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Abstract

We study the regret in stochastic Multi-Armed Bandits (MAB) with multiple agents
that communicate over an arbitrary connected communication graph. We analyzed
a variant of Cooperative Successive Elimination algorithm, Coop-SE, and show
an individual regret bound of O(R/m+A2 +A

√
log T ) and a nearly matching

lower bound. Here A is the number of actions, T the time horizon, m the number
of agents, and R =

∑
∆i>0 log(T )/∆i is the optimal single agent regret, where

∆i is the sub-optimality gap of action i. Our work is the first to show an individual
regret bound in cooperative stochastic MAB that is independent of the graph’s
diameter.
When considering communication networks there are additional considerations
beyond regret, such as message size and number of communication rounds. First,
we show that our regret bound holds even if we restrict the messages to be of
logarithmic size. Second, for logarithmic number of communication rounds, we
obtain a regret bound of O(R/m+A log T ).

1 Introduction

Multi-Armed Bandit (MAB) is a fundamental framework for studying sequential decision making,
with an expanding scope of practical applications (see, [22, 33]). Recent research expanded the
classic MAB problem into a cooperative setting, sometimes referred to as cooperative multiplayer or
multi-agent MAB, where multiple agents share the same goal and can communicate with each other.

A significant focus of recent research has centered on cooperating agents within a communication
graph, often referred to as a communication network. This framework, in which all agents address
the same problem, dates back to Landgren et al. [18] for stochastic rewards and Cesa-Bianchi et al.
[5] for the nonstochastic case. In this setting, agents transmit information to adjacent neighbors, from
which it continues to propagate throughout the entire network while encountering a delay at each
step. Communication graphs paired with stochastic Multi-Armed Bandits provide a framework for
distributed decision-making under uncertainty. As an example of our setting, consider computer
networks. In large-scale High Performance Computing (HPC) or AI systems, individual machines
often have flexible hardware, e.g., tunable cores, caches, or memory controllers, that adapt based
on workload pattern. These computers (agents), connected over a network (graph), must quickly
choose a hardware configuration (action) to optimize their performance (reward). Social networks
are good examples as well: individuals share experiences directly with friends, forming a natural
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communication structure for learning to propagate and improve collective decision-making. In the
non-stochastic setting Bar-On and Mansour [3] showed a nearly optimal individual regret bound of
Õ(
√
(1 +A/N(v))T ), where N(v) is the number neighbors for the agent v. This setting differs

from the stochastic case: notably, the optimal bound in the non-stochastic setting includes a
√
T term,

even if m ≈ T , since the full information lower bound is Ω(
√
T ). On the other hand, in the stochastic

setting, we achieve something much stronger. With sufficiently many agents, our worst-case regret
can be as small as O(A2 +A

√
log(T )). Importantly, this is independent of the sub-optimality gaps.

The literature of cooperative stochastic MAB distinguishes between group regret (a.k.a. average
regret) [18–21, 6, 29, 35, 39, 8] and individual regret [11, 36], where the latter is much stronger and
more challenging to achieve. Additionally, significant attention is given to minimizing the number of
messages each agent sends [32, 7, 25, 26, 28, 1, 30] and reducing message size [1]

1.1 Graph diameter and individual regret bounds

Let the single-agent regret bound be denoted with R :=
∑

i log(T )/∆i. For cooperation to be
meaningful, one needs sufficiently large number of agents m. Our goal is to reduce the individual
regret fromR toR/m. A potential problem can be if regret bounds include an additive term of the
order of D, the graph’s diameter, which can be large in practical scenarios. A regret of the form
R/m+D might provide a limited guarantee: for a cycle graph (D = Θ(m)) it will giveR/m+m

which is at least
√
R = (

∑
i
log T
∆i

)1/2 for any m; for a grid graph (D = Θ(
√
m)) the regret will be

at leastR1/3 = (
∑

i
log T
∆i

)1/3. Note that in these scenarios, the inverse dependency on ∆i remains,
even if the number of agents m goes to infinity and the termR/m vanishes. This explains our desire
to avoid this additive D.

Our diameter-free bound is only A2 +A
√
log(T ) for sufficiently large m, entirely independent of

the gaps. An interesting case is when the gaps are small, leading to high single-agent regret. For
example, when ∆i =

√
A/T , we get R ≈

√
AT . In this case, regret bounds with an additive D

term may still yieldR1/3 ≈ (AT )1/6 for grid graphs, whereas our diameter-free bound grows is only
A2 +A

√
log(T ).

To the best of our knowledge, this is the first paper to show a graph-independent individual regret
bound. Additionally, we present a similar individual regret bound for scenarios of small message
size, as well as for scenarios of limited number of messages.

1.2 Key contributions

Our key contributions are as follows:

• We prove that Coop-SE (Algorithm 3) achieves a near-optimal individual regret bound of
O(R/m+ A2 + A

√
log(T )), which is independent of the graph’s diameter. The regret bound

in minimax form is O(
√
TA log(T )/m + A2 + A

√
log(T )). When Coop-SE is played with

random action choices instead of round-robin we get O(R/m + A log(T )) and accordingly,
O(
√
TA log(T )/m+A log(T )).

• We show a lower bound for the individual regret of Ω(
√

TA/m+
√
A), which almost matches

our upper bound in the minimax form.
• For settings with restricted message sizes of O(log(mA)), also known of the CONGEST model

(see [31]), we introduce Coop-SE-CONGEST, which achieves an individual regret of O(R/m+

A2 +A
√

log(T )). In minimax form O(
√

TA log(T )/m+A2 +A
√
log(T )).

• For scenarios where agents are limited to O(log(T )) communication rounds, we present
Coop-SE-Comm-Cost, that achieves individual regret of O(log(A)R/m + A log(A) log(T )),
and in the minimax form O(

√
TA log(A) log(T )/m+A log(A) log(T )).

Kolla et al. [16] raised the question of whether it is feasible to surpass the performance of well-
established single-agent policies, such as UCB [2] and SE, when these policies are executed indepen-
dently across the network. While this question has also been explored in several prior works (see, for
example, [38–40]), our contribution provides a complementary perspective by analyzing individual

2



Table 1: Performance Comparison of Multi-Armed Bandit Algorithms in Cooperative Settings.
Notation: Horizon T ; Number of agents m; Actions A; Graph’s diameter D; Graph G; R =∑

∆i>0
log T
∆i

is the optimal single agent instance-dependent regret.

Algorithm Regret Indiv.
regret

Message
size

Comm.
rounds

Requires
only local
graph info.

Coop-UCB2 [21] R/m+Af(G)† ✗ Alog(mT ) T ✗
DDUCB [29] R/m+Ah(G)† ✗ Alog(mT ) T ✗

UCB-TCOM [36] R/m+AD ✓ m log(AT )D + log( log T
∆min

) ✗

Coop-SE R/m
+Amin{A +

√
log T ,D} ✓ mA log(T ) T ✓

Coop-SE-CONGEST R/m + A2 + A
√
log T ✓ log(mA) T ✗

Coop-SE-Comm-CostR log(A)/m
+A log T logA

✓ A log(m) log(T ) ✗

regret that is independent of the graph’s diameter. The combination of our lower bound and the
analysis of our Coop-SE algorithm thus refines the understanding of this question in the cooperative
setting.

1.3 Relation to Prior Algorithms

We start with a brief explanation of the Successive Elimination (SE) algorithm [13]. SE is a classical
multi-armed bandit algorithm that achieves low regret for a single agent. It progressively eliminates
suboptimal actions by repeatedly sampling all active actions, estimating their mean rewards, and
removing any action whose confidence interval is clearly worse than that of some other action. In
cooperative multi-agent settings, variants of SE have been studied in which agents exchange rewards
and elimination signals and use them to refine their own action sets Yang et al. [38, 39], Zhang et al.
[40]. Our proposed algorithm, Coop-SE, builds upon these works: it employs Successive Elimination
combined with message passing, and allows each agent to use the elimination signals of others in
order to eliminate its own actions. The main contribution of this paper is a new analysis of the
Coop-SE algorithm.

1.4 Related work

Average regret was studied by Landgren et al. [18, 19, 20, 21], Martínez-Rubio et al. [29], Chen
et al. [8] who achieved an average regret guarantee of O(R/m+Af̃(G)), where f̃(G) is a function
of the eigenvalues of the adjacency matrix of the graph, which is related to expansion properties. The
consensus-based algorithm Coop-UCB2 presented in Landgren et al. [21] requires the construction
of a matrix based on the graph’s structure. This dependency means the algorithm cannot rely solely
on local information. The algorithm’s regret bound is R/m + A · f(G), where f(G) represents a
graph-dependent function. For certain graph topologies, such as cycles, this function f(G) may be
at least m. Martínez-Rubio et al. [29] presented DDUCB, a consensus-based algorithm that requires
knowledge of the graph’s topology. Their regret bound is R/m + A · h(G), where the function h

is defined as h(G) = log(m)/
√

log(1/|λ2|). Here, λ2 is the second largest eigenvalue (in absolute
value) of the communication matrix, also known as the gossip matrix (see [37, 12, 7]). The eigenvalue
λ2 is related to how the graph expands and can be very close to one for some graphs. For instance, in
a circle graph, λ2 = cos(2π/m) ≈ 1 − 1/m2, resulting in h(G) ≈ m. Consequently, the average
regret bound of DDUCB becomesR/m+Am.

Gossip algorithms traditionally operate through networks where nodes communicate along graph
edges to achieve consensus, typically by converging to average values across all nodes. However,
the Coop-SE algorithm takes a different approach. Instead of seeking to synchronize nodes to
common average values, we focus on ensuring nodes maintain similar sets of active actions. This key
distinction drives the innovation in our approach.
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Average regret was also studied by [35, 6] as well. Wang et al. [35] has an additive term in the regret
that scales with the diameter of the graph. Chakraborty et al. [6] consider a model with non-fresh
randomness, where the reward for each action is generated once per timestep, and agents choosing
the same action receive the same feedback. Even with full communication, the best attainable regret
is that of full information.

Small number of messages and small messages. Wang et al. [36] show an individual regret
guarantee of O(R/m+AD), where each agent sends at most O(D log(log(T )/∆)) messages. Their
algorithm, UCB-TCOM, needs to know the value of D in advance and uses it to synchronize between
agents. Yang et al. [39] present a SE algorithm achieving a similar regret bound, but their analysis
is limited to fully-connected graphs, with each agent sending O(log(1/∆)) messages. Note that
whenever ∆ = Θ(T−α) for α ∈ (0, 1), the number of messages in both of these works is of order of
log(T ). Madhushani and Leonard [26] introduces an algorithm with log(T ) communication steps,
and their regret scales as log(T )χ(G)/(∆m), where χ(G) is the clique cover number of the graph.
For instance, for trees, cycles, and grids, the regret bound is on the order of log T/∆, similar to
non-cooperative scenarios, while for fully connected graphs, it is log(T )/(∆m). Agarwal et al. [1]
have D log(T ) communication rounds and only log(A) bits per message, but their regret scales as√
(A/m+ deg(G))D3T , where deg(G) is the maximum degree of the graph. Note that their regret

bound is at least
√
T .

Other related problems, such as directed communication, cooperation in Markov-Decision-Processes
(MDPs) and best-arm identification, have also been studied. For a more comprehensive discussion,
we refer the reader to Appendix A.

2 Model and problem formulation

Stochastic MAB (SMAB): A stochastic Multi-armed bandit problem has A actions, denoted by
A = {1, . . . , A}. Each action a ∈ A has a reward distribution Da, whose support is [0, 1], and its
expectation is µa = Er∼Da [r]. An optimal action is denoted with a⋆, where a⋆ ∈ argmaxa∈A µa,
and µ⋆ = µa⋆ . The gap of a sub-optimal action a is ∆a = µ⋆ − µa.

Multi-agent MAB: We have an undirected connected graph G(V,E), where V is the set of vertices
and E the set of edges. Every vertex represents an agent. An agent u is a neighbor of agent v iff
(v, u) ∈ E. The diameter of the graph is denoted by D. Let Nv

≤d be the set of agents at a distance at
most d from agent v, i.e., Nv

≤d := {u ∈ V |dG(v, u) ≤ d}, where dG(v, u) is the minimal path length
(number of edges) from v to u in G. For simplicity, we assume m,A ≤ poly(T ).

There are T rounds of play. Each agent v ∈ V , in each round of play t ∈ [T ] does the following:
(1) selects an action avt ∈ A and observes a reward rvt ∼ Dav

t
(note that the rewards of the different

agents are different random variables). (2) sends messages to neighboring agents u ∈ Nv
≤1. (3)

receives messages from neighboring agents u ∈ Nv
≤1. See the protocol in Algorithm 1.

Regret definition: The individual (pseudo) regret of an agent v is defined by Rv
T =

E[
∑T

t=1(µ
∗ − rvt (a

v
t ))].

1 In this paper, we focus on minimizing the individual (pseudo) regret of
every agent.

Events and Messages: Our algorithms will have the agents broadcasting about the progress they
make. There will be two types of progress. The first is a new observation of a reward, which will be a
reward event. The second is a decision to eliminate a certain action. This will be an elimination event.
Formally, an event is a tuple describing reward, or a tuple describing an elimination of an action.
A reward event is (rwd, t, v, a, r), where t is the timestep, v is the agent’s ID, a = avt is the action,
and r = rvt (a

v
t ) is the reward. An elimination event is (elim, v, a), where v is the agent and a is the

eliminated action. To denote individual elements within an event tuple, we use subscript notation.
For example, if we have an event event = (rwd, t, v, a, r), we denote the action a using eventa. We
define a message to be a set of events.

†These functions can be as large as m, see discussion in related work. h(G) = log(m)/
√

log(1/|λ2|). Here
f(G) as defined from Corollary 2 and Eq. (19) in [21]; the definition is very complex, but note that it may be as
large as m.

1The expectation of the pseudo regret is also over the randomness of the algorithm. We will refer to the
pseudo regret as the regret for the rest of the article.
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Algorithm 1 Stochastic MAB on Graph. Protocol for agent v

1: for t ∈ [T ] do
2: Agent v picks an action avt ∈ A.
3: Environment samples a reward, rvt (a

v
t ) ∼ Dav

t
.

4: Agent v observes reward rvt (a
v
t ).

5: Agent v sends messages mv,u
t to each neighbor u.

6: Agent v receives messages mu,v
t from each neighbor u.

7: end for

3 Warm-up: diameter dependency

In this section, we refine the best-known regret bound that depends on the diameter. Specifically,
we reduce the additive term from DA to D log(A) + A. Our analysis builds on recent techniques
developed for delayed MAB settings, leading to a relatively simple proof (see Appendix D). This
section serves as a warm-up, introducing a straightforward algorithm that still relies on the graph’s
diameter, and provides a useful reference point for the subsequent sections, where this dependency is
removed.

Our algorithm in this section, Sus-Act (Algorithm 2), builds on SE, but utilizes only samples that
are already observed by all agents. Specifically, at any timestep t, each agent has already observed
the samples collected by every other agent up to time t−D, where D is the diameter of the graph.
Thus, at time t, Sus-Act computes its LCB and UCB (Lower/Upper Confidence Bounds) based on
all samples from actions taken up to time t−D. Consequently, all agents have exactly the same LCB
and UCB, leading them to select identical actions and experience the same individual regret. Notice
that the actions’ tie-breaking is the same across all agents.

Conceptually, the shared information between agents increases the number of observed samples per
played action by a factor of m, the number of agents. On the other hand, samples from the last
D steps are not processed (and will be processed when their delay would be exactly D). This is
equivalent to an environment with D-steps delayed feedback, typically introducing an additive D
term to the regret.
Theorem 1. When each agent plays algorithm 2, the individual regret of each agent is,

Rv
T = O

( ∑
∆i>0

log(T )

m∆i
+D logA+A

)
.

The proof of Theorem 1 is deferred to the supplementary material. In summary, when the regret
bound depends on the diameter, the analysis remains relatively straightforward. In the following
sections, we move beyond this setting and show how to remove the diameter dependence altogether,
while retaining comparable guarantees.

Algorithm 2 Sus-Act: Successive Elimination with Suspended Act (see Algorithm 7 for detailed
version)

1: Input: Diameter D
2: for t = 1, 2, . . . , T do
3: The agent plays Successive Elimination using all information available up to time t−D.
4: Send and receive rewards: The agent sends her reward from the current round and forwards to

all neighbors any previously unsent rewards (message passing).
5: end for

4 The Coop-SE algorithm and individual regret guarantees

We study Coop-SE, Algorithm 3, which is a particular variant of Cooperative Successive Elimination
rather than a new algorithmic concept. Coop-SE is fully decentralized, and each agent plays it
independently. In Coop-SE, each agent runs SE with all the information available to it, while
exchanging messages with neighbors that contain both locally generated and relayed information,
including observed rewards and elimination signals (i.e., message passing).
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Algorithm 3 Cooperative Successive Elimination (Coop-SE) - simplified version (see Algorithm 6
for full pseudo-code)

1: Init: Set the active actions set to be all actions A = A.
2: for t = 1, ..., T do
3: Eliminate actions from incoming elimination-messages
4: Calculate counts and empirical mean for each active action based on all seen messages
5: Calculate UCBt and LCBt based on the above counts and means (see Definition 12)
6: E = {a ∈ A | ∃a′ ∈ A such that UCBt(a) < LCBt(a

′)}; A = A \ E
7: Choose action in round-robin from the active action, at ∈ A. Play it and get a reward rt(at)
8: Send eliminations E, reward (at, rt), and all messages received at t− 1 (message passing)
9: Receive messages from the neighboring agents

10: end for

This increased information significantly reduces the regret compared to the non-cooperative setting.
The formal description of the algorithm is provided in Algorithm 6. Our main result is the following
theorem.
Theorem 2. When each agent plays Coop-SE (Algorithm 3) the regret of each agent v ∈ V is,

Rv
T = O

( ∑
∆i>0

log(T )

m∆i
+A2 +A

√
log(T )

)
.

To the best of our knowledge, this is the only individual regret bound that is independent of the graph
diameter. For comparison with prior work, we also derive an improved variant of the bound that

includes the diameter: Rv
T = O

((∑
∆i>0

log(T )
m∆i

)
+A ·min{A+

√
log(T ), D}

)
. The diameter

term arises from a refined analysis but is not required by the algorithm; agents do not need to know
D. The full proof is provided in the appendix.

In Section 6, we present a lower bound of Ω(
√

TA/m+
√
A), which almost matches the upper bound

of the individual minimax regret of Coop-SE. We note that a slight variant of the algorithm, which
samples actions uniformly from the set of active arms rather than using round-robin selection, incurs
an additive term of A log T instead of A2 + A

√
log T (see Theorem 8). This is tighter whenever

A≫ log T—see Appendix F for more details. However, the precise dependence on A in this additive
term remains an open question.

An important insight that follows from these theorems is that for a sufficiently large number of
agents, e.g., when m = R, we achieve an individual regret bound of O(A2 + A

√
log T ) that does

not depends on the sub-optimality gaps.

In the following section, we present the key ideas employed in the analysis of the individual regret.

5 Individual regret analysis

In this section, we provide a proof sketch that outlines the key steps in our analysis. We analyze the
regret of an arbitrary agent v, and all the definitions are referenced to this agent unless explicitly
stated otherwise.

Our proof heavily relies on a notion we call stages. These are the time intervals between the
eliminations of agent v. Formally, a stage j ∈ [A] is the interval [tj , tj+1) where t1 = 1, and tj+1

is the timestep of the j’th elimination. We’ll also denote by τj the length of the j’th stage and the
number of active actions in that stage by Aj := A− j + 1.

The stages is one of our core ideas, and they allow us to do the following. We bound the agent’s
regret in terms of stage length, and we bound the stage length as a function of the number of samples.
Finally, we bound the number of samples in the standard approach. By combining these results, we
obtain our main theorem.

Bounding the regret in term of stage length We start by bounding agent v’s regret in terms of
stage lengths. Fix a sub-optimal action a and assume that i is the last stage in which a was active.
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Since v chooses active actions in round-robin, in each stage j ≤ i, she samples a approximately
τj/Aj times. Thus, the total number of times v plays a is approximately

∑i
j=1

τj
Aj

and we can
roughly bound the regret with,

Rv
T ≲

A∑
i=1

i∑
j=1

τj
Aj

∆i, (1)

where we slightly abuse notation and let ∆i be the sub-optimality gap of the action that was eliminated
at the end of stage i.

Number of samples in terms of stage length Consider the j’th stage and an action a which is still
active in that stage. For the sake of intuition, assume that the agents are completely synchronized,
i.e., have the same set of active actions. In the first quarter of the stage, each agent who is close to v
contributes to v’s information approximately τj/(4Aj) samples of action a. Since there were τj/4
timesteps and each agent chooses action out of Aj . Moreover, these samples are observed by v with
a delay of at most τj/4 and thus will reach v before the end of the stage.

If action a is active in the first i stages, we would expect that the number of samples that reaches v
for that action a from the first i stages is at least of order of

∑i
j=1

τj
Aj
· |N≤τj/4|, where N≤τj/4 is

v’s neighborhood of radius τj/4.

The above result implies that the amount of observed feedback from each stage is boosted by a factor
|N≤τj/4| compared to the number of times that v itself chooses the action.

However, in general, the agent’s policies are not completely synchronized, and thus, we need a
stronger argument to rigorously establish the above claim. In the next subsection, we show that under
Coop-SE, the agents implicitly synchronize with each other.

Implicit synchronization of neighborhoods over intervals We now outline another core idea
of our work: how agents implicitly synchronize under our algorithm, a key component for proving
individual regret.
Lemma 1. Consider an agent v. Let j be a stage index such that τvj > 16. Then every agent
u ∈ Nv

≤τv
j /4 plays the same policy (i.e., has the same set of active actions) at time interval [tvj +

⌈τvj /4⌉, tvj + ⌊τvj /2⌋].

Proof sketch. Let us denote the active set of actions of v at stage j with Av
j . Since dG(u, v) ≤ τvj /4,

agent u receives all eliminations of A \ Av
j from v no later than tvj + τvj /4. Hence, after this timestep

u’s active actions in [tvj + τvj /4, t
v
j + τvj /2] must be contained in Av

j . For the reverse direction, let
a ∈ Av

j . Assume by contradiction that u encounters an elimination of a before tvj + τvj /2. Since
dG(u, v) ≤ τvj /4, this elimination reaches v within no more than τvj /4 additional steps. Therefore, v
gets the elimination at tvj + 3/4τvj < tvj+1, contradicting the stage definition which requires the stage
to end precisely when an active action is eliminated. Thus, all agents in Nv

≤τv
j /4 maintain exactly Av

j

as active actions throughout [tvj + τvj /4, t
v
j + τvj /2]. See Appendix E.3 for the detailed proof.

Combining the results With the above result we get that in each round j that the action a was
active, the agent v gets at least τj/Aj |N≤τj/4| samples. Hence, the number of samples of an action a
that was active in the end of stage i can be bounded from below. Let us denote the last round in stage
i with t′i := ti+1 − 1. We get nt′i

(a) ≳
∑i

j=1 τj/Aj |N≤τj/4|. Using standard concentration bounds,
we show that the number of samples v can see from a sub-optimal action a, without eliminating it, is
approximately 1/∆2

a. Hence, nt′i
(a) ≲ 1/∆2

i

On the other hand, we can bound N≤τj/4 with the stages and the number of agents m: N≤τj/4 ≥
min{m,

τj
4 }.

Using the lower bound on the number of samples we get,

1

∆2
i

≥ nt′i
(a) ≥

i∑
j=1

|N≤τj/4|
τj

16Aj
≥

i∑
j=1

min{m,
τj
4
} τj
16Aj

.
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We split the analysis into stages where m < τj/4 and stages where m ≥ τj/4. The first case is
simpler, while the second is bounded using Cauchy–Schwarz. These stages are used only for analysis,
we ultimately bound

∑i
j=1

τj
Aj

∆i using only m, ∆i, A, and T . Full details are deferred to the
appendix (see Appendix E.3 for this part).

6 Lower bound

In this section, we present a lower bound, demonstrating that our algorithm achieves near-optimal
individual regret.

The problem we study in this paper is obtaining an upper bound on individual regret which is
independent of the graph’s diameter or other graph properties. This means the bound should hold
for any communication graph, and since we focus on individual regret, it must hold for every agent.
Consequently, when proving a lower bound, we can consider any graph, including the worst-case one,
and we only need to identify at least one agent that incurs this level of regret.

Note that the lower bound is stated in the minimax form, where the sub-optimality gaps are on the
order of

√
1/T . We believe this formulation captures the essence of the problem more clearly, though

it can be equivalently expressed in a problem-specific form. For consistency, we also provide the
minimax forms of the regret in Section 1.2 and in the appendix.
Theorem 3. For every algorithm, and for every T,A,m, there exists a problem instance of the
cooperative stochastic MAB over a communication graph such that there exists an agent for which
the individual minimax regret is at least, Ω(

√
AT/m+

√
A).

Note that the statement specifies "there exists an agent", and cannot be improved to "for every agent".
This is because, with at least A agents, it is always possible for one agent to have zero regret by
assigning each agent to select a distinct action for the entire horizon.

The primary implication of the lower bound is that even if m→∞, the individual regret still scales
with the number of actions. The main gap from our upper bound is the exact dependency in A in the
additive term as well as the logarithmic dependency; these gaps still remain open questions.

The lower bound combines two separate lower bounds, Ω(
√
AT/m) and Ω(

√
A). The Ω(

√
AT/m)

bound holds even in a fully connected network and follows directly from the lower bound established
by Ito et al. [15]. We also remark that an instance-dependent variation of this lower bound, specifically
Ω((1 − µ⋆)µ⋆

∑
∆i>0 log(T )/(m∆i)), where µ⋆ is the expectation of the optimal action, can be

obtained using the same technique.

Recall that our upper bound holds for any graph and does not depend on the diameter. Thus, in order
to show that it cannot be improved in general, it is sufficient to show a lower bound for a specific
graph. Hence, to obtain the Ω(

√
A) we focus on a line graph. The intuition of the proof is the

following. We consider a deterministic MAB where one action has reward 1 and all other actions
have reward 0. An agent, during the first τ timesteps receives Θ(τ2) observations. Therefore, if
τ ≲
√
A/10, then an agent receives information about at most A/100 of the actions. We construct

a probability function where each optimal action has equal probability of being selected. Under
this distribution, with probability 0.99, the agent fails to observe the optimal action, resulting in an
individual regret of at least 0.99 ·

√
A/10. Therefore, there must exist at least one specific problem

instance that induces this regret. For the formal proof see Theorem 10 in the appendix. Note that the
technique employed for this lower bound can extend to other graph structures; for instance, a grid
graph can yield a lower bound of A1/4.

7 Communication results

In practical distributed systems, communication constraints can significantly impact the performance
of cooperative learning algorithms. We examined two restricted communication settings: The first
limits messages to O(log(Am)) bits, which corresponds to the well-known CONGEST model in
distributed systems (see Peleg [31]). The second allows agents to send messages in only O(log(T ))
timesteps throughout the entire horizon, a constraint sometimes referred to as communication cost in
the literature. Our results show that effective cooperative learning remains possible even under these
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constraints, with agents maintaining strong individual regret guarantees that do not depend on the
diameter.

7.1 The CONGEST model

To establish our communication-efficient results, we begin by showing that our base algorithm
Coop-SE, when operating on a spanning tree, can function effectively with reduced message size
of O(A log(Am)). This initial compression serves as a stepping stone toward our full CONGEST
model analysis, where we further reduce communication by having agents share information about
only single actions at a time.

The key insight is that we can aggregate information about each action without losing accuracy.
Instead of transmitting individual reward observations and elimination events, we can simply maintain
running sums of rewards and a single elimination flag per action. This compression requires only
O(A log(Am)) bits per message, representing each action’s new information: observation count,
cumulative reward, and elimination status that reached to the agent in the previous round or produced
by the agent in the current round. However, this aggregation is only valid when agents don’t receive
duplicate information. We achieve this by restricting communication to a spanning tree of the network,
where messages are forwarded along the tree nodes. This simple modification eliminates redundant
transmissions while preserving Coop-SE’s regret guarantees, as our bounds are independent of the
graph structure. Algorithm Coop-SE-Restricted (Algorithm 9 in the appendix) implements these
ideas.

For completeness, we note that our analysis assumes all agents share the same spanning tree, which
can be computed in a preprocessing phase prior to the execution of the algorithm. Otherwise, we can
use one of the many distributed algorithms for this purpose (see [31]).

Moving to the full CONGEST, let us now consider the case that the size of the messages is limited
to O(log(Am)) bits — this is done using our algorithm Coop-SE-CONGEST (Algorithm 11 in the
appendix). Here is the high-level idea of the algorithm. As before, we construct a tree from the
original graph, and aggregate messages and avoid duplicates. But rather than sending A messages
each of size O(log(mA)), the agent sends in each round only one message regarding only one action.
The action for which the agent sends the information is chosen in a round robin, without considering
if the action is active or not. The key idea is that the round robin scheduling starts at a different action
for each agent. This mechanism ensures that when a message travels from any node v to the root
node w, apart from the distance between nodes it will not encounter any delay after it has been sent
from its originating node. Similarly, messages from v outward from the root will not encounter delay.

Let us denote the spanning tree with T , and the distance on the tree from v to w with dT (v, w). The
mechanism works as follows: agent v, located at distance d := dT (v, w) from the root w, sends
messages for action a to its parent, i.e., toward the root, at timesteps t such that a ≡ t+ d (mod A),
and to its children whenever a ≡ t− d (mod A).

Here is an example of how the idea works. For the up-stream, assume that at timestep t message
about action a was sent from v to its parent v̂. The message reaches v̂, which is at a distance d− 1
from the root, at timestep t+ 1. At timestep t+ 1 the agent v̂ sends this message to v̂’s parent since
t+1+(d−1) = t+d ≡ a (mod A), and the message continues up-stream with no delay. Similarly
for the down-stream. Additionally, a message that travels from v to u might wait at most A timesteps
at their common ancestor until the round-robin reaches this action. We get the following theorem.

Theorem 4. When all the agents play Coop-SE-CONGEST(Algorithm 11 in the appendix) the individ-
ual regret of each agent v ∈ V is bounded by,

Rv
T = O

( ∑
i∈[A],∆i>0

log(mTA)

m∆i
+A2 +A

√
log(mTA)

)
.

7.2 Small number of messages

In this section, we present Coop-SE-Comm-Cost, a variant of Successive Elimination that requires
only O(log(T )) communication rounds per agent. The algorithm operates in phases and commu-
nicates along a spanning tree, clustering agents into groups of size at least min{2i,m} in phase i.
Within each cluster, the maximum distance between the cluster root and any descendant is at most
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2i+1. The existence and a computation of such clustering is shown in Lemma 31 and Algorithm 4 in
the appendix.

Each phase consists of three 2i+1-length steps: first, agents send information upward to their cluster
root; next, the root determines the active set of actions and broadcasts it downward; finally, agents
synchronously sample active actions. During the sampling step, no communication occurs. This
structure allows each cluster to collect Ω(2i ·min{2i,m}) samples while sending messages in only
O(1) timesteps per phase.

The analysis’s complexity arises because agents determine their current phase’s active action set
using information from the previous phase rather than the current one. Let Ai be the number of active
actions in phase i (for agent v). Unlike single-agent phased algorithms, we do not require agents
to sample each costly action for 2i steps, since this would underuse cooperation. In our phasing
algorithm, the phase lasts 2i steps, and each action is sampled 2i/Ai times and the regret scales as
(2i/Ai)∆i. To illustrate the problem, notice that the number of samples used for the elimination at
the start of phase i is inversely related to Ai−1, not to Ai, in contrast to the regret. If Ai−1 ≫ Ai, it
might be that easy-to-eliminate actions were eliminated at the beginning of phase i, leaving only the
costly ones in phase i.

We addressed this challenge through amortized analysis: phases with a low ratio of previous-to-
current active actions (Ai−1/Ai ≤ 2) effectively subsidize phases with a high ratio. The complete
analysis can be found in the appendix, specifically in Lemma 41. Formally, we get,
Theorem 5. When all agents play Coop-SE-Comm-Cost (Algorithm 13 in the appendix) the individ-
ual regret of each agent is,

Rv
T = O

(∑
a∈A

log(mTA) log(A)

∆a ·m
+A log(mTA) log(A)

)
.

8 Future Work

Our work leaves several interesting directions for future works. First, our algorithms can either
handle logarithmic message size or logarithmic number of communication rounds. An interesting
future work would be to achieve our near-optimal regret bounds while simultaneously maintaining
both logarithmic message size and logarithmic number of communication rounds. Second, extending
our results to other MAB algorithms, specifically, Upper Confidence Bound (UCB) and Thompson
Sampling, would be very interesting. The technical challenge is that in UCB (or Thompson sampling)
there are actions which are selected very rarely. Such actions can cause different agents to behave
differently. Our methodology builds on having the different agents behave similarly (as is shown
through the implicit or explicit synchronization). One can implement explicit synchronization at the
cost of the diameter, which will result in a significantly inferior regret.

Another interesting direction for future work is to more explicitly leverage the graph structure to
improve cooperation efficiency. In particular, characterizing how the regret depends on the topology
of the communication graph may enable reducing the additive term in our bound.

Finally, a natural open question is closing the gap in the additive term between our upper and lower
regret bounds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract reflect the paper’s content and the paper contains proofs for the
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations and our assumptions throughout the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The precise setting and assumptions are given in Section 2. All the theorems
and lemmas are rigorously proved in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We did not find any direct societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Other Related Work

Cooperative MAB with heavy tail distributions was in [11]. They show individual regret bound
that scales inversely with the number of neighbors, as opposed to the total number of agents, as
in our regret bounds. Asynchronous model was considered by [32, 7]. In this model, agents
do not have a shared global system clock, and thus, it is a harder setting than that considered
in this work. Consequently, the regret bounds they achieve are significantly weaker, scaling as∑⌈A/m⌉+2

i=1 log(T )/∆i where ∆1 ≤ ∆2 ≤ . . . ≤ ∆A−1. Directed communication graphs and
random graphs was studied as well. In [43, 41, 42] they considered directed communication graphs.
Their instance-dependent regret has an additive term that is linear in the number of agents. In [28] they
considered a setting where the communication graph is stochastic, such that messages have random
delays and adversarial corruptions. Their regret has a multiplicative factor that can be as large as the
clique cover number. Best action identification using cooperation was studied in [14, 34] where
the network is fully connected and they also minimize the number of messages. Heterogeneous
agents which observe their neighbors with some probability and minimize the group regret were also
addressed by [24, 27]. In [24] they derived a group regret based on various properties of the graph
and in [27] they studied group regret in multi-star networks. The case of each agent having a subset of
actions that are relevant to them was studied in [38], and the group regret bound was derived. Linear
contextual MAB with a network of users of similar linear utility was analyzed in [4]. Cooperation
in Markov-Decision-Processes (MDPs) has been studied in [23], who have shown group regret
guarantees in cooperative stochastic MDPs over a general network. In [17] they considered both the
stochastic and non-stochastic cases in cooperative MDPs but only over a fully connected graph.

B Summery of Notations

For convenience, the table below summarizes most of the notation used throughout the paper.

Da The reward distribution of action a
µa The expected reward of action a
µ⋆ The maximal expected reward
a⋆ An optimal action
∆a The sub-optimality gap of action a
Nu

≤d The set of agents at distance at most d from agent u
N≤d For ease of notation N≤d := Nv

≤d; see Remark 2
dG(v, u) The minimal path length (number of edges) from v to u

tj The beginning of stage j of agent v; see Remark 2
τj The length of stage j of agent v; see Remark 2
Aj The number of active actions in the j’th step of agent v; see Remark 2
ι log(3mTA)

nu
t (a) The number of samples that u observed by the beginning of time t

nt(a) For ease of notation nt(a) := nv
t (a); see Remark 2

but (a) The number of times agent u played action a until the beginning of round t.
bt(a) For ease of notation bt(a) := bvt (a); see Remark 2
puk The policy of agent u at time k

A∆ The set of elimination indices (with respect to agent v) with gaps larger than
√

Aι
Tm

ai The i’th action being eliminaed by agent v
∆i The sub-optimality gap of ai
Gτ The set of "Good Intervals": {j|τj > 16}.
Sτ The set of "Short Intervals": {j|j ∈ Gτ & τj/4 < m}
a ∨ b The maximum between the elements. a ∨ b := max{a, b}
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C Instance independent Bounds

The instance independent bounds follow immediately from the instance dependent bounds. It works
generally as follows. The analysis divides the gaps into two. The first group of gaps are the small

gaps, where ∆i ≤
√

log(T )A
Tm . This group contributes no more than T ·

√
log(T )A

Tm =
√

log(T )AT
m to

the regret. The gaps from second group appear as inverse in the bounds, and we get log(T )/(m∆i) ≤√
log(T )T

Am . Summing over all the actions we get
√

log(T )AT
m .

D Omitted Proof from Section 3

Remark 1. The problem independent bound for Sus-Act is

Rv
T = O

(
log(mTA)

√
AT

m
+D logA+A

)
.

Proof of Theorem 1. Without loss of generality, we assume that D ≥ 1. Let us define the good event
as the event in which in every timestep the mean of the action is in the confidence interval. It is
described in detailed in the appendix (see Definition 14). From Lemma 2, the complementary event
occurs only with probability of at most 1/T 2, and thus, adds no more than 1 to the regret. For the
rest of the proof will assume that the good event holds. Therefore, for all a,

UCBt(a
⋆) ≥ µ⋆ ≥ µa ≥ LCBt(a).

Where UCBt(a) is the upper confidence bound that was calculated at the timestep t, and similarly
LCBt(a). Therefore a⋆ is never eliminated.

Let nt(a) be the number of suspended counts until the beginning of timestep t, i.e., nt(a) =∑t−D
τ=1

∑
v I{avτ = a}. Denote by Bt(a) the total number of times that a was played by all agents

until the beginning of round t. I.e., Bt(a) = nt+D−1(a) =
∑t−1

τ=1

∑
v∈V I{avτ = a}. Let ta be the

last elimination step which a was not yet eliminated. By definition, since a was not eliminated,

LCBta(a
⋆) ≤ UCBta(a).

Under the good event,

LCBta(a
⋆) = µ̂ta(a

⋆)−

√
2 log(3mTA)

nta(a
⋆) ∨ 1

≥ µ(a⋆)− 2

√
2 log(3mTA)

nta(a
⋆) ∨ 1

UCBta(a) = µ̂ta(a) +

√
2 log(3mTA)

nta(a) ∨ 1
≤ µ(a) + 2

√
2 log(3mTA)

nta(a) ∨ 1
,

where x ∨ y := max{x, y}. Combining with the last display we get,

∆a ≤ 2

√
log(3mTA)

nta(a) ∨ 1
+ 2

√
log(3mTA)

nta(a
⋆) ∨ 1

≤

√
16(log(3mTA))

(nta(a)−m) ∨ 1

=⇒ nta(a) ≤
16 log(3mTA)

∆2
a

+m

where we’ve used the fact that active actions are played at the same rate, and thus the number of
suspended counts of two active actions differs by at most m. Sicne ta is the last elimination step in
which a was not eliminated, a was played is no more than Bta(a) +m times (in ta the agents still
didn’t eliminate a). Thus, the total sum of regret form action a is bounded by,

(m+Bta(a))∆a = m ·∆a + nta(a)∆a + (Bta(a)− nta(a))∆a

≤ 2m ·∆a +
16 log(3mTA)

∆a
+ (Bta(a)− nta(a))∆a.
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Denote by σ(a) the number of active actions at time ta. Notice that every agents waits at least D
timetsteps before the first elimination, hence ta ≥ D. We can bound the last term above by,

Bta(a)− nta(a) =

ta−1∑
τ=ta−D+1

∑
v

I{avt = a} (2)

=
∑
v

ta−1∑
τ=ta−D+1

I{avt = a}

≤
∑
v

(
D

σ(a)
+ 1

)
=

mD

σ(a)
+m. (3)

where the inequality holds since there are at most D − 1 timesteps, and the agnet chooses the
actions in round robin. By combining (2) and (3), summing over the actions, and noting that∑

a ̸=a⋆
1

σ(a) ≤ logA+ 1 (regardless of the elimination order, see Lemma 7), we get that the total
regret is bounded by,∑

a̸=a⋆

(
2m ·∆a +

16 log(3mTA)

∆a

)
+mD(logA+ 1) +mA.

Finally, since all agents play the exact same actions we get the the individual regret of each agent is
bounded by,

RT ≤
∑
a̸=a⋆

(
2∆a +

16 log(3mTA)

m∆a

)
+D(logA+ 1) +A

≤
∑
a̸=a⋆

16 log(3mTA)

m∆a
+D(logA+ 1) + 3A,

where the last inequality is since
∑

a ∆a ≤ A. This finishes the proof for the gaps dependent bound.

Now we will reach the problem-independent bound. All actions with small gaps, {a ∈ A|∆a ≤√
A
Tm}, contribute no more than

√
AT
m to the regret. There are at most T round in which the agent

chooses actions with small gaps, so their contribution is bounded by T
√

A
Tm =

√
AT
m . For large

gaps, i.e., ∆a >
√

A
Tm we get

∑
a̸=a⋆,∆a>

√
A

Tm

16 log(3mTA)

m

√
Tm

A
≤ 16 log(3mTA)

√
AT

m

Putting it all together with the small gaps and with the good event, we get

RT ≤ 17(log(3mTA))

√
AT

m
+D(logA+ 1) + 3A+ 1

E Proof of the Main Theorem

Remark 2. For the ease of notation, the following proof and definitions focus on a specific agent,
named v.

E.1 Definitions

Definition 1. A stage is a timestep-interval when its boundaries are the eliminations. The stage’s
index is usually denoted by j. The time interval is split into A different stages. Assume that the
elimination timesteps are s1, s2, . . . . The first stage starts at t = 1 and ends with the first elimination.
I.e., it is the timesteps that are in time interval [1, s1). The second stage is [s1, s2), etc. Denote tj to
be the timestep in which the agent started the j’th stage, where t1 = 1 and tA+1 = T + 1.
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Definition 2. Denote τj to be the length of the j’th stage (for agent v).

Definition 3. Denote Aj := A− j + 1 to be the number of remained actions in the j’th stage.

Definition 4. Elimination index i of the action a is the stage index in which in its end the action is
eliminated. Every action has a unique elimination index.

If some actions are eliminated in the same timestep, then the stage is of zero length and the elimination
index are chosen arbitrary. The elimination index of a is denoted by ia, and the appropriate action
for elimination index i is denoted by ai.

Definition 5. Denote with A∆ the set of elimination indices of large gaps. A∆ = {i|∆ai
≥
√

Aι
Tm}.

Definition 6. For the ease of notation, denote ∆i := ∆ai
.

Definition 7. Define the set of "Good Intervals" to be the set of long enough intervals: Gτ = {j|τj >
16Aj}. These are the intervals we will focus in the proofs.

Definition 8. Denote the group of indices of short stages with Sτ . Specifically,

Sτ := {j|j ∈ Gτ & τj/4 < m}

Definition 9. Denote the number of samples an agent u sees for action a until the beginning of
timestep t with nu

t (a). For the ease of notation, denote nt(a) := nv
t (a).

Definition 10. Denote by but (a) the number of times agent u played action a until the beginning of
round t.

Definition 11. Denote the maximum of elements with ∨, i.e., a ∨ b := max{a, b}
Definition 12. Denote the upper confidence bound for agent u for action a with UCBu

n(a)(a) =

µ̂(a) +
√

2 log(3mTA)
n(a)∨1 , where n(a) is the number of times agent u observed action a, and µ̂(a) is the

empirical mean calculated by u for action a. Similarly, let LCBu
n(a)(a) = µ̂(a) −

√
2 log(3mTA)

n(a)∨1

denote the corresponding lower confidence bound. In other words, UCBu
n(a)(a) and LCBu

n(a)(a)

are the confidence bounds calculated in Algorithm 5 Equation (20) when agent u calls this algorithm
with parameters n, a vector containing the number of observations for each action, and µ̂, the vector
of empirical means.

Definition 13. Denote the logarithmic term used in Algorithm 5 with ι, i.e., ι = log(3mTA)

E.2 The Good Event

The good event G1 captures the intuition that the true expectation of each action is between the UCB
and the LCB.
Definition 14. Define the good event, G1, to be the event in which for every agent u, for every action
a and for every rwd-event that was received, the empirical mean is in the confidence interval, i.e.,

µa ∈ [LCBu
n(a)(a), UCBu

n(a)(a), ]

where n(a) is the number of rwd-events that were received for this action by the agent u.

Lemma 2. The good event G1 happens with high probability. Specifically,

P(¬G1) ≤ 1

3mT 2A2
≤ 1

3T 2

Proof. Event ¬G1: Denote Mu
a (k) to be the k’th rwd event agent u received for action a. Define

Xu
n(a) :=

∑n
k=1(M

u
a (k)− µa) and λn :=

√
2ι
n . Note that Xu

n(a) is a martingale. From Azuma’s
inequality we get

Pr

(∣∣∣∣Xu
n(a)

n
− µa

∣∣∣∣ ≥ λn

)
≤ 1

3m3T 3A3

There are at most m · T rwd events the agent can get. The same holds for every action and for
every message. The upper confidence bound (UCBu

n(a)) is defined as Xu
n(a) + λn and the lower

confidence bound (LCBu
n(a)) is defined as Xu

n(a) − λn. From the union bound we get that with
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high probability for every agent, for every timestep, for every action and for every rwd event message
the agent get, the actual mean of the action would be inside the confidence bound. Specifically

G1 := ∀u ∈ V,∀a ∈ A,∀n ∈ [m · T ](µa ∈ [LCBu
n(a), UCBu

n(a)])

P(¬G1) ≤ 1

3mT 2A2
≤ 1

3T 2

E.3 Proof of Theorem 2

Lemma 3. The complementary event of the good event adds no more than 1 to the regret of each
agent.

Proof. From Lemma 2, the complementary event of the good event happens in probability lower than
1
T 2 . Every agent plays T timesteps, and the gaps are bounded by 1, i.e., for every action a we have
∆a ≤ 1. Hence, in expectation, this adds at most 1

T ≤ 1 to the regret.

In the proof from now on, we assume the good event holds.

Proof of Lemma 1. Let t ∈ [tvj + ⌈τvj /4⌉, tvj + ⌊τvj /2⌋] and let u ∈ Nv
≤τv

j /4. Denote the set active
actions of v in the j’th stage as Av

j . We will show that an action a is active for u at t iff a ∈ Av
j .

Let a be an active action of u at time t, where t ∈ [tj + ⌈τj/4⌉, tj + ⌊τj/2⌋]v . Since u ∈ Nv
≤τv

j /4, we
have dG(u, v) ≤ τvj /4. The distance dG(u, v) is a natural number, so it is at most ⌊τvj /4⌋. Therefore
u gets all v’s eliminations (the first j−1 eliminated actions) until the beginning of round tvj + ⌊τvj /4⌋.
By the stage’s definition, the agent v doesn’t encounter any new elimination. Therefore, along the
stage, she doesn’t send any new elimination event regarding her active actions. Hence, for any
t′ ≥ tvj + ⌈τvj /4⌉, u does not have any active action which is not in Av

j . Hence, a ∈ Av
j .

Let a be an action in Av
j . We will show that a is an active action of u at time t, where t ∈

[tvj + ⌈τvj /4⌉, tvj + ⌊τvj /2⌋]. Assume for contradiction that u, at timestep tvj + ⌊τvj /2⌋ or before,
encounters an elimination of a. The elimination event should arrive to v in no more than ⌊τvj /4⌋
timesteps, so v should get the elimination event at most at timestep tvj +⌊τvj /2⌋+⌊τvj /4⌋ ≤ tvj +

3τv
j

4 .

But τvj > 16Aj > 16, then τvj /4 > 4, so tvj +
3τv

j

4 < tvj+1 − 4. Therefore, the elimination event
about an action in Av

j should arrive to v at least 5 timesteps before stage j + 1 begins. This is a
contradiction to the definition of stage: a stage ends when an active action in this stage is eliminated,
and not before. Therefore, a is an active action of u at t.

We get that for every t ∈ [tvj + ⌈τvj /4⌉, tvj + ⌊τvj /2⌋] and for every u ∈ Nv
≤τv

j /4, the active actions
of u at t are exactly Av

j . In other words, we get that in time interval [tvj + ⌈τvj /4⌉, tvj + ⌊τvj /2⌋] all
agents in Nv

≤τv
j /4 play the same policy, i.e., choosing randomly from Av

j .

Lemma 4. For every action a that was not eliminated before the end of stage i, we have

nti+1−1(a) ≥
i∑

j=1,j∈Gτ

τj
8Aj
|N≤τj/4|.

Proof. In each stage j ∈ Gτ , all the samples that each agent in N≤τj/4 produces reach agent v before
the end of the stage. Therefore, each agent contibutes at least ⌊τj/(4Aj)⌋ samples. Since j ∈ Gτ ,
⌊τj/(4Aj)⌋ ≥ τj/(8Aj).

Lemma 5. For every action a that was not eliminated before the end of stage i,

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≤

256ι

∆2
a

.
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Proof. Fix an action a that was not eliminated before the end of stage i. Denote t′ = ti+1 − 1. The
action a is still active by agent v at time t′, and thus, UCBv

t′(a) ≥ LCBv
t′(a

⋆). Note the slightly
abuse of notation, when UCBv

t′(a) is actually UCBv
nt′ (a)

(a), and the same for LCB. Under the
good event G1,

µa + 2λv
t′(a) ≥ UCBv

t′(a) ≥ LCBv
t′(a

⋆) ≥ µa⋆ − 2λv
t′(a

⋆).

Rearranging it we get,

∆a ≤ 2

√
2ι

nt′(a)
+ 2

√
2ι

nt′(a⋆)
.

Recall that under the good event, a⋆ is never eliminated. Thus, we can apply Lemma 4 on both a and
a⋆ and further bound ∆a by,

∆a ≤ 4

√
2ι∑i

j=1,j∈Gτ

τj
8Aj
|N≤τj/4|

,

then

∆2
a ≤ 16

2ι∑i
j=1,j∈Gτ

τj
8Aj
|N≤τj/4|

,

we get

i∑
j=1,j∈Gτ

τj
8Aj
|N≤τj/4| ≤

32ι

∆2
a

,

and,
i∑

j=1,j∈Gτ

τj
8Aj
|N≤τj/4| ≤

32ι

∆2
a

By rearranging terms we get the Lemma’s statement.

Lemma 6. For any τ ≥ 0
min{τ,m} ≤ |N≤τ |

Proof. The graph is connected, so either there exists an agent u at distance ⌊τ⌋ from v, in which case
N≤τ ≥ ⌈τ⌉ ≥ τ , or all the agents are at distance at most τ from v, in which case N≤τ = m.

Lemma 7.
∑A

j=1
1
Aj
≤ logA+ 1

Proof.

A∑
j=1

1

Aj
=

A∑
j=1

1

A− j + 1

=

A∑
i=1

1

i

= 1 +

A∑
i=2

1

i

≤ 1 +

A∫
1

1

x
dx

= 1 + logA
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Lemma 8. The regret of agent v (under the good event) of action ai from stages j ∈ Gτ is bounded
by

∆i

i∑
j=1

2τj
Aj

(4)

Proof. In each round that action ai is active the agent plays it at most ⌈τj/Aj⌉ times. Since we count
here only the regret from the "good stages", i.e., j ∈ Gτ , ⌈τj/Aj⌉ ≤ 2τj/Aj .

Lemma 9. The regret for all actions from the stages j /∈ Gτ is at most 16A2.

Proof. There are at most A such stages. Each stage is at most of 16A length. The gaps are bound by
1, and the result follows.

Lemma 10. For every action elimination index i, it holds that

i∑
j=1,j∈Sτ

τ2j
4Aj

+

i∑
j=1,j∈Gτ\Sτ

τj
Aj

m ≤ 256ι

∆2
i

where Sτ := {j|j ∈ Gτ & τj/4 < m}, and {τj |j ∈ [A]} are the stage lengths.

Proof. From Lemma 5,

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≤

256ι

∆2
ai

.

On the other hand, using Lemma 6

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≥

i∑
j=1,j∈Gτ

τj
Aj

min{m, τj/4}

=

i∑
j=1,j∈Sτ

τ2j
4Aj

+

i∑
j=1,j∈Gτ\Sτ

τj
Aj

m

Lemma 11. The regret for action ai from stages j ∈ Gτ is at most

512ι

m∆i
+ 64
√
ι

√√√√ i∑
j=1

1

Aj
. (5)

Proof. We’ll break the the regret per action into "short stages" and "long stages", where both are
"good stages". Specifically, we define Sτ = {j : j ∈ Gτ & τj/4 < m} and break the regret per
action into two:

2(

i∑
j=1,j∈Sτ

τj
Aj

∆i +

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i). (6)

For the first term above, using Lemma 10

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i =
∆i

m

i∑
j=1,τj∈Gτ\Sτ

τj
Aj

m

≤ 256ι

m∆i
. (7)
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For the second term, using Cauchy–Schwarz inequality

i∑
j=1,j∈Sτ

τj
Aj

∆i ≤ ∆i

√√√√ i∑
j=1,j∈Sτ

τ2j
Aj

√√√√ i∑
j=1,j∈Sτ

1

Aj

≤ ∆i

√
4 · 256ι
∆2

i

√√√√ i∑
j=1

1

Aj

≤
√
1024ι

√√√√ i∑
j=1

1

Aj

= 32
√
ι

√√√√ i∑
j=1

1

Aj
.

where the second inequality is from Lemma 10.

Lemma 12.
∑A

i=1

√∑i
j=1

1
Aj
≤ A

Proof. Using Cauchy–Schwarz inequality

A∑
i=1

√√√√ i∑
j=1

1

Aj
≤
√
A

√√√√ A∑
i=1

i∑
j=1

1

Aj

=
√
A

√√√√ A∑
j=1

A∑
i=j

1

Aj

=
√
A

√√√√ A∑
j=1

A− j + 1

Aj

=
√
A

√√√√ A∑
j=1

1

= A.

Theorem 6. When all the agents play Coop-SE, i.e., Algorithm 6, the individual regret of each agent
v ∈ V is

RT ≤ (
∑
i∈A

512 log(3mTA)

m∆i
) + 64 ·A

√
log(3mTA) + 16A2 + 1.

Proof. From Lemma 3, the complementary event of the good event adds no more than 1 to the regret.
Let’s assume that the good event hold.

From Lemma 9, the regret of all stages j /∈ Gτ is at most 16A2. Using Lemma 12, summing over all
actions we get the second term in Equation (5) is bounded by 64A

√
ι. Combining this with the other

terms in Equation (5) yields the part of the bound corresponding to the good event. We get,

RT ≤ (
∑
i∈A

512 log(3mTA)

m∆i
) + 64 ·A

√
log(3mTA) + 16A2 + 1.
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Theorem 7. When each agent plays Coop-SE the regret of each agent is also bounded by

RT ≤ (
∑
i∈A

512 log(3mTA)

m∆i
) + 16AD + 1.

Proof. When we take into account only stages that are longer than 16D the other stages adds no more
than 16AD. The analysis of the regret that stems from the stages {j | τj ≥ 16D} can be simplified,
compared to when the stages are {j | τj ≥ 16Aj}. In each such stage j in which τj ≥ 16D, N≤τj/4

is the entire graph. So Lemma 5 becomes
i∑

j=1,τj≥16D

τj
Aj

m =

i∑
j=1,τj≥16D

τj
Aj
|N≤τj/4| ≤

256ι

∆2
a

.

And the regret in Equation (6) becomes only the first part. I.e., Equation (7) is the term that left. The
term that was solved with Cauchy-Schwartz does not appear when the neighborhood is the entire
graph.

Proof of Theorem 2. The proof follows immediately from the two regret bounds, Theorem 6 and
Theorem 7.

F Proofs for Random Choices in Coop-SE

Theorem 8. When all the agents play coop-SE-rand, i.e., Algorithm 6 with random choices, the
individual regret of each agent v ∈ V is,

Rv
T = O

(√
TA log(mTA)

m
+A log(mTA)

)
.

A problem-specific flavor of an individual regret bound can also be established:
Theorem 9. When all the agents play coop-SE-rand, i.e., Algorithm 6 with random choices, the
individual regret of each agent v ∈ V is

Rv
T = O

( ∑
∆a>0

log(mTA)

m∆a
+A log(mTA)

)
.

F.1 Definitions

Definition 15. Denote with A∆ the set of elimination indices of large gaps. A∆ = {i|∆ai
≥
√

Aι
Tm}.

Definition 16. Define the set of "Good Intervals" to be the set of long enough intervals: Gτ =
{j|τj > 16}. These are the intervals we will focus in the proofs.
Definition 17. Denote the group of indices of short stages with Sτ . Specifically,

Sτ := {j|j ∈ Gτ & τj/4 < m}
Definition 18. Denote the number of samples an agent u sees for action a until the beginning of
timestep t with nu

t (a). For the ease of notation, denote nt(a) := nv
t (a).

Definition 19. Denote by but (a) the number of times agent u played action a until the beginning of
round t.

F.2 The Good Event

The first good event G1 captures is the same as the one that was defined earlier.
Lemma 13. Let w be an agent and let Xw

t (a) := I(awt = a) be the indicator that w plays action a
at timestep t. Then for any agent u, timestep t, and action a,

nu
t (a) =

t−1∑
k=1

∑
w∈Nu

≤t−k

Xw
k (a)
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Proof. Let w be an agent such that w ̸= u and dG(w, u) = d. Every Xw
k (a) reaches u at the end of

round k + d− 1. Therefore, it contributes to nu
t′(a) at timestep t′ = k + d. We get that for w ̸= u,

w ∈ Nu
≤t−k, Xw

k (a) reaches u until the beginning of timestep t.

Now, let w = u and k < t. An agent u uses the information she creates only at the next timestep.
Since we do not sum the information for the current timestep t, i.e., t − k ≥ 1, the information u
creates is summed only for timesteps that passed. In other words, for w = u, Xw

k (a) is summed only
at timesteps t′ < t, for them the information reaches u until the beginning of t. Therefore, we get
that for all k < t, w ∈ Nu

≤t−k, Xw
k (a) reaches u until the beginning of timestep t. Summing over all

the timesteps at which information on action a can be produced and we obtain the result.

The second good event G2 requires that the number of observations of an action is not much less than
the expectation of the number of observations.
Definition 20. Define the good event G2 to be the event in which for all u ∈ V , action a and timestep
t ∈ T simultaneously,

nu
t (a) ≥

1

2

t−1∑
k=1

∑
w∈Nu

≤t−k

pwk (a)− 2ι.

The third good event G3 requires that the number of plays of an action is not much more than the
expectation of the number of plays.
Definition 21. Define the good event G3 to be the event in which for all u ∈ V , action a and timestep
t ∈ T simultaneously,

but (a) ≤ 2

t−1∑
k=1

puk(a) + 12ι.

Definition 22. The good event is the event in which all the previous sub-good-events happen. I.e.,

G := G1 ∪G2 ∪G3

The following lemma show that with high probability all the good events hold.
Lemma 14. When all agents play Algorithm 6 with random choices the good event, G := G1 ∪G2 ∪
G3, happens with probability of at least 1− 1

T 2 .

Proof. We will show that each of the events ¬G1,¬G2 and ¬G3 happens with probability of at most
1

3T 2 . Thus, by the union bound, G occur with probability of at least 1− 1
T 2 .

Event ¬G2: Fix an action a and agent u. Let Xk,w = I{awk = a} and Ft,w be the sigma algebra
induced by the first t− 1 rounds; and the actions chosen by the first w − 1 agents in round t (where
we assume a linear order on the agents - for example the alphabetic order induced by their IDs).
Notice that Ft,1 is induced simply by the first t − 1 rounds. Note that pwk (a) is Fk,w-measurable,
E[Xk,w | Fk,w] = pwk (a) and that Xk,w is Fk,w+1-measurable (or if w is the last agent, Xk,w

is Fk+1,1-measurable). By applying Lemma 46, with probability 1 − 1
9T 2A2m2 for all t ∈ [T ]

simultaneously we have,

nu
t (a) =

t−1∑
k=1

∑
w∈Nu

≤t−k

Xw
k (a) ≥ 1

2

t−1∑
k=1

∑
w∈Nu

≤t−k

pwk (a)− 2ι,

where the equality is from Lemma 13. By taking the union bound over all actions, a, and agents u we
get that P(¬G2) ≤ 1/(9mAT 2) ≤ 1/(3T 2).

Event ¬G3: Fix an action a, agent u and timestep t. Let Xk = I{auk = a} and Ft be the sigma
algebra induced by the first t− 1 rounds. Note that pwk (a) is Fk-measurable, E[Xk | Fk] = puk(a)
and that Xk is Fk+1-measurable. By applying Lemma 47, with probability 1− 1

27T 3A3m3 ,

but (a) =

t−1∑
k=1

Xk(a) ≤ 2

t−1∑
k=1

puk(a) + 12ι.
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By taking the union bound over all time steps t, actions a, and agents u we have P(¬G3) ≤
1

27T 2A2m2 ≤ 1
3T 2 .

Taking the union bound over ¬G1 ∪ ¬G2 ∪ ¬G3, and from Lemma 2, we complete the proof.

Lemma 15. The complementary event of the good event adds no more than 1 to the regret of each
agent.

Proof. From Lemma 2, the complementary event of the good event happens in probability lower than
1
T 2 . Every agent plays T timesteps, and the gaps are bounded by 1, i.e., for every action a we have
∆a ≤ 1. Hence, in expectation, this adds at most 1

T ≤ 1 to the regret.

F.3 Proof of Theorem 8

In the proof from now on, we assume the good event G := G1 ∪G2 ∪G3 holds.
Remark 3. Note that in the proof of Lemma 1 we used τvj > 16 and not τvj > 16Aj . Hence, the
results follows immediately here as well. We will use the same lemma, Lemma 1, here as well.
Lemma 16. For every action a that was not eliminated before the end of stage i, we have

nti+1−1(a) ≥
i∑

j=1,j∈Gτ

τj
16Aj

|N≤τj/4| − 2ι.

Proof. Under the good event G2,

nti+1−1(a) ≥
1

2

ti+1−2∑
t=1

∑
u∈N≤ti+1−t−2

put (a)− 2ι

≥ 1

2

i∑
j=1

tj+τj−2∑
t=tj

∑
u∈N≤ti+1−t−1

put (a)− 2ι

≥ 1

2

i∑
j=1,j∈Gτ

tj+⌊τj/2⌋∑
t=tj+⌈τj/4⌉

∑
u∈N≤ti+1−t−2

put (a)− 2ι

≥ 1

2

i∑
j=1,j∈Gτ

tj+⌊τj/2⌋∑
t=tj+⌈τj/4⌉

∑
u∈N≤τj/4

put (a)− 2ι.

The second inequality is by splitting the rounds to stages and summing partially. The third inequality
is by summing partially over j ∈ Gτ (⌊τj/2⌋ ≤ τj/2 − 1 ≤ τj − 2). The last inequality is since
N≤τj/4 ⊆ N≤ti+1−t−2 as for all j ∈ [i] ∩Gτ and t ≤ tj + ⌊τj/2⌋,

ti+1 − t− 2 ≥ tj+1 − tj − ⌊τj/2⌋ − 2 ≥ τj − τj/2− 3 = τj/2− 3 ≥ τj/4.

Finally, by Lemma 1, all agents u ∈ N≤τj/4 play the same policy at time steps t ∈ [tj + ⌈τj/4⌉, tj +
⌊τj/2⌋] which is uniform over the active actions. I.e., put (a) = 1

Aj
for active actions in [tj +

⌈τj/4⌉, tj + ⌊τj/2⌋]. The interval [tj + ⌈τj/4⌉, tj + ⌊τj/2⌋] is of size at least τj/8, since tj +
⌈τ/4⌉ − tj + ⌊τ/2⌋ ≥ τj

2 −
τj
4 − 2 =

τj
4 − 2 ≥ τj

8 , when the last inequality follows from the that
for every j ∈ Gτ , τj > 16. Thus,

1

2

i∑
j=1,j∈Gτ

tj+⌊τj/2⌋∑
t=tj+⌈τj/4⌉

∑
u∈N≤τj/4

put (a) ≥
i∑

j=1,j∈Gτ

τj
16Aj

|N≤τj/4|,

as desired.

Lemma 17. For every action a that was not eliminated before the end of stage i,
i∑

j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≤

544ι

∆2
a

.
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Proof. Fix an action a that was not eliminated before the end of stage i. Denote t′ = ti+1 − 1. The
action a is still active by agent v at time t′, and thus, UCBv

t′(a) ≥ LCBv
t′(a

⋆). Note the slightly
abuse of notation, when UCBv

t′(a) is actually UCBv
nt′ (a)

(a), and the same for LCB. Under the
good event G1,

µa + 2λv
t′(a) ≥ UCBv

t′(a) ≥ LCBv
t′(a

⋆) ≥ µa⋆ − 2λv
t′(a

⋆).

Rearranging it we get,

∆a ≤ 2

√
2ι

nt′(a)
+ 2

√
2ι

nt′(a⋆)
.

Recall that under the good event, a⋆ is never eliminated. Thus, we can apply Lemma 16 on both a
and a⋆ and further bound ∆a by,

∆a ≤ 4

√
2ι∑i

j=1,j∈Gτ

τj
16Aj
|N≤τj/4| − 2ι

,

then

∆2
a ≤ 16

2ι∑i
j=1,j∈Gτ

τj
16Aj
|N≤τj/4| − 2ι

,

we get

i∑
j=1,j∈Gτ

τj
16Aj

|N≤τj/4| − 2ι ≤ 32ι

∆2
a

,

and,

i∑
j=1,j∈Gτ

τj
16Aj

|N≤τj/4| ≤
32ι

∆2
a

+ 2ι ≤ 34ι

∆2
a

.

By rearranging terms we get the Lemma’s statement.

Lemma 18. When all agents plays Coop-SE with random choices, the regret of agent v (under the
good event) is bounded by

RT ≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 44Aι (8)

Proof. Under the good event,

bti+1
(ai) ≤ 2

ti+1−1∑
t=1

pvk(ai) + 12ι

= 2

i∑
j=1

tj+τj−1∑
t=tj

pvk(ai) + 12ι

= 2

i∑
j=1

τj
Aj

+ 12ι
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Now the regret can be bounded by,

RT =
∑
i∈[A]

bti+1
(ai)∆i

≤ 2
∑
i∈[A]

i∑
j=1

τj
Aj

∆i + 12Aι

≤ 2
∑
i∈A∆

i∑
j=1

τj
Aj

∆i +
∑
i/∈A∆

bti+1
(ai)

√
Aι

Tm
+ 12Aι (9)

≤ 2
∑
i∈A∆

i∑
j=1

τj
Aj

∆i + T

√
Aι

Tm
+ 12Aι

≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +
∑
i∈A∆

i∑
j=1,j /∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 12Aι

≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 44Aι,

where the last is since,

∑
i∈A∆

i∑
j=1,j /∈Gτ

τj
Aj

∆i ≤
∑
i∈A∆

i∑
j=1

16

Aj
≤ A

A∑
j=1

16

Aj
≤ 32A logA.

as
∑A

j=1
1
Aj
≤ logA+ 1 by Lemma 7.

Lemma 19. For every action elimination index i ∈ A∆, it holds that

i∑
j=1,j∈Sτ

τ2j
4Aj

+

i∑
j=1,j∈Gτ\Sτ

τj
Aj

m ≤ 544ι

∆2
i

where Sτ := {j|j ∈ Gτ & τj/4 < m}, and {τj |j ∈ [A]} are the stage lengths.

Proof. From Lemma 17,

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≤

544ι

∆2
ai

.

On the other hand, using Lemma 6

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≥

i∑
j=1,j∈Gτ

τj
Aj

min{m, τj/4}

=

i∑
j=1,j∈Sτ

τ2j
4Aj

+

i∑
j=1,j∈Gτ\Sτ

τj
Aj

m

Proof of Theorem 8. Let us write again the Right-Hand-Side of Equation (8)

2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 44Aι.
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Note that the bound on the regret that is depicted in Equation (8) assumes that the good event holds,
and we later will remove this assumption. Let’s assume that the good event hold. We’ll break the first
sum in the Right-Hand-Side of Equation (8) as

∑
i∈A∆

i∑
j=1,j∈Sτ

τj
Aj

∆i +
∑
i∈A∆

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i. (10)

and we remind that Sτ = {j : j ∈ Gτ & τj/4 < m}. For the first term above, using Lemma 19,
for every i ∈ A∆,

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i =
∆i

m

i∑
j=1,τj∈Gτ\Sτ

τj
Aj

m

≤ 544ι

m∆i
(11)

≤ 544

√
Tι

mA
.

where the second inequality is since i ∈ A∆. Summing over all elimination indices in A∆ we get

that the first term in Equation (10) is bounded by 544
√

TAι
m .

For the second term, for every i, using Cauchy–Schwarz inequality

i∑
j=1,j∈Sτ

τj
Aj

∆i ≤ ∆i

√√√√ i∑
j=1,j∈Sτ

τ2j
Aj

√√√√ i∑
j=1,j∈Sτ

1

Aj

≤ ∆i

√
4 · 544ι
∆2

i

√√√√ i∑
j=1

1

Aj

≤
√
2176ι

√√√√ i∑
j=1

1

Aj
,

where the second inequality is from Lemma 19. Using Lemma 12, summing over all actions we
get the second term in Equation (10) is bounded by 47A

√
ι. Combining this with the other terms

in Equation (8) yields the part of the bound corresponding to the good event. From Lemma 15, the
complementary event of the good events adds no more than 1 to the regret. We get,

RT ≤ 2 · 544
√

TAι

m
+ 2 · 47A

√
ι+

√
TAι

m
+ 44Aι+ 1

≤ 1088

√
TAι

m
+ 94Aι+

√
TAι

m
+ 44Aι+ 1

= 1089

√
TAι

m
+ 138Aι+ 1

= 1089

√
TA log(3mTA)

m
+ 138A log(3mTA) + 1.

F.4 Instance Dependent Bound

It is important to note that when the analysis is not split into large and small gaps, a bound specific to
the problem instance can also be derived. We can conclude that the individual regret is bounded by,

Õ(
∑

a:∆a>0

1

m∆a
)
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as depicted in Theorem 9.

Despite being a suitable bound for various scenarios, there are cases where it fails to provide a good
approximation. For example, two action and the gap is ∆a = 1/T ·m. We will get regret which is
linear in T . We have made this distinction between large and short gaps to be problem independent.

Although the changes that yield the instance dependent bound are simple, we provide for clarity the
relevant parts where the proof changes.
Lemma 20. Under the good event, the regret of agent v is bounded by

RT ≤ 2
∑
i∈[A]

i∑
j=1,j∈Gτ

τj
Aj

∆i + 44Aι. (12)

Proof. The proof follows the same steps as Lemma 18, but without splitting the gaps as in Equation (9).

Lemma 21. Under the good event, the following holds,∑
i∈[A],∆i>0

i∑
j=1,j∈Gτ

τj
Aj

∆i ≤
∑

i∈[A],∆i>0

544ι

m∆i
+ 47A

√
ι.

Proof. The proof follows the same steps as the proof of Theorem 8, but treating all non optimal
actions the same, and stopping the analysis in Equation (11), i.e., without bounding the expression
with

√
Tι/mA.

Proof of Theorem 9. The proof follows by combining the results of Lemma 20 and Lemma 21, and
with the fact from Lemma 15 that the complementary event of the good events adds no more than 1
to the regret. We get,

RT ≤ 2
∑
i∈[A]

i∑
j=1,j∈Gτ

τj
Aj

∆i + 44Aι+ 1

≤ 2 ·
∑

i∈[A],∆i>0

544ι

m∆i
+ 2 · 47A

√
ι+ 44Aι+ 1

≤
∑

i∈[A],∆i>0

1088ι

m∆i
+ 94Aι+ 44Aι+ 1

=
∑

i∈[A],∆i>0

1088ι

m∆i
+ 138Aι+ 1

=

1088
∑

i∈[A],∆i>0

log(3mTA)

m∆i

+ 138A log(3mTA) + 1.

G Lower Bound

Theorem 10. For any algorithm, there exists an instance of the cooperative MAB over a com-
munication graph problem, for which the individual regret of any agent is bounded from below
by

Ω(
√
A) ≤ RT .

Proof. Let the graph be a line of length at least T . I.e., m ≥ T . Let A be the number of actions such
that
√
A > 20. Let a⋆ be the only best action. Let ∆a = 1 for every a ̸= a⋆. Namely the reward of

a∗ is 1 and the rewards of the other actions a ̸= a∗ is 0.
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Let v be an agent in the graph. After t timesteps, the maximum number of samples v sees, for all
actions together, is no more than 2 · (2 + t+ 1)t/2 = (t+ 3)t (twice the sum of arithmetic series).
At timestep ⌊

√
A/20⌋ the agent sees at most A+30

√
A

400 samples for all the actions together.

From the assumption on A, 3
√
A

40 ≤
A
200 . It implies that

A+ 30
√
A

400
≤ A

200
+

3
√
A

20
≤ A

100
.

It means that until this timestep, the agent didn’t see at least 0.99A of the actions.

Let us randomly choose an instantiation of the best action a∗. Define the random variable X that
chooses the best action uniformly. I.e., P(X = a) = 1

A . Denote the event in which the agent doesn’t
see the best action until timestep ⌊

√
A

20 ⌋ with E . From the above, event E happens with probability at
least 99

100 . I.e., P(E) ≥ 99
100 . Under event E , from the assumption that ∆a = 1, the regret until this

timestep is ⌊
√
A

20 ⌋, and we get
√
A

20 − 1 ≤ RT .

For any algorithm the agents play,

EX(RT ) ≥
99

100
· (
√
A

20
− 1).

Therefore, for any algorithm, there exists an instance such that RT ≥ 99
100 · (

√
A

20 − 1).

H Bounded Communication

This section relies on the definitions and theorems that are depicted in Appendix E.

We introduce a new event type, the aggregated event for many rewards.
Definition 23. A reward-many event is a tuple (rwdMany, v, a, r, n) that represents an aggregation
of many rewards, where v is the agent’s ID, a is the action, r is the reward, and n is the number of
samples of this event.
Remark 4. The good event occurs with probability higher than or equal to 1−1/T 2, when all agents
play Algorithm 9. Although this algorithm uses the rwdMany events, the same proof of Lemma 2
applies also to them, but the graph is the induced tree.

Proof of restricted communication. In Algorithm 9, we do not have duplicated messages. We achieve
this by the tree structure, and by not sending to a neighbor u information that u already sent to v. The
tree structure guarantees that there is only one path from an agent to another. This property ensures
that a message originating from one agent will reach all other agents exactly once, as it traverses the
tree along the single possible route. Consequently, the combination of the spanning tree structure and
the selective forwarding of messages allows for efficient and duplicate-free communication among
all agents.

The Coop-SE-Restricted algorithm aggregate all events regarding an action a into two events:
rwdMany for rewards and elim for elimination. The message contains information about action a, its
elimination status, observation count, and sum of observed rewards, requiring O(A log(Am)) bits.
This is all the information agents need from multiple messages.

Therefore, the agent has exactly the same information if all agents had played Algorithm 6 on that
spanning tree. The individual regret bound that is induced from Coop-SE does not depend on the
structure of the graph, therefore the same regret bound applied for Coop-SE-Restricted as well.

The agent sends to each neighbor 2A events. Each event has O(log(Am)) bits. Therefore each
message is bounded by O(A log(Am)) bits. This completes the proof.

H.1 CONGEST Model: O (log(AmT )) Bits

Remark 5. The problem independent regret bound for Coop-SE-CONGEST is

Rv
T = O

(√
TA log(mTA)

m
+A2 +A log(mTA)

)
.
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Lemma 22. Let v, u be two agents such that either v is a descendant of u or u is a descendant of
v (with respect to the root w). When all agents play Algorithm 11 every message sent from v to u
arrives dT (v, u) timesteps after it has been sent (and vice versa).

Proof. Let us first assume that v is descendant of u. Every message contains information about one
action. Denote that action by a for the message that has been sent from v. We will prove the lemma
by induction on dT (v, u).

dT (v, u) = 1: Immediately true.

Let’s denote the timestep when the message was sent with t0. Let’s assume the claim is true for d,
now assume the distance is d+ 1.

The message is sent toward the root at t0 + dT (w, v) ≡ a (mod A). One of u’s children, x, is
on the path between v and u and is with distance d from v. Since v is descendant of u, it is also
a descendant of x. Therefore, from the induction hypothesis, at timestep t0 + d, x receives the
message. The message is sent from x to u at timestep t such that t + dT (x,w) ≡ a (mod A).
t = t0 + d, since t0 + d+ dT (x,w) = t0 + dT (v, w) ≡ a (mod A). Then u gets the message after
dT (v, x) + 1 = dT (v, u) timesteps.

Similarly, assume u is a descendant of v. We will prove by induction on dT (v, u). dT (v, u) = 1:
Immediately true. Let’s denote the timestep when the message was sent out with t0. Let’s assume it
is true for d, now assume the distance is d+ 1.

The message is sent from v outward from the root at t0−dT (w, v) ≡ a (mod A). Let x be u’s parent
and note that x is also a descendant of v. Therefore, from the induction hypothesis, at timestep t0 + d,
x receives the message. The message will be sent from x to u at timestep t such that t−dT (x,w) ≡ a
(mod A). t = t0 + d since t0 + d − dT (x,w) = t0 − dT (v, w) ≡ a (mod A). Then u gets the
message after dT (v, x) + 1 = dT (v, u) timesteps.

Lemma 23. When all agents play Algorithm 11 every reward information that arrives to one agent v
at timestep t, and was not produced by another agent u, arrives to agent u at most at t+dT (v, u)+2A.
Where reward information is a reward from some action some agent experienced.

Proof. Let’s denote with x the common ancestor of v and u, i.e., the closest agent to the root among
all the agents on a shortest path from v to u. Notice that it is possible that v = x, and that u = x. We
have that both v and u are either x itself or descendants of x. The reward information that reaches v at
timestep t can wait A timesteps at v before being sent, since v sends the actions in round robin. From
Lemma 22, after being sent from v toward the root, the message that contains the reward information
arrives to x after dT (v, x). At x, it might wait again for A timesteps, because of the round-robin
sending of the actions. After the message is sent from x to u, it takes dT (x, u) timesteps to arrive at
u, as per Lemma 22. Overall it took the message to pass from v to u no more than dT (v, u) + 2A
timesteps.

H.1.1 Good Event

The good event for this section is exactly as in Appendix E.

H.1.2 Adjusting the Proofs

Definition 24. The "good intervals", G′
τ , from now on are τj > 32A. G′

τ = {j|τj > 32A}.
Lemma 24. Assume all agents play Coop-SE-CONGEST. Let j be a stage index such that τj > 32A.
Then every agent u ∈ N≤τj/4 plays the same policy (i.e., has the same set of active actions) at time
interval [tj + ⌈3τj/8⌉, tj + ⌊τj/2⌋].

Proof. Let t ∈ [tj + ⌈3τj/8⌉, tj + ⌊τj/2⌋] and let u ∈ N≤τj/4.

Denote the active actions of v in the j’th stage as Aj . We will show that an action a is active for u at
t iff a ∈ Aj .

Let a be an active action of u at time t. Since u ∈ N≤τj/4, we have dG(u, v) ≤ τj/4.
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From Lemma 23 u gets all v’s eliminations (the first j − 1 eliminated actions) until the beginning of
round tj + ⌊τj/4⌋+2A. Since τj > 16A we get tj + ⌊τj/4⌋+2A < tj + τj/4+ τj/8 = tj +3τj/8.

By the stage’s definition, the agent v does not send any elimination event about one of her active
actions until the end of the stage. Therefore, for any t′ ≥ tj + ⌈3τj/8⌉, u does not have any active
action which is not in Aj . Hence, a ∈ Aj .

Let a be an action in Aj . We will show that a is an active action of u at time t. Assume for
contradiction that u, at timestep tj + ⌊τj/2⌋ or before, encounters an elimination of a. From
Lemma 23, the elimination event should arrive to v in no more than ⌊τj/4 + 2A⌋ < ⌊3τj/8⌋
timesteps, so v should get the elimination event at most at timestep tj + ⌊τj/2⌋+ ⌊3τj/8⌋ ≤ tj +

7τj
8 .

But τj > 16A, then τj/8 > 2A ≥ 2, so tj +
7τj
8 < tj+1 − 2. Therefore, the elimination event

about an action in Aj should arrive to v at least 2 timesteps before stage j + 1 begin. Contradiction.
Therefore, a is an active action of u at t.

We get that for every t ∈ [tj + ⌈3τj/8⌉, tj + ⌊τj/2⌋] and for every u ∈ N≤τj/4, the active actions
of u at t are exactly Aj . In other words, we get that in time interval [tj + ⌈3τj/8⌉, tj + ⌊τj/2⌋] all
agents in N≤τj/4 plays the same policy, i.e., choosing randomly from Aj .

Lemma 25. When all agent play Coop-SE-CONGEST (Algorithm 11), each sends no more than
O(log(mA)) bits per messages.

Proof. According to Send-One-Action procedure, agents sends only one elim event or one
rwdMany event. An elim message is of size 1 + log(m) + log(A). A rwdMany message is of
size 1 + log(m) + log(A) + 2 log(m). Together we get O(log(mA)) bits.

Lemma 26. For every action a that was not eliminated before the end of stage i, we have

nti+1−1(a) ≥
i∑

j=1,j∈Gτ

τj
32Aj

|N≤τj/4|.

Proof. By Lemma 24, all agents u ∈ N≤τj/4 have the same active set on the interval t ∈ [tj +
⌈3τj/8⌉, tj+⌊τj/2⌋]. By lemma 23, every pull of u ∈ N≤τj/4 that is sampled before time tj+⌊τj/2⌋
is observed by v by time

tj + ⌊τj/2⌋+ ⌊τj/4⌋+ 2A ≤ tj + ⌊τj/2⌋+ ⌊τj/4⌋+ τj/16 (since j ∈ G′
τ )

≤ tj + τj = tj+1 − 1 ≤ ti+1 − 1 (for j ≤ i)

The interval [tj + ⌈3τj/8⌉, tj + ⌊τj/2⌋] is of size at least τj/16, since tj + ⌊τj/2⌋− tj −⌈3τj/8⌉ ≥
τj
2 − 1 − 3

τj
8 − 1 =

τj
8 − 2 ≥ τj

16 , when the last inequality follows from the that for every
j ∈ G′

τ , τj > 32A > 32. Thus, the number of samples from each active action at stage j that each
agent in N≤τj/4 gathers is at least ⌊ τj

16Aj
⌋ ≥ τj

16Aj
− 1 ≥ τj

32Aj
for j ∈ G′

τ . Moreover, these samples
are observed by v by time ti+1 − 1. In total,

nti+1−1(a) ≥
i∑

j=1,j∈Gτ

τj
32Aj

|N≤τj/4|.

Lemma 27. When all agent play Algorithm 11, for every action a that was not eliminated before the
end of stage i,

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≤

1088ι

∆2
a

.

Proof. The proof follows the same steps as the proof of Lemma 5 but employs Lemma 26 instead of
Lemma 4. The claim involves a slightly different constants due to the factor of 1/32 in Lemma 26 as
opposed to 1/16 in Lemma 4.
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Lemma 28. When all agent play Algorithm 11, the regret of agent v (under the good event) is
bounded by

RT ≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 16A2. (13)

Proof. Similar to the proof of Lemma 8 and Lemma 18,

RT ≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +
∑
i∈A∆

i∑
j=1,j /∈Gτ

τj
Aj

∆i +

√
TAι

m

≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 16A2.

where the last is since,∑
i∈A∆

i∑
j=1,j /∈Gτ

τj
Aj

∆i ≤
∑
i∈A∆

i∑
j=1

32Aj

Aj
≤ 32

∑
i∈A∆

i∑
j=1

1 ≤ 32
A(A− 1)

2
≤ 16A2.

Proof of Theorem 4. Let us write again the Right-Hand-Side of Equation (13)

2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
.

Similarly to the proof of Theorem 2, we’ll break the first sum in the Right-Hand-Side of Equation (13)
as ∑

i∈A∆

i∑
j=1,j∈Sτ

τj
Aj

∆i +
∑
i∈A∆

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i. (14)

We can adjust Lemma 10, the only change is the constant of 1088 instead of 256. Using this adjusted
lemma, we get that for every i ∈ A∆,

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i =
∆i

m

i∑
j=1,τj∈Gτ\Sτ

τj
Aj

m

≤ 1088ι

m∆i
(15)

≤ 1088

√
Tι

mA
.

Similarly to the proof of Theorem 2, for the second term, for every i, using Cauchy–Schwarz
inequality

i∑
j=1,j∈Sτ

τj
Aj

∆i ≤ ∆i

√√√√ i∑
j=1,j∈Sτ

τ2j
Aj

√√√√ i∑
j=1,j∈Sτ

1

Aj

≤ ∆i

√
4 · 1088ι

∆2
i

√√√√ i∑
j=1

1

Aj

≤
√
4352ι

√√√√ i∑
j=1

1

Aj
,
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Using Lemma 12, summing over all actions we get the second term in Equation (14) is bounded
by 66A

√
ι. Combining this with the other terms in Equation (13) yields the part of the bound

corresponding to the good event. From Lemma 3, the complementary event of the good events adds
no more than 1 to the regret. We get,

RT ≤ 2 · 1088
√

TAι

m
+ 2 · 66A

√
ι+

√
TAι

m
+ 16A2 + 1

= 2177

√
TAι

m
+ 132A

√
ι+

√
TAι

m
+ 16A2 + 1

A problem-specific flavor of an individual regret bound can also be found: The proof is similar to the
proof of Theorem 6.
Lemma 29. Under the good event, the regret of agent v is bounded by

RT ≤ 2
∑
i∈[A]

i∑
j=1,j∈Gτ

τj
Aj

∆i + 16A2. (16)

Proof. The proof follows the same steps as Lemma 28, but without splitting the analysis for small
gaps and large gaps.

Lemma 30. Under the good event, the following holds,

∑
i∈[A],∆i>0

i∑
j=1,j∈Gτ

τj
Aj

∆i ≤
∑

i∈[A],∆i>0

1088ι

m∆i
+ 66A

√
ι.

Proof. The proof follows the same steps as the proof of Theorem 4, but treating all non-optimal
actions the same, and stopping the analysis in Equation (15), i.e., without bounding the expression
with

√
Tι/mA.

Proof of Theorem 4 (instance-dependent bound). The proof follows by combining the results of
Lemma 29 and Lemma 30, and with the fact from Lemma 3 that the complementary event of the
good events adds no more than 1 to the regret. We get,

RT ≤ 2
∑
i∈[A]

i∑
j=1,j∈Gτ

τj
Aj

∆i + 16A2 + 12Aι+ 1

≤ 2 ·
∑

i∈[A],∆i>0

1088ι

m∆i
+ 2 · 66A

√
ι+ 16A2 + 1

≤
∑

i∈[A],∆i>0

2176ι

m∆i
+ 132A

√
ι+ 16A2 + 1.

40



H.2 Communication Cost - Low Number of Messages

Algorithm 4 Create-Clusters

1: Input: Communication tree T = (V,E) with root w ∈ V , stage i
2: Define: Vu := {v ∈ V | dT (u, v) ≤ 2i − 1}
3: Initialize the set of clusters: C ← ∅
4: for each u such that dT (w, u) = 2i do
5: Let Tu = (Vu, Eu) be the sub-tree of T rooted at u
6: if |Vu| < 2i then
7: Vw ← Vw ∪ Vu

8: else
9: // then |Vu| = 2i

10: run Create-Clusters on Tu with root u and stage i, and get output Cu
11: Add Cu, the set of clusters when u is the root, to the set of all clusters: C ← C ∪ Cu
12: end if
13: end for
14: C ← C ∪ {Vw}
15: return C

Definition 25. Let T be a tree, T = (V,E). We say that C is a clustering of T if C is a partition of
V and each set of nodes W ∈ C is connected.

Definition 26. Let T be a tree, T = (V,E) and C a clustering of T . For each cluster W ∈ C we
define the cluster’s root of W to be the root node of the sub-tree that is defined by W . The cluster’s
root of the cluster in which agent v resides in the phase i is denoted with cluster-rooti(v), or
simply cluster-root when the context is clear. Every connected sub-graph of a tree is a tree, so
the existence and uniqueness immediate follows.

Definition 27. Let a tree T = (V,E) and C a clustering of T . For each cluster W ∈ C, we say that
u ∈ W is a cluster boundary if u has no children in W . When u is a cluster boundary node for a
cluster in which agent v resides in the phase i, we denote it with cluster-boundaryi(v), or simply
cluster-boundary if the context is clear.

Lemma 31. Let C be the clustering that Create-Clusters outputs with stage i. The following
properties hold:

1. Each cluster W ∈ C is at a size of at least min{2i,m}.

2. For each cluster W ∈ C and its associated cluster root w, for any agent u ∈W , dT (w, u) ≤
2i+1.

Proof. We will prove by induction on the number of times Create-Clusters is called recursively.
For the base case, assume that Create-Clusters is called only once. For the first property, note
that since Create-Clusters is not called again, the only cluster added is Vw, which at this point is
V itself, and the size is m.

For the second property, note that the only cluster can either contain nodes that are at most 2i − 1
distance from the root w (added in line 2), or nodes that are added if there are not enough nodes to
create a full cluster in the tail (when |Vu| < 2i). For the latter, since |Vu| < 2i for any v ∈ Vu, it
follows that dT (v, u) ≤ 2i. Also dT (w, u) = 2i by definition, and thus dT (w, v) ≤ 2i+1.

Moving to the induction step, assume that the properties hold whenever Create-Clusters is called
at most n times. Now, consider a run where Create-Clusters is called n+ 1 times. It means that
every call for Create-Clusters in this run which is not the outer call, holds the two properties.
Now we will show that the outer call (the first call) to the algorithm holds these two conditions as
well. For the first property, if a cluster is added in line 14, then since Vw is at least of size min{m, 2i}
(line 2) and can only increase in line 7, it satisfies the property. If it is added in line 11, then since we
call Create-Clusters on a sub-tree with at least 2i nodes in line 10, by the induction assumption
any cluster that it outputs is of size at least 2i.

For the second property, similar to the base case, for the cluster added in line 14, any node is added
either in line 2 (in which case it satisfies the condition) or in line 7, in which case since |Vu| < 2i, for
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any v ∈ Vu, dT (v, u) ≤ 2i. And for the latter dT (w, v) ≤ dT (w, u) + dT (u, v) ≤ 2i+1. Since the
induction assumption hold for Create-Clusters in line 10, the all clusters that are added in line 11
satisfy the second property.

Lemma 32. Let C be the clustering that Create-Clusters outputs at phase i when run on the tree
T rooted at w. u ̸= w is a cluster root if and only if dT (u,w) = k · 2i for some k ∈ N and it has at
least 2i − 1 descendants.

Proof. Cluster roots are at distance dT (u,w) = k · 2i for some k ∈ N ∪ {0} by construction: The
initial cluster root is w itself. At the first recursive level, cluster roots are 2i away from w. At the
second level, they are 2i from a cluster root at the first level, that is, at a distance of 2 · 2i from w.
And so on for subsequent levels. Hence, if u ̸= w is a cluster root, then dT (u,w) = k · 2i for some
k ∈ N. Furthermore, u must have served as a root at line 10 of the algorithm. Specifically, under the
“else" condition, u is guaranteed to have at least 2i − 1 descendants.

Conversely, if dT (u,w) = k · 2i for some k ∈ N, it will be iterated over at some recursion level in
line 4. If it also has 2i − 1 descendants, then it will reach line 10 as the tree root and thus will be a
cluster root.

Lemma 33. Let Ci and Ci+1 be the clustering that Create-Clusters outputs at phases i and i+ 1
respectively. If U ∈ Ci then U is contained in some cluster in Ci+1.

Proof. Let U ∈ Ci, let u its cluster root and let some v ∈ U .

• If u is also a cluster root at Ci+1. We will show that v is in u’s cluster also at phase i+ 1.

– If d(u, v) ≤ 2i − 1, then since u’s cluster at phase i contains {v′ ∈ V | dT (u, v′) ≤
2i+1 − 1}, it also contains v.

– Otherwise, v ∈ U is of distance at least 2i from u. Let v′ ∈ U be the node between
v and u that is of distance exactly 2i from u. v′ is not a cluster root (since there is a
unique cluster root in U ). Thus, by Lemma 32, it has no more than 2i − 1 decedents.
Therefore, v′ is not a cluster root also in phase i + 1. We conclude that there are no
cluster roots between v and u also at phase i+ 1, meaning that v must be in u’s cluster
also in phase i+ 1.

• If u is not a cluster root at Ci+1

– If u is at distance k′ · 2i+1 (k′ ∈ N) from w then since u is not a cluster root at phase
i + 1 we know that it has less than 2i+1 − 1 descendants (otherwise, Lemma 32, it
was still be a cluster root). In this case, none of the descendants of u are cluster roots.
In particular, they are all descendants of the same cluster root at phase i+ 1 and thus
contained in the same cluster as u itself.

– Otherwise, we want to claim that each v ∈ U is not a cluster root in phase i. Assume
by contradiction that v ∈ U is a cluster root at phase i + 1, then by Lemma 32,
d(v, w) = k′ · 2i+1 (k′ ∈ N) and has at least 2i+1 − 1 descendants. In this case, again
by Lemma 32, v was also a cluster root at phase i. In particular v /∈ U since u is the
unique cluster root in U . A contradiction. Since U does not contain cluster roots at
phase i+ 1 they all must be descendants of the same cluster root at phase i+ 1 and
thus contained in the same cluster as u itself.

Remark 6. Throughout this section, we assume that, with a lack of other context, we always refer to
a specific agent v.

Remark 7. The good event in this section is the same as G1 in Definition 14, and from now on we
assume it holds.
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Definition 28. The length of the cluster is the distance between the cluster-root and the farthest
cluster-boundary.

Definition 29. A phase in the context of Coop-SE-Comm-Cost is all the timesteps between the
changes of the counter i. Specifically, a phase i is all timesteps [3 · (2i − 1), 3 · (2i+1 − 1)), and for
the last phase, it is [3 · (2i − 1), T ] (for i = ⌈log(T/6)⌉ − 1).

Definition 30. The active set of actions of v at phase i is the set of actions that cluster-root sent
in that phase, and it is denoted by Ai. We denote its size by |Ai| = Ai. An action a is denoted as
"active" in phase i if it belongs to Ai. The last phase of a is sometimes denoted with ia. We denote
A0 := A and Ai′+1 := 0 where i′ is the global last phase.

Remark 8. Notice that while some actions that are not active for v in phase i may be played in phase
i by v. This is since the active set of actions didn’t propagate yet to v. Eventually, the set of active
actions will arrive v, and in the last third of the phase v will play only active actions.

Lemma 34. The set of active actions (for vertex v) is non-increasing. I.e., for any phase i,Ai ⊇ Ai+1.

Proof. Let ui and ui+1 be v’s cluster root at phases i and i+ 1, respectively.

If ui = ui+1 then by definition Ai+1 = Ai\B where B is the set of actions eliminated in that phase
(either due to the elimination step of due to elimination messages). In particular Ai+1 ⊆ Ai.

If ui+1 ̸= ui, then by Lemma 33, since v and ui are on the same cluster at phase i, they are also on
the same cluster in phase i+ 1. That is ui+1 is also the cluster root of ui in phase i+ 1. In particular,
at the beginning of the phase ui pass a message to ui+1 with the aggregated eliminations which
contain at least all of the inactive actions at phase i. In particular, if an action was inactive at phase i
it will be also inactive at phase i+ 1. That is, Ai+1 ⊆ Ai.

Lemma 35. When all agents play Coop-SE-Comm-Cost (Algorithm 13) then for every phase i ≥
log2(A) except the last phase, and for every active action in that phase a, each agent in the cluster of
v plays action a at least 2i/Ai times in phase i.

Proof. In the middle of each phase, there are 2i+1 rounds in which the agent plays the active actions
Ai. The number of times the agent plays active action is at least ⌊2i+1/Ai⌋. We get

⌊2
i+1

Ai
⌋ ≥ 2i+1

Ai
− 1 ≥ 2i

Ai
,

where the last inequality is from i ≥ log2(Ai).

Lemma 36. When all agents play Coop-SE-Comm-Cost (Algorithm 13) then after the gathering
part of phase i s.t. i ≥ log2(A) + 1, the root of the cluster has at least 2i−1 ·min{2i−1,m}/Ai−1

samples for every active action in that phase.

Proof. Let a be an active action in phase i, i.e., a ∈ Ai. From lemma 34, a was active atAi−1. From
Lemma 35, at phase i − 1 each agent in the same cluster of v in the previous stage i − 1 plays at
least 2i−1/Ai−1 times action a. The size of the cluster at phase i− 1 is at least min{2i−1,m}, from
Lemma 31. By 2. in Lemma 31 the distance between each agent in the cluster and the cluster root is
at most 2i+1, hence all agents contribute all their samples. Together it completes the proof.

Lemma 37. Assume that i is a phase in which action a is active, and i ≥ log2(A) + 1. Then

∆a ≤ 4

√
2 log(3mTA) · Ai−1

2i ·min{2i,m}
.

Proof. Since action a wasn’t eliminated at phase i for the agent v, it means the cluster-root of v
at this phase didn’t eliminate it in the beginning of phase i.

From Lemma 36, we know that the counters of cluster-root, when the cluster-root is
doing the eliminations at phase i, are at least n(a) ≥ 2i−1 · min{2i−1,m}/Ai−1, n(a⋆) ≥
2i−1 ·min{2i−1,m}/Ai−1. Notice that 2i−1 ·min{2i−1,m}/Ai−1 ≥ 1

4 · 2
i ·min{2i,m}/Ai−1.
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The root didn’t eliminate the action a, hence

µa +

√
2ι

n(a)
≥ µa⋆ −

√
2ι

n(a)
.

We get

∆a ≤ 4

√
2ι · Ai−1

2i ·min{2i,m}
.

Lemma 38. Assume that i is the last phase in which action a is active, and i ≥ log2(A). Then the
number of times v plays action a in phases j ≥ log2(A) is at most

48
2i

Ai
.

Proof. Let us analyze each sub-phase part of a phase j in which action a is active. In the first third of
the phase, where agents gather the information in the cluster and send it to the root, the agent plays
action a at most ⌈2j+1/Aj−1⌉. From lemma 34 we have Aj ≤ Aj−1, than in this sub-phase the
agent plays action a at most ⌈2j+1/Aj⌉ times. In the second third of the phase the agent get the new
active set of actions, Aj . So part of this third is with Aj and part with Aj−1. Then we can bound the
number of plays in this part with ⌈2j+1/Aj⌉. In the last third the agent plays actions from Aj , then
this third contributes no more than ⌈2j+1/Aj⌉ samples. We get that in each phase j where action a is
active, agent v plays action a at most 3⌈2j+1/Aj⌉.
If i is not the global last phase, it is possible that v plays action a at phase i+ 1. In this case, v plays
only this action no more than 2⌈2i+2/Ai⌉ ≤ 3⌈2i+2/Ai⌉. Notice that the denominator has Ai and
not Ai+1, since v didn’t eliminate any action in this round yet.

Since j ≥ log2(A) we get 2j+1/Aj ≥ A/Aj ≥ 1. Then we get ⌈2j+1/Aj⌉ ≤ 2 · 2j+1/Aj ≤
2 · 2j+1/Ai. Hence, the agents play this action in phases j ≥ log2(A) no more than

3(

i∑
j=1

2
2j+1

Ai
+ 2

2i+2

Ai
) ≤ 3(

4

Ai
2i+1 + 4

2i+1

Ai
) ≤ 48

2i

Ai
.

Lemma 39. Let i be the last phase in which action a is active, and i ≥ log2(A) + 1. The regret that
action a contributes for phases j ≥ log2(A) is bounded by

64
√
2 log(3mTA)

1

Ai

√
2i ·Ai−1

min{2i,m}
. (17)

Proof. Let i be the last phase in which action a is active.

From Lemma 38, the regret is bounded by

∆a · 48
2i

Ai
.

From Lemma 37,

∆a ≤ 4

√
2ι · Ai−1

2i ·min{2i,m}
.

we get

∆a · 16
2i

Ai
· 4

√
2ι · Ai−1

2i ·min{2i,m}
= ∆a · 64

√
2ι

1

Ai

√
2i ·Ai−1

min{2i,m}
.

Since ∆a ≤ 1, we get the full result.
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Lemma 40. Let i ≥ log2(A) + 1 be a phase. The regret from phases j ≥ log2(A) of all actions that
i was their last phase is bounded by

64
√
2 log(3mTA)

Ai −Ai+1

Ai

√
2i ·Ai−1

min{2i,m}
. (18)

Proof. From Lemma 39, the regret from phases j ≥ log2(A) of an action that i was its last active
phase is bounded by

64
√
2ι

1

Ai

√
2i ·Ai−1

min{2i,m}
.

There are Ai −Ai+1 such actions. Hence, we get the results.

Definition 31. Let us denote the regret bound of an action from phases j ≥ log2(A), Equation (17),
with bj . I.e.,

bj := 64
√

2 log(3mTA)
1

Aj

√
2j ·Aj−1

min{2j ,m}
.

Definition 32. Denote the expression in Equation (18) (the regret bound of all actions that their last
active phase is j) with Bj . I.e.,

Bj := (Aj −Aj−1)bj = 64
√
2 log(3mTA)

Aj −Aj+1

Aj

√
2j ·Aj−1

min{2j ,m}
. (19)

The following lemma captures the core insight of our amortized analysis. It bounds the regret in
high-ratio phase with low-ratio phase. Formally,
Lemma 41. Let j ≥ log2(A) + 1 be a phase such that Aj−1 > 2Aj . Let i be the first phase such
that

(i) i ≥ log2(A).

(ii) The phase i is the first such that there exists a sequence i to j such that Ai > 2Ai+1 >
· · · > 2j−i−1Aj−1 > 2j−iAj .

Then,
Bj ≤ 4Bi.

Proof. First we prove that i ̸= j. The existence of i is immediate, from its definition. It is either
i is the closest phase to j that has Ai−1/Ai ≤ 2 (breaking the sequence, while i ≤ j) or that
i = ⌈log2(A)⌉. Assume by contradiction that i = j. We will see that j−1 holds these two conditions.
First, j ≥ 1 + log2(A), then j − 1 ≥ log2(A). Second, Aj−1 > 2Aj by the definition of j, a
contradiction to the condition that says that i is the first phase to start this sequence. Therefore, i = j.

Since i < i+ 1 ≤ j, we get that Ai/Ai+1 > 2. Then Ai+1/Ai ≤ 1/2, and 1−Ai+1/Ai ≥ 1/2. We
will use this inequality later in the proof.

The ratio Bj/Bi is

Aj−Aj+1

Aj
·
√

2jAj−1

min{2j ,m}

Ai−Ai+1

Ai
·
√

2iAi−1

min{2i,m}

=
1− Aj+1

Aj

1− Ai+1

Ai

√
2j−i

Aj−1 min{2i,m}
Ai−1 min{2j ,m}

≤
1− Aj+1

Aj

1− Ai+1

Ai

√
2j−i

Aj−1

Ai−1
(a)

≤ 2

√
2j−i

Aj−1

Ai−1
(b)

≤ 2

√
2

Ai

Ai−1
≤ 4 (c)
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Where the first inequality (a) is since min{2i,m}
min{2j ,m} ≤ 1 as i < j and min{2x,m} is increasing with x.

The next inequality (b) used the facts that 1− Ai+1

Ai
≥ 1

2 , 1− Aj+1

Aj
≤ 1, and 2j−i−1Aj−1 ≤ Ai. We

showed earlier that 1− Ai+1

Ai
≥ 1

2 . The inequality 1− Aj+1

Aj
≤ 1 holds since Aj+1

Aj
≥ 0 (even where

j is the global last phase, there we defined Aj+1 := 0), and 2j−i−1Aj−1 ≤ Ai holds because of the
definition of i and from the fact that i ̸= j. The last inequality (c) uses the fact that Ai ≤ Ai−1 by
lemma 34.

The following lemma bounds the regret of all high ratio phases (Ai−1/Ai > 2), with other low
ratio phases. Each phase that has low ratio between the previous and the current number of actions
(Ai−1/Ai ≤ 2) is paying on a phase with high ratio. But there might be a sequence of phases that
has high ratio, so one phase with low ratio can’t pay for the rest by multiplying just with constant.
Since there are at most log2(A) high ratio phases, we can bound the regret of all high ratio phases
with low ratio phases. Formally we get,
Lemma 42. Let us denote the set of phases with low ratio between the number of actions. Specifically,
denote I := {i ∈ N+|i ≥ log2(A), Ai−1/Ai ≤ 2} ∪ {⌈log2(A)⌉}. Then,∑

j≥log2(A)

Bj ≤
∑
i∈I

(5 log2(A) ·Bi),

where
Bj := (Aj −Aj−1)bj .

Proof. From Lemma 41, for each j ≥ log2(A) + 1 such that Aj−1/Aj > 2, there exists i ∈ I such
that Bj ≤ 4Bi. The number of remaining actions decreases by more than a half each round. We
have A ≥ Ai > 2j−iAj , then j − i < log2(A). Let i, i+ 1, . . . , i+ j be a sequence as defined in
Lemma 41. I.e., i ≥ log2(A). And the phase i is the first such that there exists a sequence i to j that
holds Ai > 2Ai+1 > · · · > 2j−i−1Aj−1 > 2j−iAj . Then

j∑
k=i

Bk ≤ Bi +

j∑
k=i+1

4Bi ≤ Bi + log2(A)4Bi ≤ 5 log2(A)Bi.

Hence, each such sum of
∑j

k=i Bk a sequence Ai > 2Ai+1 > · · · > 2Aj is bounded by the
5 log2(A)Bi, where i is the beginning of the sequence. We can break the sum

∑
j≥log2(A) Bj into

sums of such sequences, and the results follows.

Lemma 43. All the actions for which their last active phase i is smaller or equal to log2(A)
contribute to the regret no more than 24 ·A.

Proof. In the phase j there are 3 · 2j+1 timesteps. An action that its last active phase is i can be
played until the stage i+ 1, included. So until the phase i+ 1 the number of timesteps is at most

3

i+1∑
j=1

2j+1 = 6

i+1∑
j=1

2j = 6 · (2i+2 − 1).

Therefore, for actions that were eliminated at phases smaller than log2(A) we get that the regret that
is contributed from all these actions is bounded by

6 · (2log2(A)+2 − 1) ≤ 6 · 2log2(A)+2 = 24 ·A.

Lemma 44. Let us denote with I+ the set of low-ratio phases, without the phase ⌈log2(A)⌉. Specifi-
cally, denote I+ := {i ∈ N+|i ≥ log2(A) + 1, Ai/Ai−1 ≤ 2}. Let A≤2 be the set of action such
their last active phase is in I+. Then we get∑

a∈A≤2

bia ≤
∑
a∈A

(
1024ι

∆a ·m
) + 157A log(3mTA).
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Proof. We first focus on actions a for which 2ia < m. We get that

64
√
2ι

1

Aia

√
2ia ·Aia−1

min{2ia ,m}
= 64

√
2ι

√
Aia−1

Aia

Let us order all the actions in a weak linear order of which they were eliminated. For the simplicity of
the notation, assume it is their order in A (and A = [A]). Let us define two vectors of length A each.

u =

(√
Aia−1

Aia

)
a∈[A]

,

and

v =

(√
1

Aia

)
a∈[A]

.

With these vector notations we get∑
a∈A≤2,2ia<m

64
√
2ι

√
Aia−1

Aia

≤
∑

a∈[A],2ia<m

64
√
2ι

√
Aia−1

Aia

≤ 64
√
2ι|⟨u, v⟩|.

For u we get

∥u∥22 =
∑
a

Aia−1

Aia

≤
∑
a

Aia−1 ≤ A2.

For v we get

∥v∥22 =
∑
j

1

Aia

≤ 1 + logA ≤ 3 logA.

where the first inequality is since

∑
a∈A

1

Aia

≤
A∑
i=1

1

i
= 1 +

A∑
i=2

1

i
≤ 1 +

A∫
1

1

x
dx = 1 + logA.

The first inequality holds since if phase i was the last active phase for x actions, then x/Ai ≤
1/(Ai) + 1/(Ai − 1) + · · ·+ 1/(Ai − (x− 1)). The last inequality is since we can assume A ≥ 2.

From Cauchy-Schwartz we get

|⟨u, v⟩| ≤ ∥u∥2 · ∥v∥2 ≤
√
A2 · 3 logA = A

√
3 logA.

For all actions which their last active phase is smaller than m we have that their contribution to the
regret is no more than

64
√
2ι ·A

√
3 logA ≤ 157A log(3mTA).

We now focus on actions a for which 2ia ≥ m.

bia := 64
√
2 log(3mTA)

1

Aia

√
2ia ·Aia−1

min{2ia ,m}
= 64

√
2ι

1

Aia

√
2ia ·Aia−1

m

Assume 2i ≥ m. Then, from Lemma 37

∆a ≤ 4

√
2ι · Ai−1

2i ·m
.

Square everything and we will get

∆2
a ≤ 32ι · Ai−1

2i ·m
,
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2i ≤ 32ι · Ai−1

∆2
a ·m

.

Substituting 2ia with the previous term and we get,

64
√
2ι

1

Aia

√
2ia ·Aia−1

m
≤ 64

√
2ι

1

Aia

√
32ι ·Aia−1

∆2
a ·m

Aia−1

m

= 64ι
√
64

Aia−1

Aia

1

∆a ·m

≤ 64ι
√
64 · 2 1

∆a ·m

=
1024 log(3mTA)

∆a ·m
.

where the last inequality is since a ∈ A≤2. Overall we get

∑
a∈A≤2

64
√
2ι

1

Aia

√
2ia ·Aia−1

min{2ia ,m}
≤

∑
a∈A≤2

(
1024ι

∆a ·m
) + 157Aι

≤
∑
a∈A

(
1024 log(3mTA)

∆a ·m
) + 157A log(3mTA).

Proof of Theorem 5. We can bound the overall regret in the following way. First, the regret of the
first ⌊log2(A)⌋ phases is bounded by 24A, from Lemma 43. For actions that were eliminated at
phases i ≥ log2(A), from Lemma 40 the regret from phases j ≥ log2(A) of all these actions is
bounded by ∑

i≥log2(A)

(
64
√
2 log(3mTA)

Ai −Ai+1

Ai

√
2i ·Ai−1

min{2i,m}

)
.

Notice that this is is exactly Bi from Equation (19). From Lemma 42, we get a bound for this part of
the sum,

∑
i≥log2(A)

64
√
2 log(3mTA)

Ai −Ai+1

Ai

√
2i ·Ai−1

min{2i,m}
≤
∑
i∈I

5 log2(A) ·Bi.

Converting the analysis into actions-based analysis and we get

∑
i∈I

5 log2(A)·Bi = 5 log2(A)

 ∑
a∈A≤2

64
√
2ι

1

Ai

√
2i ·Ai−1

min{2i,m}
+ 64

√
2ι

1

A⌈log2(A)⌉

√
2⌈log2(A)⌉ ·A⌈log2(A)⌉−1

min{2⌈log2(A)⌉,m}

 ,

Where A≤2 is the set of action in that their last active phase is in {i ∈ N+|i ≥ log2(A) +
1, Ai/Ai−1 ≤ 2}.
Focusing on the part that belongs the phase i = ⌈log2(A)⌉ we get

64
√
2ι

1

Ai

√
2⌈log2(A)⌉ ·A⌈log2(A)⌉−1

min{2⌈log2(A)⌉,m}
≤ 64

√
2ι
1

1

√
2A ·A

min{A,m}

≤ 64
√
2ι ·
√
2A

= 256A
√
ι

≤ 256A log(3mTA).
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For the rest of the actions, from Lemma 44 we know that

∑
a∈A≤2

64
√
2 log(3mTA)

1

Aia

√
2ia ·Aia−1

min{2ia ,m}
≤
∑
a∈A

(
1024 log(3mTA)

∆a ·m
) + 157A log(3mTA).

Multiplying everything with 5 log2(A) we get

5 log2(A)(
∑
a∈A

(
1024 log(3mTA)

∆a ·m
) + (157 + 256)A log(3mTA))

=
∑
a∈A

(
5120 log2(A) log(3mTA)

∆a ·m
) + 2065A log2(A) log(3mTA).

The complementary event to the good event adds no more than 1 to the regret. The overall regret is
bounded by

RT ≤
∑
a∈A

(
5120 log2(A) log(3mTA)

∆a ·m
) + 2065A log2(A) log(3mTA) + 24A+ 1.

Lemma 45. When all agents play Coop-SE-Comm-Cost (Algorithm 13) with spanning tree T the
number of messages each agent v sends is no more than

⌈log2(T/6)⌉ · degT (v),

where degT (v) is the degree of v in the spanning tree graph (the number of neighbors).

Proof. In each phase each agent sends messages in no more than 2 timesteps: One message of
the collected information from the boundary vertices (cluster-boundary) of the cluster. This
message is sent to the parent agent. Note that the agent waits until all messages from her descendants
arrive before she sends the message to the parent agent. This adds 1 message for each phase. The
other timesteps the agent sends messages is when she tells her descendants the set of active actions.
This adds degT (v) − 1 messages for each phase. There are ⌈log2(T/6)⌉ phases, and the result
follows.
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I Auxiliary Lemmas

Lemma 46 (Lemma F.4 in [10]). Let {Xt}Tt=1 be a sequence of Bernoulli random variables and
a filtration F1 ⊆ F2 ⊆ ...FT with P(Xt = 1 | Ft) = Pt, Pt is Ft-measurable and Xt is Ft+1-
measurable. Then, for all t ∈ [T ] simultaneously, with probability 1− δ,

t∑
k=1

Xk ≥
1

2

t∑
k=1

Pk − log
1

δ
.

Lemma 47 (Consequence of Freedman’s Inequality, e.g., Lemma E.2 in [9]). Let {Xt}t≥1 be a
sequence of random variables, supported in [0, R], and adapted to a filtration F1 ⊆ F2 ⊆ ...FT . For
any T , with probability 1− δ,

T∑
t=1

Xt ≤ 2E[Xt | Ft] + 4R log
1

δ
.
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J Detailed Algorithms

Algorithm 5 Elimination Step (Elim-Step)

1: Input: active actions A, number of samples n(a) for each active action a, empirical mean for
every active action µ̂(a).

2: E = ∅
3: for a ∈ A do
4:

λ(a) =

√
2ι

n(a) ∨ 1
, UCB(a) = µ̂(a) + λ(a), LCB(a) = µ̂(a)− λ(a) (20)

where ι := log(3mTA).
5: end for
6: for a ∈ A do
7: if exists a′ with UCB(a) < LCB(a′) then
8: E = E ∪ {a}
9: end if

10: end for
11: Return E

Algorithm 6 Cooperative Successive Elimination (Coop-SE) - detailed

1: Input: number of rounds T , neighbor agents N , number of actions A, ID of current agent v.
2: Initialization: t ← 1; Set of active actions A = A; Rt(a) = 0, nt(a) = 0 for every action a;

Min = ∅; Mupdates = ∅; Msent = ∅; Mseen = ∅;
3: for t = 1, ..., T do
4: for event ∈Mupdates do
5: if event /∈Mseen then
6: Mseen = Mseen ∪ event
7: if event is elim-event then
8: A = A \ eventa
9: else if eventa ∈ A then

10: nt(a) = nt(a) + 1, Rt(a) = Rt(a) + eventr
11: end if
12: end if
13: end for
14: E = Elim-Step(A, nt, µ̂t = Rt/nt), A = A \ E
15: Choose action at in round robin from A, and get reward rt(at)
16: // Send and receive messages
17: Mme = {(rwd, t, v, at, rt(at)} ∪ {(elim, v, a)|∃a ∈ E}, Mv

t = (Mme ∪Min) \Msent

18: Send message Mv
t to all neighbors, receive messages Mv′

t from each neighbor v′ ∈ N

19: Msent = Msent ∪Mv
t , Mupdates = Mme ∪v′∈N Mv′

t , Min = Min ∪v′∈N Mv′

t
20: end for
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Algorithm 7 Successive Elimination with Suspended Act for agent v (Sus-Act)

1: Input: number of rounds T , number of actions A, diameter of the graph D, number of agents m,
neighbor agents N , factor for the confidence bound L.

2: Initialization: t ← 1; set of active actions A ← A; Msent = ∅; Set incoming messages
Min = ∅; Set of seen messages Mseen = ∅.

3: while t < T do
4: Calculate suspended counts and empirical means for each active action from the Mseen

messages

nt(a) =

t−D∑
τ=1

∑
v

I{avτ = a} ; µ̂t(a) =
1

nt(a) ∨ 1

t−D∑
τ=1

∑
v

rvτ (a)I{avτ = a}

5: A = A \ Elim-Step(A, {nt(a)|a ∈ A}, {µ̂t(a)|a ∈ A})
6: Choose one action at ∈ A in round robin and receive rat

7: Let Mme = {(RWD, t, v, at, rat
)}

8: Let Mv
t = (Mme ∪Min) \Msent

9: Send message Mv
t to all neighbors

10: Msent = Msent ∪Mv
t

11: Receive messages Mv′

t from each neighbor v′

12: Set incoming messages Min = Min ∪ {Mv′

t | v′ is a neighbor of v}
13: Set seen messages Mseen = Mseen ∪Min ∪Mme
14: t = t+ 1
15: end while

Algorithm 8 Update Step Tree - Update the counters with the received information and prepare them
for sending in a tree graph (Update-Tree-Step)

1: Input: Neighbor agents N ; Set of active actions A; Mupdates.
2: for a ∈ A do
3: n(a) = 0, R(a) = 0
4: for u ∈ N do
5: Nu

a = 0, Ru
a = 0

6: end for
7: end for
8: for event ∈Mupdates do
9: if eventa ∈ A & event is rwdMany then

10: // event = (rwdMany, id, a, r, n).
11: n(a) = n(a) + eventn, R(a) = R(a) + eventr
12: for u ∈ N do
13: if eventid ̸= u then
14: Nu

a = Nu
a + eventn; Ru

a = Ru
a + eventr

15: end if
16: end for
17: end if
18: end for
19: // Return the self counters and the values to send.
20: Return n(a), R(a) for each a ∈ A; Return Nu

a ,R
u
a for each a ∈ A and for each u ∈ N .
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Algorithm 9 Cooperative Successive Elimination with Restricted Communication
(Coop-SE-Restricted)

1: Input: number of rounds T , neighbor agents N , number of actions A, id of current agent v, a
spanning tree, T , of the communication tree G (identical to all agents).

2: Initialization: t ← 1; Set of active actions A = A; Rt(a) = 0, nt(a) = 0 for every action a;
Min = ∅; Mupdates = ∅; Msent = ∅;

3: Set N to be the agent’s neighbors in T .
4: for t = 1, ..., T do
5: Ereceived = {eventa|∃event ∈Mupdates, event is elim-event}
6: A = A \ Ereceived
7: nt, Rt,N,R = Update-Tree-Step(N,A,Mupdates)
8: Mupdates = ∅
9: E = Elim-Step(A, nt, Rt/nt)

10: A = A \ E
11: Choose action at uniformly from A, and get reward rt(at)
12: nt(at) = nt(at) + 1, Rt(at) = Rt(at) + rt(at)
13: for u ∈ N ′ do
14: Nu

at
= Nu

at
+ 1, Ru

at
= Ru

at
+Rt(at)

15: end for
16: for u ∈ N ′ do
17: Melim(u) = {(elim, v, a)|∃a ∈ E} ∪ {(elim, v, eventa)|∃event ∈ Ereceived, eventid ̸=

u}
18: Mrwd(u) = {(rwdMany, v, a,Ru

a ,N
u
a)|a ∈ A}

19: Mv
t (u) = Melim(u) ∪Mrwd(u)

20: Send Mv
t (u) and receive Mu

t (v)
21: Mupdates = Mupdates ∪Mu

t (v)
22: end for
23: end for

Algorithm 10 Send one action - CONGEST (Send-One-Action)

1: Input: Neighbor agent u; Received eliminations-events Ereceived; New eliminations E; Action
a′; Counters to send Nu

a′ ; Rewards to send Ru
a′ .

2: if ∃a′ ∈ E then
3: send (elim, v, a′) to u; return.
4: else if ∃event ∈ Ereceived, eventid ̸= u, eventa = a′ then
5: send (elim, v, a′) to u; return.
6: else
7: send (rwdMany, v, a′,Ru

a′ ,Nu
a′) to u; return.

8: end if
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Algorithm 11 Cooperative Successive Elimination CONGEST (Coop-SE-CONGEST) - detailed

1: Input: number of rounds T , neighbor agents N , number of actions A, id of current agent v, a
spanning tree, T , of the connected communication graph G, with a root agent w (same node for
all agents).

2: Initialization: t ← 1; Set of active actions A = A; R0(a) = 0, n0(a) = 0 for every action a;
Mupdates = ∅;

3: Calculate the distance between the root w and the current agent v, d := dT (v, w), where dT is
the distance in the tree.

4: Set N to be the agent’s neighbors in T .
5: Set N ′ ⊆ N to be the set of v’s children on the tree T rooted at w.
6: Set ũ ∈ N to be v’s parant in the tree T rooted at w. I.e., {ũ} = N \N ′. Notice that ũ exists

only if v is not the root.
7: for t = 1, ..., T do
8: Ereceived = {eventa|∃event ∈Mupdates, event is elim-event}
9: n,R,N,R = Update-Tree-Step(N,A,Mupdates)

10: nt = nt−1 + n,Rt = Rt−1 +R
11: E = Elim-Step(A, nt, µ̂t = Rt/nt)
12: A = A \ E
13: Choose action at in round-robin from A, and get reward rt(at)
14: nt(at) = nt(at) + 1, Rt(at) = Rt(at) + rt(at)
15: for u ∈ N do
16: Nu

t (at) = Nu
t (at) + 1, Ru

t (at) = Ru
t (at) + rt(at)

17: end for
18: Choose the action a′, the action to send to v’s children: a′ ≡ t− d (mod A)
19: Choose the action ã, the action to send to v’s parent: ã ≡ t+ d (mod A)
20: for u ∈ N ′ do
21: // Send the messages outward from the root.
22: Send-One-Action(u, Ereceived, E, a′,Nu

a′ ,Ru
a′ )

23: end for
24: Send-One-Action(ũ, Ereceived, E, ã,Nu

ã ,Ru
ã) // Send the messages toward the root.

25: Mupdates = ∅
26: for u ∈ N do
27: Receive Mu

t (v)
28: Mupdates = Mupdates ∪Mu

t (v)
29: end for
30: end for

Algorithm 12 Play round robin and increment the timestep counter (Play-Action-Round-Robin)

1: if t = T + 1 then
2: Terminate the program
3: end if
4: Play action at in round robin from the set of active actions, get reward rt(at)
5: t = t+ 1
6: return at, rt(at)
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Algorithm 13 Cooperative Successive Elimination with Communication Cost
(Coop-SE-Comm-Cost)

1: Input: A spanning tree T (same tree for all vertices); Children C, and parent p in the tree; Actions
A.

2: Initialize: t = 1; Rv(a) = 0, nv(a) = 0 for each a ∈ A; Set of active actions A = A;
forward=false.

3: for phase i = 0, . . . , ⌈log2(T/6)⌉ − 1 do
4: Based on T , compute for this phase i if this agent v is cluster-root, cluster-boundary

or none of these
5:
6: Sub-Phase 1: Gather and Aggregate Information
7: for k = 1, . . . , 2i+1 do
8: at, rt = Play-Action-Round-Robin // Play one action from the current active actions

9: Update rewards and counters Rv(at)← Rv(at) + rt, nv(at)← nv(at) + 1
10: if k = 1 and v is cluster-boundary for i then
11: Send to parent agent:
12: 1. Set of active actions: {is-active(a) = (a ∈ A) | a ∈ A}
13: 2. Rewards and counts for each action: {Rv(a), nv(a) | a ∈ A}
14: else if received messages from all children then
15: Aggregate children’s rewards with local rewards: Rv(a)← Rv(a) +

∑
u∈C Ru(a)

16: Aggregate eliminations, set is-active(a)=false if at least one message contains an
elimination about this action

17: forward=true
18: else if forward=true then
19: forward=false
20: Forward aggregated data, {(is-active(a), Rv(a), nv(a)) | a ∈ A}, to the parent agent
21: Set Rv(a) = 0, nv(a) = 0 for each a ∈ A
22: end if
23: end for
24:
25: Sub-Phase 2: Synchronize Active Actions
26: for k = 1, . . . , 2i+1 do
27: at, rt = Play-Action-Round-Robin
28: Update rewards and counters Rv(at)← Rv(at) + rt, nv(at)← nv(at) + 1
29: if k = 1 and v is cluster-root for i then
30: A ← A \ {a ∈ A | is-active(a)=false}

Eliminate actions based on aggregated eliminations
31: A ← A \ Elim-Step(A, nv, µ̂t = Rv/nv)

Eliminate actions based on aggregated rewards
32: Send A, the new active action set, to descendants
33: else if received active-actions message then
34: Update local active actions set
35: if v is not cluster-boundary then
36: Forward message to descendants in the next timestep
37: end if
38: end if
39: end for
40:
41: Sub-Phase 3: Execute with Updated Actions
42: for k = 1, . . . , 2i+1 do
43: at, rt = Play-Action-Round-Robin
44: Update rewards and counters Rv(at)← Rv(at) + rt, nv(at)← nv(at) + 1
45: end for
46: end for
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