both

noise and redundant information, which can significantly under-

mine the accuracy of recommendations. To improve the robustness

of RS, much of the focus has been placed on adversarial training

methods [3, 9, 11, 35, 40, 46, 58, 59, 62]. These approaches introduce

controlled perturbations to input data or model parameters, simu-

lating potential attack scenarios to enhance the model’s resilience

against noise. Additionally, some research [31, 33, 36, 49, 52, 54]

attempts to design more complicated network structures incorpo-

ratingmethods, such as attentionmechanisms [19, 21, 23, 29, 70, 71],

to filter out redundant information to reduce the interference of

redundant information on the model. However, existing methods

typically address either noise or redundancy in isolation, lacking a

comprehensive solution that tackles both issues simultaneously.

Variational Information Bottleneck. As data continues to scale
and grow in complexity, balancing data compression with the reten-

tion of task-relevant information has become a critical challenge

in machine learning. The Information Bottleneck (IB) method, in-

troduced by Tishby et al. [50], addresses this by optimizing mutual

information to compress input data while preserving the most crit-

ical features for a given task. To adapt IB to high-dimensional data,

Alemi et al. [1] proposed the Variational Information Bottleneck

(VIB), which integrates variational inference with stochastic gra-

dient descent, making IB applicable to deep learning models. In

recent years, VIB has also demonstrated notable effectiveness in RS

[5, 30, 55].

B Implementation Details
We follow the standard settings for all baseline models. The Adam

optimizer [25] is adopted for model optimization unless specified

otherwise. Following the settings of some pioneer works in mul-

timodal recommender systems [74], we conduct a grid search to

determine the optimal weight of self-distillation loss 𝛾𝑑 , regular-

ization term in DVIB𝑎 and noise scale for DVIB𝑐 . Specifically, 𝛾𝑑 is

searched among values like 0.5, 0.1, 0.01, which align with common

practices for self-distillation. For the regularization term in DVIB𝑎 ,

it is calculated via the KL-divergence [27] between the model’s

distributions, and the hyperparameters 𝛼0 and 𝛽0 can be constant.

The general loss weight 𝛾0 is set to 1 as the regularization weight 𝛾𝑟
set to 0.001 after testing a range of values where we found that 0.001

consistently provided better generalization. For the noise scale in

DVIB𝑐 , values like 0.001, 0.0005, and 0.0001 were tested. Meanwhile,

we set the hyper-parameter 𝑎 in DVIB𝑎 as 0.5. All model training

and evaluation are performed on an NVIDIA RTX3090 GPU to

ensure consistent and fair computations.

C The Details of Dataset
In this paper, we use the Amazon review dataset, a widely used

benchmark in recommendation research, as the main dataset of

our experimental evaluation. The dataset contains both item de-

scriptions and corresponding images, enabling multimodal analysis.

Following the approach of previous studies [74, 79], we use three

distinct per-category datasets for comprehensive evaluation: Baby,

Clothing, and Sports. These datasets vary in size and complexity,

covering different item categories and providing a robust testbed

for our proposed models. The statistics for these datasets, including

their size and sparsity, are detailed in Table 8 as follows.

Dataset #Users #Items #Interactions Sparsity

Baby 19,445 7,050 160,792 99.88%

Sports 35,598 18,357 296,337 99.95%

Clothing 39,387 23,033 278,677 99.97%

Pinterest 3,226 4,998 9,844 99.94%

Table 8: Statistics of the experimental datasets. These datasets
include both textual and visual features.

The Pinterest dataset is chosen for our compatibility analysis

with the AMR method [46] to ensure a fair comparison, as it is the

same dataset used in the official AMR code for robustness experi-

ments.

D Which Layer Should We Inject 𝛿𝐻?
In our proposed DVIB framework, noise perturbations are intro-

duced into the hidden layer ofMRS to enhancemodel robustness. As

discussed in Section 7, different MRS models have distinct network

structures, making it challenging to establish a uniform rule for

determining the exact layer at which noise should be injected. How-

ever, our experiments have shown that, in most cases, adding noise

after multimodal feature fusion leads to significant performance

improvements, which aligns well with our theoretical expectations.

Specifically, in early fusion network structures, noise can be

introduced after feature fusion, giving themodel ample time to learn

from and adapt to the perturbations. Conversely, for models where

fusion occurs later, if noise is injected after fusion, the later layers

of the network may struggle to fully leverage the benefits of these

perturbations, because the subsequent layers are not sufficiently

expressive to fully capitalize on the noise perturbations. Therefore,

introducing noise earlier, particularly before multimodal fusion,

often yields better results.

In VBPR [15], textual and visual features are first concatenated

to generate fused multimodal embeddings. Perturbations are then

added to this fused item embedding before the original and noisy

embeddings are passed to subsequent network layers for training.

Similarly, in GRCN [56], perturbation is added after modality fusion,

where the representations of the text and visual modalities are com-

bined through GCN layers. In BM3 [79], as fusion is not explicitly

performed, perturbation is injected separately into the textual and
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visual features after generating the initial user and item embed-

dings. In FREEDOM [77], a multimodal adjacency matrix is used

to create fused embeddings, and noise is introduced progressively

based on the number of layers in the network.

It is worth noting that formodels likeMMGCN [57], where fusion

occurs late in the network, the effectiveness of adding noise at a later

stage is more limited. This is due to the insufficient representational

power of the later layers, which prevents the model from fully

utilizing the benefits of noise perturbations. As a result, for such

models, it is more effective to inject noise earlier, ideally before

modality fusion, to achieve optimal results.

In summary, the DVIB framework flexibly adapts to different

MRS structures by introducing noise perturbations at appropriate

hidden layers to improve performance. While noise is often injected

after multimodal fusion in most cases, the optimal point of injection

may vary depending on the specific model structure and the timing

of feature fusion.

E Effects of Regularization Term
In this section, we present additional experimental results to il-

lustrate the influence of various hyperparameter settings within

the regularization terms. As shown in Table 9, the Top-5 perfor-

mance peaks when the parameter 𝑎 is set to 0.5. This value of

𝑎 offers an optimal balance in the noise distribution between the

model’s learned embeddings and the standard Gaussian distribution,

𝑁 (0, 𝑎2𝐼 ). When 𝑎 is too small, the noise added is insufficient, which

hampers the model’s ability to leverage the adaptive noise mecha-

nism. Conversely, when 𝑎 is too large, the model over-prioritizes the

noise, which can diminish the generalization capacity by skewing

towards excessive noise rather than learning meaningful represen-

tations. Therefore, maintaining the right balance in 𝑎 is critical for

maximizing the model’s overall performance.

Models a REC NDCG PRE MAP

VBPR[15]

0.3 0.0279 0.0188 0.0064 0.0154

0.5 0.0283 0.0188 0.0064 0.0154
0.7 0.0278 0.0187 0.0063 0.0153

1.0 0.0275 0.0186 0.0062 0.0153

BM3[79]

0.3 0.0360 0.0239 0.0079 0.0196

0.5 0.0365 0.0245 0.0082 0.0198
0.7 0.0358 0.0237 0.0078 0.0194

1 0.0356 0.0233 0.0077 0.0191

Table 9: Top-5 performance of VBPR and BM3 on the Baby
dataset with different values of parameter 𝑎 in Eq. (13).

Similarly, Table 10 demonstrates the significance of selecting an

appropriate regularization weight 𝛾𝑟 . Regularization helps prevent

overfitting by ensuring the adaptive noise scale remains effective.

Setting 𝛾𝑟 too low can weaken the regularization effect, resulting

in overfitting and diminished model robustness. Conversely, if 𝛾𝑟
is too high, the model may become overly constrained, limiting

its capacity to learn meaningful patterns from the data. Therefore,

carefully tuning 𝛾𝑟 is essential for achieving optimal regularization

and, by extension, enhanced model stability and performance.

Models Metrics 0 0.0001 0.001 0.01 0.1

VBPR[15]

REC 0.0279 0.0279 0.0283 0.0277 0.0274

NDCG 0.0186 0.0187 0.0188 0.0185 0.0183

PREC 0.0062 0.0063 0.0064 0.0063 0.0062

MAP 0.0152 0.0153 0.0154 0.0150 0.0148

BM3[79]

REC 0.0346 0.0354 0.0359 0.0358 0.0355

NDCG 0.0234 0.0235 0.0242 0.0240 0.0241

PREC 0.0077 0.0078 0.008 0.0080 0.0078

MAP 0.0191 0.0193 0.0196 0.0195 0.0194

Table 10: Top-5 performance of VBPR and BM3 under differ-
ent regularization term weights (𝛾𝑟 ) as defined in Eq. (13).
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Figure 7: Various metrics of MMGCN [57]and BM3 [79] with
DVIB variations over different epochs.

F Improving Training Efficiency
As discussed in Section 5, our DVIB framework not only accelerates

training but also improves final performance. To further substan-

tiate these claims, we provide additional metrics in Fig. 7, which

highlights the significant gains in convergence speed as well as

superior results.

In the MMGCN plots (left), DVIB achieves target NDCG, Pre-

cision, and MAP scores up to six times faster than the original

model, reaching optimal performance within the first 25-50 epochs.

Similarly, for the BM3 model (right), DVIB accelerates convergence

by 1.4 to 1.5 times. Importantly, both models not only converge

faster but also achieve higher final performance compared to the

baselines, underscoring the dual benefit of speed and quality with

DVIB.

G Different Ways of Perturbations in DVIB𝑐

Table 11 demonstrates the effects of different perturbation ways

on the MMGCN [57] model, provided as supplementary results
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to further support the findings in Section 6. Notably, Gaussian

noise consistently outperforms Uniform and Dropout noise, which

aligns with our Variational Information Bottleneck (VIB) theory

[1], reinforcing the importance of controlled, Gaussian-distributed

perturbations in optimizing model performance.

Models Noise REC NDCG PRE MAP

MMGCN+DVIB𝑐

Gaussian 0.0277 0.0181 0.006 0.0151
Uniform 0.0271 0.0173 0.0058 0.0145

Dropout 0.0272 0.0173 0.0055 0.0146

MMGCN+DVIB𝑎

Gaussian 0.0281 0.0184 0.0064 0.0151
Uniform 0.0256 0.0171 0.0058 0.0139

Dropout 0.0276 0.0181 0.0061 0.0148

Table 11: Top-5 performance of MMGCN [57] with different
noise injection methods, including the effects of Gaussian,
Uniform, and Dropout noise.
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