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Abstract

Backward stochastic differential equation (BSDE)-based deep learning methods
provide an alternative to Physics-Informed Neural Networks (PINNs) for solving
high-dimensional partial differential equations (PDEs), offering potential algorith-
mic advantages in settings such as stochastic optimal control, where the PDEs of
interest are tied to an underlying dynamical system. However, standard BSDE-
based solvers have empirically been shown to underperform relative to PINNs in
the literature. In this paper, we identify the root cause of this performance gap as
a discretization bias introduced by the standard Euler-Maruyama (EM) integra-
tion scheme applied to one-step self-consistency BSDE losses, which shifts the
optimization landscape off target. We find that this bias cannot be satisfactorily
addressed through finer step-sizes or multi-step self-consistency losses. To properly
handle this issue, we propose a Stratonovich-based BSDE formulation, which we
implement with stochastic Heun integration. We show that our proposed approach
completely eliminates the bias issues faced by EM integration. Furthermore, our
empirical results show that our Heun-based BSDE method consistently outperforms
EM-based variants and achieves competitive results with PINNs across multiple
high-dimensional benchmarks. Our findings highlight the critical role of integration
schemes in BSDE-based PDE solvers, an algorithmic detail that has received little
attention thus far in the literature.

1 Introduction

Numerical solutions to partial differential equations (PDEs) are foundational to modeling problems
across a diverse set of fields in science and engineering. However, due to the curse of dimensionality
of traditional numerical methods, application of classic solvers to high dimensional PDEs is com-
putationally intractable. In recent years, motivated by the success of deep learning methods, both
Physics-Informed Neural Networks (PINNs) [1, 2] and backward stochastic differential equation
(BSDE) methods [3–5] have emerged as promising alternatives to classic techniques.

Despite the widespread popularity of PINNs methods, in this paper we focus on the use of BSDE-
based methods for solving high-dimensional PDEs. The key difference between PINNs and BSDE
methods is that while PINNs minimize the PDE residual directly on randomly sampled collocation
points, BSDE methods reformulate PDEs as forward-backward SDEs (FBSDEs) and simulate
the resulting stochastic processes to minimize the discrepancy between predicted and terminal
conditions at the end of the forward SDE trajectory [3], or across an intermediate time-horizon
via self-consistency losses [4, 5]. BSDE methods are especially well-suited for high-dimensional
problems where there is underlying dynamics—such as in stochastic optimal control or quantitative
finance—as the crux of these methods involving sampling over stochastic trajectories rather than
over bounded spatial domains. Furthermore, BSDE methods offers a significant advantage in
problems where the governing equations of the PDE are unknown and can only be accessed through
simulation [6], as in model-free optimal control (cf. Appendix C for more details). In contrast, PINNs
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methods require explicit knowledge of the PDE equations, which may be either be impractical to
obtain for various tasks or require a separate model learning step within the training pipeline.

Surprisingly, despite the aforementioned benefits of BSDE methods compared with PINNs, a thorough
comparison between the two techniques remains largely absent from the literature. One notable
exception is recent work by [5] which finds that on several benchmark problems, PDE solutions
found by BSDE-based approaches significantly underperform the corresponding PINNs solutions. To
address this gap, they propose a hybrid interpolating loss between the PINNs and BSDE losses. While
promising, their result has two key disadvantages. First, the underlying cause of the performance
gap between BSDE and PINNs methods is not elucidated. Second, their method introduces a new
hyper-parameter (the horizon-length controlling the level of interpolation) which must be tuned for
optimal performance, adding complexity to the already delicate training process [7].

In this work, we identify the key source of the performance gap between BSDE and PINNs methods
as the standard Euler-Maruyama (EM) scheme used in BSDE methods for stochastic integration.
Although simple to implement, we show that the EM scheme introduces a significant discretization
bias in one-step BSDE losses, resulting in a discrepancy between the optimization objective and the
true solution. We furthermore show that the EM discretization bias can only be made arbitrarily
small by using multi-step BSDE losses, which we show both theoretically and empirically comes at a
significant cost in performance. Our analysis reveals the interpolating loss of [5] as a method to find
(via hyper-parameter tuning) the best suitable horizon length (i.e., number of self-consistency steps).

As an alternative, we propose interpreting both the forward and backwards SDEs as Stratonovich
SDEs—as opposed to Itô SDEs—and utilizing the stochastic Heun integration scheme for numerical
integration. We prove that the use of the stochastic Heun method completely eliminates the non-
vanishing bias issues which occur in the EM formulation for one-step BSDE losses. This removes all
performance tradeoffs in the horizon-length, allowing us to utilize single-step self-consistency losses.
The result is a practical BSDE-based algorithm that is competitive with PINNs methods without the
need for interpolating losses. Surprisingly, prior to our work the role of stochastic integration has
received little attention in the BSDE literature; we hope that our results inspire further algorithmic
and implementation level improvements for BSDE solvers.

2 Related Work

In recent years, PINNs [1, 2, 8–10] has emerged as a popular method for solving high dimensional
PDEs. PINNs methods parameterize the PDE solution as a neural network and directly minimize the
PDE residual as a loss function, provides a mesh-free method that can easily incorporate complex
boundary conditions and empirical data. However, the PINNs approach remains an incomplete
solution and still suffers from notable issues including optimization challenges [11–15], despite a
concerted effort to remedy these difficulties [7, 11, 12, 16–20]. Hence, the application of PINNs as a
general purpose solver for complex high-dimensional PDEs remains an active area of research.

On the other hand, a complementary line of work proposes methods based on BSDEs to solve
high-dimensional PDEs [3–5, 21–25]. These approaches reformulate PDEs as forward-backward
SDEs to derive a trajectory-based loss. While the original deep BSDE methods [3, 21, 22] learn
separate neural networks to predict both the value and gradient at each discrete time-step, follow up
work [4, 5] uses self-consistency, i.e., the residual of stochastic integration along BSDE trajectories,
to form a loss. In this work, we exclusively focus on self-consistency BSDE losses, as they generalize
the original method while allowing for a single network to parameterize the PDE solution for all
space and time, similarly to PINNs. Similar self-consistency losses have also been recently utilized to
learn solutions to Fokker-Planck PDEs [26–28]. Further discussions on related works and the paper’s
relationship to recent BSDE-based methods can be found in Appendix B.

The main purpose of our work is to understand the performance differences between PINNs and
BSDE methods on high-dimensional PDEs. The most relevant work to ours is [5], which to the best
of our knowledge is the only work in the literature that directly compares PINNs and BSDE methods
in a head-to-head evaluation. As discussed in Section 1, one of our main contributions shows that
the gap in performance between PINNs and BSDE methods observed in [5] is due to the choice of
stochastic integration. Previous work [29] studying stochastic Runge-Kutta discretizations for BSDEs
methods considers only the original BSDE losses instead of self-consistency methods, and hence
does not uncover the bias issue identified in our work.
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3 Background and Problem Setup

We consider learning approximate solutions to the following non-linear boundary value PDEs

R[u](x, t) ∶= ∂tu(x, t) +
1

2
tr(H(x, t) ⋅ ∇2u(x, t)) + ⟨f(x, t),∇u(x, t)⟩ − h[u](x, t) = 0, (3.1)

over domain x ∈ Ω ⊆ Rd, t ∈ I ∶= [0, T ] with boundary conditions (a) u(x,T ) = ϕ(x) ∀x ∈ Ω
and (b) u(x, t) = ϕb(x, t) ∀x ∈ ∂Ω, t ∈ I. Here, u ∶ Ω × I ↦ R is a candidate PDE solution,
f ∶ Ω×I ↦ Rd is a vector-field, h[u] ∶= h0(x, t, u(x, t),∇u(x, t)) for some h0 ∶ Ω×I ×R×Rd ↦ R
captures the non-linear terms, H(x, t) = g(x, t)g(x, t)T ∈ Rd×d for g(x, t) ∈ Rd×d is a positive
definite matrix-valued function, ϕ ∶ Ω × I and ϕb ∶ ∂Ω × I are boundary conditions, and both ∇ and
∇2 denote spatial gradients and Hessians, respectively. For expositional clarity, we will assume that
Ω = Rd and drop the second boundary condition (b), noting that all subsequent arguments can be
extended in a straightforward manner for bounded domains Ω.

Physics-Informed Neural Networks (PINNs). Under the assumption of knowledge of the operator
R[u] and the boundary condition ϕ, the standard PINNs methodology [1, 2, 8–10] for solving (3.1)
works by parameterizing the solution u(x, t) in a function class U ∶= {uθ(x, t) ∣ θ ∈ Θ} (e.g., θ
represents the weights of a neural network), and minimizing the PINNs loss over U :1

LPINNs(θ;λ) ∶= E(x,t)∼µ[(R[uθ](x, t))2] + λ ⋅Ex∼µ′[(uθ(x,T ) − ϕ(x))2], (3.2)

where µ is a measure over Ω × I and µ′ is a measure over Ω. The choice of measures µ,µ′, in
addition to the relative weight λ are hyper-parameters which must be carefully selected by the user.
To simplify exposition further, we will assume that each uθ(x, t) ∈ U satisfies u(⋅, T ) = ϕ (e.g., as in
[30, 31]), and hence the PINNs loss simplifies further to LPINNs(θ) = E(x,t)∼µ[(R[uθ](x, t))2].
Backwards SDEs and self-consistency losses. While the PINNs loss has received much attention
in the literature, a separate line of work has advocated for an alternative approach to solving PDEs
based on backwards SDEs [3, 4, 21–23]. The key idea is that given the forward (Itô) SDE:

dXt = f(Xt, t)dt + g(Xt, t)dBt, X0 = x0, (3.3)

where (Bt)t⩾0 is standard Brownian motion in Rd, the corresponding backwards (Itô) SDE:

dYt = h(Xt, t, Yt, Zt)dt +ZT
t g(Xt, t)dBt, YT = ϕ(XT ), (3.4)

is solved by setting Yt = u(Xt, t) and Zt = ∇u(Xt, t), where u is a solution to the PDE (3.1); this
equivalence is readily shown with Itô’s lemma. The relationship between the forward and backwards
SDE has motivated several different types of BSDE loss functions for solving (3.1). In this work,
we focus on BSDE losses based on self-consistency [4, 5], which uses the residual of stochastic
integration along the BSDE trajectories as supervision. Self-consistency losses are more practical
than other BSDE variants as only one network is required and the weights can be shared across time
(unlike e.g., the original BSDE losses [3, 21] which learn N models to predict both Yt and Zt at
N discretization points, and require retraining for every new initial condition x0). Specifically, we
consider the following H-horizon (for N = T /H ∈ N+ and tn = nH) self-consistency BSDE loss:2

LBSDE,H(θ) ∶= Ex0,Bt

1

NH2

N−1

∑
n=0

(uθ(Xtn+1 , tn+1) − uθ(Xtn , tn) − Sθ(tn, tn+1))2 , (3.5)

where Sθ(t0, t1) ∶= ∫
t1
t0

hθ(Xt, t)dt − ∫
t1
t0
∇uθ(Xt, t)Tg(Xt, t)dBt with hθ(x, t) ∶= h[uθ](x, t),

and x0 ∼ µ0 is drawn from a distribution µ0 over initial conditions for the forward SDE (3.3).

Euler-Maruyama integration. Unlike the PINNs loss (3.2), the BSDE loss (3.5) must be discretized
with an appropriate stochastic integrator. The standard choice is to use the Euler-Maruyama (EM)
method, selecting N ∈ N+ to define a step-size τ ∶= T /N and time-points tn ∶= nτ , and integrating
the forward and backwards SDEs as follows:

X̂n+1 = X̂n + τf(X̂n, tn) +
√
τg(X̂n, tn)wn, wn ∼ N(0, Id), X̂0 = x0,

1We leave consideration of the PINNs loss with non-square losses (e.g., [18]) to future work.
2We note that the most general form of self-consistency losses are due to [5] and take on the form

LBSDE(θ;ρ) = E x0∼µ0,
(ts,tf )∼ρ,Bt

1
∆2

t
(uθ(Xtf , tf) − uθ(Xts , ts) − Sθ(ts, tf))

2
involving a time-pair distribution

ρ over I2, where ∆t ∶= tf − ts. We choose to present (3.5) as it more closely aligns with the discrete losses.
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Ŷ θ
n+1 = Ŷ θ

n + τhθ(X̂n, tn) +
√
τ∇uθ(X̂n, tn)Tg(X̂n, tn)wn, Ŷ θ

0 = uθ(x0,0). (3.6)

With this discretization, the k-step EM-BSDE loss (for N/k ∈ N+) for LBSDE(θ) is:

LEMk,τ(θ) ∶= E
x0,wn

k

Nτ2

N
k −1

∑
n=0

(uθ(X̂(n+1)k, t(n+1)k) − uθ(X̂nk, tnk) − (Ŷ θ
(n+1)k − Ŷ θ

nk))
2
. (3.7)

In the one-step (or single-step) setting k = 1, (3.7) reduces to the self-consistent BSDE loss from
[4], also discussed in [32, 33]; we use the shorthand LEM,τ(θ) to denote this setting. We refer to the
k > 1 case generally as multi-step, which is a form of interpolating loss from [5]. Another notable
case is when k = N , which recovers the full-horizon losses used in the original BSDE works [3, 21].

4 Analysis of One-Step Self-Consistency Losses

In this section we conduct an analysis of both EM and Heun stochastic integration applied to the
one-step self-consistency BSDE loss.

The Hölder space Ck,1. Let f ∶ M ↦ M ′, where both M,M ′ are subsets of Euclidean space
(with possibly different dimension). We say that f is Ck,1(M,M ′) (Ck,1 when M,M ′ are clear)
if f is both bounded and k-times continuously differentiable on M , and all j-th derivatives of f
for j ∈ {0, . . . , k} are Lipschitz continuous. The Hölder norm ∥f∥Ck,1(M,M ′) is the smallest bound
possible on ∥f∥ and all the Lipschitz constants for Djf , j ∈ {0, . . . , k}.

4.1 Analysis of Euler-Maruyama for BSDE

We first illustrate the bias when using EM to integrate the single-step consistency loss. To do this, we
define the point-wise EM loss at resolution τ for a fixed (x, t) ∈ Rd × I as:

ℓEM,τ(θ, x, t) ∶= Ew (uθ(x̂t+τ , t + τ) − uθ(x, t) − τhθ(x, t) −
√
τ⟨∇uθ(x, t), g(x, t)w⟩)

2
, (4.1)

x̂t+τ ∶= x + τf(x, t) +
√
τg(x, t)w, w ∼ N(0, Id).

The point-wise EM loss (4.1) is related to the one-step EM-BSDE loss via LEM,τ(θ) =
1

Nτ2 ∑N−1
n=0 EX̂n

[ℓEM,τ(θ, X̂n, tn)]. Our first result shows that the dominant error term (in τ ) of the
loss (4.1) suffers from an additive bias term that is introduced as a result of the EM integration.

Lemma 4.1. Suppose that f, g are bounded and uθ is C2,1. We have that

τ−2 ⋅ ℓEM,τ(θ, x, t) = (R[uθ](x, t))2 +
1

2
tr [(H(x, t) ⋅ ∇2uθ(x, t))2] +O(τ1/2), (4.2)

where the O(⋅) hides factors depending on d, the bounds on f, g, and ∥uθ∥C2,1 .

Lemma 4.1 can further be used, in conjunction with standard results on the order 1/2 strong con-
vergence of EM integration [34], to show the following statement regarding the full loss LEM,τ(θ).

Theorem 4.2. Suppose that f, g, hθ ∈ C0,1, uθ ∈ C2,1, and τ ⩽ 1. We have that:

LEM,τ(θ) =
1

T
∫

T

0
E [(R[uθ](Xt, t))2 +

1

2
tr [(H(Xt, t) ⋅ ∇2uθ(Xt, t))2]]dt +O(τ1/2), (4.3)

where the O(⋅) hides constants that depend on d, T , and the Hölder norms of f , g, hθ, and uθ.

Theorem 4.2 implies that even if the function class U is expressive enough to contain a PDE solution
uθ⋆ to (3.1) satisfying R[uθ⋆] = 0, in general LEM,τ(θ⋆) > infuθ∈U LEM,τ(θ), and hence optimizing
LEM,τ(θ) can lead to sub-optimal solutions even in the limit of infinite simulated data. Furthermore,
this bias cannot be resolved by simply reducing the step-size τ , since the PDE residual term and the
bias term are both the same order (cf. (4.3)). We illustrate this with a one-dimensional example in
Figure 1a. Proofs for both Lemma 4.1 and Theorem 4.2 are given in Appendix D.2.
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(a) Plot of LEM,τ(θ) at τ ∈ {10−1,10−2,10−3} levels
of discretization.
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(b) Plot of LHeun,τ(θ) at τ ∈ {5 × 10−1,10−1,5 ×
10−2} levels of discretization.

Figure 1: A plot of both LEM,τ(θ) and LHeun,τ(θ) at various levels of discretization. The PDE is a one
dimensional Linear Quadratic Regulator HJB equation, where θ parameterizes a quadratic value function.

4.2 Stratonovich BSDEs and Stochastic Heun Integration

Our next step is to derive a new BSDE loss based on Heun integration. The starting point is to
interpret the forward SDE as a Stratonovich SDE (in contrast to (3.3) which is an Itô SDE):

dX●
t = f(X●

t , t)dt + g(X●
t , t) ○ dBt, X●

0 = x0. (4.4)

For any u that satisfies (3.1), we have du(X●
t , t) = h●[u](X●

t , t)dt +∇u(X●
t , t)Tg(X●

t , t) ○ dBt with
h●[u](x, t) ∶= h[u](x, t) − 1

2
tr(H(x, t)∇2u(x, t)) by the Stratonovich chain rule, which motivates

the following H-horizon self-consistency Stratonovich BSDE loss:

LS-BSDE,H(θ) ∶= Ex0,Bt

1

NH2

N−1

∑
n=0

(uθ(X●
tn+1 , tn+1) − uθ(X●

tn , tn) − S
●
θ(tn, tn+1))

2
, (4.5)

with S●θ(t0, t1) ∶= ∫
t1
t0

h●θ(X●
t , t)dt+ ∫

t1
t0
∇uθ(X●

t , t)Tg(X●
t , t) ○ dBt where h●θ(x, t) ∶= h●[uθ](x, t).

As (4.5) utilizes Stratonovich integration, the Euler-Maruyama scheme cannot be used for integration,
as it converges to the Itô solution. Hence, we will consider the stochastic Heun integrator [34, 35]
which has the favorable property of converging to the Stratonovich solution. We proceed first by
defining the augmented forward and backwards SDE process Z●,θt ∶= (X●

t , Y
●,θ
t ):

d [ X
●
t

Y ●,θt

] = [ f(X
●
t , t)

h●θ(X●
t , t)
]dt + [ g(X●

t , t)
∇uθ(X●

t , t)Tg(X●
t , t)
] ○ dBt, [X0

Y ●,θ0

] = [ x0

uθ(x0,0)] , (4.6)

=∶ Fθ(Z●,θt , t)dt +Gθ(Z●,θt , t) ○ dBt.

The augmented SDE is discretized as follows using the stochastic Heun scheme:

Z̄●,θn+1 = Ẑ●,θn + τFθ(Ẑ●,θn , tn) +
√
τGθ(Ẑ●,θn , tn)wn, wn ∼ N(0, Id), (4.7)

Ẑ●,θn+1 = Ẑ●,θn +
τ

2
(Fθ(Ẑ●,θn , tn) + Fθ(Z̄●,θn+1, tn+1)) +

√
τ

2
(Gθ(Ẑ●,θn , tn) +Gθ(Z̄●,θn+1, tn+1))wn,

with Ẑ●,θ0 = (x0, uθ(x0,0)). This gives rise to the k-step Heun-BSDE loss defined as:

LHeunk,τ(θ) ∶= βk E
x0,wn

N
k −1

∑
n=0

(uθ(X̂●
(n+1)k, t(n+1)k) − uθ(X̂●

nk, tnk) − (Ŷ ●,θ(n+1)k − Ŷ
●,θ
nk ))

2
, (4.8)

with βk ∶= k
Nτ2 . For the one-step k = 1 case, we use the shorthand LHeun,τ(θ). We now show that

the one-step Heun-BSDE loss LHeun,τ(θ) avoids the undesirable bias term which appears for the
one-step EM-BSDE loss LEM,τ(θ) (cf. Section 4.1). To do this, analogous to (4.1), we define the
point-wise Heun loss at resolution τ for a fixed (x, t) as:

ℓHeun,τ(θ, x, t) ∶= Ew(uθ(x̂t+τ , t + τ) − ŷθt+τ)2,
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z̄θt+τ = zθt + τFθ(zθt , t) +
√
τGθ(zθt , t)w, zθt = (x,uθ(x, t)),

ẑθt+τ = zθt +
τ

2
(Fθ(zθt , t) + Fθ(z̄θt+τ , t + τ)) +

√
τ

2
(Gθ(zθt , t) +Gθ(z̄θt+τ , t + τ))w,

noting that ẑθt+τ = (x̂t+τ , ŷ
θ
t+τ). Similar to LEM,τ(θ), we have the following identity LHeun,τ(θ) =

1
Nτ2 ∑N−1

n=0 EX̂●n
[ℓHeun,τ(θ, X̂●

n, tn)]. Our next result illustrates that the point-wise Heun loss avoids
the issues identified with the point-wise EM loss in Lemma 4.1.
Lemma 4.3. Suppose that f , g, and hθ are all in C1,1, and uθ is in C3,1. We have that

τ−2 ⋅ ℓHeun,τ(θ, x, t) = (R[uθ](x, t))2 +O(τ1/2), (4.9)

where the O(⋅) hides factors depending on d and the Hölder norms of f , g, hθ, and uθ.

Furthermore, analogously to Theorem 4.2, we can utilize Lemma 4.3 in conjunction with the order
1/2 strong convergence of stochastic Heun (cf. Appendix F) to the Stratonovich solution to show the
following relationship for the full loss LHeun,τ(θ).
Theorem 4.4. Suppose that f , g, and hθ are all in C1,1, uθ ∈ C3,1, and τ ⩽ 1. We have that

LHeun,τ(θ) =
1

T
∫

T

0
E(R[uθ](X●

t , t))2dt +O(τ1/2), (4.10)

where the O(⋅) hides factors depending on d, T , and the Hölder norms of f , g, hθ, and uθ.

Therefore, unlike the situation with EM integration in (4.3), any additional bias terms only enter
through a O(τ1/2) term which is of higher order than the leading PDE residue term (cf. (4.10)). In
Figure 1b, we show the plot of LHeun,τ(θ) on the same HJB PDE problem as in Figure 1a, and show
that the bias issue in LEM,τ(θ) is now resolved. The proofs of both Lemma 4.3 and Theorem 4.4 are
given in Appendix D.3.

5 Trade-offs for Multi-Step BSDE Losses

In Section 4, we conducted a thorough analysis of the one-step self-consistency losses LEM,τ(θ) and
LHeun,τ(θ). We now consider the other extreme: the full-horizon (k = N ) losses LEMN ,τ(θ) and
LHeunN ,τ(θ). The intermediate multi-step regime [5], where 1 < k < N , serves as an extension to
the cited method and is studied experimentally in Section 6. Due to space constraints, we defer the
precise theorem statements arising from our analysis, in addition to the proofs, to Appendix E.

BSDE loss and Euler-Maruyama discretization. We start with the H-horizon BSDE loss (3.5).
Using Jensen’s inequality, we show (Proposition E.3) the relationship LBSDE,T (θ) ⩽ LBSDE,τ(θ) +
O(τ1/2). Thus, at the SDE level, the benefits of using the full-horizon loss LBSDE,T (θ) over the
τ -horizon loss LBSDE,τ(θ) are not clear, given that (a) the full-horizon loss is dominated by the latter
τ -horizon loss (up to an order τ1/2 term), and (b) LBSDE,τ(θ) does indeed vanish for an optimal θ⋆.

The situation becomes more complex when factoring in EM discretization. Using the order 1/2
strong convergence of EM, we show (Proposition E.4) that LEMN ,τ(θ) = LBSDE,T (θ) +O(τ1/2).
On the other hand, from Theorem 4.2 we also show (Proposition E.5) that LEM,τ(θ) = LBSDE,τ(θ)+
Bias(θ) + O(τ1/2) with the bias term Bias(θ) ∶= 1

2T ∫
T
0 E tr((H(Xt, t) ⋅ ∇2uθ(Xt, t))2)dt not

vanishing as τ → 0. Hence, the loss LEMN ,τ(θ) presents an advantage over LEM,τ(θ) for sufficiently
small discretization sizes in terms of bias. However, the inequality LBSDE,T (θ) ⩽ LBSDE,τ(θ) +
O(τ1/2) still holds, meaning that while LEMN ,τ(θ) does not suffer from the bias issues identified in
LEM,τ(θ), the trade-off is that the loss LBSDE,T (θ) it approximates without bias is nearly dominated
by another loss LBSDE,τ(θ); this is precisely the loss that LEM,τ(θ) attempts to approximate, but it
does so in a way that introduces an irreducible bias term Bias(θ). Thus, neither of the EM-BSDE
losses for k = 1 nor k = N provides a completely satisfactory solution. In Section 6.2, we illustrate
these issues empirically. Furthermore, in light of this analysis, we can interpret the interpolating loss of
[5] as attempting to resolve this trade-off by finding the best intermediate multi-step k ∈ {1, . . . ,N}.
Stratonovich BSDE and Heun discretization. In the setting of the Stratonovich BSDE and the Heun-
BSDE loss, we first show (Proposition E.8) that LS-BSDE,T (θ) ⩽ LS-BSDE,τ(θ) +O(τ1/2) holds at
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the SDE level, analogous to the relationship between LBSDE,T (θ) and LBSDE,τ(θ). Next, we use the
order 1/2 strong convergence of Heun to show (Proposition E.9) that LHeunN ,τ(θ) = LS-BSDE,T (θ)+
O(τ1/2); again analogous to the relationship between LEMN ,τ(θ) and LBSDE,T (θ). However,
unlike the one-step EM case, using Theorem 4.4 we show (Proposition E.10) that LHeun,τ(θ) =
LS-BSDE,τ(θ) +O(τ1/2), from which we conclude LHeunN ,τ(θ) ⩽ LHeun,τ(θ) +O(τ1/2). Thus—
unlike the EM setting—the relationship between the full-horizon and one-step case at both the
SDE level and Heun-BSDE level is the same, suggesting questionable benefits of LHeunN ,τ(θ) over
LHeun,τ(θ). In Section 6.2, we show that this conclusion is indeed reflected in practice.

6 Experiments

In this section, we compare the proposed Heun-based BSDE method against both standard PINNs, a
variant of PINNs which uses the forward SDE to sample collocation points, and standard EM-based
BSDE solvers on various high-dimensional PDE problems. Specifically, we compare the methods:

(a) PINNs: The standard PINNs loss LPINNs(θ) from (3.2) is minimized. Since we consider un-
bounded domains, the collocation measure µ over (x, t) is chosen by fitting a normal distribution
over the spatial dimensions of the forward SDE trajectories prior to training.

(b) FS-PINNs: The standard PINNs loss (3.2) is again minimized, where the measure µ over
space-time is chosen by directly sampling trajectories from the forward SDE (3.3).

(c) EM-BSDE: The self-consistency loss discretized with the standard Euler-Maruyama (EM)
scheme, i.e., LEMk,τ(θ) from (3.7) as described in Section 3.

(d) EM-BSDE (NR): A variant of EM-BSDE where we use the BSDE to propagate Yt instead of
setting it directly to uθ(Xt, t) [cf. 4, 5]. We refer to this variant as the no-reset (NR) variant.
Specifically, the backwards SDEs in (3.6) is integrated as (starting from Ŷ θ

0 = uθ(x0,0)):
Ŷ θ
n+1 = Ŷ θ

n + τh0(X̂n, tn, Ŷ
θ
n ,∇uθ(X̂n, tn)) +

√
τ∇uθ(X̂n, tn)Tg(X̂n, tn)wn, (6.1)

with wn ∼ N(0, Id). The loss LEMk,τ(θ) remains the same except replacing (3.6) with (6.1).
(e) Heun-BSDE (Ours): The self-consistency loss discretized with stochastic Heun integration,

i.e., LHeunk,τ(θ) from (4.8) as described in Section 4.2.

We evaluate these methods on three PDE benchmark problems: (i) a Hamilton-Jacobi-Bellman (HJB)
equation [4], (ii) a Black-Scholes-Barenblatt (BSB) equation [4], and (iii) a fully-coupled FBSDE
from Bender & Zhang (BZ) [36]; the PDEs are detailed in Appendix G.1. In addition, we evaluate
the methods on an optimal control pendulum swing-up problem to demonstrate application to a
non-linear control problem (see Appendix G.6). To evaluate model performance, the analytical
solution (available for all PDEs under consideration) is compared with the model output along 5
forward SDE trajectories, using the relative L2 error (RL2) metric:

RL2 ∶=

¿
ÁÁÁÀ∑

N
i=0 (uref(Xti , ti) − upred(Xti , ti))

2

∑N
i=0 u

2
ref(Xti , ti)

. (6.2)

Unless otherwise noted, we set T = 1 and N = 50 (i.e., τ = 0.02). Model architectures and training
details are described in Appendix G. Additionally, the code to reproduce our experiments is available
at: https://github.com/sungje-park/heunbsde. For what follows, we report two main sets
of results on (i) one-step self-consistency losses (Section 6.1) and (ii) multi-step self-consistency
losses (Section 6.2).

Efficient sub-sampling BSDE implementation. In our experimental results, we consider both a full
FSDE rollout algorithm, in addition to a batched, sub-sampled FSDE rollout variation of FS-PINNs,
EM-BSDE, and Heun-BSDE, which we find performs similarly to the original algorithm while
providing significant speed improvements. We sketch the details of the sub-sampled FSDE variation
in Algorithm 1; further details on the two algorithms can be found in Appendix G.4.

6.1 One-Step Self-Consistency Losses

For our first set of results, we compare the PINNs baselines and the one-step (k = 1) EM-BSDE
baseline with our one-step Heun-BSDE method. We solve each PDE instantiated with a state space

7
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Algorithm 1 Batched, Sub-sampling BSDE Algorithm (Simplified)

Input: Neural network ûθ(x, t), parameters θ, terminal function ϕ, time step ∆t, trajectory length N ,
evaluation batch size B.

1: Sample initial state: (x[0], t[0]) = (x0,0), with x0 ∼ µ
2: Sample Brownian noise: ξ[0 ∶ N − 1] ∼ N(0, Id)
3: Evaluate network at initial state: (u,ux) = (ûθ(x[0], t[0]),∇xûθ(x[0], t[0]))
4: /* Forward SDE rollout */
5: for i = 0, . . . ,N − 1 do
6: /* Use either EM or Heun integration */
7: Propagate forward state (with (u,ux) if coupled): x[i + 1] = x[i] +∆x
8: Propagate time: t[i + 1] = t[i] +∆t
9: Evaluate network at new state: (u,ux) = (ûθ(x[i + 1], t[i + 1]),∇xûθ(x[i + 1], t[i + 1]))

10: end for
11: Stop gradient: x[0 ∶ N] = SG(x[0 ∶ N])
12: Random sub-sampling: (xi, xi+1, ti, ti+1) = perm(xi, xi+1, ti, ti+1)[0 ∶ B − 1]
13: /* Use either EM or Heun integration */
14: Propagate backward SDE at batched points: yi+1 = ui +∆y
15: /* Use PINNs loss instead for FS-PINNs */
16: Compute self-consistency loss: Lsr =

N
B ∑

B−1
i=0 (ûi+1 − yi+1)

2

17: Compute terminal loss: Lϕ = (u + ϕ)
2
+ ∥ux −∇xϕ∥

2

of 100 dimensions using three different initialization seeds for training. The results are reported in
Table 1, which shows that for nearly all the cases, the Heun-BSDE method outperforms EM-BSDE
methods (i.e., lower RL2 error) as predicted by our analysis in Section 4. Furthermore, Figure 2
illustrates the performance of all methods across time t ∈ [0,1] on the 100D HJB case, which also
highlights the low RL2 error of the Heun-BSDE method. The one exception to the trend is the 100D
BZ case, where all methods failed to converge to a high-quality solution. We hypothesize due to
the high dimensionality of the problem involving fully-coupled SDEs, the optimization landscape
for all methods is too complex to recover high-fidelity solutions. To evaluate this hypothesis, we
further reduce the dimensionality of the BZ problem to 10D, which restores the relative performance
of all methods (cf. Table 1, last row). Another key observation from Table 1 is that FS-PINNs and
Heun-BSDE perform similarly across all cases, showing that parity between the BSDE and PINNs
is restored through Heun integration. Finally, we note that the performance of PINNs is quite poor
in comparison to FS-PINNs, which illustrates the relative impact of the sampling distribution µ for
PINNs methods (cf. [37–39]).

To show that the gap between EM and Heun performance cannot be closed with finer discretization
meshes, we re-run the 10D BSB example at varying discretization sizes. The results are reported
in Figure 3, which show that the EM-BSDE methods only experience minimal improvement with
smaller discretization size compared with the Heun-BSDE method. Figure 3 corroborates the findings

0.0 0.2 0.4 0.6 0.8 1.0
Time, t

4.5

4.6

4.7

4.8

u(
x,

t)

Reference
PINNs
FS-PINNs
EM-BSDE
EM-BSDE (NR)
Heun-BSDE

(a) Plot of the learned solution of different models on
the 100D HJB problem.

0.0 0.2 0.4 0.6 0.8 1.0
Time, t

10 4

10 3

10 2

RL
2 

Er
ro

r

PINNs
FS-PINNs
EM-BSDE

EM-BSDE (NR)
Heun-BSDE

(b) Plot of the RL2 errors across time t ∈ [0,1] for the
100D HJB case.

Figure 2: A plot of the 100D HJB reference and learned solutions for each model and the associated RL2 errors.
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Cases PINNs FS-PINNs EM-BSDE (NR) EM-BSDE Heun-BSDE
Full Algorithm (cf. Algorithm 2) Results

100D HJB .1260 ± .0107 .0737 ± .0110 .5214 ± .0452 .3626 ± .0113 .0493 ± .0109
100D BSB 1.5066 ± .2349 .0497 ± .0031 .1855 ± .0078 .3735 ± .0470 .0535 ± .0113
100D BZ - - - 3.1259 ± .1807 3.5619 ± .2716
10D BZ 3.8566 ± .0310 .0351 ± .0041 .1309 ± .0311 .1903 ± .0066 .0228 ± .0016

Batched Algorithm (cf. Algorithm 3) Results
100D HJB .1362 ± .0276 .1828 ± .0774 .5214 ± .0452 .3831 ± .0084 .0573 ± .0106
100D BSB 3.0488 ± 1.5625 .0851 ± .0027 .1855 ± .0078 .3668 ± .0244 .0472 ± .0076
100D BZ - 5.4502 ± .1351 - 5.7330 ± .2342 1.7973 ± .1108
10D BZ 3.8495 ± .1562 .0270 ± .0017 .1309 ± .0311 .1933 ± .0022 .0236 ± .0031

Table 1: Summary of RL2 errors averaged over three different initialization random seeds, ± one standard
deviation. Settings that failed to converge to a satisfactory solution are denoted with -. The first set of results
correspond to the full algorithm (see Appendix G.4 for a detailed description), whereas the second set of results
correspond to the batched algorithm (cf. Algorithm 1).

in Section 4, which shows that the one-step EM-BSDE loss contains a bias term of the same order as
the residual error which is not present in the one-step Heun-BSDE loss.

Method Full Batched
PINNs 1x 1x

FS-PINNs 2.64x 1.14x
EM-BSDE 2.83x 0.34x

Heun-BSDE 36.37x 2.03x

Table 2: A table of average training time
overhead relative to PINNs for both the full
and batched algorithm runs.

Computational considerations. Although Heun-BSDE
outperforms EM-BSDE, it comes at a computational cost.
In Table 2, we report the average training time for each
method on a single NVIDIA A100 GPU; on average Heun-
BSDE is approximately 6x slower than the EM-BSDE
method for the batched algorithm. There are two ma-
jor factors to this overhead. First, for the specific ellip-
tic/parabolic PDEs we consider in (3.1), EM-BSDE does
not require the computationally expensive Hessian com-
putation ∇2u(x, t), which PINNs, FS-PINNs, and Heun-BSDE all do require. However, this does
not necessarily hold true for all PDEs (e.g., Appendix G.6). Second, the Heun integration requires
approximately double the compute of the EM integration—this is clearly reflected in the overhead
between FS-PINNs and Heun-BSDE.

In Figure 4, we show the runtime-normalized RL2 performance demonstrating that while EM-BSDE
shows strong convergence at first, its performance does not improve with more compute. Conversely,
both FS-PINNs and Heun-BSDE achieve similar RL2 performance at equal runtimes.

6.2 Multi-Step Self-Consistency Losses

We next consider multi-step self-consistency BSDE losses [5] in order to evaluate the mathematical
analysis conducted in Section 5. Specifically, we evaluate both the multi-step LEMk,τ(θ) (cf. (3.7))

0.040 0.020 0.010 0.005
t

10 3

10 2

RL
2 EM-BSDE

EM-BSDE (NR)
Heun-BSDE

Figure 3: RL2 performance for 10D BSB at discretiza-
tion step-sizes τ = N−1 for N ∈ {25,50,100,200}.
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Runtime (min)

10 3

10 2

10 1

RL
2

PINNs
FS-PINNs
EM-BSDE
Heun-BSDE

Figure 4: A plot of the RL2 performance versus run-
time for the 100D HJB problem.
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and LHeunk,τ(θ) (cf. (4.8)) for varying values of skip-length k. For multi-step losses, we also need
to determine where both EM-BSDE and EM-BSDE (NR) will “reset” the value of Yt to uθ(Xt, t).
Note that there are many degrees of freedom here in the multi-step formulation, so we simply pick
one choice as a representative choice. For EM-BSDE, we set Ŷ θ

nk = uθ(X̂nk, tnk), and use (6.1)
to integrate between tnk and t(n+1)k. On the other hand, for EM-BSDE (NR), we directly use the
value of Ŷ θ

nk from (6.1). We also vary EM-BSDE and EM-BSDE (NR) with N , the number of
discretization steps for the interval [0,1], varying between N ∈ {50,200} as well. We conduct this
experiment on the 10D BSB setting, with the results reported in Figure 5.

0 10 20 30 40 50
Skip-Length, k

10 4

10 3

10 2

10 1

100

RL
2

FS-PINNs Baseline
PINNs Baseline

EM-BSDE
EM-BSDE (NR)
EM-BSDE (N=200)
EM-BSDE (NR, N=200)
Heun-BSDE

(a) Plot of RL2 performance as a function of the skip-
length k, with the number of discretization steps also
varying in N ∈ {50,200}.

0 50 100 150 200
Skip-Length, k

10 4

10 3

10 2

10 1

100

RL
2

Heun-BSDE Baseline

EM-BSDE (N=200)
EM-BSDE (NR, N=200)

(b) Plot of RL2 performance as a function of the skip-
length k for EM-BSDE and EM-BSDE (NR), with
number of discretization steps set to N = 200.

Figure 5: A plot of RL2 performance of each model on the 10D BSB case at various skip lengths.

Figure 5 shows that while the Heun-BSDE performance decreases as the skip-length k increases, the
performance of both EM-BSDE methods initially improves with skip-length k before then degrading,
demonstrating the trade-off between minimizing the bias term and decreasing quality of the self-
consistency loss identified in Section 5. Furthermore, this trade-off is present for EM-BSDE at
both N = 50 and N = 200, illustrating again that these issues for EM are not mitigated with finer
discretization step-sizes. Finally, although the EM-BSDE method overall improves its performance
by tuning the skip-length k (consistent with the findings from [5]), the Heun-BSDE model at k = 1
still outperforms the best multi-step EM-BSDE model by a significant margin.

7 Conclusion and Future Work

We conducted a systematic study of discretization strategies for BSDE-based loss formulations
used to solve high-dimensional PDEs. By comparing the commonly used Euler-Maruyama scheme
with stochastic Heun integration, we demonstrated that the choice of discretization can significantly
impact the accuracy of BSDE-based methods. Our theoretical analysis showed that EM discretization
introduces a non-trivial bias to the single-step self-consistency BSDE loss which does not vanish as
the step-size decreases. On the other hand, we show that this bias issue is not present when utilizing
Heun discretization. Finally, the empirical results confirmed that the Heun scheme consistently
outperforms EM in solution accuracy and performs competitively with PINNs.

Our work underscores the importance of stochastic integrator choice in BSDE solvers and suggest
that higher-order schemes—though more computationally intensive—can offer substantial gains
in performance. In future works, we aim to reduce Heun-BSDE’s computational costs through
methods such as Hutchinson trace estimation [40], reversible Heun [41], and adaptive time-stepping.
Furthermore, while this current work focuses on understanding and restoring performance parity
between BSDE and PINNs methods, future work will utilize the advantages of Heun-BSDE to solve
problems such as high-dimensional stochastic control problems in model-free settings (cf. [6]).
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gap between existing BSDE and PINNs methods is explained by an irreducible bias intro-
duced through the use of EM integration for BSDE, and (ii) reformulating a Stratonovich
BSDE loss and integrating it via Heun removes the irreducible bias and restores parity
between the two methods. Both claims (i) and (ii) are well supported theoretically (Section 4
and Section 5) and experimentally (Section 6).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix A for a discussion of the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Both Lemma 4.1 and Lemma 4.3 have stated their full set of assumptions,
and have accompanying proofs in Appendix D.2 and Appendix D.3. Furthermore, for the
theoretical claims made in Section 5, the corresponding derivatives are given in Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Both Section 6 and Appendix G contain the necessary details to reproduce the
experiments conducted in this paper, including architectural choices, learning rate schedules,
batch sizes, benchmark PDE formulas and analytical solutions, and compute platforms used.
We have also included our code in a github repository with a README.md file.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: For the submission, we have included an anonymized version of the code
in the supplementary material, including a README.md file. For the camera ready version
of the paper, we have included a link to our github repository (https://github.com/
sungje-park/heunbsde). Our code on github is released under the Apache 2.0 License.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: At the beginning of Section 6, we include a detailed description of the all
methods being evaluated, including the loss functions and how the collocation/trajectory
data is generated. The benchmark PDEs are described in detail in Appendix G.1, which
includes the analytical solutions we use to evaluate model quality. We define within the
main text the error metric RL2 (6.2) which we use to assess model fidelity, and describe the
number of test trajectories we collect for computing RL2. Finally, as noted previous, details
about the training pipeline are described in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our models are trained over 3 different training initialization seeds. In
Table 1, Table 3, and Table 2, we report the average RL2/runtime ± one standard deviation.
For the figures, we only report the average in order to avoid cluttering the diagrams, since
the standard deviation is modest relative to the average (cf. Table 1).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix G, we describe our compute environment (single node NVIDIA
A100 GPU in our internal cluster).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work falls into the category of foundational research; we do not believe it
poses any specific and/or unique potential harms.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The assets resulting from our work do not pose a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [NA]

Justification: Our code does not use any existing assets beyond standard open-source
machine learning frameworks, which we give proper attribute to.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentation via a README.md file for the code we release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs do not constitute an important, original, or non-standard component of
our work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

We provide a concise, bulleted list of the limitations present in our work.

(a) Computational overhead of Heun-BSDE: As discussed in Section 6.1 (cf. Table 2), the computa-
tional overhead of the Heun-BSDE method compared with the existing EM-BSDE methods is
non-trivial. Furthermore, we also found the Heun integrator to be more susceptible to floating
point imprecision (cf. Table 3), and hence we run our main experiments in float64, which
further adds to the computation time. We mitigate these issues using batched computation and
random sub-sampling (see Appendix G.4) which helped significantly reduce computation time,
but there still remains a computational penalty. While we believe more sophisticated techniques
(e.g., randomized trace estimation and more numerically stable Heun integrators discussed
in Section 6.1) can help to reduce the computational overhead, we have not yet verified this
hypothesis experimentally in our current work.

(b) Performance relative to PINNs: Our results in Section 6.1 show that the proposed Heun-BSDE
method restores parity with the FS-PINNs method in terms of the RL2 error. While this is a
significant improvement over EM-BSDE, Heun-BSDE does not yet provide significant (e.g.,
orders of magnitude) performance improvement over the best PINNs method (cf. Table 1); further
work is needed to determine whether or not such an improvement is possible. Hence, the current
advantage of Heun-BSDE over PINNs is with its model-free capabilities (cf. Appendix C).

(c) Limitations of theoretical analysis: While our theoretical analysis in Section 4 and Section 5 is
fairly predictive of practice (cf. Section 6), our analysis is not without its own set of limitations.
One limitation is that we only analyze the two extremes of horizon length: the one-step case
(Section 4) and the full-horizon N -step case (Section 5); the intermediate regimes (i.e., skip-
lengths k satisfying 1 < k < N ) are studied empirically (cf. Section 6.2). Another limitation is
that we do not consider fully-coupled FS-BSDEs in our analysis (e.g., the Bender & Zhang (BZ)
PDE, cf. Appendix G.1), where the forwards SDE (3.3) is allowed to depend on Yt.

B Further Discussion on Related Works

While our work focuses on the impact that the widely used EM integration scheme has on the
performance of BSDE-based solvers, several complementary enhancements to the BSDE loss have
been proposed in literature [6, 24, 42–44]. Many of these improvements are naturally compatible
with our proposed Heun-BSDE framework. For example, the Heun-BSDE method could be adapted
to utilize a control variate [24], applied in operator splitting settings [44], and extended to fully
non-linear PDEs [43], enabling direct comparison against their EM-BSDE baseline.

Furthermore, in addition to PINNs and EM-based BSDE methods discussed in the paper, there
are various other deep-learning methods for solving PDEs such as Deep Ritz [9], Neural Opera-
tors [45], and tensor trains [46], in addition to various theoretical analyses developed for Itô-based
BSDE formulations [47]. We leave extending these approaches and analyses to Stratonovich-based
formulations as future research directions.

C Details Regarding Model-Free BSDE Formulation

Suppose that the drift term f(x, t) from the forwards SDE (3.3) is unknown. Instead, suppose that
our the computational model takes as input a realization of (Bt)Tt=0 and returns FSDE trajectories
(Xt)Tt=0, or more practically a sub-sampled trajectory {Xk}Nk=0. Under this computational model,
PINNs methods cannot be used to solve the PDE (3.1)—even if the other terms g, h, and ϕ are all
known—since the residual term R[u] cannot be computed without knowledge of the drift term f .
However, in this settings, BSDE methods including the proposed Heun-BSDE method can still be
used. This is because BSDE losses only require access to the FSDE trajectory (Xt) and the Brownian
motion (Bt) used to generate it (cf. Equation (3.5)).

A specific example where the proposed computational model is realistic comes from model-free
optimal control, and was first described in [6]. Consider the following deterministic continuous-time
control-affine fully-actuated system:

Ẋt = f(Xt, t) +Φ(Xt, t)Ut, Xt, Ut ∈ Rd, rank(Φ(x, t)) = d ∀(x, t). (C.1)

22



We assume that we do not know the drift term f(x, t), but we are able to select control inputs Ut and
obtain the resulting trajectories (Xt); this setting is often called the model-free setting in optimal
control and reinforcement learning. In this framework, by setting the input Ut to be a nominal input
Ūt injected with excitation noise injected, i.e., Ut = Ūt + “Noiset”, we can select the realization (Bt)
of Brownian noise and observe the trajectories of forward SDE of the forms:

dXt = [f(Xt, t) +Φ(Xt, t)Ūt]dt + g(Xt, t) ◇ dBt, (C.2)

where the ◇ indicates the SDE is to be interpreted in terms of either Itô or Stratonovich, depending
on the context. To rigorously define “Noiset” to establish a connection between (C.1) and (C.2) is
technical, requiring the use of e.g., rough path theory [48]. We will take a more practical approach
inspired from [6] and observe how injecting Gaussian noise into discretizations of (C.1) induces
stochastic discretizations of (C.2).

Concretely, we proceed as follows. We work with constant step-size integrators, and define integration
times tk = kτ , k ∈ N, for a step-size τ > 0. Given a nominal control input Ūt which is an open-loop
(i.e., only time-dependent) signal,3 we form our control input Ut by injecting Gaussian noise as
follows:

Ut = Ūt +w⌊t/τ⌋/
√
τ , wk ∼ N(0, Id). (C.3)

For what follows we define Ûk ∶= Utk and ˆ̄Uk ∶= Ūtk for k ∈ N. We will assume that our dynamics
f,Φ are continuous in both (x, t), in addition to the nominal signal Ūt being continuous in t.
However, since our signal Ut is discontinuous in t due to the addition of the Gaussian noise, the
resulting vector field F (x, t) ∶= f(x, t) +Φ(x, t)Ut is discontinuous on t. Hence, we will assume
that the integration strategies will, in order to generate the (k + 1)-th iterate given the k-th iterate,
only evaluate the vector field F (x, t) on the half-open interval [tk, tk+1). In particular, we will
interpret F (x, tk) using the right limit F (x, t+k) = limt→t+

k
F (x, t) and F (x, tk+1) using the left limit

F (x, t−k+1) = limt→t−
k+1

F (x, t).

Euler scheme. Consider the standard forward Euler scheme used to discretize (C.1) with constant
step-size τ :

X̂k+1 = X̂k + τ[f(X̂k, tk) +Φ(X̂k, tk)Ûk]
= X̂k + τ[f(X̂k, tk) +Φ(X̂k, tk) ˆ̄Uk] +

√
τΦ(X̂k, tk)wk,

which corresponds to the standard Euler-Maruyama discretization of the Itô variant of (C.2) with
g = Φ.

Heun scheme. Now consider the Heun scheme used to discretize (C.1), again with constant
step-size τ :

X̄k+1 = X̂k + τ[f(X̂k, tk) +Φ(X̂k, tk)Ûk],

X̂k+1 = X̂k +
τ

2
[f(X̂k, tk) +Φ(X̂k, tk)Ûk + f(X̄k+1, tk+1) +Φ(X̄k+1, tk+1)Û−k+1] ,

where Û−k+1 = ˆ̄Uk+1 +wk/
√
τ . Using the shorthand F̄ (x, t) ∶= f(x, t) +Φ(x, t)Ūt, we see that:

X̄k+1 = X̂k + τF̄ (X̂k, tk) +
√
τΦ(X̂k, tk)wk,

X̂k+1 = X̂k +
τ

2
[F̄ (X̂k, tk) + F̄ (X̄k+1, tk+1)] +

√
τ

2
[Φ(X̂k, tk) +Φ(X̄k+1, tk+1)]wk,

which corresponds to the stochastic Heun discretization of the Stratonovich variant of (C.2), again
with g = Φ.

D Proofs of Main Results

D.1 Auxiliary results

We first recall a standard formula for the variance of Gaussian quadratic forms.
3A similar argument can also be made for state-dependent policies.
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Proposition D.1. Let Q be a d × d symmetric matrix and w ∼ N(0, Id). Then,

Ew(tr(Q) −wTQw)2 = 2∥Q∥2F .

Proof. We have that Ew(tr(Q) −wTQw)2 = Ew(wTQw)2 − tr(Q)2. From [cf. 49, Lemma 2.2] we
obtain the identity Ew(wTQw)2 = 2 tr(Q2) + tr(Q)2, which concludes the proof.

Proposition D.2. Let (Xt)bt=a for a ⩽ b denote an Rd-valued stochastic process, and let r ∶
Rd × [a, b] ↦ R be an L-Lipschitz function on its domain. Suppose that for all t1, t2 ∈ [a, b] we have
E∥Xt1 −Xt2∥2 ⩽M ∣t1 − t2∣. Then,

∫
b

a
E[∣r(Xt, t) − r(Xa, a)∣]dt ⩽ L [M1/2(b − a)3/2 + (b − a)2] . (D.1)

Furthermore, suppose that for some 0 < τ ⩽ 1, we have N ∶= (b − a)/τ ∈ N+. Define tn ∶= a + τn for
n ∈ {0, . . . ,N}. Then we have that the left-endpoint Riemann sum satisfies:

∣ 1

b − a ∫
b

a
E[r(Xt, t)]dt −

1

N

N−1

∑
n=0

E[r(Xtn , tn)]∣ ⩽ L(1 +M1/2)τ1/2. (D.2)

Proof. First, we have:

∫
b

a
E[∣r(Xt, t) − r(Xa, a)∣]dt ⩽ L∫

b

a
E∥[Xt −Xa

t − a ]∥dt

⩽ L∫
b

a
E∥Xt −Xa∥dt +L∫

b

a
(t − a)dt

(a)= L∫
b

a
E∥Xt −Xa∥dt +

L(b − a)2
2

⩽
2LM1/2

3
(b − a)3/2 + L(b − a)2

2
,

where (a) follows by Jensen’s inequality and the second moment assumption on (Xt)t:

L∫
b

a
E∥Xt −Xa∥dt ⩽ L∫

b

a

√
E∥Xt −Xa∥2dt ⩽ LM1/2 ∫

b

a
(t − a)1/2dt = 2LM1/2

3
(b − a)3/2.

This establishes (D.1). We now turn to (D.2). We write:

∣∫
b

a
E[r(Xt, t)]dt − τ

N−1

∑
n=0

E[r(Xtn , tn)]∣ = ∣
N−1

∑
n=0
∫

tn+1

tn
E[r(Xt, t)]dt − τ

N−1

∑
n=0

E[r(Xtn , tn)]∣

= ∣
N−1

∑
n=0

(∫
tn+1

tn
E[r(Xt, t) − r(Xtn , tn)]dt)∣

⩽
N−1

∑
n=0
∫

tn+1

tn
E[∣r(Xt, t) − r(Xtn , tn)∣]dt

(a)

⩽ NL [M1/2τ3/2 + τ2]
(b)

⩽ NL(M1/2 + 1)τ3/2 = (b − a)L(M1/2 + 1)τ1/2,

where (a) is from (D.1) and (b) is from the assumption that τ ⩽ 1. This establishes (D.2).

Proposition D.3. Let (Xt)bt=a for a ⩽ b denote an Rd-valued stochastic process, and let r ∶
Rd × [a, b] ↦ R be a B-bounded and L-Lipschitz function on its domain. Suppose that for all
t1, t2 ∈ [a, b] we have E∥Xt1 −Xt2∥2 ⩽M ∣t1 − t2∣, with M ⩾ 1. Then, if b − a ⩽ 1,

RRRRRRRRRRR
E(∫

b

a
r(Xt, t)dt)

2

− (b − a)2E[r2(Xa, a)]
RRRRRRRRRRR
⩽ [L2M + 4BLM1/2] (b − a)5/2. (D.3)
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Proof. We first decompose:

E(∫
b

a
r(Xt, t)dt)

2

= E((b − a)r(Xa, a) + ∫
b

a
[r(Xt, t) − r(Xa, a)]dt)

2

= (b − a)2E[r2(Xa, a)] +E(∫
b

a
[r(Xt, t) − r(Xa, a)]dt)

2

+ 2(b − a)E [r(Xa, a)∫
b

a
[r(Xt, t) − r(Xa, a)]dt] .

Next, by Jensen’s inequality,

E(∫
b

a
[r(Xt, t) − r(Xa, a)]dt)

2

⩽ (b − a)∫
b

a
E[(r(Xt, t) − r(Xa, a))2]dt

⩽ (b − a)L2 ∫
b

a
(E[∥Xt −Xa∥2] + (t − a)2)dt

⩽ (b − a)L2 ∫
b

a
(M(t − a) + (t − a)2)dt

(a)

⩽ L2M(b − a)3,

where in (a) we use the assumptions that M ⩾ 1 and b − a ⩽ 1. On the other hand, by another
application of Jensen’s inequality,

2(b − a) ∣E [r(Xa, a)∫
b

a
[r(Xt, t) − r(Xa, a)]dt]∣ ⩽ 2(b − a)B ∫

b

a
E[∣r(Xt, t) − r(Xa, a)∣]dt

(a)

⩽ 2BL [M1/2(b − a)5/2 + (b − a)3]
(b)

⩽ 4BLM1/2(b − a)5/2,

where (a) uses Proposition D.2, specifically (D.1), and (b) uses the assumptions that M ⩾ 1 and
b − a ⩽ 1. The claim now follows.

Proposition D.4. Consider the Itô SDE (Xt)bt=a defined by dXt = f(Xt, t)dt + g(Xt, t)dBt, with

sup
(x,t)∈Rd×[a,b]

max{∥f(x, t)∥, ∥g(x, t)∥F } ⩽ B.

For any t0, t1 ∈ [a, b],

E∥Xt1 −Xt0∥2 ⩽ 2B2 [(t1 − t0)2 + ∣t1 − t0∣] .

Proof. Assume wlog that t1 ⩾ t0. We first decompose:

E∥Xt1 −Xt0∥2 = E∥∫
t1

t0
f(Xt, t)dt + ∫

t1

t0
g(Xt, t)dBt∥

2

⩽ 2E∥∫
t1

t0
f(Xt, t)dt∥

2

+ 2E∥∫
t1

t0
g(Xt, t)dBt∥

2

.

Next, we have:

∥∫
t1

t0
f(Xt, t)dt∥ ⩽ ∫

t1

t0
∥f(Xt, t)∥dt ⩽ (t1 − t0)B Ô⇒ E∥∫

t1

t0
f(Xt, t)dt∥

2

⩽ B2(t1 − t0)2.

On the other hand, by Itô isometry,

E∥∫
t1

t0
g(Xt, t)dBt∥

2

= ∫
t1

t0
E∥g(Xt, t)∥2Fdt ⩽ B2(t1 − t0).

The result now follows
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Proposition D.5. Consider the Stratonovich SDE (X●
t)bt=a defined by dX●

t = f(X●
t , t)+g(X●

t , t)○dBt.
Suppose that for t ∈ [a, b], the map x↦ g(x, t) is C1, and that

sup
(x,t)∈Rd×[a,b]

max{∥f(x, t) + 1

2

m

∑
k=1

∂xg
k(x, t)g(x, t)∥ , ∥g(x, t)∥F} ⩽ B.

Then for any t0, t1 ∈ [a, b],

E∥X●
t1 −X

●
t0∥

2 ⩽ 2B2 [(t1 − t0)2 + ∣t1 − t0∣] .

Proof. Consider f̄(x, t) ∶= f(x, t) + 1
2 ∑

m
k=1 ∂xg

k(x, t)g(x, t). The Itô SDE dXt = f̄(Xt, t)dt +
g(Xt, t)dBt is pathwise equivalent to (X●

t)t, i.e., (X●
t(ω))t = (Xt(ω))t for a.e. ω, and hence the

result follows from Proposition D.4.

D.2 Proofs of Lemma 4.1 and Theorem 4.2

We first restate and prove Lemma 4.1.
Lemma 4.1. Suppose that f, g are bounded and uθ is C2,1. We have that

τ−2 ⋅ ℓEM,τ(θ, x, t) = (R[uθ](x, t))2 +
1

2
tr [(H(x, t) ⋅ ∇2uθ(x, t))2] +O(τ1/2), (4.2)

where the O(⋅) hides factors depending on d, the bounds on f, g, and ∥uθ∥C2,1 .

Proof. We first introduce two pieces of notation: O(⋅) and O∗(⋅). The former O(⋅) hides constants
that depend arbitrarily on the dimension d, the bounds on f and g, and ∥uθ∥C2,1 , whereas the latter
O∗(⋅) in addition also hides constants that depend polynomially on ∥w∥. The latter polynomial
dependence is important when we take expectations of powers of O∗(⋅) terms, since E∥w∥p is finite
for any finite p ∈ N.

Setting ∆̄ ∶= (x̂t+τ − x, τ) ∈ Rd × I and writing u = uθ, a second-order Taylor expansion yields:

u(x̂t+τ , t + τ) − u(x, t) =Du(x, t)∆̄ + 1

2
∆̄TD2u(x, t)∆̄ +O(∥∆̄∥3),

Du(x, t)∆̄ = ⟨∇u(x, t), x̂t+τ − x⟩ + ∂tu(x, t)τ,
1

2
∆̄TD2u(x, t)∆̄ = 1

2
((x̂t+τ − x)T∇2u(x, t)(x̂t+τ − x)

+ 2τ⟨∂t∇u(x, t), x̂t+τ − x⟩ + τ2∂2
t u(x, t)).

Plugging in x̂t+τ − x = f(x, t)τ +
√
τg(x, t)w, we obtain:

(u(x̂t+τ , t + τ) − u(x, t)) − (h(x, t)τ −
√
τ⟨∇u(x, t), g(x, t)w⟩)

= τ [⟨∇u(x, t), f(x, t)⟩ + ∂tu(x, t) − h(x, t) +
1

2
wTg(x, t)T∇2u(x, t)g(x, t)w] +O∗(τ3/2)

= τ [R[u](x, t) − 1

2
tr(H(x, t) ⋅ ∇2u(x, t)) + 1

2
wTg(x, t)T∇2u(x, t)g(x, t)w] +O∗(τ3/2),

where in the last equality we used the definition of the PDE residual from (3.1). Hence,

ℓEM,τ(x, t)
= Ew(u(x̂t+τ , t + τ) − u(x, t)) − (h(x, t)τ −

√
τ⟨∇u(x, t), g(x, t)w⟩)2

= τ2 ⋅Ew (R[u](x, t) −
1

2
tr(H(x, t) ⋅ ∇2u(x, t)) + 1

2
wTg(x, t)T∇2u(x, t)g(x, t)w)

2

+O(τ5/2)

= τ2 ((R[u](x, t))2 + 1

4
Ew (tr(H(x, t) ⋅ ∇2u(x, t)) −wTg(x, t)T∇2u(x, t)g(x, t)w)2) +O(τ5/2)

= τ2 ((R[u](x, t))2 + 1

2
tr((H(x, t) ⋅ ∇2u(x, t))2)) +O(τ5/2),

where the final equality follows from Proposition D.1. The claim now follows.
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Next, we use Lemma 4.1, along with order 1/2 strong convergence for EM integration (Appendix F)
to show the following result.
Theorem 4.2. Suppose that f, g, hθ ∈ C0,1, uθ ∈ C2,1, and τ ⩽ 1. We have that:

LEM,τ(θ) =
1

T
∫

T

0
E [(R[uθ](Xt, t))2 +

1

2
tr [(H(Xt, t) ⋅ ∇2uθ(Xt, t))2]]dt +O(τ1/2), (4.3)

where the O(⋅) hides constants that depend on d, T , and the Hölder norms of f , g, hθ, and uθ.

Proof. To start, we have that:

LEM,τ(θ) =
1

N

N−1

∑
n=0

EX̂n
[τ−2 ⋅ ℓEM,τ(θ, X̂n, tn)]

(a)= 1

N

N−1

∑
n=0

EX̂n
[ (R[uθ](X̂n, tn))2 +

1

2
tr [(H(X̂n, tn) ⋅ ∇2uθ(X̂n, tn))2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶R̄θ(X̂n,tn)

] +O(τ1/2),

where (a) comes from Lemma 4.1 which holds since (i) f, g ∈ C0,1 implies f, g are bounded, and
(ii) uθ ∈ C2,1. Our next observation is that the map R̄θ is also Lipschitz continuous over the domain
Rd × I by our assumptions f, g, h[uθ] ∈ C0,1 and uθ ∈ C2,1. Let us call this Lipschitz constant LR̄θ

,
which depends only on the norms ∥f∥C0,1 , ∥g∥C0,1 , ∥h[uθ]∥C0,1 , ∥uθ∥C2,1 . Continuing from above,

EX̂n
[R̄θ(X̂n, tn)]

(a)= E(Bt)t[R̄θ(X̂n, tn)]
(b)= E(Bt)t[R̄θ(Xtn , tn)] +E(Bt)t[R̄θ(X̂n, tn) − R̄θ(Xtn , tn)],

where in (a) we consider the process {X̂n}n as being defined over {∆Wn}n ∶= {Btn+1 −Btn}n in
place of the process {√τwn}n in (3.6), which is distributionally equivalent, in (b) we consider the
forward SDE (Xt)t from (3.3) as being coupled with the process {X̂n}n via the same realization of
both Brownian motion (Bt)t and X0 = X̂0 = x0. Hence we have:

∣EX̂n
[R̄θ(X̂n, tn)] −E(Bt)t[R̄θ(X̂n, tn)]∣ ⩽ E(Bt)t[∣R̄θ(X̂n, tn) − R̄θ(Xtn , tn)∣]

⩽ LR̄θ
E(Bt)t[∥X̂n −Xtn∥]

⩽ LR̄θ

√
E(Bt)t[∥X̂n −Xtn∥2].

Now, by definition, since the functions f, g ∈ C0,1, then the pair (f, g) is EM-regular (Definition F.1).
From Theorem F.2, we have that {X̂n}n is strong order 1/2 convergent towards (Xt)t, and hence
E(Bt)t[∥X̂n −Xtn∥2] ⩽ E(Bt)t[maxn∈{0,...,N}∥X̂n −Xtn∥2] ⩽ C2τ , where the constant C does
not depend on τ , but can depend on d, T , and the norms ∥f∥C0,1 and ∥g∥C0,1 . Consequently,

LEM,τ(θ) =
1

N

N−1

∑
n=0

E(Bt)t[R̄θ(Xtn , tn)] +O(τ1/2), (D.4)

Our last step is to approximate the sum 1
N ∑

N−1
n=0 in (D.4) with the integral. To do this, we will use

Proposition D.2. We already have R̄θ is Lipschitz over Rd×I . Furthermore, since f, g ∈ C0,1, they are
both bounded over the domain, and hence Proposition D.4 shows that E∥Xt1 −Xt0∥2 ⩽ O(1)∣t1 − t0∣
for any t0, t1 ∈ I. Therefore by Proposition D.2 and the assumption τ ⩽ 1,

1

T
∫

T

0
E[R̄θ(Xt, t)]dt =

1

N

N−1

∑
n=0

E[R̄θ(Xtn , tn)] +O(τ1/2)
(a)= LEM,τ(θ) +O(τ1/2),

where (a) is from (D.4). The result now follows.

D.3 Proofs of Lemma 4.3 and Theorem 4.4

We now restate and prove Lemma 4.3.
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Lemma 4.3. Suppose that f , g, and hθ are all in C1,1, and uθ is in C3,1. We have that

τ−2 ⋅ ℓHeun,τ(θ, x, t) = (R[uθ](x, t))2 +O(τ1/2), (4.9)

where the O(⋅) hides factors depending on d and the Hölder norms of f , g, hθ, and uθ.

Proof. Similar to the proof of Lemma 4.1, we let O(⋅) hide constants that depend on d and the Hölder
norms ∥f∥C1,1 , ∥g∥C1,1 , ∥hθ∥C1,1 , and ∥uθ∥C3,1 , and O∗(⋅) additionally hides constants that depend
polynomially on ∥w∥.
Our first step is to check that h●θ ∈ C1,1 under our assumptions. Recalling that h●θ(x, t) = hθ(x, t) −
1
2
tr(H(x, t)∇2uθ(x, t)), this is ensured if hθ,H ∈ C1,1 and uθ ∈ C3,1, which holds since g ∈ C1,1

implies H ∈ C1,1. Furthermore, ∥h●θ∥C1,1 = O(1). For what follows, we drop the dependency in the
notation on θ.

We next Taylor expand ẑt+τ − zt up to order τ terms. To do this, we observe that by our assumptions
on f, g, h●, u, the functions F,G are both in C1,1. Hence,

F (z̄t+τ , t + τ) = F (zt, t) +DZF (zt, t)[z̄t+τ − zt] + ∂tF (zt, t)τ +O(∥z̄t+τ − zt∥2) +O(τ2)
= F (zt, t) +DZF (zt, t)[G(zt, t)w]

√
τ +O∗(τ).

By a similar argument,

G(z̄t+τ , t + τ) = G(zt, t) +DZG(zt, t)[G(zt, t)w]
√
τ +O∗(τ).

Hence,

ẑt+τ − zt = [F (zt, t) +
1

2
DZG(zt, t)[G(zt, t)w]w] τ +G(zt, t)w

√
τ +O∗(τ3/2). (D.5)

A straightforward computation yields:

DZG((x, y), t)[(∆x,∆y)] = [
Dg(x, t)[∆x]

∇u(x, t)TDg(x, t)[∆x] +∆T
x∇2u(x, t)g(x, t)] ,

and therefore:

1

2
DZG(zt, t)[G(zt, t)w]w =

1

2
[ Dg(x, t)[g(x, t)w]w
∇u(x, t)TDg(x, t)[g(x, t)w]w +wTg(x, t)T∇2u(x, t)g(x, t)w] .

Substituting the above into expression (D.5) for ẑt+τ − zt,

ẑt+τ − zt = [
f(x, t)

h(x, t) − 1
2
tr(H(x, t)∇2u(x, t))] τ

+ 1

2
[ Dg(x, t)[g(x, t)w]w
∇u(x, t)TDg(x, t)[g(x, t)w]w +wTg(x, t)T∇2u(x, t)g(x, t)w] τ

+
√
τ [ g(x, t)w
∇u(x, t)Tg(x, t)w] +O

∗(τ3/2). (D.6)

Setting ∆̄ ∶= (x̂t+τ − x, τ) ∈ Rd+1 we have:

u(x̂t+τ , t + τ) − u(x, t) =Du(x, t)∆̄ + 1

2
∆̄TD2u(x, t)∆̄ +O(∥∆̄∥3),

Du(x, t)∆̄ = ⟨∇u(x, t), x̂t+τ − x⟩ + ∂tu(x, t)τ,
1

2
∆̄TD2u(x, t)∆̄ = 1

2
((x̂t+τ − x)T∇2u(x, t)(x̂t+τ − x)

+ 2τ⟨∂t∇u(x, t), x̂t+τ − x⟩ + τ2∂2
t u(x, t)),

from which we conclude,

u(x̂t+τ , t + τ) − u(x, t)

= ⟨∇u(x, t), x̂t+τ − x⟩ + ∂tu(x, t)τ +
1

2
(x̂t+τ − x)T∇2u(x, t)(x̂t+τ − x) +O(τ3/2)
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= [⟨∇u(x, t), f(x, t) + 1

2
Dg(x, t)[g(x, t)w]w⟩ + ∂tu(x, t) +

1

2
wTg(x, t)T∇2u(x, t)g(x, t)w] τ

+
√
τ⟨∇u(x, t), g(x, t)w⟩ +O∗(τ3/2).

On the other hand, from (D.6),

ŷt+τ − yt = [h(x, t) −
1

2
tr(H(x, t)∇2u(x, t))] τ

+ 1

2
[∇u(x, t)TDg(x, t)[g(x, t)w]w + wTg(x, t)T∇2u(x, t)g(x, t)w] τ

+
√
τ∇u(x, t)Tg(x, t)w +O∗(τ3/2).

Hence,

u(x̂t+τ , t + τ) − ŷt+τ
= (u(x̂t+τ , t + τ) − u(x, t)) − (ŷt+τ − yt)

= [⟨∇u(x, t), f(x, t)⟩ + ∂tu(x, t) +
1

2
tr(H(x, t)∇2u(x, t)) − h(x, t)] τ +O∗(τ3/2)

= R[u](x, t)τ +O∗(τ3/2).
To conclude,

Ew(u(x̂t+τ , t + τ) − ŷt+τ)2 = Ew(R[u](x, t)τ +O∗(τ3/2))2 = (R[u](x, t))2τ2 +O(τ5/2).

Theorem 4.4. Suppose that f , g, and hθ are all in C1,1, uθ ∈ C3,1, and τ ⩽ 1. We have that

LHeun,τ(θ) =
1

T
∫

T

0
E(R[uθ](X●

t , t))2dt +O(τ1/2), (4.10)

where the O(⋅) hides factors depending on d, T , and the Hölder norms of f , g, hθ, and uθ.

Proof. The proof follows the structure of Theorem 4.2 closely. We start with:

LHeun,τ(θ) =
1

N

N−1

∑
n=0

EX̂●n
[τ−2 ⋅ ℓHeun,τ(θ, X̂●

n, tn)]
(a)= 1

N

N−1

∑
n=0

EX̂●n
[(R[uθ](X̂●

n, tn))2] +O(τ1/2)

where (a) follows from Lemma 4.3. Next, we define R̄θ(x, t) ∶= (R[uθ](x, t))2, and observe that R̄θ

is Lipschitz over Rd × I due to our assumptions on f, g, hθ, uθ. Hence, we have the decomposition:

EX̂●n
[R̄θ(X̂●

n, tn)]
(a)= E(Bt)t[R̄θ(X̂●

n, tn)]
(b)= E(Bt)t[R̄θ(X●

tn , tn)] +E(Bt)t[R̄θ(X̂●
tn , tn) − R̄θ(X●

n, tn)],

where in (a) and (b) we take same steps as Theorem 4.2: (a) considers the process {X̂●
n}n as being

defined over {∆Wn}n (Brownian increments) in place of {√τwn}n in (4.7), and (b) couples the SDE
(X●

t)t together with {X̂●
n}n via the same Brownian motion (Bt)t and initial condition X●

0 = X̂●
0 = x0.

Hence, we have:

∣EX̂●n
[R̄θ(X̂●

n, tn)] −E(Bt)t[R̄θ(X●
tn , tn)]∣ ⩽ O(1)

√
E(Bt)t[∥X●

tm
− X̂●

n∥2].

Since f, g ∈ C1,1, then they are by definition Heun-regular (Definition F.3), and hence by Theorem F.4,
E(Bt)t[∥X●

tn − X̂
●
n∥2] ⩽ E(Bt)t[maxn∈{0,...,N}∥X●

tn − X̂
●
n∥2] ⩽ C2τ , where C does not depend on

τ but depends on d, T , and the Hölder norms on f , g. Therefore we have:

LHeun,τ(θ) =
1

N

N−1

∑
n=0

E(Bt)t[(R[uθ](X●
tn , tn))

2] +O(τ1/2). (D.7)

Now we can finish up using the same ending as Theorem 4.2. The only thing we need to do differently
is to control the second moment E∥X●

t1 − X
●
t0∥

2. Since f, g ∈ C1,1, Proposition D.5 yields that
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E∥X●
t1 −X

●
t0∥

2 ⩽ O(1)∣t1 − t0∣. From this inequality and the Lipschitz continuity of R̄θ over the
domain Rd × I, by Proposition D.2 and the assumption τ ⩽ 1,

1

T
∫

T

0
E(Bt)t[(R[uθ](X●

t , t))2]dt =
1

N

N−1

∑
n=0

E(Bt)t[(R[uθ](X●
tn , tn))

2] +O(τ1/2)

(a)= LHeun,τ(θ) +O(τ1/2),
where (a) is from (D.7). The result now follows.

E Analysis of Multi-Step BSDE Losses

We now present the derivations supporting the analysis in Section 5. For what follows, we define the
follow FS-PINNs loss:

LFS-PINNs(θ) ∶= Ex0∼µ0,Bt

1

T
∫

T

0
(R[uθ](Xt, t))2dt. (E.1)

E.1 BSDE loss and Euler-Maruyama discretization

Proposition E.1. Suppose that uθ ∈ C2. We have that:

LBSDE,T (θ) ⩽ LFS-PINNs(θ). (E.2)

Proof. To start, we abbreviate Rθ(x, t) = R[uθ](x, t). By application of Itô’s Lemma, we have:

uθ(XT , T ) − uθ(X0,0) − ∫
T

0
hθ(Xt, t)dt − ∫

T

0
∇uθ(Xt, t)Tg(Xt, t)dBt = ∫

T

0
Rθ(Xt, t)dt,

which immediately yields the following identity:

LBSDE,T (θ) = Ex0∼µ0,Bt (
1

T
∫

T

0
Rθ(Xt, t)dt)

2

. (E.3)

Thus, the BSDE loss is equal to averaging the square of the accumulation of the residual error Rθ

along the forward SDE trajectories. Hence by Jensen’s inequality, the BSDE loss is dominated by:

LBSDE,T (θ) ⩽ Ex0∼µ0,Bt

1

T
∫

T

0
(Rθ(Xt, t))2dt = LFS-PINNs(θ).

Note that while the relationship in (E.2) is pointed out in [5, Section 5.2.3], the implications of this
inequality are not discussed further in their work.
Proposition E.2. Suppose that f, g, hθ ∈ C0,1, uθ ∈ C2,1, and τ ⩽ 1. Then,

LBSDE,τ(θ) = LFS-PINNs(θ) +O(τ1/2), (E.4)

where the O(⋅) hides constants depending on the Hölder norms of f , g, hθ, and uθ.

Proof. Again, we abbreviate Rθ(x, t) = R[uθ](x, t). By our assumptions on f, g, hθ ∈ C0,1 and
uθ ∈ C2,1, we have that Rθ ∈ C0,1, with ∥Rθ∥C0,1 = O(1). Also, since f, g ∈ C0,1, by Proposition D.4
we also have that E∥Xt0 −Xt1∥2 ⩽ O(1)∣t0 − t1∣ for t0, t1 ∈ I. Hence by Proposition D.3,

E(∫
tn+1

tn
Rθ(Xt, t)dt)

2

= τ2E[R2
θ(Xtn , tn)] +O(τ5/2). (E.5)

Furthermore, since Rθ ∈ C0,1, we can readily check that R2
θ is Lipschitz on its domain as well, and

hence Proposition D.2 yield:

1

T
∫

T

0
E[(Rθ(Xt, t))2]dt =

1

N

N−1

∑
n=0

E[(Rθ(Xtn , tn))2] +O(τ1/2). (E.6)
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Therefore,

LBSDE,τ(θ) = Ex0∼µ0,Bt

1

Nτ2

N−1

∑
n=0

(∫
tn+1

tn
Rθ(Xt, t)dt)

2

= Ex0∼µ0,Bt

1

Nτ2

N−1

∑
n=0

(τ2R2
θ(Xtn , tn) +O(τ5/2)) [using (E.5)]

= Ex0∼µ0,Bt

1

N

N−1

∑
n=0

R2
θ(Xtn , tn) +O(τ1/2)

= Ex0∼µ0,Bt

1

T
∫

T

0
(Rθ(Xt, t))2dt +O(τ1/2) [using (E.6)]

= LFS-PINNs(θ) +O(τ1/2).

Proposition E.3. Suppose the assumptions of Proposition E.2 hold. Then,

LBSDE,T (θ) ⩽ LBSDE,τ(θ) +O(τ1/2), (E.7)

where the O(⋅) hides constants depending on the Hôlder norms of f , g, hθ, and uθ.

Proof. Follows immediately from Proposition E.1 and Proposition E.2.

Proposition E.4. Suppose that f, g, hθ ∈ C0,1, uθ ∈ C1,1, and τ ⩽ 1. We have that:

LEMN ,τ(θ) = LBSDE,T (θ) +O(τ1/2), (E.8)

where the O(⋅) hides constants depending on the d, T , and the Hölder norms of f , g, hθ, and uθ.

Proof. We consider the joint forward and backwards SDE (cf. (3.3) and (3.4)) with Zθ
t ∶= (Xt, Y

θ
t ):

d [Xt

Y θ
t
] = [ f(Xt, t)

hθ(Xt, t)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Fθ(Zθ

t ,t)

dt + [ g(Xt, t)
∇uθ(Xt, t)Tg(Xt, t)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Gθ(Zθ
t ,t)

dBt, [X0

Y θ
0
] = [ x0

uθ(x0,0)] .

Given our assumptions on f, g, hθ, uθ, we have that both Fθ,Gθ ∈ C0,1. Hence, the pair (Fθ,Gθ)
is EM-regular (Definition F.1). Therefore, by Theorem F.2, the EM-discretization {(X̂n, Ŷ

θ
n )}n

(cf. (3.6)), coupled with (Zθ
t )t through Brownian increments {∆Wn}, satisfies order 1/2 strong

convergence to (Zθ
t )t:

(E [ max
n∈{0,...,N}

max{∥X̂n −Xtn∥2, ∣Ŷ θ
n − Y θ

tn ∣
2}])

1/2

⩽ Cτ1/2.

Now, define Ψ̂N ∶= uθ(X̂N , T ) − Ŷ θ
N and ΨT ∶= uθ(XT , T ) − Y θ

T

E[Ψ̂2
N ] = E[(ΨT + (Ψ̂N −ΨT ))2] = E[Ψ2

T ] +E[(Ψ̂N −ΨT )2] + 2E[ΨT (Ψ̂N −ΨT )].
Hence by Cauchy-Schwarz,

∣E[Ψ̂2
N ] −E[Ψ2

T ]∣ ⩽ E[(Ψ̂N −ΨT )2] + 2
√

E[Ψ2
T ]
√

E[(Ψ̂N −ΨT )2].

Since uθ ∈ C1,1 the function is ∥uθ∥C1,1 -Lipschitz and therefore:

E[(Ψ̂N −ΨT )2] ⩽ 2E[(uθ(X̂N , T ) − uθ(XT , T ))2] + 2E[(Ŷ θ
N − Y θ

T )2]
⩽ 2∥uθ∥2C1,1E[∥X̂N −XT ∥2] + 2E[(Ŷ θ

N − Y θ
T )2]

⩽ 2C2(1 + ∥uθ∥2C1,1)τ.
Furthermore uθ is also ∥uθ∥C1,1 -bounded and hence:

E[Ψ2
T ] ⩽ 2∥uθ∥2C1,1 + 2E[∣Y θ

T ∣2].
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Next, since Fθ,Gθ are both bounded, then by Proposition D.4, we have that E[∣Y θ
T ∣2] = O(1). Putting

these bounds together yields:

∣E[Ψ̂2
N ] −E[Ψ2

T ]∣ ⩽ O(τ +
√
τ) = O(

√
τ), (E.9)

since τ ⩽ 1. To finish the proof, we observe

LEMN ,τ(θ) = Ex0∼µ0,wn

1

T 2
Ψ̂2

N

= Ex0∼µ0,Bt

1

T 2
Ψ̂2

N [coupling with Brownian increments]

= Ex0∼µ0,Bt

1

T 2
Ψ2

T +O(τ1/2) [using (E.9)]

= LBSDE,T (θ) +O(τ1/2).

Proposition E.5. Suppose that f, g, hθ ∈ C0,1, uθ ∈ C2,1, and τ ⩽ 1. We have that:

LEM,τ(θ) = LBSDE,τ(θ) +Bias(θ) +O(τ1/2), (E.10)

Bias(θ) ∶= 1

2T
∫

T

0
E[tr((H(Xt, t) ⋅ ∇2uθ(Xt, t))2)]dt.

Here, O(⋅) hides factors depending on d, T , and the Hölder norms of f , g, hθ, and uθ.

Proof. We have the following:

LEM,τ(θ)
(a)= 1

T
∫

T

0
E((R[uθ](Xt, t))2 +

1

2
tr((H(Xt, t) ⋅ ∇2uθ(Xt, t))2))dt +O(τ1/2)

= LFS-PINNs(θ) +Bias(θ) +O(τ1/2)
(b)= LBSDE,τ(θ) +Bias(θ) +O(τ1/2),

where (a) holds from Theorem 4.2, and (b) holds from Proposition E.2.

E.2 Stratonovich BSDE and Heun discretization

We first define the Stratonovich variant of the FS-PINNs loss (E.1):

LS-FS-PINNs(θ) ∶= Ex0∼µ0,Bt

1

T
∫

T

0
(R[uθ](X●

t , t))2dt.

Proposition E.6. Suppose that uθ ∈ C2. We have that:
LS-BSDE,T (θ) ⩽ LS-FS-PINNs(θ).

Proof. We mimic the arguments in Proposition E.1. Abbreviating Rθ(x, t) = R[uθ](x, t) and using
the Stratonovich chain rule, we have:

uθ(X●
T , T ) − uθ(X●

0,0) = ∫
T

0
[Rθ(X●

t , t) + hθ(X●
t , t) −

1

2
tr(H(X●

t , t)∇2uθ(X●
t , t)]dt

+ ∫
T

0
∇uθ(X●

t , t)Tg(X●
t , t) ○ dBt,

and hence the following identity which parallels (E.3) holds:

LS-BSDE,T (θ) = Ex0∼µ0,Bt (
1

T
∫

T

0
Rθ(X●

t , t)dt)
2

.

Now we simply apply Jensen’s inequality to conclude:

LS-BSDE,T (θ) = Ex0∼µ0,Bt (
1

T
∫

T

0
Rθ(X●

t , t)dt)
2

⩽ Ex0∼µ0,Bt

1

T
∫

T

0
(Rθ(X●

t , t))2dt = LS-FS-PINNs(θ).
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Proposition E.7. Suppose that f, hθ ∈ C0,1, g ∈ C1,1, uθ ∈ C2,1, and τ ⩽ 1. Then,

LS-BSDE,τ(θ) = LS-FS-PINNs(θ) +O(τ1/2), (E.11)

where the O(⋅) hides constants depending on the Hölder norms of f , g, hθ, and uθ.

Proof. The proof is nearly identical to the proof of Proposition E.2, but with LS-BSDE,τ(θ) taking
the place of LBSDE,τ(θ) and LS-FS-PINNs(θ) taking the place of LFS-PINNs(θ). The only notable
difference is we need to establish the condition E∥X●

t0 −X
●
t1∥

2 ⩽ O(1)∣t0 − t1∣ for t0, t1 ∈ I. By
our assumption that f ∈ C0,1 and g ∈ C1,1, we have that both f(x, t) + 1

2 ∑
d
k=1 ∂xg

k(x, t)g(x, t) and
g(x, t) are bounded, and hence the condition E∥X●

t0−X
●
t1∥

2 ⩽ O(1)∣t0−t1∣ holds by Proposition D.5.

Proposition E.8. Suppose the assumptions of Proposition E.7 hold. Then,

LS-BSDE,T (θ) ⩽ LS-BSDE,τ(θ) +O(τ1/2),
where the O(⋅) hides constants depending on the Hölder norms of f , g, hθ, and uθ.

Proof. Follows immediately from Proposition E.6 and Proposition E.7.

Proposition E.9. Suppose that f, hθ ∈ C0,1, g ∈ C1,1, uθ ∈ C2,1, and τ ⩽ 1. We have that:

LHeunN ,τ(θ) = LS-BSDE,T (θ) +O(τ1/2), (E.12)

where the O(⋅) hides constants depending on the d, T , and the Hölder norms of f , g, hθ, and uθ.

Proof. We consider the joint forward/backward Stratonovich SDE Z●,θt = (X●
t , Y

●,θ
t ) from (4.6) of the

form dZ●,θt = Fθ(Z●,θt , t)dt+Gθ(Z●,θt , t) ○dBt. We first show that the pair (Fθ,Gθ) is Heun-regular
(cf. Definition F.3). A sufficient condition is that (a) Fθ ∈ C0,1 and (b) Gθ ∈ C1,1. For condition (a),
it is equivalent to both f and h●θ(x, t) = hθ(x, t) − 1

2
tr(H(x, t)∇2uθ(x, t)) are in C0,1; the former

is by assumption, and the latter holds since hθ ∈ C0,1, g ∈ C1,1, and uθ ∈ C2,1 by assumption. Now
for condition (b), it is equivalent to both g and ∇uθ(x, t)Tg(x, t) are in C1,1. The former is again by
assumption, and the latter holds since uθ ∈ C2,1 and g ∈ C1,1. Hence by Theorem F.4, we have that
Heun discretization {Ẑ●,θn }n from (4.7), coupled with the SDE (Z●,θt )t through Brownian increments
{∆Wn}n, satisfies order 1/2 strong convergence to the SDE (Z●,θt )t, i.e.,

(E [ max
n∈{0,...,N}

max{∥X̂●
n −X●

tn∥
2, ∣Ŷ ●,θn − Y ●,θtn

∣2}])
1/2

⩽ Cτ1/2,

where C does not depend on τ . The remainder of the proof proceeds nearly identically to Propo-
sition E.4, with the only difference being that in order to argue E[∣Y ●,θT ∣2] = O(1), we utilize that
Fθ ∈ C0,1 and Gθ ∈ C1,1 to invoke Proposition D.5.

Showing that LHeun,τ(θ) = LS-BSDE,τ(θ) +O(τ1/2). We start from (4.10) and following nearly
identical arguments as in the derivation of (E.10).
Proposition E.10. Suppose that f , g, and hθ are all in C1,1, uθ ∈ C3,1, and τ ⩽ 1. We have:

LHeun,τ(θ) = LS-BSDE,τ(θ) +O(τ1/2),
where the O(⋅) hides factors depending on d, T , and the Hölder norms of f , g, hθ, and uθ.

Proof. We proceed similarly to Proposition E.5:

LHeun,τ(θ)
(a)= 1

T
∫

T

0
E(R[uθ](X●

t , t))2dt +O(τ1/2)

= LS-FS-PINNs(θ) +O(τ1/2)
(b)= LS-BSDE,τ(θ) +O(τ1/2),

where (a) holds from Theorem 4.4, and (b) holds from Proposition E.7.
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F Strong Convergence of Euler-Maruyama and Heun Integration

Let I ∶= [0, T ] denote a time interval, and consider functions a ∶ Rd×I ↦ Rd and b ∶ Rd×I ↦ Rd×m

which define the following SDE:

dXt = a(Xt, t)dt + b(Xt, t) ◇ dBt, X0 ∼ D0. (F.1)

where (Bt)t⩾0 is m-dimensional Brownian motion and D0 is an arbitrary distribution over Rd

with bounded second moments, i.e., E∥X0∥2 < ∞. Here, the pair (a, b) is used instead of (f, g)
to avoid confusion with the forward SDE (3.3), and the ◇ notation denotes that the SDE (F.1) is
either to be interpreted as an Itô or Stratonovich SDE. We write bk ∶ Rd × I ↦ Rd for k ∈ [m]
so that b = (b1, . . . , bm), i.e., bk(t, x) is the k-th column of the matrix b(t, x). We consider a
discretization time τ ∈ (0, T ] such that N ∶= ⌊T /τ⌋ ∈ N+. We denote the timesteps {tn}Nn=0 and
Brownian increments {∆Wn}N−1n=0 as tn ∶= nτ and ∆Wn ∶= Btn+1−Btn . We will also often utilize the
shorthand notation an(x) ∶= a(x, tn), bn(x) ∶= b(x, tn), and bkn(x) ∶= bk(x, tn) for n ∈ {0, . . . ,N}.
In this section, we review standard results regarding convergence of basic stochastic integration
schemes (Euler-Maruyama for Itô, stochastic Heun for Stratonovich) for the SDE (F.1).

F.1 Euler-Maruyama Convergence

The Euler-Maruyama scheme for integrating the SDE (F.1) interpreted as an Itô SDE is the following
discrete-time process:

X̂n+1 = an(X̂n)τ + bn(X̂n)∆Wn, X̂0 =X0. (F.2)

The order 1/2 strong convergence of the Euler-Maruyama process (F.2) to the Itô SDE (F.1) is
thoroughly documented in the literature. Concretely, we will state a result from [34]. First, we define
the necessary regularity condition on the drift and diffusion terms
Definition F.1 (EM-regularity). The pair (a, b) with a ∶ Rd × I ↦ Rd and g ∶ Rd × I ↦ Rd×m is
EM-regular if there exists finite K1,K2,K3 such that for all x, y ∈ Rd and s, t ∈ I,

∥a(x, t)∥ + ∥b(x, t)∥op ⩽K1(1 + ∥x∥),
∥a(x, t) − a(y, t)∥ + ∥b(x, t) − b(y, t)∥op ⩽K2∥x − y∥,
∥a(x, s) − a(x, t)∥ + ∥b(x, s) − b(x, t)∥op ⩽K3(1 + ∥x∥)∣s − t∣1/2.

By definition of the Hölder class C0,1, we have that if the pair (a, b) satisfies a, b ∈ C0,1, then (a, b)
is EM-regular, although Definition F.1 is a weaker assumption. With this notation of regularity in
place, we have the following order 1/2 strong convergence result.
Theorem F.2 ([34, Theorem 10.2.2]). Suppose the pair (a, b) is EM-regular (cf. Definition F.1).
Then the Itô SDE (Xt)t defined in (F.1) and the Euler-Maruyama discretization {X̂n}n defined in
(F.2) satisfy the following bound:

(E max
n∈{0,...,N}

∥Xtn − X̂n∥2)
1/2

⩽ C
√
τ ,

where the constant C does not depend on τ .

F.2 Stochastic Heun Convergence

The stochastic Heun discretization of the Stratonovich SDE (Xt)t defined in (F.1) is the discrete-time
process with X̂0 =X0 and:

Ŷn+1 = X̂n + an(X̂t)τ + bn(X̂t)∆Wn, (F.3a)

X̂n+1 = X̂n +
1

2
[an(X̂t) + an+1(Ŷn+1)] τ +

1

2
[bn(X̂t) + bn+1(Ŷn+1)]∆Wn. (F.3b)

Analogous to the order 1/2 strong convergence results in Appendix F.1 for the EM discretization
of the Itô SDE, we also have a similar result that holds for the Heun discretization (F.3) of the
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Stratonovich SDE (F.1). While we consider such a result to be a folklore result, we were unable to
find a specific theorem statement in the literature listing out a precise set of sufficient conditions on
(a, b) for strong convergence to hold.4 Thus, the rest of this sub-section provides a result and mostly
self-contained proof that builds on top of EM results stated in Appendix F.1.

We first start with a sufficient regularity condition, which adds a few extra assumptions to the
EM-regular definition (Definition F.1).
Definition F.3 (Heun-regularity). The pair (a, b) with a ∶ Rd × I ↦ Rd and b ∶ Rd × I ↦ Rd×m is
Heun-regular if for every t ∈ I and k ∈ [m], the map x↦ bk(t, x) is C1(Rd), and there exists finite
Ki, i ∈ [5] such that for all x, y ∈ Rd and s, t ∈ I:

∥a(x, t)∥ + ∥b(x, t)∥op ⩽K1,

∥a(x, t) − a(y, t)∥ + ∥b(x, t) − b(y, t)∥op ⩽K2∥x − y∥,
∥a(x, s) − a(x, t)∥ + ∥b(x, s) − b(x, t)∥op ⩽K3(1 + ∥x∥)∣s − t∣,

∥∂xbk(x, t) − ∂xbk(y, t)∥op ⩽K4∥x − y∥,
∥∂xbk(x, s) − ∂xbk(x, t)∥op ⩽K5(1 + ∥x∥)∣s − t∣1/2.

We note that from the definition of the Hölder classes C0,1 and C1,1 that if a ∈ C0,1 and b ∈ C1,1,
then the pair (a, b) is Heun-regular. The following result is the main convergence result for Heun.
Theorem F.4. Suppose that the pair (a, b) is Heun-regular (cf. Definition F.3). Then the Stratonovich
SDE (Xt)t defined in (F.1) and the stochastic Heun discretization {X̂n}n defined in (F.3) satisfy:

(E max
n∈{0,...,N}

∥Xtn − X̂n∥2)
1/2

⩽ C
√
τ , (F.4)

where the constant C does not depend on τ .

F.2.1 Proof of Theorem F.4

Our proof of Theorem F.4 is based on the following reduction. By defining:

ā(x, t) ∶= a(x, t) + 1

2

m

∑
k=1

∂xb
k(x, t)bk(x, t),

the Itô SDE:

dX̄t = ā(X̄t, t)dt + b(X̄t, t)dBt, X̄0 =X0, (F.5)

defines an identical process as the Stratonovich SDE (Xt)t from (F.1), i.e., (Xt(ω))t = (X̄t(ω))t
for almost every t, ω. Furthermore, we can consider an Euler-Maruyama discretization of (F.5):

ˆ̄Xn+1 = ˆ̄Xn + ān( ˆ̄Xn)τ + bn( ˆ̄Xn)∆Wn,
ˆ̄X0 =X0. (F.6)

As the Itô SDE (F.5) and Stratonovich SDE (F.1) are identical, then we also have that if the pair (ā, b)
is EM-regular (cf. Definition F.1), then the EM discretization (F.6) is order 1/2 strongly convergent to
the Stratonovich SDE (F.1). Hence, this reduces the problem to comparing the two discrete processes
{X̂n}n from (F.3) and { ˆ̄Xn}n from (F.6). In particular, if we can show that:

(E max
n∈{0,...,N}

∥X̂n − ˆ̄Xn∥2)
1/2

⩽ C
√
τ ,

where again the two processes are coupled under the same Brownian motion (Bt)t and initial
condition X0, then by triangle inequality we have the desired result Theorem F.4. One advantage of
this proof strategy is that we only need to study the evolution of two discrete-time processes, which
we can do with purely elementary (discrete-time) martingale techniques, avoiding the need for any
stochastic calculus. Indeed, the main tools we utilize are the following two results.

4The closest statement we were able to find in the literature is [41, Theorem D.12], which shows order 1/2
strong convergence of the reversible Heun method, which is a modified version of the stochastic Heun method
that is algebraically reversible.
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Proposition F.5 (Doob’s maximal inequality (vector-valued), cf. [50, Theorem 3.2.2]). Let (Xn)n∈N+
denote a martingale taking values in a normed vector space X with norm ∥⋅∥X . We have that for any
p ∈ (0,∞] and n ∈ N+:

E(max
i∈[n]
∥Xi∥pX)

1/p

⩽
p

p − 1
(E[∥Xn∥pX])

1/p
.

Proposition F.6 (Discrete Gronwall inequality, cf. [51]). Let {xn}n∈N and {βn}n∈N be non-negative
sequences satisfying for some α > 0:

xn ⩽ α +
n−1

∑
k=0

βkxn, n ∈ N.

Then we have:

xn ⩽ α exp(
n−1

∑
k=0

βk) , n ∈ N.

Here, we interpret ∑−1k=0 to indicate zero.

Our first step shows that Heun-regularity of the pair (a, b) implies EM-regularity of the pair (ā, b).
Proposition F.7. If the pair (a, b) is Heun-regular (cf. Definition F.3), then the pair (ā, b) is EM-
regular (cf. Definition F.1).

Proof. We let K ∶=maxi∈[5]Ki. We first check the growth condition on ∥ā(x, t)∥:

∥ā(x, t)∥ = ∥a(x, t) + 1

2

m

∑
k=1

∂xb
k(x, t)bk(x, t)∥

(a)

⩽ K + 1

2

m

∑
k=1

∥∂xbk(x, t)bk(x, t)∥
(b)

⩽ K + K

2

m

∑
k=1

∥∂xbk(x, t)∥op
(c)

⩽ K + K2m

2
, s

where (a) holds since ∥a(x, t)∥ ⩽ K, (b) holds since ∥bk(x, t)∥ ⩽ ∥b(x, t)∥op ⩽ K, and (c) holds
since ∥gk(x, t) − gk(y, t)∥ ⩽K∥x − y∥ implies that ∥∂xgk(x, t)∥op ⩽K.

Next, we check the Lipschitz condition over x on ā(x, t):

∥ā(x, t) − ā(y, t)∥ ⩽ ∥a(x, t) − a(y, t)∥ + 1

2

m

∑
k=1

∥∂xbk(x, t)bk(x, t) − ∂xbk(y, t)bk(y, t)∥

(a)

⩽ K∥x − y∥ + 1

2

m

∑
k=1

∥∂xbk(x, t)[bk(x, t) − bk(y, t)]∥

+ 1

2

m

∑
k=1

∥[∂xbk(x, t) − ∂xbk(y, t)]bk(y, t)∥

(b)

⩽ K∥x − y∥ + K2m

2
∥x − y∥ + K2m

2
∥x − y∥ = (K +K2m)∥x − y∥.

where (a) uses the Lipschitz condition ∥a(x, t) − a(y, t)∥ ⩽ K∥x − y∥, and (b) uses ∥∂xbk(x, t) −
∂xb

k(y, t)∥op ⩽ K∥x − y∥, ∥bk(x, t)∥ ⩽ K, ∥∂xbk(x, t)∥op ⩽ K, and ∥bk(x, t) − bk(y, t)∥ ⩽
K∥x − y∥,
Finally, we check the Hölder 1/2 condition over t on ā(x, t):

∥ā(x, s) − ā(x, t)∥ ⩽ ∥a(x, s) − a(x, t)∥ + 1

2

m

∑
k=1

∥∂xbk(x, s)bk(x, s) − ∂xbk(x, t)bk(x, t)∥

(a)

⩽ K(1 + ∥x∥)∣s − t∣ + 1

2

m

∑
k=1

∥∂xbk(x, s)[bk(x, s) − bk(x, t)]∥

+ 1

2

m

∑
k=1

∥[∂xbk(x, s) − ∂xbk(x, t)]bk(x, t)∥
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(b)

⩽ K(1 + ∥x∥)∣s − t∣ + K2m

2
(1 + ∥x∥)∣s − t∣ + K2m

2
(1 + ∥x∥)∣s − t∣1/2

(c)

⩽ (K +K2m)
√
T (1 + ∥x∥)∣s − t∣1/2,

where in (a) we use ∥a(x, s) − a(x, t)∥ ⩽ K(1 + ∥x∥)∣s − t∣, in (b) we use ∥bk(x, s) − bk(x, t)∥ ⩽
K(1 + ∥x∥)∣s − t∣, ∥∂xbk(x, t)∥op ⩽ K, ∥∂xbk(x, s) − ∂xbk(x, t)∥ ⩽ K(1 + ∥x∥)∣s − t∣1/2, and
∥bk(x, t)∥ ⩽K, and in (c) we use ∣s − t∣ = ∣s − t∣1/2 ⋅ ∣s − t∣1/2 ⩽

√
T ∣s − t∣1/2.

Since the growth, Lipschitz, and Hölder 1/2 conditions on b(x, t) are immediate from the Heun
regularity assumptions, this concludes the claim.

The following result shows that the discrete-time processes (F.3) and (F.6) are strongly convergent.

Lemma F.8. Suppose that the pair (a, b) is Heun-regular (cf. Definition F.3) and that τ ⩽ 1. Then,
we have that the updates (F.3) and (F.6) satisfy:

(E max
n∈{0,...,N}

∥X̂n − ˆ̄Xn∥2)
1/2

⩽ C
√
τ ,

where the constant C does not depend on τ .

Proof. To start the proof, we recall that tn = nτ , N = ⌊T /τ⌋ which is assumed to be a positive
integer, and ∆Wn ∶= Btn+1 − Btn . We will equivalently write ∆Wn =

√
τwn, where {wn}N−1n=0

are i.i.d. N(0, Im) random vectors. In order to index the coordinates of both ∆Wn and wn, we
use the notation ∆W i

n and wi
n, for i ∈ [m], to refer to the i-th coordinate of the vector. We let

K ∶= 1 +E∥X0∥2 +maxi∈[5]Ki to denote a bound on all the parameters from both Heun regularity
and the second moment of the initial condition X0. As with an, bn, we also define ān(x) ∶= ā(x, tn)
for n ∈ [N]. Furthermore, we will drop the hat notation to reduce notational clutter and and write
Xn, Yn = X̂n, Ŷn, and similarly X̄n = ˆ̄Xn; since we are not dealing with the SDEs (F.1) and (F.5),
there is no risk of confusion with this notation.

To avoid keeping track of explicit dependence on constants besides τ , for a set of parameters Q we
use CQ to denote a finite constant that that depends only on the parameters listed in Q, and a ≲Q b to
denote a ⩽ CQb. For example, CK,m is a constant that depends only on (K,m) (its dependency may
be arbitrary however). We also let a ≲ b denote a ⩽ Cb where C is a universal positive constant.

With the aforementioned notation in place, we have the following discrete-time update rules for (F.6):

X̄n+1 = X̄n + ān(X̄n)τ + bn(X̄n)∆Wn,

and for (F.3):

Yn+1 =Xn + an(Xn)τ + bn(Xn)∆Wn,

Xn+1 =Xn +
1

2
[an(Xn) + an+1(Yn+1)] τ +

1

2
[bn(Xn) + bn+1(Yn+1)]∆Wn.

Let us define the filtration Fn ∶= σ(w0, . . . ,wn−1) for n ∈ N+ with F0 the trivial σ-algebra. We
observe a key property of both {Xn}n and {X̄n}n is that both Xn and X̄n areFn-measurable. Hence
by the tower property we have for expressions A,B, E[A(Xn)B(wn)] = E[A(Xn)E[B(wn) ∣ Fn]]
and E[B(wn) ∣ Fn] = Ewn∼N(0,Im)[B(wn)], a property we make heavy use of in our calculations.
Another simple inequality we make use of is that for any q ∈ N+ and any set of vectors v1, . . . , vq ,

∥
q

∑
i=1

vi∥
2

⩽ q
q

∑
i=1

∥vi∥2,

which follows by triangle inequality and Cauchy-Schwarz.

Heun update decomposition. To relate the Heun and EM updates, we write the Heun update as:

Xn+1 =Xn + ān(Xn)τ + bn(Xn)∆Wn +En, (F.7)
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where En contains the residual terms:

En ∶=
1

2
[an+1(Yn+1) − an(Xn)] τ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Ea
n

+ 1
2
[bn+1(Yn+1) − bn(Xn)]∆Wn −

τ

2

m

∑
i=1

∂xb
k
n(Xn)bkn(Xn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Eb

n

.

We further decompose Eb
n as follows. We first write:

bn+1(Yn+1) − bn(Xn) = (bn+1(Yn+1) − bn(Yn+1)) + (bn(Yn+1) − bn(Xn)).
Next, we use the Heun-regularity to expand the RHS above:

bkn(Yn+1) − bkn(Xn) = ∂xbkn(Xn)(Yn+1 −Xn) +Rk
n

= ∂xbkn(Xn)(an(Xn)τ + bn(Xn)∆Wn) +Rk
n,

where the remainder term Rk
n satisfies ∥Rk

n∥ ⩽K∥Yn+1 −Xn∥2. Hence,

(bn(Yn+1) − bn(Xn))∆Wn

=
m

∑
k=1

(bkn(Yn+1) − bkn(Xn))∆W k
n

= τ
m

∑
k=1

∂xb
k
n(Xn)an(Xn)∆W k

n +
m

∑
k=1

∂xb
k
n(Xn)bn(Xn)∆Wn∆W k

n +
m

∑
k=1

Rk
n∆W k

n

Now the middle term further decomposes as:
m

∑
k=1

∂xb
k
n(Xn)bn(Xn)∆Wn∆W k

n =
m

∑
k1,k2=1

∂xb
k1
n (Xn)bk2

n (Xn)∆W k1
n ∆W k2

n

=
m

∑
k1,k2=1

∂xb
k1
n (Xn)bk2

n (Xn) (∆W k1
n ∆W k2

n − τ1{k1=k2})

+ τ
m

∑
k=1

∂xb
k
n(Xn)bkn(Xn).

Combining these decompositions together,

Eb
n =

1

2
[bn+1(Yn+1) − bn(Xn)]∆Wn −

τ

2

m

∑
i=1

∂xb
k
n(Xn)bkn(Xn)

= 1

2
[bn+1(Yn+1) − bn(Yn+1)]∆Wn +

1

2
[bn(Yn+1) − bn(Xn)]∆Wn −

τ

2

m

∑
i=1

∂xb
k
n(Xn)bkn(Xn)

= 1

2
[bn+1(Yn+1) − bn(Yn+1)]∆Wn +

τ

2

m

∑
k=1

∂xb
k
n(Xn)an(Xn)∆W k

n +
1

2

m

∑
k=1

Rk
n∆W k

n

+ 1

2

m

∑
k=1

∂xb
k
n(Xn)bn(Xn)∆Wn∆W k

n −
τ

2

m

∑
i=1

∂xb
k
n(Xn)bkn(Xn)

= 1

2
[bn+1(Yn+1) − bn(Yn+1)]∆Wn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Eb,1

n

+ τ
2

m

∑
k=1

∂xb
k
n(Xn)an(Xn)∆W k

n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Eb,2

n

+ 1
2

m

∑
k=1

Rk
n∆W k

n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Eb,3

n

+ 1

2

m

∑
k1,k2=1

∂xb
k1
n (Xn)bk2

n (Xn) (∆W k1
n ∆W k2

n − τ1{k1=k2})

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Eb,4

n

.

Thus, (F.7) becomes:

Xn+1 =Xn + ān(Xn)τ + bn(Xn)∆Wn +Ea
n +

4

∑
ℓ=1

Eb,ℓ
n , (F.8)

which serves as the starting point for what follows.
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Second moment bounds on error terms. Our next step is to bound the second moment of all the
error terms separately. Here we make heavy use of the Heun-regularity conditions.

Bound on E∥Ea
n∥2: We write:

∥an+1(Yn+1) − an(Xn)∥ = ∥(an+1(Yn+1) − an+1(Xn)) + (an+1(Xn) − an(Xn))∥
⩽ ∥an+1(Yn+1) − an+1(Xn)∥ + ∥an+1(Xn) − an(Xn)∥
⩽K∥Yn+1 −Xn∥ +K(1 + ∥Xn∥)

√
τ

⩽K(∥an(Xn)∥τ + ∥bn(Xn)∥
√
τ∥wn∥) +K(1 + ∥Xn∥)

√
τ

⩽K2(τ +
√
τ∥wn∥) +K(1 + ∥Xn∥)

√
τ .

Hence,

E∥an+1(Yn+1) − an(Xn)∥2 ≲K4(τ2 + τm) +K2(1 +E∥Xn∥2)τ ≲K,m (1 +E∥Xn∥2)τ.

which implies:

E∥Ea
n∥2 =

τ2

4
E∥an+1(Yn+1) − an(Xn)∥2 ≲K,m (1 +E∥Xn∥2)τ3.

Bound on E∥Eb,1
n ∥2: We have:

E∥Eb,1
n ∥2 =

1

4
E ∥[bn+1(Yn+1) − bn(Yn+1)]∆Wn∥2

≲K2τ3E[(1 + ∥Yn+1∥2)∥wn∥2]
≲K2τ3E[(1 + ∥Xn∥2 + ∥an(Xn)∥2τ2 + ∥bn(Xn)∥2op∥wn∥2τ)∥wn∥2]
≲K4τ3E[(1 + ∥Xn∥2 + ∥wn∥2)∥wn∥2]
≲K,m (1 +E∥Xn∥2)τ3.

Bound on E∥Eb,2
n ∥2: We have:

E∥Eb,2
n ∥2 =

τ2

4
E∥

m

∑
k=1

∂xb
k
n(Xn)an(Xn)∆W k

n∥
2

= τ3

4

m

∑
k=1

E∥∂xbkn(Xn)an(Xn)∥2

⩽
τ3

4

m

∑
k=1

E∥∂xbkn(Xn)∥2op∥an(Xn)∥2 ≲K,m τ3.

Bound on E∥Eb,3
n ∥2: Recall that the residual Rk

n satisfies ∥Rk
n∥ ⩽K∥Yn+1 −Xn∥2. We have:

E∥Eb,3
n ∥2 =

1

4
E∥

m

∑
k=1

Rk
n∆W k

n∥
2

≲ τm
m

∑
k=1

E[∥Rk
n∥2∣wk

n∣2]

≲ τK2m
m

∑
k=1

E[∥Yn+1 −Xn∥4∣wk
n∣2]

≲ τK2m
m

∑
k=1

E [(∥an(Xn)∥τ + ∥bn(Xn)∥op∥wn∥
√
τ)4∣wk

n∣2]

≲K,m τ3.

Bound on E∥Eb,4
n ∥2: We have:

E∥Eb,4
n ∥2 =

τ2

4
E
XXXXXXXXXXX

m

∑
k1,k2=1

∂xb
k1
n (Xn)bk2

n (Xn) (wk1
n wk2

n − 1{k1=k2})
XXXXXXXXXXX

2

≲K,m τ2.
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Second moment bounds on the Heun process. We now use (F.8) to write for any n ∈ [N]:

E∥Xn∥2 = E∥X0 +
n−1

∑
i=0

āi(Xi)τ +
n−1

∑
i=0

bi(Xi)∆Wi +
n−1

∑
i=0

(Ea
i +

4

∑
ℓ=1

Eb,ℓ
i )∥

2

≲ E∥X0∥2 + τ2E∥
n−1

∑
i=0

āi(Xi)∥
2

+E∥
n−1

∑
i=0

bi(Xi)∆Wi∥
2

+E∥
n−1

∑
i=0

Ea
i ∥

2

+
4

∑
ℓ=1

E∥
n−1

∑
i=0

Eb,ℓ
i ∥

2

.

(F.9)

We now focus on bounding these second moments, using the fact that for n ∈ [N], we have
τn ⩽ τN = τ⌊T /τ⌋ ⩽ T . First, we have ∥ai(Xi)∥ ⩽K + K2m

2
and hence

τ2E∥
n−1

∑
i=0

āi(Xi)∥
2

≲ τ2n
n−1

∑
i=0

E∥āi(Xi)∥2 ≲K,m (nτ)2 ≲K,m,T 1.

Next, since {bi(Xi)∆Wi}i forms a martingale difference sequence (MDS),

E∥
n−1

∑
i=0

bi(Xi)∆Wi∥
2

=
n−1

∑
i=0

E∥bi(Xi)∆Wi∥2 = τ
n−1

∑
i=0

E∥bi(Xi)∥2F ≲K,m nτ ≲K,m,T 1.

Next, we have the following bound using the second moment computations for the error terms:

E∥
n−1

∑
i=0

Ea
i ∥

2

+E∥
n−1

∑
i=0

Eb,1
i ∥

2

≲ n
n−1

∑
i=0

(E∥Ea
i ∥2 +E∥Eb,1

i ∥
2) ≲K,m n

n−1

∑
i=0

(1 +E∥Xi∥2)τ3

≲K,m (nτ)2τ + nτ3
n−1

∑
i=0

E∥Xi∥2 ≲K,m,T τ + τ2
n−1

∑
i=0

E∥Xi∥2,

E∥
n−1

∑
i=0

Eb,2
i ∥

2

+E∥
n−1

∑
i=0

Eb,3
i ∥

2

≲ n
n−1

∑
i=0

(E∥Eb,2
i ∥

2 +E∥Eb,3
i ∥

2) ≲K,m (nτ)2τ ≲K,m,T τ.

Furthermore, since {Eb,4
i }i is an MDS,

E∥
n−1

∑
i=0

Eb,4
i ∥

2

=
n−1

∑
i=0

E∥Eb,4
i ∥

2 ≲K,m (nτ)τ ≲K,m,T τ.

Combining these bounds together in (F.9), we obtain:

E∥Xn∥2 ≲K,m,T 1 + τ2
n−1

∑
i=0

E∥Xi∥2.

By the discrete Gronwall lemma (Proposition F.6), we have:

E∥Xn∥2 ⩽ CK,m,T exp(nτ2C ′K,m,T ) ⩽ CK,m,T exp(τC ′′K,m,T ) ≲K,m,T 1.

Hence, we have shown that:

max
n∈{0,...,N}

E∥Xn∥2 ≲K,m,T 1.

Final result. Our goal now is to estimate E[∆2
n] for ∆n ∶=maxi∈[n]∥δi∥, where δi ∶= X̄i −Xi. We

start with:

δn+1 = X̄n+1 −Xn+1

= δn + [ān(X̄n) − ān(Xn)] τ + [bn(X̄n) − bn(Xn)]∆Wn −En.

Hence for n ∈ [N],

∥δn∥2 = ∥τ
n−1

∑
i=0

[āi(X̄i) − āi(Xi)] +
n−1

∑
i=0

[bi(X̄i) − bi(Xi)]∆Wi −
n−1

∑
i=0

Ei∥
2
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≲ τ2 ∥
n−1

∑
i=0

[āi(X̄i) − āi(Xi)]∥
2

+ ∥
n−1

∑
i=0

[bi(X̄i) − bi(Xi)]∆Wi∥
2

+ ∥
n−1

∑
i=0

Ei∥
2

≲K τ2n
n−1

∑
i=0

∥δi∥2 + ∥
n−1

∑
i=0

[bi(X̄i) − bi(Xi)]∆Wi∥
2

+ n
n−1

∑
i=0

(∥Ea
i ∥2 +

3

∑
ℓ=1

∥Eb,ℓ
i ∥

2) + ∥
n−1

∑
i=0

Eb,4
i ∥

2

.

Therefore,

∆2
n = max

k∈[n]
∥δk∥2 ≲K τ2n

n−1

∑
i=0

∥δi∥2 + n
n−1

∑
i=0

(∥Ea
i ∥2 +

3

∑
ℓ=1

∥Eb,ℓ
i ∥

2)

+max
k∈[n]

∥
k−1

∑
i=0

[bi(X̄i) − bi(Xi)]∆Wi∥
2

+max
k∈[n]

∥
k−1

∑
i=0

Eb,4
i ∥

2

≲K τ2n
n−1

∑
i=0

∆2
i + n

n−1

∑
i=0

(∥Ea
i ∥2 +

3

∑
ℓ=1

∥Eb,ℓ
i ∥

2)

+max
k∈[n]

∥
k−1

∑
i=0

[bi(X̄i) − bi(Xi)]∆Wi∥
2

+max
k∈[n]

∥
k−1

∑
i=0

Eb,4
i ∥

2

. (F.10)

Now, using nearly identical arguments as in the second moment calculation of the error terms, in
addition to the uniform bound on E∥Xn∥2 for n ∈ {0, . . . ,N}, we have:

E [n
n−1

∑
i=0

(∥Ea
i ∥2 +

3

∑
ℓ=1

∥Eb,ℓ
i ∥

2)] ≲K,m,T τ.

On the other hand, since both {[bi(X̄i) − bi(Xi)]∆Wi}i and {Eb,4
i }i are both martingale difference

sequences, using Doob’s maximal inequality (Proposition F.5),

Emax
k∈[n]

∥
k−1

∑
i=0

[bi(X̄i) − bi(Xi)]∆Wi∥
2

+Emax
k∈[n]

∥
k−1

∑
i=0

Eb,4
i ∥

2

≲ E∥
n−1

∑
i=0

[bi(X̄i) − bi(Xi)]∆Wi∥
2

+E∥
n−1

∑
i=0

Eb,4
i ∥

2

=
n−1

∑
i=0

E ∥[bi(X̄i) − bi(Xi)]∆Wi∥
2 +

n−1

∑
i=0

E∥Eb,4
i ∥

2

≲K,m,T τ
n−1

∑
i=0

E∥δi∥2 + τ ≲K,m,T τ
n−1

∑
i=0

E[∆2
i ] + τ.

Hence, taking expectation in (F.10) and combining the previous second moment estimates, we have:

E[∆2
n] ≲K,m,T τ

n−1

∑
i=0

E[∆2
i ] + τ.

From the discrete Gronwall inequality (Proposition F.6),

E[∆2
n] ⩽ CK,m,T τ exp(nτC ′K,m,T ) ≲K,m,T τ,

which completes the proof.

We can now complete the proof of Theorem F.4.

Proof of Theorem F.4. We have:

Xtn − X̂n
(a)= X̄tn − X̂n = (X̄tn − ˆ̄Xn) + ( ˆ̄Xn − X̂n),

where (a) holds since the Stratonovich SDE (Xt) (F.1) and the Itô SDE (X̄t) (F.5) are identical for
a.e. (ω, t). Hence we have:

E max
n∈{0,...,N}

∥Xtn − X̂n∥2 ≲ E max
n∈{0,...,N}

∥X̄tn − ˆ̄Xn∥2 +E max
n∈{0,...N}

∥ ˆ̄Xn − X̂n∥2.
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Next, since the pair (a, b) is Heun-regular by assumption, then the pair (ā, b) is EM-regular by
Proposition F.7. Hence by Theorem F.2, we have the EM discretization { ˆ̄Xn}n is order 1/2 strongly
convergent to the SDE (X̄t)t, i.e., Emaxn∈{0,...,N}∥X̄tn − ˆ̄Xn∥2 ⩽ Cτ . Furthermore, by Lemma F.8

we have Emaxn∈{0,...N}∥ ˆ̄Xn − X̂n∥2 ⩽ C ′τ as well. Note in both cases, C,C ′ do not depend on τ ,
and hence the proof is complete.

G Experimental Details

We use each algorithm to train an 8-layer neural network with 64 neurons per layer and swish
activation [52] to model the solution u(x, t) of a PDE. The boundary condition is enforced by adding
a boundary condition penalty Ex∼µ′[(uθ(x,T )−ϕ(x)2]+E[∥∇uθ(x,T )−∇ϕ(x)∥2] involving both
the zero-th and first-order values of ϕ [4], where the distribution µ′ is taken over each method’s
approximation of the distribution of XT . Additionally, following state-of-the-art PINN architectures
practices [7], Fourier embeddings [53] with a 256 embedding dimension and skip connections on odd
layers are used. We use a trajectory batch size of 64, translating to 64 realizations of the underlying
Brownian motions. Additionally, we utilize a sub-sampling batch size of 1024 for the batched
algorithm runs. We use the Adam optimizer with a multi-step learning rate schedule [4] of 10−3,10−4,
and 10−5 at 50k, 75k, and 100k iterations, respectively. All models are trained on a single NVIDIA
A100 GPU node in our internal cluster, using the jax library [54].

G.1 PDE Test Cases

Hamilton-Jacobi-Bellman (HJB) Equation. First, we consider the following Hamilton-Jacobi-
Bellman (HJB) equation studied in [4]:

∂tu(x, t) = −Tr[∇2u(x, t)] + ∥∇u(x, t)∥2, x ∈ Rd, t ∈ [0, T ].

For the terminal condition u(x,T ) = ϕ(x) = ln (.5(1 + ∥x∥2)), the analytical solution is given as

u(x, t) = − ln (E [exp (−g(x +
√
2BT−t))]). (G.1)

The HJB PDE is related to the forward-backward stochastic differential equation of the form:

dXt = σdBt, t ∈ [0, T ],
dYt = ∥Zt∥2dt + σZT

t dBt, t ∈ [0, T ),

where T = 1, σ =
√
2, X0 = 0, and YT = ϕ(XT ). Additionally, the Stratonovich SDE is given as:

dXt = σ ○ dBt, t ∈ [0, T ],

dYt = [∥Zt∥2 −
1

2
Tr [σ2∇2u(Xt, t)]]dt + σZT

t ○ dBt,

In our experiments, in order to compute the analytical solution (G.1), we approximate it using 105

Monte-Carlo samples.

Black-Scholes-Barenblatt (BSB) Equation. Next, we consider the 100D Black-Scholes-Barenblatt
(BSB) equation from [4] of the form

∂tu(x, t) = −
1

2
Tr[σ2 diag(x2)∇2u(x, t)] + r (u(x, t) − ∇u(x, t)Tx) , x ∈ Rd, t ∈ [0, T ],

where x2 is understood to be coordinate-wise, and diag(v) is a diagonal matrix with diag(v)i = vi.
Given the terminal condition u(x,T ) = ϕ(x) = ∥x∥2, the explicit solution to this PDE is

u(x, t) = exp ((r + σ2)(T − t))ϕ(x).
The BSB PDE is related to the following FBSDE

dXt = σ diag(Xt)dBt, t ∈ [0, T ],
dYt = r (Yt −ZT

t Xt)dt + σZT
t diag(Xt)dBt, t ∈ [0, T ),
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where T = 1, σ = .4, r = .05, X0 = (1, .5,1.,5, . . . ,1, .5), and YT = ϕ(XT ). The equivalent
Stratonovich SDE is given as:

dXt =
σ2

2
Xtdt + σ diag(Xt) ○ dBt,

dYt = [r (Yt −ZT
t Xt) −

σ2

2
(ZT

t Xt +Tr [diag(X2
t )∇2

xu(Xt, t)])]dt + σZT
t diag(Xt) ○ dBt,

Fully-Coupled FBSDE. Finally, we consider a FBSDE with coupled forward and backwarwds
dynamics adapted from Bender & Zhang (BZ) [36]:

dXt = σYtdBt, t ∈ [0, T ],

dYt =
⎡⎢⎢⎢⎢⎣
−rYt +

1

2
e−3r(T−t)σ2 ⎛

⎝
D

d

∑
j=0

sin(Xj,t)
⎞
⎠

3⎤⎥⎥⎥⎥⎦
dt +ZT

t dBt, t ∈ [0, T ),

where Xj,t denotes the j-th coordinate of Xt ∈ Rd. Due to the dependence of the forward process
(Xt) on (Yt), this set of coupled FBSDE does not fit into the mathematical formulation set forth in
(3.3) and (3.4). Nevertheless, we can still apply the BSDE methods described at the beginning of
Section 6 by initializing Y0 = uθ(x,0) and jointly integrating (Xt, Yt). We set T = 1, r = .1, σ = .3,
D = .1, X0 = (π/2, π/2, . . . , π/2), and YT (XT ) = ϕ(XT ) =D∑d

j=1 sin(Xj,T ). The above FBSDE
is induced from the following PDE

∂tu(x, t) = −
1

2
σ2u(x, t)2∇2u(x, t) + ru(x, t) − 1

2
e−3r(T−t)σ2 ⎛

⎝
D

d

∑
j=0

sin(xj)
⎞
⎠

2

with the analytical solution u(x, t) = e−r(T−t)D∑d
j=0 sin(xj). Additionally, the equivalent

Stratonovich SDE is given as:

dXt =
σ2

2
ZtYt + σYt ○ dBt,

dYt =
⎡⎢⎢⎢⎢⎣
−rYt +

1

2
e−3r(T−t)σ2 ⎛

⎝
D

d

∑
j=0

sin(Xj,t)
⎞
⎠

3

− σ2

2
(Z2

t Yt +Tr [Y 2
t ∇2

xu(Xt, t)])
⎤⎥⎥⎥⎥⎦
dt +ZT

t ○ dBt,

G.2 Sensitivity to Floating Point Precision

In BSDE-based losses, floating point errors can accumulate through out integration of the SDEs,
leading to poor performance on the trained model. As seen in Table 3, the floating point error is
especially apparent in the Heun loss on the 100D BSB case where the performance of the model is
improved by a factor of 10 between float32 and float64. In addition, performance improvements
were observed for the PINNs and FS-PINNs models as well. It is also noted that the EM-BSDE
models performed slightly worse at a float64, which may be attributed to the bias term present in
its loss. Overall, floating point sensitivity is more apparent in the BSB problem than the HJB problem.
We attribute this to the non-trivial forward trajectory in the BSB problem. We leave more numerically
stable implementations of the Heun solver in float32, such as PDE non-dimensionalization [7] and
the use of the reversible Heun solver from [41], to future work.

100D HJB 100D BSB
Method float32 float64 float32 float64
PINNs 0.1281 ± .0136 0.1281 ± .0171 2.9648 ± .8652 1.5066 ± .2349

FS-PINNs 0.0838 ± .0170 0.0702 ± .0074 0.0602 ± .0150 0.0497 ± .0031
EM-BSDE 0.3776 ± .0365 0.3820 ± .0219 0.2451 ± .0160 0.3735 ± .0470

EM-BSDE (NR) 0.4459 ± .0410 0.4676 ± .0153 0.1648 ± .0143 0.1855 ± .0078
Heun-BSDE 0.0675 ± .0053 0.0529 ± .0029 0.4587 ± .0261 0.0535 ± .0113

Table 3: float32 vs float64 Performance in 100D HJB/BSB
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G.3 Dimensionality Study

Additionally, we demonstrate scalability of the algorithms by re-running the HJB problem at various
dimensions and plotting the RL2 error for each method. Figure 6 shows EM-BSDE underperforming
both FS–PINNs and Heun-BSDE across all dimensions tested. Additionally, trajectory-based methods
scale more effectively to high-dimensional problems with PINNs-based methods showing a slight
advantage in lower dimensions.
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Figure 6: A plot of RL2 performance for
the HJB problem at various dimensions din =

{2,10,50,100,200,500}
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Figure 7: A plot of RL2 performance vs runtime at
fixed iteration steps

G.4 Improved Algorithm Schemes

We describe the algorithmic differences between the full roll-out algorithm and the batched sub-
sampling variation for the general BSDE loss; a similar algorithm is used FS-PINNs, replacing
self-regularization loss with the PINNs loss.

Algorithm 2 Full BSDE Loss Algorithm

Input: Neural network ûθ(x, t), parameters θ, terminal function ϕ, time step ∆t, trajectory length N .
Output: Self-consistency loss Lsr and terminal loss Lϕ

1: Sample initial state: (x[0], t[0]) = (x0,0), with x0 ∼ µ
2: Evaluate network at initial state: (u,ux) = (ûθ(x[0], t[0]),∇xûθ(x[0], t[0]))
3: Initialize self-consistency losses: ℓstep[0 ∶ N − 1] ← 0
4: for i = 0, . . . ,N − 1 do
5: Sample Brownian noise: ξ ∼ N(0, Id)
6: /* Forward SDE rollout */
7: Propagate forward state: x[i + 1] = x[i] +∆x
8: if no resetting then
9: /* Use either EM or Heun integration (NR) */

10: Propagate backward state: y[i + 1] = y[i] +∆y
11: else
12: /* Use either EM or Heun integration */
13: Propagate backward state: y[i + 1] = u +∆y
14: end if
15: Propagate time: t[i + 1] = t[i] +∆t
16: Evaluate network at new state: (u,ux) = (û(x[i + 1], t[i + 1]),∇xû(x[i + 1], t[i + 1]))
17: Record local residual loss: ℓstep[i] = (u − y[i + 1])2

18: end for
19: Compute self-consistency loss: Lsr = ∑

N−1
i=0 ℓstep[i]

20: Compute terminal loss: Lϕ = (u − ϕ)
2
+ ∥ux −∇xϕ∥

2

21: return (Lsr,Lϕ)

As shown in Algorithms 2 and 3, the new variation of the loss separates the forward and backward
propagation which enables random sub-sampling in the loss evaluation. At full sampling (B = N ),
the batched algorithm recovers loss and gradient values consistent with the original algorithm with

44



Algorithm 3 Batched, Sub-sampling BSDE Loss Algorithm (Full description of Algorithm 1)

Input: Neural etwork ûθ(x, t), parameters θ, terminal function ϕ, time step ∆t, trajectory length N ,
evaluation batch B.
Output: Self-consistency loss Lsr and terminal loss Lϕ

1: Sample initial state: (x[0], t[0]) = (x0,0), with x0 ∼ µ
2: Sample Brownian noise: ξ[0 ∶ N − 1] ∼ N(0, Id)
3: Evaluate network at initial state: (u,ux) = (ûθ(x[0], t[0]),∇xûθ(x[0], t[0]))
4: /* Forward SDE rollout */
5: for i = 0, . . . ,N − 1 do
6: /* Use either EM or Heun integration */
7: Propagate forward state: x[i + 1] = x[i] +∆x
8: Propagate time: t[i + 1] = t[i] +∆t
9: if coupled then

10: Evaluate network at new state: (u,ux) = (ûθ(x[i + 1], t[i + 1]),∇xûθ(x[i + 1], t[i + 1]))
11: end if
12: end for
13: Stop gradient: x[0 ∶ N] = SG(x[0 ∶ N])
14: Separate states: (xi, xi+1, ti, ti+1) = (x[0 ∶ N − 1], x[1 ∶ N], t[0 ∶ N − 1], t[1 ∶ N])
15: /* Same permutations */
16: Random sub-sampling: (xi, xi+1, ti, ti+1) = perm(xi, xi+1, ti, ti+1)[0 ∶ B − 1]
17: Evaluate network at i points: (ui, uix) = (ûθ(xi, ti),∇xûθ(xi, ti))
18: /* Use either EM or Heun Integration */
19: Compute backward state at batched point: yi+1 = ui +∆y
20: Evaluate network at i + 1 points: ui+1 = ûθ(xi+1, ti+1)
21: /* Use PINNs loss instead for FS-PINNs */
22: Compute self-consistency loss: Lsr =

N
B ∑

B−1
i=0 (ui+1 − yi+1)

2

23: Evaluate network at T : (u,ux) = (ûθ(x[N], t[N]),∇xûθ(x[N], t[N]))
24: Compute terminal loss: Lϕ = (u + ϕ)

2
+ ∥ux −∇xϕ∥

2

25: return (Lsr,Lϕ)

proper scaling. Additionally, the stop gradient on the forward SDE has negligible effects on model
performance but can improve convergence as it fixes optimization to only the backward SDE or PDE.

Note that Algorithms 2 and 3 are simplified for readability and excludes some algorithmic details
such as trajectory batching and loss weighting.

G.5 Behavior Policy Rollouts for HJB Optimal Control

Suppose our control system is a deterministic control-affine system: ẋ = f(x)+g(x)u. For a positive
definite R, the HJB equation for stagewise cost c(x) + 1

2
∥u∥2R and terminal cost cT is:

∂tV + ⟨∇xV, f⟩ + c −
1

2
∥gT∇V ∥2R−1 = 0, V (x,T ) = cT (x),

and the optimal control induced by V is πV (x, t) ∶= −R−1gT(x)∇V (x, t).
Now, suppose we have any rollout policy π(x, t), and we consider Itô stochastic rollouts of the form:

dXπ
t = [f(Xπ

t ) + g(Xπ
t )π(Xπ

t , t)]dt + σdBt.

Now, the optimal value function V ⋆(x, t) satisfies the following SDE:

dV ⋆(Xπ
t , t) = [∂tV ⋆(Xπ

t , t) + ⟨f(Xπ
t ) + g(Xπ

t )π(Xπ
t , t),∇V ⋆(Xπ, t)⟩ + σ2

2
tr(∇2V ⋆(Xπ

t , t))]dt

+ σ⟨∇V ⋆(Xπ
t , t),dBt⟩

= [1
2
∥gT∇V ⋆∥2R−1 − c + ⟨gπ,∇V ⋆⟩ +

σ2

2
tr(∇2V ⋆)]dt + σ⟨∇V ⋆,dBt⟩,

noting that the last expression is evaluated at (Xπ
t , t). Hence, the forward/backwards Itô SDEs for a

given value function V and behavior policy π are:

dXπ
t = [f(Xπ

t ) + g(Xπ
t )π(Xπ

t , t)]dt + σdBt, (G.2a)
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dY V
t = [

1

2
∥gT∇V ∥2R−1 − c + ⟨gπ,∇V ⟩ +

σ2

2
tr(∇2V )]dt + σ⟨∇V,dBt⟩, (G.2b)

noting again that the expressions in (G.2b) are evaluated at (Xπ
t , t).

Similarly, we can define the forward/backwards Stratonovich SDEs as:

dXπ
t = [f(Xπ

t ) + g(Xπ
t )π(Xπ

t , t)]dt + σdBt, (G.3a)

dY V
t = [

1

2
∥gT∇V ∥2R−1 − c + ⟨gπ,∇V ⟩]dt + σ∇V T ○ dBt. (G.3b)

Note that the Itô BSDE (G.2b) requires explicit Hessian computation ∇2V while the Stratonovich
BSDE (G.3b) does not. This holds for all first-order PDEs, such as in deterministic HJB problems.

These forward/backward SDEs can be used in conjunction with the induced policy πV from the
current value function V . Some care must be taken though when setting up the BSDE losses. In
particular, since both the forward SDE trajectory (XπV

t )t and the πV (XπV
t , t) terms which appear

the backward SDEs depend implicitly on V , stop-gradient operators should be placed so that gradients
are not back-propagated through these values, which can destabilize training.

G.6 Pendulum Swing Up Experiment

In addition to the results above, we include a simple pendulum swing-up optimal control experiment
inspired by [55]. Given the pendulum equations of motion,

x = [θ
θ̇
] , f(x,u) = ẋ = [ θ̇

− 1
ml2
(bθ̇ −mgl sin θ − u)] ,

we define a optimal control objective:

J⋆(x0) =min
u(t)
∫

T

0
c(x(t), u(t))dt +Φ(x(T )),

where:

c(x,u) = Φ(x) + ru2, Φ(x) = q1 sin2 θ + q1(cos θ − 1)2 + q2θ̇2,
with q1, q2, r > 0. Observe that this problem setup exactly fits the setup in Appendix G.5, and hence
both the forward/backward Itô and Stratonovich SDEs in (G.2) and (G.3) directly apply.

G.6.1 Pendulum Results

Metric PINNs FS-PINNs EM-BSDE Heun-BSDE
Cost 53.17 46.59 46.42 46.43

PDE Error 2.77 3.38 78.94 18.6
Table 4: Accumulated cost and average PDE error for the pendulum swing-up problem.

The results of the pendulum swing-up case are outlined in Table 4. We use the specific constants
m = 1, b = 0.1, l = 1, g = 9.8, q1 = 10, q2 = 1, r = 1 in our experiment. It is observed that while the
accumulated cost between the three trajectory-based methods remain similar, the lower PDE error on
FS-PINNs and Heun-BSDE signify better learned solutions. Furthermore, in Figure 8, we observe
that Heun-BSDE generally has the lowest PDE error with high errors only at the discontinuities.
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Figure 8: PDE error at t = 0 for the pendulum swing up case.
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