ReMoBot: Retrieval-Based Few-Shot Imitation
Learning for Mobile Manipulation with Vision
Foundation Models

Yuying Zhang*! Wenyan Yang*!, Francesco Verdoja', Ville Kyrki', Joni Pajarinen!
'Department of Electrical Engineering and Automation
L Aalto University, Finland
{yuying.zhang,wenyan.yang,francesco.verdoja,ville.kyrki, joni.pajarinen}@aalto.fi

Abstract: Imitation learning (IL) algorithms typically distill experience into para-
metric behavior policies to mimic expert demonstrations. However, with limited
demonstrations, existing methods often struggle to generate accurate actions, par-
ticularly under partial observability. To address this problem, we introduce a few-
shot IL approach, ReMoBot, which directly Retrieves information from demon-
strations to solve Mobile manipulation tasks with ego-centric visual observations.
Given the current observation, ReMoBot utilizes vision foundation models to
identify relevant demonstrations, considering visual similarity w.r.t. both individ-
ual observations and history trajectories. A motion selection policy then selects
the proper command for the robot until the task is successfully completed. The
performance of ReMoBot is evaluated on three mobile manipulation tasks with
a Boston Dynamics Spot robot in both simulation and the real world. With only
20 demonstrations, ReMoBot outperforms the baselines, achieving high success
rates in Table Uncover (70%) and Gap Cover (80%), while also showing promis-
ing performance on the more challenging Curtain Open task in the real-world
setting. Furthermore, ReMoBot demonstrates generalization across varying robot
positions, object sizes, and material types.
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1 Introduction

Learning mobile manipulation purely from egocentric visual inputs is challenging due to partial ob-
servability arising from a limited camera field of view and the complexity of the environment [1, 2].
While reinforcement learning (RL) has shown promise in certain complex scenarios, it typically
requires extensive exploration [3, 4], making it impractical for real-world applications without ad-
ditional guidance. In contrast, imitation learning (IL) has enabled robots to efficiently acquire skills
from expert demonstrations in various complex tasks [5]. However, the performance of IL methods
depends greatly on the quantity and diversity of demonstrations, and approaches such as behav-
ior cloning are prone to compounding errors over long task horizons [6]. To mitigate these issues,
retrieval-based imitation learning [7, 8] has been proposed, which leverages expert demonstrations
directly rather than relying solely on parametric policies. However, most existing approaches focus
on static manipulation [7] and retrieve actions based only on individual state information, which is
insufficient for egocentric mobile manipulation tasks where partial observability poses additional
challenges.

To address these limitations, we introduce ReMoBot, a retrieval-based few-shot imitation learning
framework to solve mobile manipulation tasks using only visual input. Unlike traditional parametric
skill learning approaches, ReMoBot imitates demonstrated behaviors by retrieving visually simi-
lar trajectories while incorporating historical context from a dataset of expert demonstrations. This

9th Conference on Robot Learning (CoRL 2025) Workshop RemberRL, Seoul, Korea.



Data Collection Environment Evaluation

Table
Uncover [

Default Condition Novel Fabric

Figure 1: Mobile Manipulation tasks. Table Uncover (top), Gap Cover (middle), and Curtain Open
(bottom) are shown in both the data collection (left) and novel fabric evaluation (right) settings.

design enables robust performance from just a few expert trajectories, without requiring additional
training. ReMoBot introduces two key innovations to enable data-efficient skill acquisition with
strong generalization capabilities: (1) it leverages vision foundation models to extract state represen-
tations, and (2) it incorporates history-aware retrieval by enforcing trajectory similarity constraints,
enabling the robot to perform complex mobile manipulation tasks in the real world. Additional
details are available at: https://sites.google.com/view/remobot/home

2 Related Work

Vision-based mobile manipulation: Recent advances in visual-input-based mobile manipulation
have enabled more generalizable robotic skill acquisition [9, 10]. Despite these advances, ego-
centric viewpoints pose persistent challenges due to frequent occlusions, shifting perspectives, and
partial observations that complicate perception and planning. Several existing methods based on
end-to-end reinforcement learning [11, 12, 13], transformer [14], or modular architectures [15, 16]
often struggle to generalize, handle long-horizon tasks, or explicitly address partial observability.
Manipulation of deformable objects further increases these challenges due to complex dynamics
and high visual variability [17, 18, 19, 20]. Consequently, robust ego-centric mobile manipulation
under limited demonstrations remains an open gap.

Retrieval-based imitation learning: Retrieval-based imitation learning is a non-parametric ap-
proach where a robot learns to perform tasks by retrieving and reusing relevant data from expert
demonstrations instead of learning an explicit policy. The core idea is intuitive: upon perceiving a
new observation, the agent searches for the most similar observation within the dataset and executes
the corresponding expert action [21, 22, 8, 23]. Previous studies, such as VINN [8], explore direct
retrieval of actions using additional representation learning. In contrast, we leverage the capabilities
of visual foundation models to eliminate the need for extra training. While DinoBot [7] also uti-
lizes a visual foundation model, their method relies on pose estimation followed by visual servoing,
which is impractical in mobile manipulation settings. In ego-centric views, accurate pose estimation
from visual inputs is particularly challenging due to occlusions and dynamic viewpoints.

Inspired by recent efforts on decision-making based on trajectories [24, 25] or trajectory distribu-
tions [26, 27] in long-horizon tasks, we also incorporate trajectory-level information to mitigate the
challenges posed by partial observations. While prior methods typically rely on learning parametric
models from large-scale datasets or extensive training in simulation [28], our approach introduces a
non-parametric retrieval mechanism guided by trajectory similarity constraints. This design enables
our method to operate effectively in partial observation environments with only a few demonstra-



tions, without requiring additional model training. To the best of our knowledge, no prior work has
applied a retrieval-based, training-free strategy to visual, ego-centric mobile manipulation tasks.

3 ReMoBot

In this work, we propose ReMoBot, a learning-free retrieval-based imitation method designed to
efficiently solve mobile manipulation tasks with few expert demonstrations. To achieve this, we
outline three main steps: 1) retrieval dataset generation, which creates a dataset by extracting visual
features from the demonstrations using a vision-foundation model (VFM) based perception module;
2) retrieval process, where the agent identifies the similar expert observations and selects trajectories
based on the robot executed trajectory; and 3) behavior retrieval stage, where the agent refines the
retrieved behavior candidates to find the appropriate action for execution. Fig. 2 shows an overview
of our framework.
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Figure 2: Overview of ReMoBot: An offline dataset is first processed using a pre-trained visual
foundation model (VFM) to build a retrieval dataset. During execution, ReMoBot encodes RGB
observations into the same feature space to identify similar expert states. These candidates are
then filtered based on trajectory similarity, and the agent selects the final action by matching action
history, enabling efficient training-free task execution.

3.1 Retrieval Dataset Generation

To construct the retrieval dataset, we first manually collect n demonstrations. D¢ = {75, 15, ...,T5},
where each trajectory 5 = {(If}, a5, ), (I, a%), .. ., (If,,,, a5, )} contains raw RGB observations
from the front-mounted camera [j; € RE*WX3 and the corresponding discrete actions ag; € A,
where A is a set of primitive discrete actions that may involve either the body or the arm (e.g., body
forward, arm forward, arm grasp, etc.). We then encode these high-dimensional visual inputs into
compact, task-relevant representations for downstream inference and training. The perception mod-
ule leverages pre-trained vision foundation models Dinov2 [29] with frozen parameters, removing

the need for additional training and enabling generalization to novel objects.

For each trajectory, we map observations into the feature space while retaining their associated

actions. Let the encoder be denoted as ¢. The resulting retrieval dataset is D¢, = {7¢,75,...,75},
where each trajectory 77 = {(s§},a5,), (s, a%), - - -, (85, a5, ) jeonsists of encoded features

S5 = (b([fj) with 384 dimensions, paired with the corresponding actions af; € A with 1 dimension.

3.2 Retrieval Process

The retrieval stage focuses on identifying relevant trajectories from expert demonstrations, thereby
aiding in imitating expert behavior for tasks. Given the current RGB observation I, the
corresponding robot visual feature sf = ¢(IT) and the historical feature trajectory 7" =
{(sT,aT),(s5,a%),...,(sT)} ReMoBot filters the similar trajectory candidates from D¢, using two
constraints: 1) state similarity and 2) trajectory similarity, as detailed in Alg. 1.



Identify Similar States To identify the most similar demonstration from the expert dataset, we
begin by constructing an initial set of individual states based on state similarity. Given the current
observation feature s}, we perform a nearest nei ghbor search based on cosine similarity deos (ST, ¢ ])
where we use the notation s7; to refer to the state s§ from 7;°. We then sample the top- K’ most similar
states to construct a state subset Ggyp:

T e T L€ Szr Sfj
Gop = top- K ¢ €DS, (dcos(st aSij))v (N dcos(st 7sij) =1- ||S H ||S H 2)
t

Trajectory Similarity Filtering Due to the partial observability inherent in ego-centric visual
perception, effective decision-making requires leveraging historical context. Therefore, we prioritize
within the generated state subset Gy, those whose associated historical trajectories closely align
with the robot’s actual trajectory 7™. First, for each state s7; from Gsub, We retrieve its corresponding
expert trajectory 7;° from the start upto s§. More spemﬁcally, each sub-trajectory 7 is defined as:
7 = (851, a51), (550, a52)s - - -, (555, a5;) } We denote this retrieved trajectory set as T'sp, which is
visualized in Fig. 2 (2).

We then evaluate the similarity between the observed trajectory 7™ and the set of expert sub-
trajectories Ty in order to filter out dissimilar candidates. As the similarity metric, we adopt the
Wasserstein distance [30], computed solely over trajectory states. This metric captures distribu-
tional alignment and has demonstrated effectiveness in imitation learning tasks [31]. Formally, the
Wasserstein distance between the robot’s current trajectory 7™ and an expert sub-trajectory 7 is
given by Eq. 3. Where C(77, 7¢) includes all ¢ x j transportation matrices c that fulfill the marginal
conditions, with each row summing to % and each column summing to 1. Here, Cpq Tepresents the
amount of mass transported from sy to s7,. d is an L2 distance function that evaluates the similarity
between the robot’s state in 7™ and the expert state in the expert trajectories 7, allowing us to filter
out dissimilar candidates. Once we have estimated all the distance comblnatlons W(r™,7¢), we
keep the top-L similar trajectories and form the refined skill trajectory subset Agyp.

W(r™,7f) = mmCZZcpq (s5,5%) ) Awp =top-LMLy (W(7,77)) (4

c(r~,7
ce TTplql

3.3 Action Selection

Now we have the refined set Ay, where each trajectory’s ending state s;; matches the robot’s cur-
rent state s; and whose sequences align with its observations. Their final actions af; define feasible
candidates. Under ego-centric partial observability, identical observations may yleld different mo-
tions. To resolve this, ReMoBot exploits the intuition that similar trajectories share similar action
histories, selecting actions via reversed Hamming distance [32], which rewards alignment with the
robot’s past actions.

More specifically, denote the robot’s action sequence as 75 = {af,a},...,ay ;}. For
each 77 € Ay, we formulate its corresponding action history sequence as 77, =
{af(j_'t +1) af(j_ t42) e af(j_l)'} where j is .the inde'x of the last gction in 77. We then compute the
matching score and select the trajectory 7, with the highest matching score:

t—1
— € s
=g can (it ) (et ) = 1 (g al)  ©
k=1
where aj; is the action of trajectory 7™ at the k-th timestep and a (—t+k) is the action of trajectory 7

at timestep (j —t+ k). 1 is an indicator function that equals 1 for identical actions and 0 otherwise.

Consequently, 7, is the retrieved expert sub-trajectory that 1) its last visual observation matches
the robot’s current observation, 2) has visually similar historical observations, and 3) makes similar



historical action decisions as the robot. ReMoBot then retrieves the last action of 7 as the feasible
action ax, to execute. We present the ReMoBot algorithm in Alg. 1

4 Experiments

We evaluate ReMoBot on complex mobile manipulation tasks and compare it against several state-
of-the-art baselines. Our experiments are designed to answer the following key questions: (1)How
does ReMoBot compare to learning-based and retrieval-based baselines?(2)Can ReMoBot gener-
alize to variations in initial pose, object size, and material? (3)How well does ReMoBot perform
under limited data? (4)What are the effects of state and trajectory constraints, and how do the hy-
perparameters K and L influence performance?

4.1 Mobile Manipulation Tasks

To demonstrate ReMoBot’s capability to handle complex ego-centric observations, we designed
three mobile manipulation tasks: Table Uncover, Gap Cover, and Curtain Open. These tasks present
perception challenges due to fabric deformability and partial observability from a front-mounted
RGB camera, highlighting the need for decision-making under uncertainty. For the Table Uncover
and Gap Cover tasks, the main difficulty arises from dataset imbalance, as each trajectory contains
only a single bottleneck GRASP action. The discrete action space further increases the challenge
for learning-based methods. Task illustrations are shown in Fig. 1. The complete feature extraction
and inference pipeline runs at 15 frames per second on an NVIDIA RTX 3080 GPU and an AMD
Ryzen 5000-series CPU, enabling real-time decision-making during deployment. Real experiments
are performed on a Boston Dynamics Spot robot, while simulation experiments are performed on
the same robot in an Isaac Sim environment. We used the visual foundation model Dinov?2 [29] with
frozen parameters as the perception module.

Table Uncover: In this task, the
Table Uncover Gap Cover Curtain Open rObOt approaCheS a table and removes
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Figure 3: Action distribution in the dataset . Each pie surpasses the gap.
chart illustrates the frequency of discrete actions. The rows
correspond to real-world and simulation results, respec-
tively. Tasks are ordered as Table Uncover, Gap Cover, and
Curtain Open.

Curtain Open: In this task, the robot
approaches a curtain, uses its arm to
push the curtain aside, and then nav-
igates its body through the opening.
The task is considered successful when the curtain is sufficiently opened and the robot moves past
the curtain hanger. Although this task does not involve grasping, it introduces collision risk.

Dataset Collection: We first collect expert demonstrations to teach the robot to complete the target
tasks. Demonstrations are obtained via human teleoperation using a discrete action space com-
posed of body and arm movement primitives. Additional implementation details are provided in
Section A.3.3



For each task, we collect 20 Table 1: Dataset Details. Average trajectory length (mean +
demonstrations in simulation standard deviation) over 20 demonstrations per task, along with
and real-world settings, respec- the total number of samples.

tively. As shown in Fig. 3, the
action distribution is highly im-
balanced. This imbalance poses Task Length Samples | Length Samples

a significant challenge for pol-  “ypoover 3375 +750 675 | 30.95+3.46 619
icy learning, as the agent must  Coyer 37.1+£6.99 742 |13.95+£179 279
acquire competence in infre-  Curtain 42.85+6.90 875 | 41.1+5.97 822
quent but essential actions (e.g.,

Grasp) despite limited training
data. Table 1 summarizes dataset statistics, highlighting both the variability across tasks and the
challenges imposed by data imbalance.

Simulation Real world

4.2 Baseline Comparisons

For baseline selection, we include both learning-based and retrieval-based approaches to provide
a comprehensive comparison. Learning-based baselines consist of classical Behavior Cloning
(BC) [6] as well as state-of-the-art architectures such as the Action-Chunk Transformer [33] and Dif-
fusion models [34], which represent the current frontier of parametric imitation learning. Retrieval-
based baselines include GSR [35] and Visual Imitation through Nearest Neighbors (VINN) [8].
Additional implementation details and results are provided in Section A.3.4.

We first set up the three tasks

Table 2: Baseline Comparisons in Simulation. Success rates in the simulator to evaluate our
(success/total trials) across three tasks. The underlined entry de- method and all five baselines.
notes the best-performing method for each task. Bold indicates We then train selected meth-
methods whose performance is not significantly different from ods on a real-world dataset and

ours (Fisher’s exact test, p > 0.05). compare their performance with

VINN Diffusion GSR BAKU BC Ours L cMoBot in real-world deploy-
ment. Notably, all methods are

Uncover 0/40 0/40 6/40 38/40 5/40 36/40  evaluated in simulation and in
Curtain  0/40 15/40  12/40 13/40 16/40 32/40

out any sim-to-real transfer.

Baseline Comparisons in Simulation: Although all six methods generally navigate the robot close
to the target (e.g., the curtain or sheet), Diffusion and VINN perform worse across most tasks (Ta-
ble 2). We hypothesize that 20 demonstrations( ~ 600 samples per task) are insufficient, compared
to prior work: Diffusion [34] uses over 200 demonstrations, and VINN [8] uses 71 for training.

Beyond dataset limitations, we observe two main failure modes of learning-based methods. First,
severe action imbalance biases models toward frequent actions and hinders rare but crucial ones,
such as GRASP (only 2.7% and 3.0% in Cover and Uncover). Second, strong visual similarity
between pre- and post-grasp states confuses models. Supporting this, manually replacing BC’s
second grasp with an arm-up command yielded 33/40 successes, confirming our assumption.

In contrast, both ReMoBot and BAKU leverage historical information, enabling them to achieve
robust performance in this data-constrained setting. ReMoBot achieves competitive performance
across all tasks, including the more visually complex Curtain scenario, demonstrating that retrieval-
based imitation can generalize beyond specific bottleneck actions.

Baseline Comparisons in the Real World: For real-world evaluation, we retrain BAKU and Behav-
ior Cloning (BC) on the real-world dataset. BAKU is included as the strongest simulation baseline
(Tab. 2), while BC serves as a lightweight supervised baseline. Although BC lacks sequential rea-
soning, it provides a useful lower bound for performance under limited supervision. Together, these
baselines offer a balanced comparison: BAKU as the best-performing advanced method and BC as
the simplest direct imitation approach.



Table 3: Baseline Comparisons in Real World. Success rates (success/total trials) of all baselines
across three tasks. Underline indicates the best-performing method for each task. Bold indicates
methods that are not significantly different from ours (Fisher’s exact test, p > 0.05).

Tasks Table Uncover Gap Cover Curtain Open

Task Stages: Approach Grasp Uncover | Approach Grasp Cover | Approach Open Pass
BC 10/20 1/20 0/20 13/20 4/20  2/20 16/20 2/20 0/20

BAKU 19/20 0/20 0/20 10/20 0/20  0/20 6/20 0/20 0/20
ReMoBot 2020  15/20 14/20 20/20  17/20 16/20 | 20/20  16/20 9/20

Similar to the simulation, as shown in Tab. 3,
both baselines are generally able to navigate the
robot close to the target. However, despite be-

Trajectory of Cover Task Near Grasp Action

Expert ) - M
Demo | BF %> ADSH V| AUGH AR

ing trained on the real-world dataset with the e 1
same network structure, BAKU’s performance | :
drops significantly. We also identify the same .- od]

two failure modes as in the simulation. First, - -.—.—-.—.—.—. e
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in the .Cover' and Uncover tasks, the model' of- ;:::3:0'1 BF ¢=52 <— No Grasp and Stuck

ten fails to issue the correct GRASP action, o _— Grasp and Continue

as the observations are nearly indistinguishable . — I
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(Fig. 4). This results in repeated body mo-  Behavior AN Ah §

tions without executing the grasp, preventing

task completion.Second, we hypothesize that Figure 4: Visual ambiguity. Rows show (top to

the decline in performance is primarily caused ~bottom): expert demonstration, egocentric obser-
by environmental noise and a perception dis- vations, learned behavior, and retrieved behavior
(BF: move forward, AD: arm down, AU: arm up,
AR: arm right).

tribution shift between the data collection and
evaluation environments. In addition, once the
robot moves, the perception of the scene is not
identical across trials, as small differences in the robot’s trajectory lead to variations in viewpoint
and observation.

In contrast, ReMoBot consistently outperforms the baselines, achieving success rates of 70% for
Table Uncover, 80% for Gap Cover, and 45% for Curtain Open. A detailed breakdown in Table 3
shows that ReMoBot is not only able to reach the target reliably (100% success in the Close stage
across all tasks), but also executes rare but essential grasping and following actions with high ac-
curacy. The Curtain Open task remains the most challenging due to fabric deformability, partial
observability, and collision, yet ReMoBot still demonstrates improvements over the baselines.

4.3 Generalizability Evaluation

We evaluate ReMoBot in three different settings
Table 4: Generalizability Evaluation. Suc- to demonstrate its generalization capability: (1)
cess rates (success/total trials). Underline val- varying object sizes, (2) different fabric materials,
ues indicate the best-performing condition. and (3) varying initial positions of the robot. We
conduct this evaluation on the real robot with 20
demonstrations. For each scenario, we vary one

Uncover Cover Curtain

Size 10/20  10/20  6/20 factor while keeping all other configurations consis-
Material 12/20 11/20 6/20 tent with the data collection environment. Detailed
Position  15/20  12/20  7/20 configurations are provided in Section A.3.2. Ta-
Default 14/20  16/20 9/20 ble 4 shows that ReMoBot maintains robust perfor-

mance across diverse generalization scenarios. Mi-
nor performance drops are primarily due to incorrect expert trajectory retrieved, when the target
object is partially or entirely outside the camera’s field of view, especially with larger materials that
occlude the scene. Despite these challenges, across all tasks, none of the evaluated conditions show
statistically significant differences from the default condition (Fisher’s exact test, p > 0.05), indi-



cating that ReMoBot demonstrates good generalization capabilities across varying fabric materials,
object sizes, and initial robot positions.

4.4 Data Efficiency Evaluation

Data Efficiency ion in Si

To investigate the data efficiency of Re-
MoBot, we conducted experiments using vary-
ing dataset sizes of 1, 5, 10, 15, and 20 demon-
strations in simulation only. The evaluation en-
vironment is identical to the demonstration col-
lection environment. Results are reported as the
success rate of 40 trials. As shown in Table 5,
for simpler tasks such as Table Uncover, Re- ° H p o T »
MoBot reaches around 80% success with only [

15 demonstrations, while for more challeng- Figure 5: Data Efficiency Evaluation. Suc-
ing tasks, performance exceeds 75% with 20 cess rates for 40 trials with different numbers of
demonstrations.

8 3 3

Success Rate (%)

N
S

demonstrations.

4.5 Ablation Study

We conduct an ablation study to

Table 5: Ablation study in simulation. Success rates (suc- evaluate the impact of two differ-
cess/total trials) under different hyperparameter settings. Un- ent similarity constraints hyperpa-
derline values indicate the best-performing condition for each rameters used in the retrieval pro-
task. NA indicates no trajectory constraints. cess. K denotes the size of the

subset Gy in Eq. 1, L is the

K=10 K=10 K=10 K=5 K=5

Task LoNA 125 123 125 1=3 sm? of .Asub in Eq. 4 The f.:val-
uation is performed in the simu-

Uncover 30/40 36/40 30/40 21/40 32/40 lated environment identical to the
COVE!I’ 17/40 31/40 30/40 28/40 30/40 data COHeCtiOn environment_ Ta_

Curtain 26/40 32/40 24/40 27/40 25/40 ble 5 shows that incorporating tra-

jectory similarity consistently im-
proves performance across all tasks, highlighting its importance. The best results are obtained with
K =10and L = 5, which we used in all previous experiments.

5 Conclusion

Learning mobile manipulation skills for complex tasks, such as partial observation mobile manip-
ulation, from a few demonstrations is a challenging problem. This work introduces ReMoBot, a
few-shot imitation learning framework that leverages a retrieval strategy with visual similarity con-
straints to solve tasks without additional training. ReMoBot integrates a visual foundation model
as a feature extractor with a trajectory-aware action identification, enabling training-free imitation
of expert demonstrations even under partial observability. To evaluate ReMoBot, we designed three
real-world mobile manipulation tasks involving deformable fabrics with the Boston Dynamics Spot
robot. Across all tasks, ReMoBot consistently outperformed both learning-based and retrieval-based
baselines, effectively acquiring manipulation skills from a limited dataset. Furthermore, ReMoBot
demonstrated generalization to varying environmental conditions, including robot initial position,
object size, and materials. Moving forward, extending ReMoBot with explicit mechanisms for col-
lision handling and incorporating online fine-tuning strategies could further enhance its adaptability
and safety during deployment, while preserving data efficiency and generalizability.



6 Limitations

Despite the promising results of ReMoBot, several limitations remain. First, the absence of collision-
free motion planning led to frequent failures in the curtain-opening task, where the robot occasion-
ally collided with the curtain hanger. Second, the retrieval module sometimes selected visually
distinct states due to the limited representation power of the foundation model and the restricted
diversity of the offline dataset—an issue common in imitation learning without online adaptation.
Third, in the Table Uncover and Gap Cover tasks, highly similar observations occasionally caused
local optima, suggesting the need for additional contextual signals such as a grasp flag. Finally,
the decoupled control of the robot’s body and arm introduced IK-related failures. Future work may
address these limitations by integrating collision-free planning, incorporating online adaptation and
failure recovery mechanisms, adding contextual signals (e.g., grasp flags), and exploring more uni-
fied control schemes or continuous skill-level action spaces.
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A Appendix

A.1 Task in Simulation

To further analyze failure cases and reduce noise present in real-world experiments, we replicate the
same task in the simulation with the Isaac Sim simulator. This enables the comparison of different
baselines under controlled conditions. As shown in Fig. 6, we recreate the tasks using the Spot
robot in simulation with alignment to the real-world setup. Specifically, we position the camera to
match its placement in the real-world setting, ensuring consistent ego-centric observations across
both domains. The cloth is simulated using a particle-based system, which provides photorealistic
visuals and physically accurate cloth dynamics.

Table Uncover w‘l ‘0 Lﬁ ‘& -

Gap Cover 3 w\’ \ ;:V \/ X \2’

Curtain Open | K] Uﬂ'&] = |F . gﬂl

Start | > End

Figure 6: Three Deformable Mobile Manipulation tasks in Simulation. Table Uncover (top),
Gap Cover (middle), and Curtain Open (bottom) tasks. To solve these three tasks, a Spot robot with
a front-mounted RGB-D camera must coordinate body movement and arm operation to navigate and
manipulate fabric. Note that we collect demonstrations and evaluate all the methods directly in the
simulation.

Table Uncover: In this task, the robot must approach the table and remove the table cover by pulling
it in a specific direction, causing the cloth to fold first. The task is considered successful when the
cloth is folded and its edge crosses the center of the table. To reduce irrelevant sources of difficulty,
we assume that all grasp actions succeed without slippage and collision.

Gap Cover: This task requires the robot to get close to the deformable target first and then use it
to cover the gap between the two objects. Completion of the task is defined by one of the cloth’s
edge surpassing the entire gap. We also assume that all grasp actions succeed in reducing irrelevant
difficulty.

Curtain Open: In this task, the robot is required to approach the curtain, use its arm to move the
curtain aside, and then navigate through the opening. The task introduces additional difficulty by
incorporating a collision-avoidance requirement. Success is defined as the curtain being opened and
the robot’s body moving past the curtain hanger. Notably, grasp actions are excluded from the action
space for this task.

A.2 ReMoBot Algorithm

The algorithm of ReMoBot is described in Alg. 1
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Algorithm 1 ReMoBot

1: Initialize:

2: Given expert retrieval dataset Dy_;

3: Online visited trajectory 77, current feature state sj ;
4: Empty buffers Gy, and Tyyp;

5: Step 1: Identify Similar States

6: Retrieve top-K similar expert states as Gy, (Eq.1).
7. Step 2: Extract Corresponding Trajectories

8: for Each s7; € G do

9: Retrieve the expert trajectory 77 where s7; € 77.
10: Truncate 7 at timestamp j.
11: Store truncated 77 in Typ.
12: Step 3: Evaluate Candidate Trajectories
13: Select top-L similar expert trajectories from Ty, to form a refined set Agy, (Eq.4).

14: Step 4: Action Selection
15: for Each 774 € Agyp do

16: Compute the action similarity score (Eq. 6).
17: Select the 77 with highest score as 7.
18: Execute the last action ag; from 7.

A.3 Experiment
A.3.1 Task Configuration

For both simulation and real-world settings, we use the Boston Dynamics Spot robot to conduct
tasks in a laboratory environment. Observations consist of RGB-D inputs from a front-mounted
camera on the robot body O¢ = I, The action space is discrete and consists of body and arm
movement primitives. At each timestep, the policy selects one action from a fixed set of commands.
These include body-level motions that translate the robot base by a fixed distance in the environment.
Similarly, arm-level actions that move the end-effector in Cartesian space by a fixed step size along
the corresponding axis. The policy is restricted to issuing either a body or an arm command at each
step, resulting in a decoupled control scheme. This discretization enables efficient policy learning
and simplifies integration with retrieval-based planning. The detailed action definitions for each task
can be found in A.3.3. All manipulated objects are deformable, increasing the complexity of visual
observations. The properties of deformable objects for each task are listed below:

* Table Uncover: In this setting, the table is big enough to require both body and arm
movements to complete the task. We use a 75 cm x 110 cm black plastic cloth as the table
cover and place it on a bigger stage.

* Gap Cover: In this setup, we use a 55 cm x 110 cm blue plastic cloth and set the gap size
as 50 cm.

¢ Curtain Open: The curtain is a 130 cm x 240 cm gray polyester cloth, with a distance of
1.5 meters between the two hangers.

To analyze the performance in the controllable environment, we replicate the tasks in the simulator.
The deformable fabric is simulated with the particle system. The resolution is 50 with 0.01 kg for
each particle.

* Table Uncover: In this setting, the table is big enough to require both body and arm
movements to complete the task. We use a 100 cm x 100 cm cloth with a rigid handle as
the table cover and place it on the same size stage.

* Gap Cover: In this setup, we use an 80 cm x 120 cm cloth with a rigid handle as the table
cover and set the gap size as 90 cm.

¢ Curtain Open: The curtain is 110 cm x 110 cm, with a distance of 130 cm between the
two hangers.

13



A.3.2 Generalizability Configuration

We conduct a comprehensive evaluation of ReMoBot’s generalization capabilities under three con-
ditions in both simulation and the real world: (1) varying initial robot positions, (2) different de-
formable object materials, and (3) diverse object sizes. For each scenario, we vary only one factor
at a time while keeping all other configurations consistent with the data collection environment.
Detailed experimental settings are provided below.

* Position: We expand the range of robot initial positions: keep the distances from 1.5 to 1.8
meters from the curtain, change the lateral displacements up to 1 meter from the curtain’s
center, and angular variations between -20 and 20 degrees. For these position-based gen-
eralization tests, all other environmental parameters remained consistent with the demon-
stration collection setup.

* Material: This experiment assessed the system’s adaptability to different fabric charac-
teristics. In the real-world environment, we evaluated performance using a mixed fiber
(cotton and polyester) cloth and a blue plastic cover, neither of which is utilized during
demonstration collection.

* Curtain Size: To evaluate the influence of curtain dimensions on ReMoBot’s performance,
we conducted tests with two additional curtain sizes not used in the demonstrations. For
the curtain-open task, we tested a smaller curtain measuring 80 cm x 110 cm and a larger
one measuring 160 cm x 90 cm. For the Cover and Uncover tasks, we employed a smaller
curtain of 80 cm x 80 cm and a larger variant of 80 cm x 160 cm.

In the simulation, the detailed experimental setting is listed below: Detailed experimental settings
are provided below.

* Position: We expand the range of robot initial positions: keep the distances from 0 to 1.8
meters from the curtain, change the lateral displacements up to 1 meter from the curtain’s
center, and angular variations between -20 and 20 degrees. For these position-based gen-
eralization tests, all other environmental parameters remained consistent with the demon-
stration collection setup.

* Material: This experiment assessed the system’s adaptability to different fabric charac-
teristics. We randomized the damping parameters in the computed springs for the fabric
between 0.05 and 0.35 to model various material properties.

* Curtain Size: To evaluate the influence of curtain dimensions on ReMoBot’s performance,
we tested a smaller curtain measuring 80 cm x 110 cm and a larger one measuring 160 cm
x 90 cm. For the Cover and Uncover tasks, we employed a smaller curtain of 80 cm x 80
cm and a larger variant of 80 cm x 160 cm.

For all tasks, the Spot robot’s initial position is randomized within a range of 0 to 1.8 meters away
from the deformable objects, with lateral deviations of up to 0.8 meters to the left or right of the fabric
or gap center. Additionally, angular deviations range from -15 to 15 degrees relative to the center.
We use this experimental setup as the default condition during the comparison. The demonstrations
are conducted by a human operator via remote control.

A.3.3 Demonstration Collection

Real-world Setting: We collected 20 demonstrations for each task separately in real-world with
the keyboard controller. An RGB-D camera is mounted on the front of the robot’s body to receive
egocentric observations. The robot has the following discrete actions implemented: 1) body move-
forward, 2) body move-left, 3) body move-right, 4) body move-backward, 5) body turn-left, 6) body
turn-right, 7) hand move-forward, 8) hand move-backward, 9) hand move-left, 10) hand move-right,
11) hand move-up, 12) hand move-down. Note that in the Gap Cover and Table Uncover tasks,
the object is considered to be grasped when the end-effector touches the handle of the deformable
object. For all tasks, the Spot robot’s initial position is randomized within a range of 1.5 to 1.8
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meters away from the deformable objects, with lateral deviations of up to 1 meter to the left or right
of the fabric or gap center. Additionally, angular deviations range from -15 to 15 degrees relative
to the center. We use this experimental setup as the default condition during the comparison. The
demonstrations are conducted by a human operator via remote control.

Simulation setting: We also collected 20 demonstrations for each task separately in the simulation
with the keyboard controller. An RGB-D camera is mounted on the front of the robot’s body to
receive egocentric observations. The robot has the following discrete actions implemented: 1) body
move-forward, 2) body move-left, 3) body move-right, 4) body move-backward, 5) body turn-left,
6) body turn-right, 7) hand move-forward, 8) hand move-backward, 9) hand move-left, 10) hand
move-right, 11) hand move-up, 12) hand move-down, 13) hand grasping, and 14) hand release.
Note that in the Gap Cover and Table Uncover tasks, the object is considered to be grasped as long
as the grasp action is executed. For all tasks, the Spot robot’s initial position is randomized within
a range of 0 to 1.8 meters away from the deformable objects, with lateral deviations of up to 0.8
meters to the left or right of the fabric or gap center. Additionally, angular deviations range from -15
to 15 degrees relative to the center. We use this experimental setup as the default condition during
the comparison. The demonstrations are conducted by a human operator via remote control.

A.3.4 Baseline Implementation

BC: A classical supervised learning approach [36, 37], where a policy is trained to directly map
observations to actions using expert demonstrations. In our setup, to make the comparison fair, we
train the policy to predict one-step actions just like our methods.

GSR: A retrieval-based method [35] that organizes the dataset into a graph and performs graph
search to estimate the values of different behaviors. A retrieval procedure is then applied to iden-
tify the best behavior (action) for each state, followed by behavior cloning to learn that behavior.
For simplicity, we adapt the original diffusion-based behavior cloning approach to a multi-layer
perceptron (MLP).

BAKU: A transformer-based behavior cloning method that inputs the history of the last ~ observa-
tions s;_p.+ and predicts a chunk of h actions with a Gaussian mixture model. Following [33], we
calculate the multi-step action loss with h = 5 but only execute the first one during evaluation.

Diffusion: Diffuser leverages diffusion probabilistic models to generate trajectories that mimic ex-
pert behavior [26, 38]. While previous work has focused on large-scale datasets and point cloud
inputs [39], we implement a version based solely on RGB observations following the Diffusion
Policy framework [34].

VINN: VINN performs nearest neighbor search over demonstration observations to retrieve the
most similar states [8], and computes an action as a Euclidean kernel-weighted average of those
associated with the retrieved neighbors. We use the original VINN encoder structure [40], a visual
representation model BYOL, with our dataset to compare against our visual perception pipeline.

A.3.5 Generalization Evaluation in Simulation

We also evaluate ReMoBot in three different
settings in simulation to demonstrate its gen- Table 6: Generalizability Evaluation in Simula-
eralization capability without the real-world tion. The success rates of the three tasks across
noise. For each scenario, we vary only one varying initial positions of the robot, materials,
factor at a time while keeping all other con- and sizes of the deformable fabric.

figurations consistent with the data collection
environment. The results in Table 6 demon-

Cover Uncover Curtain

strate that ReMoBot maintains robust perfor- Materials 32/40  32/40 32/40
mance across diverse generalization scenarios, Position  27/40  32/40 28/40
aligning well with the real-world experimental Size 25/40  28/40 30/40
results and further validating the robustness of Default 32/40  35/40 32/40
ReMoBot.
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