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ABSTRACT

One approach for interpreting black-box machine learning models is to find a
global approximation of the model using simple interpretable functions, which is
called a metamodel (a model of the model). Approximating the black-box with
a metamodel can be used to 1) estimate instance-wise feature importance; 2) un-
derstand the functional form of the model; 3) analyze feature interactions. In this
work, we propose a new method for finding interpretable metamodels. Our ap-
proach utilizes Kolmogorov superposition theorem, which expresses multivariate
functions as a composition of univariate functions (our primitive parameterized
functions). This composition can be represented in the form of a tree. Inspired by
symbolic regression, we use a modified form of genetic programming to search
over different tree configurations. Gradient descent is used to optimize the pa-
rameters of a given configuration. Using several experiments, we show that our
method outperforms recent metamodeling approaches suggested for interpreting
black-boxes.

1 INTRODUCTION

In the recent years machine learning (ML) algorithms made several breakthroughs in issuing ac-
curate predictions. There is however a growing need to improve trustworthiness of these models.
Providing accurate predictions is not enough in high-stake applications like healthcare where an
agent (e.g. clinician) needs to interact with the model. In these applications the agent usually needs
to understand how a particular prediction is issued. Especially, if the model prediction (say treatment
plan) is different from what the clinician has in mind, explaining the model is vital. Complicated ML
models like neural networks are essentially black-boxes to humans, and that is why interpretability
methods are important and have gained significant attention in recent years (Ribeiro et al., 2016b;
Lundberg & Lee, 2017; Guidotti et al., 2018; Arnaldo et al., 2014; Zhang et al., 2018; Alvarez-Melis
& Jaakkola, 2018; Arrieta et al., 2020; Lou et al., 2013; Doshi-Velez & Kim, 2017).

There exist two key approaches to bring interpretability to machine learning models: (1) by design-
ing inherently interpretable models Rudin (2019); Chen et al. (2019); Alvarez-Melis & Jaakkola
(2018); or (2) by designing post-hoc methods to understand a pre-trained model Ribeiro et al.
(2016a); Lipton (2016). In this work, we focus on the second approach that includes methods to
analyse a trained model locally and globally (Montavon et al., 2018). The local interpretability
methods focus on instance-wise explanations, which although useful, provide little understanding of
a model’s global behaviour (Ribeiro et al., 2016b; Lundberg & Lee, 2017). Hence, researchers have
proposed multiple techniques to interpret how a ML model behaves for a group of the instances.
Some examples of global analysis methods include permutation feature importance Molnar (2019),
activation-maximisation Erhan et al. (2009), and learning globally surrogate models (Thrun, 1995;
Craven & Shavlik, 1996).

Our work relates to the last approach that aims to learn interpretable proxies by approximating the
behaviour of black-box ML models for multiple instances. Some efforts in this category include
methods to approximate neural networks with if-then rules Thrun (1995) or decision trees Craven
& Shavlik (1996) and the method to approximate matrix factorisation models using Bayesian net-
works and simple logic rules (Carmona et al., 2015). Our work is mostly relevant to a different
category of approaches for learning interpretable proxies that focuses on approximating black-box
functions with symbolic metamodels. A proper interpretable metamodel can enjoy benefits of differ-
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ent categories of interpretability methods. For example, a metamodel may provide insight into the
interactions of different features and how they contribute in producing results. The metamodel can
be locally approximated (e.g. using Taylor series) to generate instance-wise explanations. More-
over, it may be used for scientific discovery by revealing underlying laws governing the observed
data (Schmidt & Lipson, 2009; Wang et al., 2019; Udrescu & Tegmark, 2020b).

Symbolic regression (SR) Koza (1994), has been the primary approach for finding approximate
metamodels. In SR, there exist some fixed mathematical building blocks (e.g. summation opera-
tion), and the Genetic Programming (GP) algorithm searches over possible expressions that can be
composed by combining the building blocks. We will explain SR in more details in Section 2 and
compare it with our proposed method in Section 4. The major limitation of SR is that it uses a
set of limited predefined building blocks and the search spaces grows when the number of building
blocks increase. Two recent papers, which are the most relevant to our work Alaa & van der Schaar
(2019); Crabbe et al. (2020), address this issue by suggesting the use of a parametric trainable class
of functions instead of fixed building blocks. In particular, they suggest using Meijer G-functions
(we briefly introduce this class in Section 2). Note that these are univariate functions, in order to
use them in multivariate settings, Alaa & van der Schaar (2019) considers a heuristic approximation
of Kolmogorov superposition theorem (KST) and Crabbe et al. (2020) considers the projection pur-
suit method (in Section 4, we show that their method can be also considered as an approximation
of KST). Both these works start from a general framework, however, they make some restricting
assumptions that limit the usability and coverage of their methods. For example, the simple function
x1x2 (here xi’s are features) cannot be represented with the method given in (Crabbe et al., 2020).
Similarly, the method in Alaa & van der Schaar (2019) fails to represent the product of three features
x1x2x3. Another limitation of the proposed approaches is that although most of familiar functions
are indeed special cases of Meijer G-functions, for almost all parameters, Meijer G-functions do not
have familiar closed form representation. Therefore, in practice, in the training of parameters it is
very unlikely to obtain a set of parameters that are “interpretable”.

In this work, we address the above challenges by proposing a new methodology to learn symbolic
metamodels. Our approach considers a more general approximation of KST and involves represent-
ing the KST expression using trees with edges representing simple parameterized functions (e.g.,
exponential). Then we use gradient descent to train multiple trees and employ GP to search for the
tree that most accurately approximates the black-box function. We demonstrate the efficacy of our
proposed method through three experiments. The results suggest that our approach for estimating
symbolic metamodels is comparatively more generic, accurate, and efficient than other symbolic
metamodeling methods. In this work we are using our proposed method to provide interpretations,
however, this method can be considered in general as a new GP method. Our method should be clas-
sified as a memetic algorithm where a population based method is paired with a refinement method
(in our case gradient descent) (Chen et al., 2011). To the best of our knowledge, this is the first
method that uses gradient descent not only for training numerical constants but also for the training
of building blocks (i.e., primitive functions).

2 PRELIMINARIES

In this section, we present a brief overview of building blocks of our proposed method: genetic
programming; and classes of trainable functions.

Genetic Programming and symbolic regression: Genetic programming (GP) is an optimization
method inspired by law of natural selection proposed by Koza in 1994 (Koza, 1994). It starts with a
population of random programs for a particular task and then evolves the population in each iteration
with operations inspired by natural genetic processes. The idea is that after enough iterations the
population evolves and a fit program can be found in later generations. The two typical operations
for evolving are crossover and mutation. In crossover, we choose the fittest programs (the fitness
criterion is predefined for the task in hand) for reproduction of next generation (parents) and swap
random parts of the selected pairs. In mutation operation, a random part of a program is substituted
by some other randomly generated part of a program. One instance of using GP is for optimization in
Symbolic Regression (SR), where the goal is to find a suitable mathematical expression to describe
some observed data. In this setting, each program consists of primitive building blocks such as
analytic functions, constants, and mathematical operations. The program is usually represented with
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a tree, where each node is representing one of the building blocks. We refer to Orzechowski et al.
(2018); Wang et al. (2019) for more details on SR. GP as a population base optimization method
can be paired with other refinement methods. For example, here we are using both GP and GD
in our method. These methods are called memetic algorithms. in particular, our method should be
classified as a Lamarckian memetic algorithm, where Lamarckian refers to the method of inheritance
in GP search. we refer to (Emigdio et al., 2014; Chen et al., 2011) for more details on taxonomy of
GP methods.

Class of trainable functions: In contrast with SR which uses fixed building blocks, our proposed
approach (similar to (Alaa & van der Schaar, 2019) and (Crabbe et al., 2020)) uses a class of trainable
parameterized functions as building blocks. One such class of functions is called Meijer G-functions
and have been used in two recent approaches to learn symbolic metamodels (Meijer, 1946; 1936).
A Meijer-G function Gm,n

p,q is defined as an integral along the path L in the complex plane.

Gm,n
p,q

(
a1,...,ap

b1,...,bq

∣∣∣x) =
1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj + s)
xs ds, (1)

where 0 ≤ m ≤ q and 0 ≤ n ≤ p are all integers, and ai, bj ∈ R for 1 ≤ i ≤ p and 1 ≤ j ≤ q. L is
a path which separates poles of Γ(1−bj +s) from poles of Γ(aj +s). By fixingm,n, p, q we have a
class of parameterized functions (ai’s and bi’s are parameters), which can be trained using gradient
descent. We refer to Beals & Szmigielski (2013) for a more detailed definition of these functions.
Meijer G-functions are rich set of functions that have most of the familiar functions which we think
of as interpretable as special cases. For example,

G0,1
3,1(2,2,21 |x) = x, G1,0

0,1(−0 |x) = e−x, and G1,2
2,2(1,11,0 |x) = log(1 + x).

However, when trained using gradient descent (GD), the final parameters for Meijer G-functions
almost always will not have an interpretable closed form. This limits insight into the functional form
of the black-box model. Hence, in this work, we propose using classes of simple, interpretable,
parameterized functions that can be efficiently optimized using GD. The class of functions can
be chosen by a domain expert for each particular task. We will discuss the selection of primitive
functions further in Appendix C. Specifically, here we demonstrate our approach using the following
five parameterized functions:

f1(a, b|x) = ae−bx, f2(a, b, c|x) = a sin(bx+ c), f3(a, b, c, d|x) = ax3 + bx2 + cx+ d

f4(a, b, c|x) = a log(bx+ c), f5(a, b, c, d|x) = ax/(bx2 + cx+ d).

In Appendix C, we show that our presented results will not significantly change with using other set
of primitive functions.

Remark. It is important to revisit that our proposed framework is generic and can accommodate
any trainable class of functions, including Meijer G.

3 METHOD

Assume that a black box function f : X → R is trained on a dataset. Our goal is to find an
interpretable function g which approximates f . To this end, we restrict g to belong to the class of
functions G which are deemed to be interpretable. Therefore, we want to find the solution to the
following optimization problem:

arg min
g∈G

`(f, g), (2)

where ` is our loss function of choice. In this work, we assume ` to be mean square loss

`(f, g) =

∫
X

(g(x)− f(x))2dx. (3)

In order to approximate multivariate function f , we deploy Kolmogorov superposition theorem (Kol-
mogorov, 1957) which states that any multivariate continuous function (with d variables) has a rep-
resentation in terms of univariate functions as follows:

g(x) = g(x1, · · · , xd) =

2d+1∑
i=1

gouti

 d∑
j=1

ginij (xj)

 . (4)
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In our setting, each of ginij and gouti can be a function from G. However, fully implementing this
equation (especially, using computationally expensive Meijer G-functions) is impractical even for
moderate values of d. Therefore, an approximation is proposed in Alaa & van der Schaar (2019) by
considering a single outer function which is set to be identity and adding multiplication of all pairs
of attributes to capture their correlation (we discuss this method in more details in Section 4). In this
work we propose another method for approximating Equation (4).

3.1 APPROXIMATING KST

In our method, we approximate KST using trees with L < 2d+1 middle nodes, where each of them
is connected to only a subset of inputs. We denote the middle nodes with hi, for 1 ≤ i ≤ L. Our
approximation can be represented via a three layered tree (see Figure 1). There is a single root node
at the top of the tree which is connected to L middle nodes. Each middle node is connected to a
subset of bottom layer nodes. The bottom layer of the tree has d nodes corresponding to d features.
For simplicity, when it is not confusing, we call the node corresponds to ith feature by xi.

Note that each edge in the graph represents a univariate function. We denote the function correspond-
ing to the edge between hi and the root with ghi

(these are the outer functions), and the function
corresponding to an edge between hi and xj is denoted by gij (inner functions). The argument of gij
is naturally the feature it is connected to, namely xj , and the argument of ghi

is the summation of all
incoming functions to hi. That is,

∑
j∈N (hi)

gij(xj), where N (hi) denotes the neighbours of node
hi in the graph. Finally, for the root node we sum all the outputs of all L middle layer functions.
Therefore, each tree is representing a function from X to R, which can be expressed as follows:

g(x) =

L∑
i=1

ghi

 ∑
j∈N (hi)

gij(xj)

 . (5)

3.2 USING GP FOR TRAINING OF METAMODELS

Now we want to solve the optimization problem in (2), where G is the set of all functions that can
be represented in form of Equation (5), where all gij and ghi

are drawn from the class of primitive
parameterized functions. We propose solving this optimization problem by running a version of
genetic programming algorithm. The tree representation of Equation (5), resembles the trees in
symbolic regression that represents each program. Note that, unlike normal GP, here our constructed
trees has a fixed structure of three layers, and also edges are representing functions. Hence we need
to modify GP accordingly. In this section, we explain the details of the GP algorithm, a sketch of
the algorithm is presented in Figure 3 in Appendix.

3.2.1 PRODUCING RANDOM TREES

x1 x2 x3 x4 x5 x6 x7

h1 h2 h3

r

Figure 1: A sample tree structure, each edge is
representing a univariate function

In the first step, we produce M random trees
T1, · · · , TM . Each tree Ti has Li middle nodes,
where Li is an integer in [l1, l2]. l1 and l2 are
important hyperparameters, determining num-
ber of middle nodes. For each of Li middle
nodes, a random subset of bottom layers will
be chosen to be connected to this node. At first
instance, for all 1 ≤ u ≤ Li and 1 ≤ v ≤ d,
we connect hu and xv with probability 0 < p0.
Then if there exist an xv which is not con-
nected to any of the middle nodes. We choose
1 ≤ u ≤ Li uniformly at random and then con-
nect xv and hu to ensure every xi is connected to at least one of the middle nodes. p0 is the parameter
that controls sparsity of the produced graphs, which is one of the main factors that determine the
complexity of the training procedure. Each edge is representing a function from our class of prim-
itive functions, thus we uniformly at random choose one of the function classes for each edge and
also initialize its parameters with samples from normal distribution.
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3.2.2 TRAINING PHASES

In the training phase, for each tree, we update the parameters of each edge using gradient descent.
We choose a constant k and apply k gradient descent updates on the parameters of functions ghi

and
gij . Let g′hi

(x) =
dghi

(x)

dx . For a one of the parameters of gij and b a parameter of ghi
, the gradient

of g with respect to a and b can be computed as follows (recall that g is representing the metamodel):

∂g(x)

∂a
=
∂gij(xj)

∂a
· g′hi

 ∑
k∈N (hi)

gik(xk)

 ,
∂g(x)

∂b
=
∂ghi

∂b

 ∑
j∈N (hi)

gij(xj)

 . (6)

In this work, we choose a fixed learning rate and leave the exploration of using more advanced
optimization techniques for future work (this is compatible with Alaa & van der Schaar (2019) and
Crabbe et al. (2020), and allows us to have a fair comparison with these works).

3.2.3 EVALUATION FITNESS OF METAMODELS

For evaluating fitness of the trained metamodels, we uniformly at random sample m points from X
and query the output of black-box f and metamodels g1, · · · , gM on these m points and compute
the mean square loss for the metamodels to approximate (3) (the output of f is considered as the
ground truth). If any of the M models has a loss less than a predefined threshold we terminate the
algorithm. Otherwise, we choose the s fittest metamodels and discard the rest. These s survived
metamodels are the parents that will populate the next generation of trees in the evolution process
for the next round of the algorithm.

Regularization: We can modify the fitness criterion to favor simpler models. For encouraging
sparsity of the tree, we can add a term to the MSE error for penalizing trees that have more edges.
Denoting total number of edges with E, we use this criterion for evaluation fitness of the trees (λ is
a hyperparameter):

Fitness of a given tree = MSE + λE. (7)

It should be highlighted that the regularization term will be only used for selecting the surviving
trees and not for the gradient descend part. Hence, we can flexibly modify this further if needed.
For example, if there is a preference towards a particular primitive function (e.g. because they are
simpler) we can reflect that in the above criterion.

3.2.4 EVOLUTION PHASE

In the evolution phase, we create the next generation of metamodels using survived trees. Similar to
conventional GP algorithm, here we also define two operations to perform on each tree: Crossover
and Mutation. For each of the s chosen trees like T , we first pass on T to the next generation, then
we randomly choose M

s − 1 times one of the two operations, perform it on T , and add the resulting
tree to the cohort of the next generation trees. Thus, the total number of trees in the next cohort is
also M . Here we define the two operations which preserve the three layer structure of the trees:

• In the crossover operation, for T , we first randomly choose one of the nodes at the second
layer of T . Then we uniformly at random choose one of the other s−1 trees, and then again
uniformly at random choose one of its second layer nodes and replace that node alongside
with all edges connected to that node with the chosen node in T . Notice that the edge
connected to the root node will be also replaced. Moreover, note that the new tree will
inherit the functions corresponding to replaced edges and their parameters.

• In the mutation operation, one of these two actions will be applied on the tree: 1) changing
the function class of an edge, 2) removing an edge between the middle and input layers. In
each round of mutation, we apply nm times one of these two actions on the tree. When we
change the class of function for an edge, we also randomly reinitialize the parameters of
the corresponding function.

The above two operations allow us to explore different configurations of trees and classes. A pseudo
code of algorithm is provided in Appendix A. We call our proposed method symbolic metamodeling
using primitive functions (SMPF).
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3.3 DIFFERENT TYPES OF INTERPRETATION USING SMPF

Instance-wise feature importance: Similar to Alaa & van der Schaar (2019) and Crabbe et al.
(2020) we can use the learned metamodel for estimating instance-wise feature importance. We can
find the Taylor expansion of the metamodel around the data point of interest x0 and analyse its
coefficients: g(x) = g(x0) + ∇g(x0).(x − x0) + (x − x0).Hx(x).(x − x0) + · · · . First order
partial derivative with respect to jth feature can be computed using chain rule:

∂g(x)

∂xj
=

∑
hi∈N (xj)

g′hi

 ∑
j∈N (hi)

gij(xj)

 g′ij(xj). (8)

We will use this method in our second experiment. Importantly, we can also compute higher order
coefficients for analyzing feature interactions.

Mathematical expressions: The final expression of the metamodel can provide insights into the
functional form of the black-box function. For example, in the first experiment, we show that the
metamodel correctly identifies that the black-box is an exponential function. Moreover, the in-
spection of mathematical expressions provides information about the interactions between the input
features, and can potentially lead to understanding of previously unknown facts about the underlying
mechanisms to domain experts.

An idea for exploring in future work is inspecting the final cohort of graphs. For example, if in
the last iteration, the average degree of a node is large across different graphs, this can show the
importance of the corresponding feature. Similarly, when a subset of features are connected to a
middle node it can show the interaction of those features.

4 RELATED WORKS

In the experiments section, we compare our approach with three symbolic metamodeling methods.
This section briefly introduces these approaches, highlighting their strengths and weaknesses.

Symbolic Metamodeling (SM) Alaa & van der Schaar (2019): SM proposes using Meijer G-
functions for interpreting black box models. In the derivation of their method, they also start with
KST (4), however, with a different approximation: they consider only one outer function (gout) and
set that function to be identity (the inner functions are all Meijer G). This does not allow the features
to interact, in order to fix this problem, they added multiplication of all pairs of actions xixj to
the features. This setting has two main issues, firstly this method cannot capture interaction of more
than two features and does not show other forms of interactions apart from multiplication. Secondly,
this approach introduces many new features which makes it impractical when d increases. There are(
d
2

)
+d features in total and there is a Meijer G-function corresponding to each of them which makes

using SM computationally costly.

Symbolic Pursuit (SP) Crabbe et al. (2020): SP is a subsequent work to SM and is designed to
overcome some of its flaws. In particular, SP is designed to use fewer Meijer G-functions. The
method is based on the Projection Pursuit algorithm in statistics (Friedman & Stuetzle, 1981). In
each step of the algorithm, a Meijer G-function will be fitted which minimizes the residual error
between the metamodel and the black-box. The final metamodel will be the summation of all these
Meijer G-functions. The input of each function is a linear combination of features. Thus, the final
function will have the following formulation:

g(x) =

L∑
i=1

gi

 d∑
j=1

cijxj

 , (9)

where gi’s are Meijer G-functions. Importantly, the authors use a modified version of (9) where the
arguments of Meijer G-functions are normalized such that they lie in the open interval of 0 to 1.
Moreover, SP involves adding weights to the outer summation to allow mitigating the contributions
of previously found functions, if needed. Note that SP can be considered as one instance of our
framework. The equation (9) is compatible with KST (4) and can be represented similar to Figure 1.
In essence, all inner function (edges between bottom and middle layers) are restricted to be linear,
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Table 1: Approximating two-variable functions using SM, SP, SR and SMPF.
f(x) = e−3x0+x1 f(x) = sin(x0x1) f(x) =

x0x1
(x2

0+x1)
f(x) = sinc(x2

0 + x1)

SMPF
MSE
R2

0.001± 0.0002
0.996± 0.002

0.012± 0.002
0.962± 0.004

0.002± 0.0004
0.895± 0.013

0.004± 0.0004
0.952± 0.003

SM
MSE
R2

0.174± 0.031
0.273± 0.019

0.126± 0.009
−2.039± 0.442

0.108± 0.0104
−5.461± 0.746

0.193± 0.006
−0.263± 0.094

SP
MSE
R2

0.009± 0.004
0.958± 0.014

0.0008± 0.0001
0.978± 0.003

0.002± 0.0003
0.878± 0.021

0.009± 0.002
0.937± 0.015

SPp MSE
R2

0.009± 0.001
0.953± 0.014

0.024± 0.001
0.348± 0.082

0.011± 0.001
0.345± 0.807

0.010± 0.001
0.932± 0.013

SR
MSE
R2

0.078± 0.018
0.658± 0.032

0.0004± 0.0002
0.988± 0.003

0.012± 0.002
0.256± 0.144

0.016± 0.003
0.886± 0.034

basically, they are coming from class of f(x) = cx. There are L middle nodes, and outer functions
are drawn from the class of Meijer G-functions. Also, in their setup p0 = 1 (p0 was the probability
of connecting two nodes). A major problem with SP is its capability in representing non-linear
correlations between the features. For example, a simple function like x1x2 cannot be represented
in SP formulation. Therefore, when using SP for explaining this function, in the best case scenario,
by inspecting ci1 and ci2 we can understand that these two features are important but we cannot see
how they interact. This can be potentially resolved in our framework by using a more general class
of functions as inner functions.

Symbolic Regression: We briefly introduced SR in Section 2. SR searches over mathematical
expressions that can be produced by combining a set of predetermined functions. In each program,
the leaf nodes are either features or numerical values, and other nodes are mathematical operations.
One main difference between SR and our method (also SM and SP) is that unlike SR our methods
are based on a representation derived from KST. Furthermore, we use parametric functions (and
GD) which cannot be accommodated in SR setting (note that GD has been suggested in SR but only
for training of leafs, e.g. see (Topchy & Punch, 2001; Kommenda, 2018)). Importantly, SR has
an advantage over SP and SM that the final result expression is guaranteed to be explainable, as it
will be a combination of functions that we chose to include as the building blocks. However, when
Meijer G-functions are used (in SM and SP), the resulting metamodel may not have a simple and
explainable representation. This issue is resolved in our framework. There are several extensions on
the original SR method, techniques introduced in some of them can be considered for future work
to improve GP in our method as well (Arnaldo et al., 2014; Rad et al., 2018; Moraglio et al., 2012;
Wang et al., 2019; Orzechowski et al., 2018; Chen et al., 2015; Udrescu & Tegmark, 2020a).

5 EXPERIMENTS

We evaluate and compare our proposed method using three experiments. In the first experiment, we
use our method to approximate four functions with simple expressions (similar to first experiment
of (Alaa & van der Schaar, 2019)). In the second experiment, we use our method for estimat-
ing instance-wise feature importance for three synthetic datasets (similar to Alaa & van der Schaar
(2019) and Chen et al. (2018)). Finally, in the third experiment, we consider black-boxes trained on
real data and approximate it using our method (similar to (Crabbe et al., 2020)). The hyperparame-
ters used for training the metamodels and additional results are reported in Appendix E.

5.1 METAMODELS FOR FIXED FUNCTIONS

In this experiment, we find metamodels for four synthetic functions with two variables. We com-
pare the performance of our method (SMPF) with symbolic metamodeling (SM), symbolic pur-
suit (SP), polynomial approximation of SP (SPp), and symbolic regression Orzechowski et al.
(2018) (similar to Alaa & van der Schaar (2019) we use gplearn library Stephens (2015) for
implementation of SR). We compare methods in terms of mean squared error (MSE) and R2

score. Generally, our algorithm achieves a better accuracy as compared to other methods (we
have the best score for three of the functions). The results are reported in Table 1. Further-
more, SMPF was able to correctly identify the functional form. For the first experiment, the
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Figure 2: Box-plot of feature importance for three datasets. The red lines show the median ranks
under each algorithm. Lower median ranks imply better performance. DL refers to DeepLIFT.

final expression of the metamodel is as follows (we rounded up coefficients here): g(x) =

0.854 exp
(
−2.438 sin(1.371x0 − 0.0318) + 0.684x1

0.016x2
1+0.204x1+0.426

)
. This shows an important ad-

vantage of our method in comparison to other methods. The expression found by SP algo-
rithm has the following form (P1 here is a linear combination of the two inputs): g(x) =

0.98G2,1
2,3

(
0.24,−0.06

0.16,−0.47,0.43 | 1.0[ReLU(P1)]
)

. Note that it was not possible to find a closed form
expression for this function. Also, for the second function, sin is correctly chosen as the outer func-
tion in SMPF. See Appendix E, where we provide results for synthetic functions with more variables.

5.2 INSTANCE-WISE FEATURE SELECTION

In this experiment, we evaluate the ability of our algorithm in finding the feature importance. In
particular, we run the second experiment of (Alaa & van der Schaar, 2019) with addition of SMPF.
Three synthetic datasets are used: XOR, Nonlinear additive features, and Feature switching. All the
datasets have 10 features. In XOR, only the first two features contribute in producing the output.
In Nonlinear additive features and switch datasets, the first four features and first five features are
important, respectively.1 First, a 2-layer neural network f(x) is trained with 200 hidden neurons
for estimating the label of each data point. Then, we run our algorithm to find metamodel g(x)
to approximate f(x). The coefficient of each feature in the first-order Taylor approximation of
g(x) is a metric for its importance. The larger the coefficient, the more important it will be. We
consider 1000 data points, and rank the features based on their importance. Then we find the median
feature importance ranking of the relevant features. The median value determines the accuracy of
our algorithm; a smaller median rank implies a better accuracy. Figure 2 compares our algorithm
with Symbolic Metamodeling (SM) Alaa & van der Schaar (2019), Symbolic Pursuit (SP) Crabbe
et al. (2020), Symbolic Regression Orzechowski et al. (2018), DeepLIFT Shrikumar et al. (2017),
SHAP Lundberg & Lee (2017), LIME Ribeiro et al. (2016b), and L2X (Chen et al., 2018). As we
can see, our algorithm performs competitively comparing with other algorithms. For XOR dataset
we have the best median rank, and we are among the best for nonlinear additive dataset. On Switch
dataset, SMPF performs similar to other global methods, i.e., SM, SP, and SR which are our direct
competitors. SHAP is the only algorithm that has a better performance on this dataset.

5.3 BLACK-BOX APPROXIMATION

In this experiment, we evaluate performance of our model on interpreting a black-box trained on real
data, replicating the second experiment of (Crabbe et al., 2020). A Multilayer Perceptron (MLP),
and Support Vector Machine (SVM) are trained as two black boxes using UCI dataset Yacht (Dua
& Graff, 2017) (additional results are reported in Appendix E). In order to have the same setting as
SP, we train the MLP and SVM models using the scikit-learn library Buitinck et al. (2013) with the
default parameters. We randomly use 80% of the data points for the training of the black box model
as well as SMPF model, and the remaining 20% is used to evaluate the performance of the model.
This procedure is repeated five times to report the averages and standard deviations. We report the

1See Appendix B of Alaa & van der Schaar (2019) for more details.
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Table 2: Interpreting black-boxes trained on real data using SMPF compared with SP
Method MLP SVM

MSE R2 MSE R2

Black Box 0.689± 0.224 0.703± 0.019 0.448± 0.241 0.781± 0.061

Method v.s. Black Box SMPF
SP

0.007± 0.003
0.008± 0.011

0.993± 0.003
0.978± 0.016

0.029± 0.013
0.014± 0.015

0.967± 0.120
0.974± 0.078

Method SMPF
SP

0.674± 0.211
0.682± 0.225

0.709± 0.015
0.697± 0.027

0.344± 0.163
0.471± 0.253

0.829± 0.037
0.780± 0.048

MSE and R2 score of the MLP and SVM against the true labels, MSE and R2 of the metamodel
against the black-box models, and the MSE and R2 of the metamodel against the true labels (see
Table 2). We observe that both SP and SMPF have very good performance in approximating the
black-box. Interestingly, SMPF outperforms the black-box on the test set for both models which
may indicate that the black-box overfits the dataset, but SMPF does not, as it uses simple functions.

6 DISCUSSION

Complexity: In terms of run-time, for the last experiment, the training process of the SP algorithm
for the MLP black-box takes 215 minutes, while the training process of our algorithm takes 45 min-
utes (both done on a personal computer). The reason that SP is more computationally expensive
as compared to SMPF is that SP has to evaluate Meijer G-functions in each iteration of their opti-
mization process. Evaluating a Meijer G-function is very expensive and takes about 1 to 4 seconds
depending on the hyperparameters (i.e., m,n, p, q). This observation implies that SMPF has lower
computational complexity which allows us to handle more variables and also enables the possibility
of using more complex trees, as we suggest later in the future work. However, this should be high-
lighted that our method (similar to other symbolic methods) is not appropriate for high dimensional
data like images.

Limitations: Even though we showed the performance of our model through extensive numerical
experiments, our method lacks theoretical guarantees (theoretical analysis is particularly challenging
because of the use of GP). Another limitation (also inherited from GP) is that there are several
hyperparameters in our model to specify structure of the tree. As discussed, symbolic metamodels
cannot handle high dimension inputs. Finally, the richness of functions we can create is limited, this
can be compensated using more complex classes of functions or more complex tree structures.

Direct training vs using black-box: A natural question is why not directly use the training data to
train the metamodel? There are two reasons for why we used the black-box for training. One is from
the user point of view, we may have been given a task of interpreting a black-box, i.e., the user’s
question may be why this particular method is working, and not necessarily looking for another
interpretable method. Secondly, and more importantly, we may not have access to the dataset for
various reasons including privacy concerns. In this method we only need querying the black-box
method and we can use random inputs (as many of them as we want). Directly using the dataset in
all symbolic metamodeling methods (e.g. SR, SM, and SP) is certainly possible and can be relevant
in many scenarios (e.g., discovering the underlying governing rules of a dataset).

Conclusion and future work: We proposed a new generic framework for symbolic metamodel-
ing based on the Kolmogorov superposition theorem. We suggested using simple parameterized
functions to get a closed-form and interpretable expression for the metamodel. The use of simple
functions may seem restrictive when compared with SM and SP which use Meijer G-functions (a
richer class of functions). However, this is compensated in our framework with a better approxima-
tion of KST. We used genetic programming to search over different possible trees and also possible
classes of functions. There are several directions for the expansion of this work: 1) we can con-
sider a more complex tree structure. For example, we can have trees with four layers instead of
three, which allows us to construct more complex expressions (see Appendix D). 2) Other primitive
functions can be used in our setup, e.g., Meijer G-functions. 3) The optimization in the training
phase can be improved. The problem is non-convex, and gradient descent may not be able to find
the global optimal point. This issue can be addressed by imposing convex relaxation or using more
sophisticated non-convex optimization methods.
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7 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics Statement: This should be highlighted that we do not claim that the functional form found
via our method is necessarily the correct function. This is the case even if the metamodel has a very
good performance in approximating the black box.

Reproducibility Statement: We have included the code for all three experiments in the supplemen-
tary material. We also, included a detailed description in a read me file, explaining how to run the
code. Details of the experiments and hyperparameters are reported in Appendix E.

REFERENCES

Ahmed M Alaa and Mihaela van der Schaar. Demystifying black-box models with symbolic meta-
models. In Advances in Neural Information Processing Systems, pp. 11304–11314, 2019.

David Alvarez-Melis and Tommi S. Jaakkola. Towards Robust Interpretability with Self-Explaining
Neural Networks. In Proceedings of the 32nd Conference on Neural Information Processing
Systems (NeurIPS), pp. 7786–7795. Montréal, Canada, December 3–8 2018.
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A PSEUDO CODE AND FLOWCHART OF OUR ALGORITHM

In this section, we summarize our algorithm in the following pseudo code. For the notational conve-
nience, we denote gTi as the metamodel corresponding to tree Ti, Ei as the number of edges in tree
Ti, Thr as a fixed threshold, lr as the learning rate, Max Itr as the maximum number of iterations,
and MSEi = 1

n

∑n
j=1(gTi

(xi)− f(xi))
2, where {x1, . . . , xn} is the training dataset.

Randomly 
initialize 𝑀 trees

Select 𝑠 trees 
using a fitness 

criterion

MSE ≤
Threshold 

OR 
Iterations ≥

max-
iterations

Generate 
descendants 

using operations

Train trees using 
gradient descent

yes

no

iterate

Fittest tree 
found

Figure 3: Flowchart of our Genetic programming algorithm

Algorithm 1: Pseudo code for SMPF
Input: Black-box: f(x); Training set: {x1, . . . , xn};

Hyperparamters: M, l1, l2, s, p0, k,Thr, lr, λ, pcross, pdel, Max itr.
Output: Metamodel g(x) approximating function f(x)
Generates Li, i = 1, . . . ,M , where Li is a random integer between l1 and l2.;
Generates M random trees T1, . . . , TM using parameters Li and p0 (details provided in Section

3.2.1);
Itr← 0;
while Itr ≤ Max itr and mini MSEi + λEi ≥ Thr do

for i = 1, 2,. . . , M do
Update the parameters of the functions corresponds to the edges of tree Ti using k

gradient descent updates and learning rate lr;
Calculate the mean squared error (MSEi) corresponds to tree Ti;
Fitnessi ← MSEi + λ · Ei;

end
Select s trees with the smallest Fitnessi and re-index them by T1, . . . , Ts ;
for i = 0, 1, . . . , s− 1 do

for j = 1, 2, . . . ,M/s− 1 do
Generate random number u uniformly in [0, 1];
if u < pcross then

Generate tree Ti·(M/s−1)+j+s by crossover operation on tree Ti+1;
else

Generate tree Ti·(M/s−1)+j+s by mutation operation on tree Ti+1. In this step,
an edge is removed with probability pdel;

end
end

end
Itr← Itr + 1;

end
i∗ ← arg mini MSEi + λEi;
g(x)← gTi∗ ;

B RELATED WORK TABLE

In this section we provide a comparison table for several important interpretation methods. We
adopted columns of this table from (Crabbe et al., 2020)[Table 3]. As it can be seen all of the
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Table 3: Comparison of interpretability methods
Algorithm Feature importance Feature Interaction Model independent Global Interpretable expression

LIME (Ribeiro et al., 2016b)

SHAP (Lundberg & Lee, 2017)

DeepLIFT (Shrikumar et al., 2017)

GA2M (Lou et al., 2013)

IG (Sundararajan et al., 2017)

LRP (Bach et al., 2015)

L2X (Chen et al., 2018)

SM (Alaa & van der Schaar, 2019)

SP (Crabbe et al., 2020)

SPp (Crabbe et al., 2020)

SR (Koza, 1994)

SMPF

approaches can provide feature importance, some of them are also capable of providing feature
interactions. Most of the methods are indeed model independent. The subset of the methods that are
global is determined. Finally, the interpretable expression here means whether the method is able to
produce a closed-form expressions (this is only applicable for symbolic approaches).

C PRIMITIVE FUNCTIONS

In this section we discuss the selection of primitive functions. An advantage of our framework
is its generality and the fact that it can work with any set of parameterized functions as long as
its parameters can be trained using gradient descent. The primitive functions, in principle, can be
chosen by the domain expert for the particular task in hand. For example, in the main text we
considered five familiar functions as our primitive functions. The polynomial function there, can be
thought of as Taylor approximation (hence it is reasonable to include it). The other four functions
can be thought of as domain expert suggestion.

To show that our results is not particularly dependent on the choice of primitive functions. Here,
we repeat our experiments for two more set of primitive functions. In the first set we are using only
three of the five functions: polynomial, exponential, and sinusoidal. In the second set, we keep the
polynomial function and replace the other two functions with new parameterized functions.

Set 1: f1(a, b|x) = ae−bx, f2(a, b, c|x) = a sin(bx+ c),

f3(a, b, c, d|x) = ax3 + bx2 + cx+ d.

Set 2: f1(a, b, c, d|x) = ax3 + bx2 + cx+ d, f2(a, b, c|x) = a arctan (bx+ c),

f3(a, b, c, d|x) =
ax+ b

cx+ d
.

In Table 4, we report result of the first experiment for these two sets of primitive functions. It is
interesting to note that removing sin function from Set 2 resulted in an inferior performance for sin
and sinc functions. Also, inclusion of the function with fraction form (f3(a, b, c, d|x) = ax+b

cx+d ) in
Set 2, improved the performance of this set on the third function.

Table 4: Approximating two-variable synthetic functions
f(x) = e−3x0+x1 f(x) = sin(x0x1) f(x) =

x0x1
(x2

0+x1)
f(x) = sinc(x2

0 + x1)

Set 1
MSE
R2

0.0004± 0.00008
0.998± 0.0002

0.0023± 0.0004
0.947± 0.0123

0.002± 0.0006
0.762± 0.042

0.001± 0.0002
0.991± 0.002

Set 2
MSE
R2

0.004± 0.001
0.980± 0.003

0.007± 0.0007
0.840± 0.024

0.004± 0.0004
0.790± 0.028

0.018± 0.005
0.876± 0.043

We have also repeated the experiment 3. The result for Yacht dataset is presented in Table 5. Both
sets of functions perform reasonably. Set 1 functions approximates the black-box better, however,
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Set 2 functions have a better performance on the test dataset. The performance of original set of 5
functions and SP method is reported in Table 2.

We also report here the results for Energy dataset (another UCI dataset used in (Crabbe et al., 2020)).
It can be seen that there was not a significant difference in most of the results. The performance of
original set of 5 functions and SP method is reported below in Table 8.

Table 5: The result of two sets of primitive functions on Yacht dataset
Method MLP SVM

MSE R2 MSE R2

Black Box 0.625± 0.153 0.725± 0.018 0.674± 0.356 0.754± 0.059

Method v.s. Black Box Set 1
Set 2

0.009± 0.005
0.014± 0.008

0.992± 0.005
0.989± 0.005

0.033± 0.017
0.045± 0.018

0.967± 0.012
0.951± 0.010

Method Set 1
Set 2

0.648± 0.170
0.627± 0.073

0.720± 0.030
0.728± 0.015

0.557± 0.257
0.483± 0.253

0.794± 0.037
0.798± 0.054

Table 6: The result of two sets of primitive functions on Energy dataset
Method MLP SVM

MSE R2 MSE R2

Black Box 0.016± 0.002 0.919± 0.013 0.011± 0.001 0.945± 0.003

Method v.s. Black Box Set 1
Set 2

0.003± 0.001
0.004± 0.002

0.982± 0.009
0.973± 0.013

0.007± 0.001
0.007± 0.001

0.961± 0.005
0.963± 0.009

Method Set 1
Set 2

0.019± 0.003
0.020± 0.002

0.903± 0.020
0.898± 0.008

0.017± 0.002
0.016± 0.003

0.914± 0.009
0.917± 0.012

C.1 FUTURE WORK: IDEAS FOR PRIMITIVE FUNCTIONS SELECTION:

Here we introduce two ideas for the selection of primitive functions. We leave exploration of usabil-
ity of these methods for future work.

One possibility is generalizing the SP formulation (Crabbe et al., 2020). As we explained in Section
4, SP method can be regarded as an special case of our framework where the outer functions are
chosen from Meijer G-functions and the inner functions are coming from the class of f(x) = cx.
An immediate generalization is to consider more general inner functions. For instance, we can
replace linear functions with polynomial functions of higher degree, or consider a set of classes to
choose from.

Another possibility is including polynomials of variable degree among primitive functions. For
example, for each function, we can randomly determine the degree by sampling from a decaying
distribution. This allows us to occasionally include a polynomial of higher degree (i.e., a Taylor
approximation with more accuracy). In order to avoid overfitting we can penalize the fitness criterion
of each tree with the degree of the polynomial that it uses.

D EXTENSION TO MORE COMPLEX TREES

Given a set of primitive functions, we can extend the set of possible metamodels that can be produced
by these primitive functions by adding new layers to the tree structure. This extension enables us
to create more complex metamodels which may be required for some black-boxes. For instance, in
Figure 4, we show a sample tree with four layers. Similarly, if needed, we can add new additional
layers (resembling hidden layers) to increase the capacity of the model.

Each hidden layer will have Li nodes. We produce edges randomly, similar to three-layered trees,
we can independently connect two nodes with probability p0 (or we can have different connection
probabilities for different layers). Also, we can similarly define two evolution operations. In the
mutation operation, we randomly select some of the edges and either change the corresponding
function or delete that edge. For crossover operation, we randomly choose one of the middle nodes,
it can be from any of the hidden layers, and change all of its edges with another middle node (in the
same layer) of another surviving tree.
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The resulting equation of the metamodel is given in (10):

x1 x2 x3 x4 x5 x6 x7

h11 h12 h13 h14

h21 h22

r

Figure 4: The structure of a sample four layer tree. Adding additional layers can allow us to create
more complex metamodels.

g(x) =

L2∑
i=k

gh2
k

 ∑
i∈N (h2

k)

gh1
i

 ∑
j∈N (h1

i )

gij(xj)

 . (10)

E EXPERIMENTS

In this section we provide the details of our three experiments as well as some additional results.

E.1 EXPERIMENT 1

We used the following hyperparameters: M = k = 20, recall that M is the population of each
generation, and k is the number of gradient updates in each iteration. We choose learning rate to be
0.1 and the maximum number of iterations to be 30. Also, s = 4, so in each iteration we choose 4
best trees to populate next generation. Here we have only one input, i.e. l1 = l2 = 1. Hence, there
are exactly three edges in the graph (also we do not remove any edges in the mutation operation), and
the GP algorithm in this experiment only searches over various possible ways for assigning classes
to edges.

Here we also provide results of an additional experiments similar to first experiment with functions
with three variables. We modified the first function in experiment 1 as follows:

f(x) = e−3x0+x1+x2
2 .

For this function (with same hyperparameters as before), our model was able to find a metamodel
with R2 = 0.958± 0.010. Also, the functional form is correctly chosen:

g(x) = 2.82 exp(−1.10x30 − 0.48x20 − 1.96x0 − 1.46 exp(−1.04x1) + 1.27 sin(0.97x2 + 0.05)).

Similarly, we added a variable to the second function, and used our model for approximating it.

f(x) = sin(x0x1 + x2).

Again our model correctly identified the functional form with R2 = 0.902± 0.018:

g(x) = 1.00 sin(0.18x30+0.31x20+0.015x0+0.28x32+0.41x22+0.47x2+0.50 sin(0.97x1+0.01)−0.07).

Extension of Experiment 1: Here we consider synthetic functions with more than two variables.
We consider functions with 4, 6, and 8 variables, and study how the performance of each model
changes when we increase the dimension. Here in Table 7, for brevity we only report results of SP
and SR, and exclude SM as it did not perform well even for two variables (as shown in Table 1). We
have considered three following sets of functions, similar to Section 5.1, we consider an exponential
function, a sin function and a ratio of two functions:
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Table 7: Approximating multivariable functions using SM, SP, SR and SMPF.
SMPF SP SPp SR

e4(x)
MSE
R2

0.119± 0.082
0.979± 0.007

1.992± 0.430
0.649± 0.041

2.112± 0.653
0.623± 0.039

2.632± 0.492
0.412± 0.054

e6(x)
MSE
R2

0.174± 0.031
0.953± 0.029

0.198± 0.044
0.432± 0.052

0.201± 0.041
0.427± 0.050

0.209± 0.088
0.401± 0.094

e8(x)
MSE
R2

0.009± 0.004
0.958± 0.014

0.028± 0.011
0.498± 0.033

0.029± 0.011
0.496± 0.033

0.033± 0.032
0.248± 0.065

s4(x)
MSE
R2

0.003± 0.001
0.950± 0.008

0.068± 0.020
−0.097± 0.047

0.071± 0.019
0.101± 0.045

0.010± 0.008
0.726± 0.010

s6(x)
MSE
R2

0.016± 0.001
0.964± 0.002

0.022± 0.009
0.948± 0.022

0.026± 0.009
0.923± 0.021

0.036± 0.009
0.728± 0.022

s8(x)
MSE
R2

0.015± 0.002
0.976± 0.006

0.018± 0.002
0.955± 0.020

0.021± 0.002
0.901± 0.024

0.033± 0.007
0.744± 0.033

r4(x)
MSE
R2

0.002± 0.001
0.793± 0.024

0.001± 0.0001
0.883± 0.025

0.001± 0.0001
0.861± 0.026

0.010± 0.002
0.118± 0.049

r6(x)
MSE
R2

0.001± 0.001
0.723± 0.038

0.001± 0.0001
0.811± 0.022

0.001± 0.0002
0.808± 0.025

0.017± 0.002
−0.013± 0.051

r8(x)
MSE
R2

0.004± 0.003
0.729± 0.079

0.004± 0.002
0.779± 0.052

0.005± 0.002
0.771± 0.055

0.014± 0.001
0.002± 0.037

e4(x) = e−2x1+x2+3x3−3x4 e6(x) = e4(x)e−2x5+x6 e8(x) = e6(x)e−x7x8

s4(x) = sin(x1x2 + x3 + 2x4) s6(x) = sin(x1x2 + x3 + 2x4 + 3x5 − x6)

s8(x) = sin(x1x2 + x3 + 2x4 + 3x5 − x6 +
√
x7x8) r4(x) =

x1x2
(x21 + x2 + x23 + 2x4)

r6(x) =
x1x2

(x21 + x2 + x23 + 2x4 + x35 + x6)
r8(x) =

x1x2 +
√
x7x8

(x21 + x2 + x23 + 2x4 + x35 + x6)

It can be seen that SMPF has the most robust results, and adding variables does not significantly
deteriorate the performance. We have noted that SP’s performance is particularly dependent on
the random seed (RS). For example, with the default RS=50, the R2 score for e4(x) was −0.008, in
Table 7 we reported the performance for RS=10 (R2 = 0.649). It can also be seen that while the per-
formance of the model is fine for s6(x) and s8(x), it is unexpectedly low for s4(x) (we believe this
is a result of using Meijer G-functions which might be very dependent on the initialization). Also,
we have observed that the difference between the training error and test error for SR is significantly
large which suggest overfitting.

E.2 EXPERIMENT 2

For this experiment we choose the same set of hyperparameters for all three datasets. We had
M = 20, s = 2, and k = 10. Number of iterations were 10, and lr = 0.01. We had p0 = 0.7
(probability of connecting a middle node to a feature node) and pcross = 0.7 (the probability of
choosing crossover operation). Thus, for each survived tree, we apply crossover with probability 0.7
and mutation with probability 0.3. For each mutation operation, with probability 0.5 we deleted a
random edge from middle to bottom layer, and with probability of 0.5 we changed hyperparameters
of one of the E edges. We chose, l1 = l2 = 2, therefore, all trees had exactly 2 middle nodes.

E.3 EXPERIMENT 3

The hyperparameters for this experiment are as follows. Similar to other experiments we initialized
with M = 20 trees. We had s = 4 survived trees and number of evolution iterations was 20. With
k = 20 gradient updates, and lr = 0.05. In this experiment we had p0 = 0.6. Parameters regarding
operations were similar to experiment 2.

Additionally, here we are providing results for Energy dataset (another UCI dataset). Here we also
included the result for SR method (SM is not included as its performance is not meaningfully close
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to these methods). It can be seen that SMPF is performing competitively with SP. In particular, when
tested on the real dataset. It should be mentioned that SMPF and SR has the advantage that unlike
SP they can produce closed form expression.

Table 8: Interpreting black-boxes trained on Energy dataset
Method MLP SVM

MSE R2 MSE R2

Black Box 0.015± 0.002 0.924± 0.008 0.014± 0.001 0.927± 0.003

Method v.s. Black Box
SMPF

SP
SR

0.005± 0.002
0.001± 0.001
0.012± 0.012

0.970± 0.011
0.996± 0.001
0.933± 0.067

0.007± 0.004
0.004± 0.001
0.011± 0.001

0.962± 0.023
0.978± 0.001
0.935± 0.003

Method
SMPF

SP
SR

0.019± 0.003
0.020± 0.001
0.026± 0.016

0.903± 0.010
0.901± 0.006
0.865± 0.067

0.018± 0.002
0.017± 0.001
0.019± 0.002

0.908± 0.014
0.914± 0.001
0.905± 0.005
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