
ReMoBot: Mobile Manipulation with Vision-based
Sub-goal Retrieval

Anonymous Author(s)
Affiliation
Address
email

Abstract: Imitation learning (IL) algorithms typically distill experience into para-1

metric behavior policies to mimic expert demonstrations. With a limited set of2

demonstrations, previous methods often cannot accurately align the current state3

with expert demonstrations, especially under partial observability. We introduce4

a few-shot IL approach, ReMoBot, which directly Retrieves information from5

demonstrations to solve Mobile manipulation tasks with ego-centric visual obser-6

vations. Given the current observation, ReMoBot utilizes vision foundation mod-7

els to identify a sub-goal, considering visual similarity w.r.t. both single observa-8

tions and trajectories. A motion generation policy subsequently guides the robot9

toward each selected sub-goal, iteratively progressing until the task is successfully10

completed. We design three mobile manipulation tasks and evaluate ReMoBot on11

these tasks with a Boston Dynamics Spot robot. With only 20 demonstrations,12

ReMoBot outperforms baseline methods, achieving high success rates in Table13

Uncover (70%) and Gap Cover (80%) tasks, while showing promising perfor-14

mance on the more challenging Curtain Open task (35%). Moreover, ReMoBot15

generalizes to varying robot positions, object size, and material type. Additional16

details are available at: https://sites.google.com/view/remobot/home17

Keywords: Few-shot Imitation Learning, Mobile Manipulation, Partial Observ-18

ability19

1 Introduction20

Learning mobile manipulation purely from egocentric visual inputs is particularly challenging due21

to partial observability arising from a limited camera field of view and the complexity of the envi-22

ronment [1, 2]. While reinforcement learning (RL) has shown promise in certain complex scenarios,23

RL typically demands extensive exploration [3, 4], making it impractical for real-world applications24

without additional guidance. In contrast, imitation learning (IL) has succeeded in various complex25

robotic tasks [5], enabling robots to quickly acquire skills from expert demonstrations. However, the26

performance of IL methods highly depends on the quantity and diversity of demonstrations, posing27

significant challenges. Furthermore, IL methods such as behavior cloning suffer from compounding28

errors over long task horizons [6]. To address these limitations, we introduce ReMoBot, a retrieval-29

based few-shot imitation learning framework to solve mobile manipulation tasks using only visual30

input. Unlike traditional parametric skill learning approaches, ReMoBot imitates demonstrated be-31

haviors by retrieving visually similar observations from a collected dataset of demonstrations, en-32

abling robust performance with a few expert trajectories.33

ReMoBot introduces two key innovations to enable data-efficient skill acquisition with strong gen-34

eralization capabilities: (1) it leverages vision foundation models to extract object-centric state rep-35

resentations, and (2) it incorporates history-aware retrieval by enforcing trajectory similarity con-36

straints, enabling consistent sub-goal generation to guide the robot through complex mobile manip-37

ulation tasks in the real world directly.38

Submitted to the 9th Conference on Robot Learning (CoRL 2025) RemembeRL Workshop. Do not distribute.

Figure 1: Three Deformable Mobile Manipulation tasks. Table Uncover (top), Gap Cover (mid-
dle), and Curtain Open (bottom) are shown in both the data collection (left) and novel fabric evalu-
ation (right) settings.

2 Related Work39

Vision-based mobile manipulation: Recent progress in visual-input-based mobile manipulation40

has enabled more generalizable and scalable robotic skill acquisition [7, 8]. However, ego-centric41

viewpoints present persistent challenges due to frequent occlusions, dynamically shifting perspec-42

tives, and a limited field of view. These factors lead to partial observations, which significantly com-43

plicate both perception and planning. Several existing methods address these challenges through44

end-to-end reinforcement learning [9, 10, 11] or modular architectures [10, 12, 13]. Furthermore,45

manipulation of deformable objects adds an additional layer of complexity [14, 15], demanding46

robustness to complex dynamics and high visual variability [16, 17].47

Retrieval-based imitation learning Retrieval-based imitation learning is a non-parametric ap-48

proach where a robot learns to perform tasks by retrieving and reusing relevant data from expert49

demonstrations instead of learning an explicit policy. The core idea is intuitive: Upon perceiving a50

new observation, the agent searches for the most similar observation within the dataset and executes51

the corresponding expert action [18, 19, 20, 21]. Previous studies, such as VINN [20], explore direct52

retrieval of actions using additional representation learning. In contrast, we leverage the capabilities53

of visual foundation models to eliminate the need for extra training. While DinoBot [22] also uti-54

lizes a visual foundation model, their method relies on pose estimation followed by visual servoing,55

which is impractical in mobile manipulation settings. In ego-centric views, accurate pose estimation56

from visual inputs is particularly challenging due to occlusions and dynamic viewpoints.57

Inspired by recent efforts to make decisions based on trajectories [23, 24] or trajectory distribu-58

tions [25, 26] in long-horizon tasks, we also incorporate trajectory-level information to mitigate the59

challenges posed by partial observations. While prior methods typically rely on learning parametric60

models from large-scale datasets or extensive training in simulation [27], our approach introduces a61

non-parametric retrieval mechanism guided by trajectory similarity constraints. This design enables62

our method to operate effectively in the context of partial observation environments with only a few63

demonstrations and without additional model training. To the best of our knowledge, no prior work64

has applied a retrieval-based, training-free strategy to visual, ego-centric mobile manipulation tasks.65

3 ReMoBot66

In this work, we propose ReMoBot, a retrieval-based method designed to efficiently solve complex67

mobile manipulation tasks with few expert demonstrations. To achieve this, we outline three main68

2

steps: 1) Retrieval dataset generation, which creates a dataset by extracting visual features from the69

demonstrations using a vision-foundation model-based perception module; 2) Sub-goal generation,70

which encodes current observations to identify a state from the expert demonstrations as a sub-goal,71

guiding the robot towards task completion; and 3) A goal-conditioned behavior retrieval policy,72

which selects the appropriate action to be executed. Fig. 2 shows an overview of our framework.73

Figure 2: Overview of Our Pipeline: We first process an offline dataset using a pre-trained percep-
tion module to create a retrieval dataset. During execution, ReMoBot maps RGB-D observations
into the same feature space as the retrieval dataset to retrieve similar states. ReMoBot selects a sub-
goal based on trajectory similarity, and the motion generation module produces control commands
conditioned on the current state to reach the retrieved sub-goal.

3.1 Retrieval Feature Generation74

ReMoBot initiates the inference process with a retrieval feature generation module, which encodes75

high-dimensional visual input from the camera into compact, task-relevant representations for down-76

stream inference and training. The perception module leverages pre-trained vision foundation mod-77

els, eliminating the need for additional training while enabling generalization to novel objects.78

To generate retrieval features, we first construct prompts for task-relevant entities, for example, the79

robot embodiment and the manipulated objects. These prompts are used as input to the segmentation80

module [28, 29, 30] to continuously segment and track relevant objects over time. The resulting81

segmentation masks are passed through a frozen, pre-trained DINO model [31] to extract a visual82

feature vector sπt with 384 dimensions. The complete feature extraction and inference pipeline83

operates at 15 frames per second on an NVIDIA RTX 3080 GPU and an AMD Ryzen 5000-series84

CPU, enabling real-time decision-making during deployment. Further details on the perception85

pipeline are provided in Section 7.1. Before the online execution process, we first leverage the86

generation module to construct a retrieval dataset from the offline expert demonstrations. For each87

trajectory in the demonstrations, we encode the observation into the feature space while retaining88

the original action. The resulting retrieval dataset is:89

De = {τe1 , τe2 , . . . , τen}
where each τei = {(se1, ae1), (se2, ae2), . . . , (sen, aen)} consists of encoded feature and their correspond-90

ing actions, with each action representing a control command executed by the robot. Further details91

on data collection, observation spaces, and action spaces are provided in Section 7.3.1.92

3.2 Sub-goal Retrieval93

Sub-goal generation focuses on identifying relevant data items from expert demonstrations to serve94

as intermediate targets, thereby aiding decision-making. Given current robot state sπt and the ob-95

3

served trajectory so far, τπ = {(sπ1 , aπ1), (sπ2 , aπ2), . . . , (sπt)}, ReMoBot determines the appropriate96

sub-goal from De using two constraints: 1) state similarity, 2) trajectory similarity as detailed in97

Algorithm 1.98

Algorithm 1 Sub-goal Retrieval Strategy

1: Initialize: expert trajectory dataset De; online visited trajectory τπ; an empty buffer Gsub; and
an empty buffer Tsub.

2: Step 1: Retrieve Sub-goal Candidates
3: Based on the current state sπt , retrieve a batch of candidate states Gsub using Eq. 1.
4: Step 2: Extract Corresponding Trajectories
5: for Each sei ∈ Gsub do
6: Retrieve sei ’s corresponding expert trajectory τei , terminate it at sei , and store it in Tsub.
7: Step 3: Evaluate Candidate Trajectories
8: for Each τei ∈ Tsub do
9: Compute the observation trajectory similarity W (τπ, τ

e
i) using Eq. 3.

10: if τei is among the top-M most similar trajectories then
11: Add τei to the refined candidate set Asub.
12: Compute the action trajectory similarity dH(τπ, τ

e
i).

13: Step 4: Select Final Sub-goal
14: Select the sub-goal τg, sg using Eq. 4.

State Similarity Constraint To identify a feasible, near-future sub-goal from expert demonstra-99

tions, we begin by constructing an initial set of sub-goal candidates based on state similarity. Given100

the current observed state feature sπt , we first perform a nearest neighbor search based on cosine101

similarity dcos(s
π
t , s

e
i) to sample the top-k most similar states to construct a sub-goal candidate set102

Gsub:103

Gsub = top-k(sei ,ae
i)∈De

(
dcos(s

π
t , s

e
i)
)
, (1) dcos(s

π
t , s

e
i) = 1− sπt · sei

∥sπt ∥ · ∥sei∥
(2)104

Trajectory Similarity Constraint Due to the partial observability inherent in ego-centric visual105

perception, effective decision-making requires leveraging historical context. To take advantage of106

historical information, we prioritize among the generated sub-goal candidates Gsub those whose107

associated historical trajectories closely align with the robot’s actual trajectoryτπ .108

Specifically, we evaluate similarity across both observation and action trajectories. For observation109

trajectories, we use the Wasserstein distance [32], which captures distributional similarity and has110

shown effectiveness in imitation learning tasks [33]. For action trajectories, we adopt a reversed111

Hamming distance [34], which counts the number of matching action positions between two se-112

quences, favoring candidates with higher alignment to the robot’s past actions.113

For each candidate state-action pair (sen, a
e
n) from Gsub (where n denotes the timestamp of the re-114

trieved state-action pair in the expert trajectory), we retrieve its corresponding expert sub-trajectory115

from start to timestamp n consist as Tsub = τe1 , τ
e
2 , . . . , τ

e
k , where each trajectory τei is defined as116

τei = {(se1, ae1), (se2, ae2), . . . , (sen, aen)}. The Wasserstein distance is then computed between the117

robot’s current trajectory τπ and each expert sub-trajectory τei :118

W (τπ, τ
e
i) = min

c∈C(τπ,τe
i)

m∑
k=1

n∑
j=1

ckj · d(sπk , sej) , (3)

Where C(τπ, τ
e
i) includes all m × n transportation matrices c that fulfill the marginal conditions,119

with each row summing to 1
m and each column summing to 1

n . Here, ckj represents the amount of120

mass transported from sπk to sej . d is an L2 distance function that evaluates the similarity between the121

robot’s state in τπ and the expert state in the expert trajectories τe, allowing us to filter out dissimilar122

candidates.123

4

We then rank sub-goal candidates based on Wasserstein distance and form the refined candidate set124

Asub = {τe ∈ Tsub : W (τe, τπ) ≤ τthresh}. For each trajectory inAsub, we compute the matching125

score and select the trajectory τg with the highest matching score:126

τg = argmaxτe∈Asub
dH(τe, τπ) (4) dH(τe, τπ) =

n∑
i=1

1 (aei , a
π
i) (5)127

where aei and aπi are the actions of trajectory τe and τπ at the i-th time step. 1 is an indicator function128

that is 1 for identical actions and 0 otherwise.129

3.3 Motion Generation130

We implement a goal-conditioned retrieval policy to calculate the actions to reach the generated sub-131

goal. Given sg and its associated sub-demonstration τg = {(se1, ae1), (se2, ae2), . . . , (sen, aen) | sg},132

ReMoBot identifies the state-action pair (sen, a
e
n) from τg , where sen is the expert state most similar133

to the robot’s current state sπt , based on the sub-goal retrieval policy. ReMoBot then executes the134

expert action aen to reach sg . Formally, the retrieval policy chooses135

(sen, a
e
n) = argmin(sei ,ae

i)∈τgd(s
e
i , s

π
t) .

Combined with the sub-goal generation mechanism, this framework enables the robot to complete136

tasks efficiently without additional training.137

4 Experiments138

We evaluate ReMoBot on real-world mobile manipulation tasks with complex visual observations139

and compare it against several state-of-the-art baselines. Our experiments are designed to answer140

the following key questions:141

• How does ReMoBot compare to learning-based and retrieval-based baselines?142

• Can ReMoBot generalize to variations in initial pose, object size, and material?143

• How well does ReMoBot perform under limited data conditions?144

• What are the contributions of state and trajectory constraints?145

4.1 Mobile Manipulation Tasks146

To demonstrate the capability of ReMoBot to deal with complex eco-centric observation, we de-147

signed three real-world mobile manipulation tasks: Table Uncover, Gap Cover, and Curtain Open.148

These tasks introduce perception challenges due to fabric deformability and partial observability149

from a front-mounted RGB-D camera, highlighting the need for decision-making under uncertainty.150

Task illustrations are shown in Figure 1, with further details in Section 7.3.1.151

Table Uncover: In this task, the robot approaches a table and removes a cloth covering it by folding152

and pulling it sideways. The task is considered complete when the folded cloth’s edge crosses the153

center of the table. Beyond the deformability of the table cover, the ego-centric setting introduces154

significant visual challenges in this task. The pre- and post-grasp stages often appear visually similar,155

making it difficult to determine the correct action from single visual input alone. Moreover, once156

the cloth is lifted, it frequently occludes the front-mounted camera, further complicating perception157

and planning. As this task involves a relatively short interaction horizon, it increases the risk of158

overfitting in learning-based methods, particularly when trained with limited data.159

Gap Cover: In this task, the robot first approaches a cloth, grasps it, and then uses it to cover a160

gap between two objects. The gap is positioned such that successful coverage requires coordinated161

body movement. The task is considered complete when one edge of the cloth fully surpasses the162

gap. Similar to the Table Uncover task, this scenario presents visual challenges due to the similarity163

5

Table 1: Baseline Performance Comparison. Success rates (success/total trials) of all methods
across the three tasks under dataset collection conditions. (Bolded entries indicate no statistically
significant difference from ReMoBot, based on a two-tailed test for Binomial distributions with a
95% confidence interval).

BC Diffuser TT VINN DinoBot ReMoBot
Table Uncover 0/20 0/20 0/20 0/20 0/20 14/20
Gap Cover 3/20 0/20 0/20 0/20 0/20 16/20
Curtain Open 0/20 1 /20 2/20 0/20 0/20 7/20

between pre- and post-grasp stages, and frequent occlusions caused by the lifted arm and cloth.164

Moreover, Gap Cover involves a longer interaction horizon and an additional object, decreasing the165

risk of overfitting but increasing the complexity of decision-making and planning.166

Curtain Open: In this task, the robot approaches a curtain, uses its arm to push the curtain aside,167

and then navigates its body through the opening. The task is considered successful when the cur-168

tain is sufficiently opened and the robot moves past the curtain hanger. Although this task does not169

involve grasping, it introduces new challenges. Collision avoidance becomes critical as the robot170

must maneuver in a confined space, and the curtain’s slippery surface can cause inconsistent motion171

during interaction. Furthermore, if the robot approaches the curtain from the center, the fabric can172

obstruct the front-mounted camera, leading to severe visual occlusion and increased uncertainty in173

planning. Coordinating the robot’s body and arm movement is also non-trivial, occasionally result-174

ing in inverse kinematics issues where the arm cannot reach the desired position due to constraints175

in the robot’s configuration.176

4.2 Baselines177

We compare ReMoBot against several representative learning-based and retrieval-based methods.178

For fairness, all baselines are implemented using the same retrieval-based feature representations179

unless otherwise stated. Each learning-based method is trained using 20 demonstrations.180

Behavior Cloning (BC): A classical supervised learning approach [35, 36], where a policy is trained181

to directly map observations to actions using expert demonstrations. In our setup, we train the policy182

to predict one-step actions.183

Trajectory Transformer (TT): A transformer-based behavior cloning method that models long-184

horizon decision-making by generating entire state-action trajectories [23]. During evaluation, a full185

trajectory is predicted, and only the first action is executed at each timestep.186

Diffuser (Diffuser): Diffuser leverages diffusion probabilistic models to generate trajectories that187

mimic expert behavior [25, 37]. While previous work has focused on large-scale datasets and point188

cloud inputs [38], we implement a version based solely on RGB-D observations following the Dif-189

fusion Policy framework [25].190

DinoBot (DinoBot): A few-shot imitation learning framework that utilizes vision foundation models191

for representation encoding [22]. DinoBot retrieves demonstrations by aligning the robot’s current192

observation with the initial observation from a demonstration through relative pose estimation, then193

replays the corresponding expert actions in an open-loop fashion. This serves as a retrieval-based194

baseline under few-shot settings.195

Visual Imitation through Nearest Neighbours (VINN): VINN performs nearest neighbor search196

over demonstration observations to retrieve the most similar states [20], and computes an action as197

a Euclidean kernel-weighted average of those associated with the retrieved neighbors. We use the198

original VINN encoder [39] to compare against our visual perception pipeline.199

6

4.3 Baseline Comparisons200

We first compare ReMoBot with the five baselines outlined above in environments that are identical201

to the ones used for demonstration collection. Table 1 shows the results of 20 trials with a real202

Boston Dynamics Spot robot. ReMoBot outperforms all comparison methods, achieving success203

rates of 70% for Table Uncover, 80% for Gap Cover, and 35% for Curtain Open.204

Learning-based approaches such as BC, TT, and Diffuser are unable to complete the tasks reliably205

when trained with only 20 expert demonstrations. Both TT and Diffuser are designed to model206

long-horizon behaviors, which require significantly larger datasets to effectively learn temporal de-207

pendencies. BC, on the other hand, lacks the ability to deal with previously unseen states and208

imbalanced training data, which we analyze in more detail further below.209

Retrieval-based methods, including VINN and DinoBot, also perform poorly in our ego-centric mo-210

bile manipulation setting. VINN is constrained by the limited dataset size, which hinders the training211

of a robust image encoder and leads to incorrect action selection. DinoBot relies on accurate pose212

alignment between the robot’s current observation and the demonstration frames by estimating the213

relative pose. This is impractical in ego-centric, partially observed scenarios in mobile manipulation.214

Figure 3: Failure Analysis of Behavior Cloning (BC). Left: Failure in the Gap Cover task caused
by data imbalance. Right: Failure in the Table Uncover task due to visual similarity leading to
incorrect action selection.

To analyze the limitations of the baselines and validate ReMoBot’s robustness, we replicate the tasks215

in the Isaac Sim simulation. These simulated experiments are used solely for analysis, with no sim-216

to-real transfer involved. Additional implementation details and results are provided in Section 7.2.217

Figure 3 uses BC as an example to illustrate two main failure cases for learning-based methods. One218

key issue is the heavy data imbalance in the dataset, which biases the models toward frequently oc-219

curring actions and reduces their ability to learn rare but essential behaviors. The action distribution220

of each task can be found in Section 7.5. The second challenge arises from the visual similarity be-221

tween pre- and post-grasp states. To further support this analysis, we manually modified BC’s output222

by replacing the second grasp action with an arm-up command, resulting in 33 successful trials out223

of 40. In contrast, ReMoBot demonstrates robust performance in this challenging, data-constrained224

setting.225

4.4 Generalizability Evaluation226

We evaluate ReMoBot in three different settings to demonstrate its generalization capability: (1)227

varying object sizes, (2) different fabric materials, and (3)varying initial positions of the robot. We228

conduct this evaluation on the real robot. Detailed configurations are provided in Section 7.3.3.229

7

Table 2: Generalizability Evaluation. Success rates (suc-
cess/total trials) of ReMoBot across variations in the object
size, fabric materials, and the robot’s initial position.

Table Uncover Gap Cover Curtain Open
Size 10/20 10/20 6/20
Material 12/20 11/20 6/20
Position 15/20 12/20 7/20

Table 2 shows that ReMoBot230

maintains robust performance231

across diverse generalization sce-232

narios. For each scenario, a single233

factor is varied while all other234

conditions remain consistent with235

the data collection environment.236

Minor performance drops are pri-237

marily due to incorrect sub-goal238

retrieval, which can occur when the target object is partially or entirely outside the camera’s field of239

view, especially with larger materials that occlude the scene. Despite these challenges, ReMoBot240

demonstrates generalization across varying fabric materials, object sizes, and initial robot positions.241

4.5 Data Efficiency Evaluation242

Table 3: Data Efficiency Evaluation. Success rate (suc-
cess/total) for varying numbers of demonstration trajecto-
ries in the simulation. The numbers in the first row corre-
spond to the number of trajectories in the dataset.

Demo 1 5 10 15 20
Table Uncover 7/40 10/40 27/40 32/40 36/40
Gap Cover 2/40 12/40 14/40 23/40 31/40
Curtain Open 2/40 4/40 12/40 20/40 32/40

To investigate the data efficiency243

of ReMoBot, we conducted experi-244

ments using varying dataset sizes of245

1, 5, 10, 15, and 20 demonstrations in246

simulation only. The evaluation en-247

vironment is identical to the demon-248

stration collection environment. As249

shown in Table 3, ReMoBot achieves250

success rates exceeding 50% with as251

few as 15 expert trajectories across all252

three simulation tasks. Overall, Re-253

MoBot is able to learn effective manipulation strategies with relatively small amounts of data.254

4.6 Ablation Study255

Table 4: Ablation Study. Success rate (suc-
cess/total) for different similarity constraints.

Task State State + Trajectory
Table Uncover 30/40 36/40
Gap Cover 17/40 31/40
Curtain Open 26/40 32/40

We conduct an ablation study to evaluate the256

impact of two different similarity constraints257

used in sub-goal retrieval. The evaluation is258

performed in a simulated environment identi-259

cal to the environment in data collection, en-260

suring a controlled comparison. Table 4 shows261

that incorporating trajectory similarity consis-262

tently improves performance across all tasks,263

highlighting its importance.264

5 Conclusion265

Learning mobile manipulation skills for complex tasks, such as deformable mobile manipulation,266

from a few demonstrations is a challenging problem. This work introduces ReMoBot, a few-shot267

imitation learning framework that leverages a retrieval strategy with visual similarity constraints to268

solve tasks without additional training. ReMoBot integrates a visual foundation model as a feature269

extractor with a trajectory-aware sub-goal generator, enabling imitation of expert demonstrations270

even under partial observability. To evaluate ReMoBot, we designed three real-world mobile ma-271

nipulation tasks involving deformable fabrics with the Boston Dynamics Spot robot. Across all272

tasks, ReMoBot consistently outperforms both learning-based and retrieval-based baselines, effec-273

tively acquiring manipulation skills from a limited dataset. Furthermore, ReMoBot demonstrates274

generalization to varying environmental conditions. In future work, we aim to extend ReMoBot by275

explicitly incorporating collision handling and integrating online fine-tuning mechanisms to improve276

adaptability during deployment.277

8

6 Limitations278

Despite the promising results of ReMoBot, several limitations remain that point to directions for279

future work.280

First, for example, in the Curtain Open task, the robot occasionally collides with the curtain hanger.281

This is primarily due to the absence of obstacle information, which causes the robot to overlook282

it. Furthermore, the segmentation tracker may drift or switch attention to other objects, leading to283

incorrect tracking and subsequent failure cases.284

Second, the sub-retrieval module sometimes selects visually distinct states as sub-goals. This limita-285

tion arises from the restricted representation power of the foundation model and the limited diversity286

of the offline dataset. Such issues are common in imitation learning scenarios that lack online adap-287

tation or fine-tuning, making the model less robust to novel or ambiguous situations. To address this,288

we consider adding an online adaptation process or incorporating a failure detection and recovery289

mechanism in the future to enhance the system’s robustness.290

In the Table Uncover and Gap Cover tasks, we observe that pre- and post-grasp observations are291

often nearly identical, which can result in the agent converging to local optima during evaluation.292

This stems from the nature of the task design. One potential solution is to introduce a grasp flag to293

discourage redundant grasp attempts and improve action diversity.294

Another limitation related to our control scheme, that the robot’s body and arm are operated inde-295

pendently. At each timestep, the policy outputs a command for either the body or the arm. Arm296

movements rely on inverse kinematics (IK) to translate target poses into joint configurations. How-297

ever, this decoupled control approach can result in IK failures during evaluation, which directly298

contributes to task failures. Future work may explore more integrated control strategies or redefine299

the action space in terms of joint configurations to improve reliability.300

Regarding motion generation, we currently adopt a simple retrieval-based strategy that is efficient301

in the discrete action space. In future work, we plan to explore more expressive motion generation302

techniques, including models trained with supervision or constraints tailored to action semantics.303

Extending the system to continuous action spaces is also a promising direction by retrieving skill-304

level actions.305

We believe that many of these limitations can be mitigated through the collection of more diverse306

data, the inclusion of additional contextual signals (e.g., grasp flags), and the incorporation of online307

learning or fine-tuning mechanisms to adapt the model to new situations.308

References309

[1] M. Luo, Z. Xue, A. Dimakis, and K. Grauman. Put myself in your shoes: Lifting the egocentric310

perspective from exocentric videos. In European Conference on Computer Vision, pages 407–311

425. Springer, 2024.312

[2] Y. Hu, B. Chen, and H. Lipson. Egocentric visual self-modeling for autonomous robot dynam-313

ics prediction and adaptation. arXiv preprint arXiv:2207.03386, 2022.314

[3] C. Szepesvári. Algorithms for reinforcement learning. Springer nature, 2022.315

[4] T. Ni, K. Ehsani, L. Weihs, and J. Salvador. Towards disturbance-free visual mobile manipula-316

tion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,317

pages 5219–5231, 2023.318

[5] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:319

Long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422,320

2023.321

[6] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic322

perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179, 2018.323

9

[7] Y. Gong, G. Sun, A. Nair, A. Bidwai, R. CS, J. Grezmak, G. Sartoretti, and K. A. Daltorio.324

Legged robots for object manipulation: A review. Frontiers in Mechanical Engineering, 9:325

1142421, 2023.326

[8] S. Thakar, S. Srinivasan, S. Al-Hussaini, P. M. Bhatt, P. Rajendran, Y. Jung Yoon, N. Dhanaraj,327

R. K. Malhan, M. Schmid, V. N. Krovi, et al. A survey of wheeled mobile manipulation: A328

decision-making perspective. Journal of Mechanisms and Robotics, 15(2):020801, 2023.329

[9] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese. Relmogen: Lever-330

aging motion generation in reinforcement learning for mobile manipulation. arXiv preprint331

arXiv:2008.07792, 2020.332

[10] A. Gupta, M. Zhang, R. Sathua, and S. Gupta. Opening articulated objects in the real world,333

2025. URL https://arxiv.org/abs/2402.17767.334

[11] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: Learning a unified policy for335

manipulation and locomotion. In Conference on Robot Learning, pages 138–149. PMLR,336

2023.337

[12] J. Gu, D. S. Chaplot, H. Su, and J. Malik. Multi-skill mobile manipulation for object rear-338

rangement. arXiv preprint arXiv:2209.02778, 2022.339

[13] N. Yokoyama, A. Clegg, J. Truong, E. Undersander, T.-Y. Yang, S. Arnaud, S. Ha, D. Batra,340

and A. Rai. Asc: Adaptive skill coordination for robotic mobile manipulation. IEEE Robotics341

and Automation Letters, 9(1):779–786, 2024. doi:10.1109/LRA.2023.3336109.342

[14] J. Hietala, D. Blanco-Mulero, G. Alcan, and V. Kyrki. Learning visual feedback control for343

dynamic cloth folding. In 2022 IEEE/RSJ International Conference on Intelligent Robots and344

Systems (IROS), pages 1455–1462. IEEE, 2022.345

[15] F. Zhang and Y. Demiris. Visual-tactile learning of garment unfolding for robot-assisted dress-346

ing. IEEE Robotics and Automation Letters, 2023.347

[16] B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Burgard. Real-world robot348

navigation amongst deformable obstacles. In 2009 IEEE International Conference on Robotics349

and Automation, pages 1649–1654, 2009. doi:10.1109/ROBOT.2009.5152275.350

[17] J. Hu, W. Liu, H. Zhang, J. Yi, and Z. Xiong. Multi-robot object transport motion planning351

with a deformable sheet. IEEE Robotics and Automation Letters, 7(4):9350–9357, 2022.352

[18] D. Sharon and M. van de Panne. Synthesis of controllers for stylized planar bipedal walking.353

In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pages354

2387–2392. IEEE, 2005.355

[19] E. Mansimov and K. Cho. Simple nearest neighbor policy method for continuous control tasks.356

2018.357

[20] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effectiveness of358

representation learning for visual imitation, 2021.359

[21] E. Valassakis, G. Papagiannis, N. Di Palo, and E. Johns. Demonstrate once, imitate imme-360

diately (dome): Learning visual servoing for one-shot imitation learning. In 2022 IEEE/RSJ361

International Conference on Intelligent Robots and Systems (IROS), pages 8614–8621. IEEE,362

2022.363

[22] N. D. Palo and E. Johns. Dinobot: Robot manipulation via retrieval and alignment with vision364

foundation models. In IEEE International Conference on Robotics and Automation (ICRA),365

2024.366

10

https://arxiv.org/abs/2402.17767
http://dx.doi.org/10.1109/LRA.2023.3336109
http://dx.doi.org/10.1109/ROBOT.2009.5152275

[23] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling367

problem. Advances in neural information processing systems, 34:1273–1286, 2021.368

[24] S. Haldar, V. Mathur, D. Yarats, and L. Pinto. Watch and match: Supercharging imitation with369

regularized optimal transport. In Conference on Robot Learning, pages 32–43. PMLR, 2023.370

[25] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior371

synthesis. In International Conference on Machine Learning, 2022.372

[26] S. Yan, Z. Zhang, M. Han, Z. Wang, Q. Xie, Z. Li, Z. Li, H. Liu, X. Wang, and S.-C. Zhu. M 2373

diffuser: Diffusion-based trajectory optimization for mobile manipulation in 3d scenes. IEEE374

Transactions on Pattern Analysis and Machine Intelligence, 2025.375

[27] M. Lauri, D. Hsu, and J. Pajarinen. Partially observable markov decision processes in robotics:376

A survey. IEEE Transactions on Robotics, 39(1):21–40, 2022.377

[28] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,378

A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International379

Conference on Computer Vision, pages 4015–4026, 2023.380

[29] C. Zhang, D. Han, Y. Qiao, J. U. Kim, S.-H. Bae, S. Lee, and C. S. Hong. Faster segment381

anything: Towards lightweight sam for mobile applications. arXiv preprint arXiv:2306.14289,382

2023.383

[30] Z. Yang and Y. Yang. Decoupling features in hierarchical propagation for video object seg-384

mentation. Advances in Neural Information Processing Systems, 35:36324–36336, 2022.385

[31] S. Amir, Y. Gandelsman, S. Bagon, and T. Dekel. Deep vit features as dense visual descriptors.386

arXiv preprint arXiv:2112.05814, 2(3):4, 2021.387

[32] N. Bonneel, M. Van De Panne, S. Paris, and W. Heidrich. Displacement interpolation using388

lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia conference, pages389

1–12, 2011.390

[33] R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal wasserstein imitation learning.391

arXiv preprint arXiv:2006.04678, 2020.392

[34] Error detecting and error correcting codes. The Bell system technical journal, 29(2):147–160,393

1950.394

[35] M. Bain and C. Sammut. A framework for behavioural cloning. In Machine Intelligence 15,395

pages 103–129, 1995.396

[36] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-397

tion to no-regret online learning. In Proceedings of the fourteenth international conference398

on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-399

ceedings, 2011.400

[37] X. Hu, qiang liu, X. Liu, and B. Liu. Adaflow: Imitation learning with variance-adaptive flow-401

based policies. In The Thirty-eighth Annual Conference on Neural Information Processing402

Systems, 2024. URL https://openreview.net/forum?id=ugXKInqDCC.403

[38] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy: Generalizable404

visuomotor policy learning via simple 3d representations. In Proceedings of Robotics: Science405

and Systems (RSS), 2024.406

[39] J. Pari, M. Shafiullah, S. Arunachalam, and L. Pinto. Visual imitation through nearest neigh-407

bors (vinn) implementation. https://github.com/jyopari/VINN/tree/main, 2021.408

11

https://openreview.net/forum?id=ugXKInqDCC
https://github.com/jyopari/VINN/tree/main

7 Appendix409

7.1 Perception Pipeline410

In this section, we describe the details of the perception module. Notably, the same perception411

module is used in both the real-world and simulation settings.412

Figure 4: Perception Pipeline. (a) Retrieval Feature Generation Pipeline: We use DINOv2, along
with object reference images, to generate prompts for the SAM model to segment the task-relevant
objects. These segments are then tracked throughout the task using the DeAOT tracker. Finally,
DINO encodes the task-relevant segmentation into a compact representation. (b) Observation with
Mask: Visualization of robot observation sequences both in simulation (top row) and the real world.
(bottom row).

We use the input from the front-mount camera as the observersion, therefore Ot = {Irgb, Idepth}.413

As shown in Fig. 4, we first generate retrieval features using a pre-trained DINO model as a dense414

visual descriptor [31] to perform co-segmentation. This step produces prompt points for task-related415

objects, e.g., the robot embodiment and the fabric. Using these prompts, we apply the Segment416

Anything Model (SAM) [28, 29] to segment task-relevant objects from the visual input. To ensure417

temporal consistency, we then use the AOT tracker [30], which maintains stable segmentation across418

frames by continuously tracking the arm and curtain using the refined SAM masks. The result of419

segmentation is presented in the bottom row in Fig. 4.420

Following segmentation, we construct a three-channel input feature composed of the robot421

maskIrobot, manipulated objects maskIobject, and depth image, denoted as I = {Irobot, Iobject, Idepth}.422

This input is passed through the frozen pre-trained DINO model to extract a neural feature represen-423

tation of the scene, yielding a 384-dimensional state vector sπt .424

7.2 Task in Simulation425

To further analyze failure cases and reduce noise present in real-world experiments, we replicate the426

same task in the simulation with the Isaac Sim simulator. This enables the comparison of different427

baselines under controlled conditions. As shown in Fig. 5, we recreate the tasks using the Spot428

robot in simulation with alignment to the real-world setup. Specifically, we position the camera to429

match its placement in the real-world setting, ensuring consistent ego-centric observations across430

both domains. The cloth is simulated using a particle-based system, which provides photorealistic431

visuals and physically accurate cloth dynamics.432

Table Uncover: In this task, the robot must approach the table and remove the table cover by pulling433

it in a specific direction, causing the cloth to fold first. The task is considered successful when the434

12

Figure 5: Three Deformable Mobile Manipulation tasks in Simulation. Table Uncover (top),
Gap Cover (middle), and Curtain Open (bottom) tasks. To solve these three tasks, a Spot robot with
a front-mounted RGB-D camera must coordinate body movement and arm operation to navigate and
manipulate fabric. Note that we collect demonstrations and evaluate all the methods directly in the
simulation.

cloth is folded and its edge crosses the center of the table. To reduce irrelevant sources of difficulty,435

we assume that all grasp actions succeed without slippage and collision.436

Gap Cover: This task requires the robot to get close to the deformable target first and then use it437

to cover the gap between the two objects. Completion of the task is defined by one of the cloth’s438

edge surpassing the entire gap. We also assume that all grasp actions succeed to reduce irrelevant439

difficulty.440

Curtain Open: In this task, the robot is required to approach the curtain, use its arm to move the441

curtain aside, and then navigate through the opening. The task introduces additional difficulty by442

incorporating a collision-avoidance requirement. Success is defined as the curtain being opened and443

the robot’s body moving past the curtain hanger. Notably, grasp actions are excluded from the action444

space for this task.445

7.3 Experiment446

7.3.1 Task Configuration447

For both simulation and real-world settings, we use the Boston Dynamics Spot robot to conduct448

tasks in a laboratory environment. Observations consist of RGB-D inputs from a front-mounted449

camera on the robot body Ot = {Irgb, Idepth}. The action space is discrete and consists of body450

and arm movement primitives. At each timestep, the policy selects one action from a fixed set of451

commands. These include body-level motions that translate the robot base by a fixed distance in452

the environment. Similarly, arm-level actions that move the end-effector in Cartesian space by a453

fixed step size along the corresponding axis. The policy is restricted to issuing either a body or454

an arm command at each step, resulting in a decoupled control scheme. This discretization enables455

efficient policy learning and simplifies integration with retrieval-based planning. The detailed action456

definitions for each task can be found in 7.3.2. All manipulated objects are deformable, increasing457

the complexity of visual observations. The properties of deformable objects for each task are listed458

below:459

• Table Uncover: In this setting, the table is big enough to require both body and arm460

movements to complete the task. We use a 75 cm × 110 cm black plastic cloth as the table461

cover and place it on a bigger stage.462

13

• Gap Cover: In this setup, we use a 55 cm × 110 cm blue plastic cloth and set the gap size463

as 50 cm.464

• Curtain Open: The curtain is a 130 cm × 240 cm gray polyester cloth, with a distance of465

1.5 meters between the two hangers.466

To analyze the performance in the controllable environment, we replicate the tasks in the simulator.467

The deformable fabric is simulated with the particle system. The resolution is 50 with 0.01 kg for468

each particle.469

• Table Uncover: In this setting, the table is big enough to require both body and arm470

movements to complete the task. We use a 100 cm × 100 cm cloth with a rigid handle as471

the table cover and place it on the same size stage.472

• Gap Cover: In this setup, we use an 80 cm × 120 cm cloth with a rigid handle as the table473

cover and set the gap size as 90 cm.474

• Curtain Open: The curtain is 110 cm × 110 cm, with a distance of 130 cm between the475

two hangers.476

Figure 6: Action Distribution in Dataset for Each Task: Each pie chart represents the frequency
of discrete actions in the expert dataset for three tasks in both simulation and real-world settings.

7.3.2 Demonstration Collection477

Real-world Setting: We collected 20 demonstrations for each task separately in real-world with478

the keyboard controller. An RGB-D camera is mounted on the front of the robot’s body to receive479

egocentric observations. The robot has the following discrete actions implemented: 1) body move-480

forward, 2) body move-left, 3) body move-right, 4) body move-backward, 5) body turn-left, 6) body481

turn-right, 7) hand move-forward, 8) hand move-backward, 9) hand move-left, 10) hand move-right,482

11) hand move-up, 12) hand move-down. Note that in the Gap Cover and Table Uncover tasks,483

the object is considered to be grasped when the end-effector touches the handle of the deformable484

object. For all tasks, the Spot robot’s initial position is randomized within a range of 1.5 to 1.8485

meters away from the deformable objects, with lateral deviations of up to 1 meter to the left or right486

14

of the fabric or gap center. Additionally, angular deviations range from -15 to 15 degrees relative487

to the center. We use this experimental setup as the default condition during the comparison. The488

demonstrations are conducted by a human operator via remote control.489

Simulation setting: We also collected 20 demonstrations for each task separately in the simulation490

with the keyboard controller. An RGB-D camera is mounted on the front of the robot’s body to491

receive egocentric observations. The robot has the following discrete actions implemented: 1) body492

move-forward, 2) body move-left, 3) body move-right, 4) body move-backward, 5) body turn-left,493

6) body turn-right, 7) hand move-forward, 8) hand move-backward, 9) hand move-left, 10) hand494

move-right, 11) hand move-up, 12) hand move-down, 13) hand grasping, and 14) hand release.495

Note that in the Gap Cover and Table Uncover tasks, the object is considered to be grasped as long496

as the grasp action is executed. For all tasks, the Spot robot’s initial position is randomized within497

a range of 0 to 1.8 meters away from the deformable objects, with lateral deviations of up to 0.8498

meters to the left or right of the fabric or gap center. Additionally, angular deviations range from -15499

to 15 degrees relative to the center. We use this experimental setup as the default condition during500

the comparison. The demonstrations are conducted by a human operator via remote control.501

7.3.3 Generalizability Analysis502

We conduct a comprehensive evaluation of ReMoBot’s generalization capabilities under three con-503

ditions in both simulation and the real world: (1) varying initial robot positions, (2) different de-504

formable object materials, and (3) diverse object sizes. For each scenario, we vary only one factor505

at a time while keeping all other configurations consistent with the data collection environment.506

Detailed experimental settings are provided below.507

• Position: We expand the range of robot initial positions: keep the distances from 1.5 to 1.8508

meters from the curtain, change the lateral displacements up to 1 meter from the curtain’s509

center, and angular variations between -20 and 20 degrees. For these position-based gen-510

eralization tests, all other environmental parameters remained consistent with the demon-511

stration collection setup.512

• Material: This experiment assessed the system’s adaptability to different fabric charac-513

teristics. In the real-world environment, we evaluated performance using a mixed fiber514

(cotton and polyester) cloth and a blue plastic cover, neither of which is utilized during515

demonstration collection.516

• Curtain Size: To evaluate the influence of curtain dimensions on ReMoBot’s performance,517

we conducted tests with two additional curtain sizes not used in the demonstrations. For518

the curtain-open task, we tested a smaller curtain measuring 80 cm × 110 cm and a larger519

one measuring 160 cm × 90 cm. For the Cover and Uncover tasks, we employed a smaller520

curtain of 80 cm × 80 cm and a larger variant of 80 cm × 160 cm.521

In the simulation, the detailed experimental setting is listed below: Detailed experimental settings522

are provided below.523

• Position: We expand the range of robot initial positions: keep the distances from 0 to 1.8524

meters from the curtain, change the lateral displacements up to 1 meter from the curtain’s525

center, and angular variations between -20 and 20 degrees. For these position-based gen-526

eralization tests, all other environmental parameters remained consistent with the demon-527

stration collection setup.528

• Material: This experiment assessed the system’s adaptability to different fabric charac-529

teristics. We randomized the damping parameters in the computed springs for the fabric530

between 0.05 and 0.35 to model various material properties.531

• Curtain Size: To evaluate the influence of curtain dimensions on ReMoBot’s performance,532

we tested a smaller curtain measuring 80 cm × 110 cm and a larger one measuring 160 cm533

× 90 cm. For the Cover and Uncover tasks, we employed a smaller curtain of 80 cm × 80534

cm and a larger variant of 80 cm × 160 cm.535

15

Table 5: Baseline comparisons. The table shows the number of successful attempts out of the total
evaluation runs (success/total rounds) for all methods in the three tasks under the dataset collection
environmental conditions.

BC Diffuser TT VINN DinoBot ReMoBot
Table Uncover 0/40 0/40 0/40 0 /40 0/40 36/40
Gap Cover 15/40 0/40 0/40 0/40 0/40 31/40
Curtain Open 16/40 0/40 0/40 0/40 0/40 32/40

For all tasks, the Spot robot’s initial position is randomized within a range of 0 to 1.8 meters away536

from the deformable objects, with lateral deviations of up to 0.8 meters to the left or right of the fabric537

or gap center. Additionally, angular deviations range from -15 to 15 degrees relative to the center.538

We use this experimental setup as the default condition during the comparison. The demonstrations539

are conducted by a human operator via remote control.540

7.4 Experimental Simulation Results541

7.4.1 Baseline Comparison542

The deformation behavior of the fabric observed in the simulation closely aligns with results from543

the real world. However, learning-based methods such as TT and Diffuser still fail to solve the de-544

formable manipulation task in the simulated environment, further highlighting the challenges this545

setting poses for data-driven approaches. Similarly, the consistent failures of retrieval-based meth-546

ods like DinoBot and VINN further support the conclusion that the primary cause of failure is not547

attributable to noise in the real-world evaluation environment.548

However, once noise from the real-world setting is removed, the success rate of behavior cloning549

(BC) increases significantly. We attribute this improvement primarily to a reduction in distribu-550

tion shift. In simulation, the cloth behaves similarly to how it does in the expert demonstrations,551

which minimizes this shift. For the Table Uncover task, the primary failure mode stems from the552

visual similarity between different stages of the task. After manually addressing this bottleneck, we553

observed a notable increase in the success rate.554

7.4.2 Generalization Evaluation555

We also evaluate ReMoBot in three different settings in simulation to demonstrate its generalization556

capability without the real-world noise.557

Table 6: Generalizability evaluation of DeMoBot. The success rates of the three tasks are evalu-
ated across varying initial positions of the robot, materials and sizes of the deformable fabric in the
simulation. ’Origin’ means the default environmental condition.

Gap Cover Table Uncover Curtain Open
Materials 32/40 32/40 32/40
Position 27/40 32/40 28/40
Size 25/40 28/40 30/40

Origin 32/40 35/40 32/40

For each scenario, we vary only one factor at a time while keeping all other configurations consistent558

with the data collection environment. The results in Table 6 demonstrate that ReMoBot maintains559

robust performance across diverse generalization scenarios, aligning well with the real-world exper-560

imental results and further validating the robustness of ReMoBot.561

16

7.5 Dataset Analysis562

Figure 6 shows the action distribution for each task in our expert dataset in the real-world setting.563

Each task involves a distinct distribution of discrete robot actions, reflecting the action imbalance.564

For instance, Table Uncover and Curtain Open are dominated by the BF (body-front) and BR (body-565

right) actions, whereas Gap Cover demonstrates a more balanced distribution between BR and BF,566

along with significant occurrences of AU (arm-up) and AD (arm-down). These distributions high-567

light the diversity and task-specific nature of action trajectories in our collected demonstrations.568

In the real-world setting, the task is defined such that the fabric is considered grasped as long as569

the end-effector touches it. This makes the AU (arm-up) and AD (arm-down) actions particularly570

important for successful execution. However, these two actions are underrepresented in the dataset571

for both the Table Uncover and Gap Cover tasks, which likely contributes to the failure of the572

baseline methods. Meanwhile, grasp and release actions are treated as separate and appear in less573

than 3% of demonstrations for both tasks, indicating the alignment between the real-world and574

simulated settings.575

17

	Introduction
	Related Work
	ReMoBot
	Retrieval Feature Generation
	Sub-goal Retrieval
	Motion Generation

	Experiments
	Mobile Manipulation Tasks
	Baselines
	Baseline Comparisons
	Generalizability Evaluation
	Data Efficiency Evaluation
	Ablation Study

	Conclusion
	Limitations
	Appendix
	Perception Pipeline
	Task in Simulation
	Experiment
	Task Configuration
	Demonstration Collection
	Generalizability Analysis

	Experimental Simulation Results
	Baseline Comparison
	Generalization Evaluation

	Dataset Analysis

