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Abstract

We apply Archetypal Analysis to the latent spaces of
trained neural networks, offering interpretable expla-
nations of feature representations of neural networks
without relying on user-defined corpora. Through
layer-wise analyses of convolutional networks and vi-
sion transformers across multiple classification tasks,
we demonstrate that archetypes are robust, dataset-
independent, and provide intuitive insights into how
models encode and transform information from layer
to layer. Our approach enables global insights by
characterizing the unique structure of the latent rep-
resentation space of each layer, while also offering lo-
calized explanations of individual decisions as convex
combinations of extreme points (i.e., archetypes).

1 Introduction

With the growing adoption of deep learning in com-
puter vision, the explainability of these models has
become increasingly critical. The lack of trans-
parency in their decision-making processes raises
concerns about trust, accountability, and fairness-
concerns that can potentially be mitigated through
explainability methods that offer insights into how
models process information and arrive at their pre-
dictions [1]. Although much of the existing work on
explainability focuses on input-output relationships,
such as saliency maps or class activation mappings
[2, 3], there is a growing recognition that a deeper
understanding of latent representations is essential
[1, 4]. These internal feature spaces, formed across
layers of a model, encode abstract and hierarchical
information that underpins the model’s reasoning
process. By probing and interpreting these latent
spaces, we can improve our understanding of infor-
mation processing, uncover biases, and guide model
debugging and improvements [5].
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Figure 1. Our main analysis pipeline consists of 3 main
steps: 1. Extraction of latent representations of the
data after each layer, 2. Archetypal analysis of latent
representations, where unique archetypes are learned
for each layer independently, and 3. Analysis of the
resulting simplex by projection of images/data onto the
learned simplex and visualization of the closest data
points.

Previous works have explored the latent space
globally by investigating how concepts evolve across
layers in convolutional neural networks (CNNs) [6]
and vision transformers [7, 8], highlighting how
vision models learn simple concepts (e.g. colors)
in early layers and build up an understanding of
more complex concepts (e.g. objects) in later layers.
Crabbe et al. [9] introduced the SimplEX method to
explain the latent space using a user-defined corpus,
where each point is represented as a convex combi-
nation of corpus examples. This approach enables
local explanations through feature attributions from
individual data points.

Several recent works have explored interpretable
representation learning via prototype or cluster-
ing mechanisms (e.g., [10–13]) These methods typi-
cally learn centroids or prototypes jointly with the
network, thereby shaping the representation space
through supervised or self-supervised optimization.
In contrast, our framework applies Archetypal Analy-
sis (AA) post-hoc to pre-trained latent spaces. While
centroid-based methods represent data in terms of
mean prototypes, AA decomposes the feature space
into extreme points (archetypes) and expresses each
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data point as a convex combination of these. As
discussed by [14] and [15], this distinction reflects
two fundamentally different philosophies: clustering
seeks prototypical averages, whereas AA seeks dis-
tinct extremes, leading to interpretable geometries
that capture the diversity of the learned features
rather than their central tendency.

Sparse Autoencoders (SAEs [16]) and their vari-
ants (e.g., A-SAE [17]) have recently emerged as pow-
erful tools for interpretable representation learning.
These models achieve interpretability by introducing
sparsity and modularity constraints directly during
training, thereby shaping the latent space to yield
disentangled components. Our approach, in contrast,
provides a post-hoc geometric perspective: Archety-
pal Analysis (AA) decomposes pre-existing latent
representations into convex combinations of extreme
points (archetypes), without modifying or retraining
the underlying model. This makes AA complemen-
tary to SAE-based approaches; while SAEs learn
interpretable features by construction, AA reveals
interpretable structure inherent in already trained
models.

In this paper, we present a novel take on explain-
ability of latent representations by examining what
insights can be gained from analyzing latent rep-
resentations of neural networks with Archetypal
Analysis (AA) [18]. With this approach, we can
provide an easy interpretable characterization of the
latent space within each of the network layers in
terms of distinct global characteristics. The pro-
posed pipeline is illustrated in Figure 1.

Notably, AA is especially known for its easily
interpretable results in which each data point is de-
scribed as a convex combination of archetypes. The
archetypes are in turn defined as convex combina-
tions of the entire data (i.e., reside on the convex
hull) and form distinct characteristics. The polytope
formed by AA is also denoted the principal convex
hull of the data [15]. Consequently, AA seeks to
explain the data in terms of extreme representations
as opposed to clustering that represents the data in
terms of centroids. This corresponds to projecting
the data onto a lower-dimensional simplex, which
is spanned by extremes in the data. This frame-
work has previously been extended to deep learning,
but this has been based on regularization towards
a polytope within the specific bottleneck layer of a
(variational) auto-encoder representation and not as
a means to characterize the structure of each layer
of the network [19–22].

We show that AA can be applied to the latent
space of deep learning models after they have been
trained, thereby providing a post-hoc analysis ap-
proach for explaining how the model processes in-
formation at each step. We show that the derived
archetypes are stable and independent of the used
probing dataset. Whereas Crabbe et al. [9] explain

latent representation by convex combinations of a
corpus of examples, we can explain latent represen-
tations by convex combinations of a small number
of archetypes, which are data corpus independent
and account optimally for the entire latent space.
Therefore, our corpus (archetypes) is not selected by
the user, but optimally found by the model during
optimization and through analysis shown to be both
data independent and robust. These explanations
through extreme points also align more closely with
how people reason from data, where more extreme
category representatives produce stronger inductive
inference [23, 24].
In summary, we introduce a post-hoc analysis

framework for explainable AI that enables system-
atic, layer-wise analysis of neural representation
spaces based on AA. The main contributions of
this work are:

• A corpus-independent methodology applicable
to any neural network architecture.

• Dataset-agnostic global explanations defined by
the distinct characteristics of each layer’s latent
representation forming the archetypes.

• Easy interpretable observation specific local ex-
planations expressed in terms of convex combi-
nations of the extracted archetypes.

In addition, we empirically demonstrate the ro-
bustness and versatility of the proposed framework
across diverse datasets and model architectures,
highlighting both its reliability and interpretabil-
ity. Through an in-depth layer-wise analysis of two
vision transformers and a convolutional neural net-
work fine-tuned on distinct classification tasks, we
show how our method reveals broad structural pat-
terns in the evolution of latent representations across
layers, while also providing local, example-based ex-
planations within an interpretable archetypal space.

2 Methodology

Here we present the fundamental theory of AA,
followed by our proposed analysis pipeline for latent
spaces using AA.

2.1 Archetypal Analysis

Archetypal Analysis aims to find the optimal re-
construction of the data, X ∈ RM×N [18], by
solving the following optimization objective, with
C ∈ RN×K and S ∈ RK×N ,

minimize
C,S

∥X−R∥2F
subject to R = XCS

cn,k ≥ 0,
∑

n cn,k = 1,
sk,n ≥ 0,

∑
k sk,n = 1,

(1)
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where XC forms the archetypes and S is the data
projected onto the archetypal simplex. To solve this
problem, we use the efficient least-squares framework
presented in [25].

2.2 Latent Space Archetypal Analysis

Figure 1 provides a visual overview of our proposed
framework, which consists of 3 main steps:

1. Extraction of latent representations.

2. Archetypal analysis of latent representations.

3. Analysis of the resulting simplex.

First, for the transformer models (ViT, DINOv2),
latent representations were extracted from a selected
layer. Patch embeddings were aggregated by mean
pooling to obtain a single feature vector per image.
For the convolutional model (ResNet50), the mean
across each channel was used to obtain a vector per
image. All latent features were standardized (zero
mean, unit variance) across images to enable stable
and unbiased AA.

Second, the feature vectors are processed using an
AA module, where we fit K archetypes. The num-
ber of archetypes is a hyperparameter in the module
that depends on the complexity of the model and the
user’s wishes for a lower-dimensional representation
of the model. This process is repeated ten times. In
our study, the optimal number of archetypes is deter-
mined as the smallest number that simultaneously
achieves high explained variance and high stability.
Finally, we visualize the latent space in terms of

the extreme representations, and extract the images
that are closest to the archetypes by calculating the
distance between X and the archetypes Z.

3 Experimental Setup and
Evaluation

This section details the datasets and models used in
our latent-space AA experiments and explains how
performance is evaluated.

3.1 Models and Data

We run all experiments on three different vision
models (two transformer-based and one convolu-
tional network), namely ViT [26], DINOv2 [27]
and ResNet50 [28]. We test two different datasets,
Caltech-UCSD Birds-200-2011 Dataset [29] (CUB,
200 classes) and a dataset of the MedMNIST col-
lection [30], (organCMNIST, 11 classes) [31]. All
models are fine-tuned to perform classification on the
datasets and reach competitive performance (model,
dataset, and training details are in Appendix A).
For CUB we extract 2-100 archetypes due to the high

number of classes, while we extract 2-20 archetypes
for organCMNIST. For ViT and DINOv2 we extract
the latent representation after each of the twelve
transformer blocks (all with M = 768), for ResNet50
we extract them after each of the five convolutional
blocks (M = 64, 128, 256, 512).

3.2 Model evaluation

We extracted the representations of the full training
set, as well as five non-overlapping splits of the
training set to test for dataset independence (all with
ten random runs for each number of archetypes). We
test the robustness across the runs using Normalized
Mutual Information (NMI) [32]. We determine how
much of the information in the latent space is kept by
the Archetypal Analysis by calculating the variance
explained (VE),

VarianceExplained(X,R) = 1− ∥X−R∥2F
∥X∥2F

. (2)

As AA is a non-convex problem, we also examined
the stability of the solution, repeating the experi-
ment ten times and using the NMI between each
unique pair of solutions, such that ten experiments
result in 45 different NMI values.

NMI (S,S′) =
2I (S,S′)

I (S,S) + I (S′,S′)

where I (S,S′) =
∑
kk′

p (k, k′) log
p (k, k′)

p(k)p (k′)
,

p (k, k′) =
1

N

N∑
n=1

sk,ns
′
k′,n

(3)

This can measure the stability of the result by
measuring the shared information between S and
S′, if these are identical, the NMI will be one.
We also evaluate the results based on how well

the archetypal simplex projection corresponds to the
data classes by evaluating NMI(S,Yclass), where
Yclass) is the one-out-of-K encoded class labels of
the images. To contextualize the class experiment
we compared it against a randomly permuted class
label, NMI(S,P(Yclass)). We test the robustness of
the archetypes by calculating the consistency of the
archetypes between splits (with ten runs each), as
described in [33]. The consistency is defined as a
similarity score between the archetypes Z = XC of
two separate runs Z and Z′:

sim(Z,Z′) = 1− d
2
/σ2, (4)

where d
2
is the average squared distance between Z

and Z′ (after matching the archetypes by proximity)
and σ2 is the average variance across the M features
of X. We test the robustness using five archetypes.
While this number is not necessarily optimal in terms
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of maximizing similarity scores, it reflects a deliber-
ate trade-off between quantitative performance and
qualitative interpretability. Fewer archetypes tend
to produce cleaner, more distinct representations,
which enhances the explainability of the analysis,
particularly in visualizations and conceptual clar-
ity. Consequently, our similarity scores should be
interpreted as a lower bound, acknowledging that
a higher number of archetypes might yield better
scores but at the cost of reduced interpretability.

We also compare the archetypes across the layers
(only for ViT and DINOv2, which have the same
number of features in each layer), to investigate how
much the archetypes change between layers. For
these experiments, we only compare across all runs
of the full set for five archetypes.

3.3 Accuracy on the Archetypal Sim-
plex

To evaluate how well the model objective, in this
case classification, aligns with the AA we apply a
K-Nearest-Neighbor classifier (KNN) with five neigh-
bors on the archetypal simplex, where we classify
unseen projected test samples by their nearest neigh-
bors on the simplex. This is then compared to a
KNN directly on the latent representation. This will
first show us how much of the models’ predictive abil-
ities are lost when compressed to a lower-dimensional
space, and second provide insights into the models
predictive abilities in earlier layers.

3.4 Test image projection

To interpret the resulting simplex, we projected
five images onto the simplex and visualized each
archetype using the five closest images, providing
intuitive insight into the learned representations.
The latent features (F ∈ RM×N ) of N data points
are collected into X ∈ RM×N and projected onto
the simplex S ∈ RK×N (eq. 1). The test samples
are projected onto the archetypal simplex by solving
the quadratic program described in [25] between
the original archetypes, Z, and the test samples,
Xtest ∈ RM×Ntest .

3.5 Scalability

The AA procedure as implemented in [25] requires
for the S update the computation of C⊤X⊤X which
is O(NMK) and Hessian (XC)⊤(XC) which is
O(MK2) whereas the sequential minimal optimiza-
tion updates requires in the order ofK2 iterations for
each of the N columns of S, i.e. O(NK2) resulting
in an overall complexity of O(NMK+K2(M +N)).
The update of C is based on an active set proce-
dure scaling in the size of the active set |A| ≪ N as
O(K|A|3). Typically, the size of the active set |A|

and the number of archetypes K remain small, how-
ever, we note that in the case where either become
large gradient based efficient optimization based on
the PCHA algorithm [15] can be invoked with pr.
iteration cost of O(NMK) whereas trivial parallel-
lization of the associated matrix products can be
implemented. Consequently, by use of suitable im-
plementations of the AA procedure (see also [33] for
an overview of optimization procedures) the method
scales well and can be used for the post-hoc analysis
of large datasets.

4 Results and Discussion

4.1 Latent Space Archetypal Analysis

We analyze the latent spaces of large vision models
using Archetypal Analysis. Figure 2(a) illustrates
the VE and NMI for organCMNIST based on layer
one. Here, it can be observed that both the NMI
and VE exhibit smooth trends as the number of
archetypes increases, with stable solutions already
emerging at low dimensions. Detailed results, in-
cluding the optimal number of archetypes per model
and dataset along with NMI and VE scores, are
reported in Appendix B. Surprisingly, these high-
dimensional embeddings (e.g., M = 768 for ViT and
DINOv2) collapse onto a low-dimensional convex
polytope that can be described with as few as three
archetypes. Even with only a handful of archetypes,
AA consistently explains a large fraction of the la-
tent variance (80–99%) in both some of the early and
later layers, the main exception arises in the final lay-
ers of CUB, where additional archetypes are needed
to disentangle 200 fine-grained bird categories.

Determining the “right” number of archetypes re-
mains an open question. Nevertheless, our empirical
findings point to a surprisingly low intrinsic dimen-
sionality of the latent spaces, particularly in early
and intermediate layers. For visualization purposes
we therefore standardize on five archetypes, which
strike a balance between interpretability and expres-
siveness. Importantly, AA seeks to provide the best-
fit simplex for the specified number of archetypes;
the resulting explanations adapt to the chosen dimen-
sionality, revealing the most extreme latent factors
compatible with that constraint.

To examine the learned archetypes, we extract the
five closest data points (images) to the archetype in
archetypical space. For example, the first and last
layer for ViT trained on CUB is shown in Figure 3.
The archetypes for all layers, models and datasets
can be found in Appendix C (all for five archetypes).
A qualitative analysis of these archetypes reveals
that in early layers the representations are spanned
by archetypes relating to mainly background and
color information and in later layers the network
becomes more adapted to the task and the repre-

4



(a) (b) (c)
Figure 2. (a): An example of the normalised mutual information (NMI) and the variance explained (VE) as a
function of the number of archetypes for layer one of the organCMNIST, the rest can be found in Appendix C.
(b): The consistency of archetypes across different dataset splits for the CUB dataset. The consistency for the
organCMNIST dataset can be found in Figure D.1. (c): A 5-nearest neighbours matching on the image label
across different layers with twenty archetypes for the OrganCMNIST dataset.

sentations are more and more driven by the actual
classes, in this case different species of birds. This
also aligns with previous findings from studies that
explored how concepts evolve in vision transformers
and CNNs [6, 8].

We also examine archetypes with the CUB data
set in the pretrained networks (Figure D.4 and D.5),
to see if meaningful structures already emerge during
pretrained. We find no clear archetypes, especially
no class separation in late layers, which is due to the
network not being trained for such a specialized task.
We leave a more thorough investigation on general
and bigger datasets for future work. Our method
holds the potential to uncover emerging structures
during pretraining and can lead to a deeper under-
standing of what these models learn and understand.

A key property of AA is that each data point
can be expressed as a convex combination of the
learned archetypes. This characteristic enables in-
tuitive interpretation of the latent space. As illus-
trated in Figure 4, interpolations between pairs of
archetypes yield images that are visually and se-
mantically meaningful blends of the corresponding
archetypal features. For instance, the image gen-
erated between the ”light background” and ”dark
background” archetypes exhibits a clear mixture of a
light background combined with a black frame. Sim-
ilarly, the interpolation between ”sky” and ”grass”
archetypes results in an image of leaves with visible
sky shining through. These examples demonstrate
how AA organizes data in the latent space in a way
that is both interpretable and grounded in human-
understandable visual semantics.

4.2 Data Independent and Robust
Archetypes

While the archetypes are extracted from latent repre-
sentations of a fixed dataset, our experiments show
that the archetypes themselves are largely data-
independent and reflect the intrinsic structure of
the model’s representational space. We rerun the
archetypal analysis with varying datasets and find
that the archetypes are stable across the different
dataset splits. The example images closest to the

(a) Layer 1

(b) Layer 12

Figure 3. The five images closest to each archetype for
the first and last layer for ViT trained on CUB.

archetype, vary with the different datasets, but the
features defining each archetype and the qualita-
tive interpretation of the archetypes remain con-
stant with varying in-distribution datasets. In Fig-
ure 2(b), the consistency of archetypes for CUB for
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Figure 4. A visualization of the archetypal simplex of
layer one with 5 archetypes for the ViT model. At the
vertices the most archetypical images are shown for the
representation and on each edge the images closest to
the exact halfway point between the two archetypes are
shown.

all three models is shown, the results for organCM-
NIST can be seen in Figure D.1. We evaluate consis-
tency both across repeated runs on the full dataset
(baseline) and across different dataset splits. The
results show near-perfect consistency across runs,
indicating high stability of the AA solution. Impor-
tantly, consistency across dataset splits also remains
high, exceeding 0.9 for most layers, highlighting that
the archetypes are dataset independent and capture
fundamental, model-driven structures in the latent
space. These findings support the interpretation
of archetypes as robust, data-independent descrip-
tors of how models organize information in terms of
extreme latent representations.

4.2.1 Accuracy on the Archetypal Simplex

To evaluate how well the archetypal projection cap-
tures the predictive capacity of the latent space
and to determine when class separation emerges
in the network, we apply a KNN classifier to both
the latent representations and their corresponding
archetypal projections. As shown in Figure 2(c),
classification accuracy increases progressively across
layers, consistent with the expectation that deeper
layers encode more task-relevant features. Interest-
ingly, for ViT the accuracy of the KNN classifier
is already reaching maximum accuracy after layer
five, while DINOv2 and ResNet50 reach maximum
accuracy only in the last layer. This can potentially
be explained by the training procedure of these mod-
els. While ViT is pretrained in a supervised fashion,

which leads to more class-separated representations,
DINOv2 is trained with a much larger data corpus
in an unsupervised way, leading to more general
representations. This could explain why DINOv2
only separated distinct classes in late layers due to
the finetuning.

The classification accuracy on the archetypal sim-
plex depends on the number of archetypes used to
approximate the latent space. For OrganCMNIST,
we employ 20 archetypes (Figure 2(c)), while for
CUB we use 100 archetypes (Figure D.3). Across
both datasets, the resulting accuracy is comparable
to or in some cases higher than that obtained in the
original latent space, demonstrating that substantial
compression can be achieved with minimal loss of
discriminative information. Notably, in the case of
CUB, neither KNN applied to the archetypal sim-
plex nor to the raw latent representations provides
sufficient resolution to reliably classify bird species.

(a) ViT trained on CUB. (b) DINOv2 trained on
CUB.

(c) ViT trained on or-
ganCMNIST.

(d) DINOv2 trained on or-
ganCMNIST.

Figure 5. Layerwise comparison of archetypes for ViT
and DINOv2 trained on CUB and organCMNIST reveals
high similarities for blocks of layers in ViT and lower
simiarity for DINOv2.

4.3 Layer-wise Comparison of
Archetypes

We also investigate the similarity of archetypes
across layers of the two transformer models to bet-
ter understand how the latent space evolves and to
identify fundamental differences in how each model
processes the same data and task. We find a high
degree of similarity in layers of the ViT (Figure 5(a)
and 5(c)), which can be interpreted as high redun-
dancy of information across layers, even across 3-4
layers, a phenomenon previously observed in trans-
former models [34]. The representations in the DI-
NOv2 model change more rapidly from layer to layer
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(Figure 5(b) and 5(d)), which could potentially be
explained by the unsupervised pretraining with a
much larger data set and, therefore, more diverse
representations. Generally, the similarity across lay-
ers is higher for the simpler task (organCMNIST)
than for the more complex task of CUB. The high
similarity in later layers in ViT also matches with
the high KNN accuracy already from layer five (Fig-
ure 2(c)), the model seems to capture class differ-
ences quite early and therefore doesn’t need to build
more distinct representations in later layers.
It is important to note that this comparison is

based on five archetypes per layer. Although the op-
timal number of archetypes remains relatively stable
across layers, this fixed number may slightly overesti-
mate the true similarity between layers. Nonetheless,
the overall trend remains consistent.

4.4 Explanation of Test Images

Figure 6. A simplex projection with five archetypes
with their most archetypical images for the twelfth layer
of the DINOv2 model for the OrganCMNIST data with
unseen projected test images (bottom five images). The
colored points on the simplex correspond to the class of
the test images, marked by X on the simplex, the colors
correspond to the frames of the test images. The grey
points are projected test samples not belonging to one
of the five highlighted classes.

Finally, we examine how new data points can be
interpreted throughout the model using archetypal
representations. In Figure 6, we project five test
images onto the archetypal simplex, illustrating how
each image can be expressed as a convex combination
of five archetypes. This projection not only provides
an interpretable decomposition of each test image

Figure 7. Five projected test images (left) and their
five closest neighbors on the archetypal simplex (right)

but also reveals how well the archetypal simplex
clusters different classes, as indicated by the class-
colored points.

This analysis can be performed on all layers of the
model, enabling a layer-wise interpretation of how
individual data points are processed. As such, the
full trajectory of a test image through the network
can be described in terms of a small set of inter-
pretable archetypes, offering a transparent view into
the model’s internal decision-making process.
In addition to projection-based explanations, we

also explore example-based interpretations by iden-
tifying the closest training samples on the simplex
for each test image. Examples of this approach are
shown in Figure 7. This method provides insight
into how new data points are positioned relative to
the training distribution in the latent space and may
help uncover potential biases or shortcut learning
behaviors in the model.

5 Conclusion

To the best of our knowledge, we are the first to ap-
ply AA in a deep learning explainability context. We
find that all layers can be represented with surpris-
ingly high compression using the archetypal simplex
with both high variance explained and NMI even for
a low-dimensional simplex and high accuracy when
using a KNN to classify on the resulting simplex.
We show that the AA model, already recognized for
its interpretability and intuitive structure, provides
a powerful framework for analyzing the latent repre-
sentations of neural networks. It reveals known is-
sues such as over-parameterization, as demonstrated
by the strong compression achievable and the KNN
performance on the simplex, and it also uncovers
non-trivial insights such as what the model priori-
tizes at each layer. Our framework therefore enables
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both a global understanding of network behavior
and local explanations of unseen test images at any
stage of the model.
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A Models and Data Details

The code for running the analysis and creating the figures can be found at github.com/Wedenborg/

Explaining-Latent-Representations-of-Neural-Networks-with-Archetypal-Analysis

We run all experiments on two different transformer-based vision models, namely ViT [26], DINOv2
[27] and on a ResNet50 [28]. All models were pretrained on variants of ImageNet [35] and retrieved from
hugginface.co.

We fine-tuned the models to perform classification of two different datasets, Caltech-UCSD Birds-200-
2011 Dataset [29] (CUB) and a dataset of the MedMNIST collection [30], the organcMNIST dataset
[31]. The trained models will be available on huggingface.co upon publication. All models were trained
with a batch-size of 32, a scheduler and early stopping for a maximum of 10000 steps, the learning rate
was optimized using a validation set. The exact learning rates and final test accuracies can be seen in
Table A.1.

Table A.1. Learning rate (lr) and test accuracy (acc) in % for all models trained on CUB and organcMNIST.

CUB organcMNIST
model lr acc lr acc
ViT 1e−4 0.84 1e−4 0.89
DINOv2 1e−5 0.87 1e−5 0.90
ResNet50 1e−4 0.76 1e−4 0.92

B Archetypal Analysis Results

In Table B.1 and Table B.2 we show the selection of the optimal number of archetypes for each layer of
each model and the NMI and VE for that number of archetypes for organCMNIST and CUB, respectively.

C Additional figures - NMI/VE and archetype examples

In Figure C.1 - C.4 the NMI and VE for all models, as well as 5 archetypes for all layers for the
organCMNIST are shown. For the CUB dataset, the same plots are shown in Figure C.5 - C.8.

D Additional figures - Miscellaneous

In Figure D.1, we report the archetype similarity across different network layers. To assess robustness, the
data were further partitioned into five independent subsets, and similarity was computed separately for
each split.
Figure D.2 presents the NMI between the simplex representation and the ground-truth labels. Finally,
Figure D.3 shows the KNN classification accuracy for the CUB dataset, comparing performance on the
simplex projection with that obtained from the raw latent representation.
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Table B.1. Archetype evaluation for the OrganCMNIST dataset grouped by layer and model.

Layer Model Best archetype count NMI (mean ± std) VE (mean ± std)

1
ResNet50 8 0.936± 0.0133 0.998± 0.0001
ViT 5 0.920± 0.0245 0.979± 0.0022
DINOv2 4 0.881± 0.0555 0.978± 0.0016

2
ResNet50 8 0.952± 0.0129 0.985± 0.0004
ViT 5 0.954± 0.0190 0.939± 0.0039
DINOv2 7 0.930± 0.0159 0.960± 0.0022

3
ResNet50 4 0.974± 0.0321 0.921± 0.0006
ViT 5 0.963± 0.0155 0.875± 0.0048
DINOv2 10 0.939± 0.0112 0.968± 0.0023

4
ResNet50 11 0.971± 0.0098 0.754± 0.0053
ViT 5 0.952± 0.0177 0.825± 0.0036
DINOv2 8 0.933± 0.0176 0.945± 0.0035

5
ViT 10 0.964± 0.0134 0.826± 0.0081
DINOv2 8 0.944± 0.0145 0.922± 0.0035

6
ViT 11 0.981± 0.0103 0.847± 0.0071
DINOv2 4 0.971± 0.0252 0.862± 0.0038

7
ViT 11 0.978± 0.0130 0.865± 0.0047
DINOv2 9 0.974± 0.0084 0.899± 0.0031

8
ViT 11 0.979± 0.0091 0.882± 0.0054
DINOv2 8 0.953± 0.0122 0.865± 0.0060

9
ViT 12 0.975± 0.0109 0.902± 0.0057
DINOv2 9 0.959± 0.0117 0.850± 0.0045

10
ViT 11 0.969± 0.0081 0.898± 0.0256
DINOv2 9 0.961± 0.0107 0.823± 0.0065

11
ViT 13 0.981± 0.0066 0.939± 0.0044
DINOv2 8 0.963± 0.0179 0.804± 0.0098

12
ViT 11 0.978± 0.0096 0.923± 0.0098
DINOv2 8 0.953± 0.0171 0.768± 0.0131
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Table B.2. Archetype evaluation for the CUB dataset grouped by layer and model.

Layer Model Best archetype count NMI (mean ± std) VE (mean ± std)

1
ResNet50 3 0.891± 0.0399 0.925± 0.0013
ViT 4 0.970± 0.0365 0.789± 0.0075
DINOv2 3 0.951± 0.0330 0.913± 0.0021

2
ResNet50 3 0.846± 0.0720 0.909± 0.0012
ViT 5 0.947± 0.0251 0.785± 0.0015
DINOv2 3 0.938± 0.0388 0.825± 0.0028

3
ResNet50 3 0.863± 0.0650 0.864± 0.0005
ViT 5 0.940± 0.0351 0.776± 0.0018
DINOv2 3 0.939± 0.0391 0.830± 0.0017

4
ResNet50 4 0.900± 0.0547 0.443± 0.0006
ViT 3 0.980± 0.0144 0.746± 0.0022
DINOv2 3 0.932± 0.0443 0.760± 0.0021

5
ViT 3 0.976± 0.0188 0.750± 0.0016
DINOv2 4 0.936± 0.0285 0.749± 0.0019

6
ViT 6 0.898± 0.0593 0.763± 0.0009
DINOv2 4 0.927± 0.0287 0.757± 0.0024

7
ViT 6 0.935± 0.0240 0.752± 0.0011
DINOv2 5 0.948± 0.0171 0.820± 0.0019

8
ViT 6 0.921± 0.0231 0.706± 0.0006
DINOv2 5 0.965± 0.0149 0.798± 0.0013

9
ViT 6 0.953± 0.0302 0.665± 0.0009
DINOv2 7 0.959± 0.0089 0.844± 0.0017

10
ViT 6 0.932± 0.0274 0.621± 0.0007
DINOv2 7 0.951± 0.0207 0.827± 0.0018

11
ViT 5 0.928± 0.0254 0.563± 0.0009
DINOv2 6 0.935± 0.0223 0.814± 0.0013

12
ViT 5 0.956± 0.0433 0.332± 0.0010
DINOv2 7 0.961± 0.0301 0.332± 0.0002
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Figure C.1. Normalised Mutual Information and Variance explained across a different number of archetypes for
the OrgancMNIST dataset
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Figure C.2. The five images closest to the archetypes for all twelve transformer layers of the ViT model on
organcmnist, for visualization purposes five archetypes has been chosen for all layers.
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Figure C.3. The five images closest to the archetypes for all twelve transformer layers of the DINOv2 model on
organcmnist, for visualization purposes five archetypes has been chosen for all layers.
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Figure C.4. The five images closest to the archetypes for the transformer layers of the ResNet50 model on
organcmnist. For visualization, five archetypes are shown per layer.
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Figure C.5. Normalized Mutual Information and Variance explained across a different number of archetypes for
the CUB dataset
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Figure C.6. The five images closest to the archetypes for all twelve transformer layers of the ViT model, for
visualization purposes five archetypes has been chosen for all layers.
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Figure C.7. The five images closest to the archetypes for all twelve transformer layers of the DINOv2 model, for
visualization purposes five archetypes has been chosen for all layers.
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Figure C.8. The five images closest to the archetypes for the transformer layers of the ResNet50 model on CUB.
For visualization, five archetypes are shown per layer.

(a) Archetype consistency across splits and runs (base-
line) for CUB.

(b) Archetype consistency across splits and runs (base-
line) for organCMNIST.

Figure D.1. Archetype consistency.

(a) OrganCMNIST (b) CUB

Figure D.2. Normalized mutual information between the true labels and the archetypal simplex.

Figure D.3. K-nearest-neighbor accuracy for CUB
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Figure D.4. Not-finetuned - non-normalized: The five images closest to the first and last archetype for the three
models DinoV2 (left), ViT (middle) and ResNet50 (right), for visualization purposes five archetypes has been

chosen for all layers.
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Figure D.5. Not-finetuned - normalized: The five images closest to the first and last archetype for the three
models DinoV2 (left), ViT (middle) and ResNet50 (right), for visualization purposes five archetypes has been

chosen for all layers.
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