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Abstract

Models such as convolutional neural networks restrict the hypothesis space to a
set of functions satisfying equivariance constraints, and improve generalization in
problems by capturing relevant symmetries. However, symmetries are often only
partially respected, preventing models with restriction biases from fitting the data.
We introduce Residual Pathway Priors (RPPs) as a method for converting hard ar-
chitectural constraints into soft priors, guiding models towards structured solutions
while retaining the ability to capture additional complexity. RPPs are resilient to
approximate or misspecified symmetries, and are as effective as fully constrained
models even when symmetries are exact. We show that RPPs provide compelling
performance on both model-free and model-based reinforcement learning problems,
where contact forces and directional rewards violate the assumptions of equivariant
networks. Finally, we demonstrate that RPPs have broad applicability, including
dynamical systems, regression, and classification.

1 Introduction

Central to the expanding application of deep learning to structured data like images, text, audio,
sets, graphs, point clouds, and dynamical systems, has been a search for finding the appropriate set
of inductive biases to match the model to the data. These inductive biases, such as recurrence [43],
local connectivity [29], equivariance [10], or differential equations [8], reduce the set of explored
hypotheses and improve generalization. Equivariance in particular has had a large impact as it allows
ruling out a large class of meaningless shortcut features in many distinct domains, such as the ordering
of the nodes in graphs and sets or the coordinate system chosen for an image.

A disadvantage of hard coding these restrictions is that this prior knowledge may not match reality.
A scene may have long range non-local interactions, rotation equivariance may be violated by a
preferred camera angle, or a dynamical system may occasionally have discontinuous transitions.
In particular, symmetries are delicate. A small perturbation like adding wind breaks the rotational
symmetry of a pendulum, and bumpy or tilted terrain could break the translation symmetry for
locomotion. In these cases we would like to incorporate our prior knowledge in a way that admits
our own ignorance, and allows for the possibility that the world is more complex than we imagined.
We aim to develop an approach that is more general, and can be applied when symmetries are exact,
approximate, or non-existent.

The Bayesian framework provides a mechanism for expressing such knowledge through priors. In
much of the past work on Bayesian neural networks, the relationship between the prior distribution
and the functions preferred by the prior is not transparent. While it is easy to specify different
variances for different channels, or to use heavy tailed distributions, it is hard know how high level
properties meaningfully translate into these low level attributes. Ultimately priors should represent our
prior beliefs, and those beliefs we have are about high level concepts like the locality, independence,
and symmetries of the data.
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Figure 1: Left: RPPs encode an Occam’s razor approach to modeling. Highly flexible models like
MLPs lack the inductive biases to assign high evidence to key datasets, while models with strict
equivariance constraints are not flexible enough to support problems with only approximate symmetry.
Right: The structure of RPPs. Expanding the layers into a sum of the constrained and unconstrained
solutions while setting the prior to favor the constrained solution, leads to the more flexible layer
explaining only the residual of what is already explained by the constrained layer.

To address the need for more interpretable priors we introduce Residual Pathway Priors (RPPs), a
method for converting hard architectural constraints into soft priors. Practically, RPPs allow us to
tackle problems in which perfect symmetry has been violated, but approximate symmetry is still
present, as is the case for most real world physical systems.

RPPs have a prior bias towards equivariant solutions, but are not constrained to equivariance. The
choice of RPPs can be viewed from an Occam’s razor perspective, shown in Figure 1a, in which we
seek to use models that have both the correct inductive biases and level of flexibility [41]. As we find
with problems in which symmetries exist, highly flexible models with weak inductive biases like
MLPs fail to concentrate prior mass around solutions that exhibit any symmetry. On the other hand
when symmetries are only approximate, the strong biases of constrained models like Equivariant
Multi-Layer Perceptrons (EMLP) [14] fail to provide support for the observations. As a middle
ground between these two extremes, RPPs combine the inductive biases of constrained models with
the flexibility of MLPs to define a model class which excels when data show approximate symmetries.

In the following sections we introduce our method and show results across a variety of domains. We
list our contributions and the accompanying sections below:

1. We propose Residual Pathway Priors as a mechanism to imbue models with soft inductive
biases, without constraining flexibility.

2. While our approach is general, we use RPPs to show how to turn hard architectural con-
straints into soft equivariance priors (Section 4).

3. We demonstrate that RPPs are robust to varying degrees of symmetry (Section 5). RPPs
perform well under exact, approximate, or misspecified symmetries.

4. Using RPP on the approximate symmetries in the complex state spaces of the Mujoco
locomotion tasks, we improve the performance of model free RL agents (Section 6).

We provide a PyTorch implementation of residual pathway priors at
https://github.com/mfinzi/residual-pathway-priors.

2 Related Work

The challenge of equivariant models not being able to fully fit the data has been identified in a number
of different contexts, and with different application specific adjustments to mitigate the problem. Liu
et al. [32] observe that convolutional networks can be extremely poor at tasks that require identifying
or outputting spatial locations in an image as a result of the translation symmetry. The authors solve
the problem by concatenating a coordinate grid to the input of the convolution layer. Constructing
translation and rotation equivariant GCNNs, Weiler and Cesa [53] find that in order to get the best
performance on CIFAR-10 and STL-10 datasets which have a preferred camera orientation, they
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must break the symmetry which they do by using equivariance to progressively smaller subgroups
in the later layers. Bogatskiy et al. [6] go to great lengths to construct Lorentz group equivariant
networks for tagging collisions in particle colliders only to break it by introducing dummy inputs that
identify the collision axis. van der Wilk et al. [50] use the marginal likelihood to learn approximate
invariances in Gaussian processes from data. In a similar approach, Benton et al. [5] explore a
related concept of learning the extent of the symmetry using the reparametrization trick and test time
augmentation. While sharing some commonalities with RPP, this method is not aimed at achieving
approximate equivariance and cannot bake equivariance into the model architecture.

Outside of equivariance, adding model outputs to a much more restrictive base model has been a
fruitful idea employed in multiple contexts. The original ResNet [20, 21] drew on this motivation,
with shortcut connections. Johannink et al. [24], Silver et al. [45] proposed Residual Reinforcement
Learning, whereby the RL problem is split into a user designed controller using engineering principles
and a flexible neural network policy learned with RL. Similarly, in modeling dynamical systems, one
approach is to incorporate a base parametric form informed by models from physics or biology, and
only learn a neural network to fit the delta between the simple model and reality [25, 33].

There have been several works tackling symmetries and equivariance in RL, such as permutation
equivariance for multi agent RL [46, 23, 31], as well exploring reflection symmetry for continuous
control tasks [1], and discrete symmetries in the more general framework of MDP homomorphisms
[49]. However, in each of these applications the symmetries need to be exact, and the complexities
of real data often require violating those symmetries. Although not constructed with this purpose,
some methods which use regularizers to enforce equivariance [48] could be used for approximate
symmetries. Interestingly, the value of approximate symmetries of MDPs has been explored in
some theoretical work [42, 47], but without architectures that can make use of it. Additionally data
augmentation, while not able to bake in architectural equivariance, has had successful application for
encouraging equivariance on image tasks [27] and recently even on tabular state vectors [30, 36].

3 Background

In order develop our method, we first review the concept of group symmetries, how representations
formalize the way these symmetries act on different objects.

Group Symmetries In the machine learning context, a symmetry group G can be understood as a
set of invertible transformations under which an object is the same, such as reflections or rotations.
These symmetries can act on many different kinds of objects. A rotation could act on a simple
vector, a 2d array like an image, a complex collection objects like the state space of a robot, or more
abstractly on an entire classification problem or Markov Decision Process (MDP).

Representations The way that symmetries act on objects is described by a representation. Given
an object in an n-dimensional vector space V , a group representation is a mapping ρ : G→ Rn×n,
yielding a matrix which acts on V . Vectors v ∈ V are transformed v 7→ ρ(g)v. In deep learning,
each of the inputs and outputs to our models can be embedded in some vector space: an m×m sized
rgb image exists in R3m2

, and a node valued function on a graph of m elements exists within Rm.
The representation ρ specifies how each of these objects transform under the symmetry group G.

These representations can be composed of multiple simpler subrepresentations, describing how each
object within collection transform. For example given the representation ρ1 of rotations acting
on a vector in R3 and a representation ρ2 of how rotations act on a 3 × 3 matrix, the two objects

concatenated together have a representation given by ρ1(g)⊕ ρ2(g) =
[
ρ1(g) 0
0 ρ2(g)

]
where the

two matrices are concatenated along the diagonal. Practically this means we can represent intricate
and multifaceted structures by breaking them down into their component parts and defining how each
part transforms. For example, we may know that the velocity vector, an orientation quaternion, a joint
angle, and a control torque all transform in different ways under a left-right reflection, and one can
accommodate this information into the representation.

Equivariance Given some data X with representation ρin and Y with representation ρout, we may
wish to learn some mapping f : X → Y . A model f is equivariant [10], if applying the symmetry
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transformation to the input is equivalent to applying it to the output

f(ρin(g)x) = ρout(g)f(x).

In other words, it is not the symmetry of X or Y that is relevant, but the symmetry of the function
f mapping from X to Y . If the true relationship in the data has a symmetry, then constraining the
hypothesis space to functions f that also have the symmetry makes learning easier and improves
generalization [12]. Equivariant models have been developed for a wide variety of symmetries and
data types like images [10, 54, 56, 53], sets [55, 35], graphs [34], point clouds [3, 15, 44], dynamical
systems [13], jets [6], and other objects [51, 14].

4 Residual Pathway Priors

In this section, we introduce Residual Pathway Priors. The core implementation of RPP is to expand
each layer in model into a sum of both a restrictive layer that encodes the hard architectural constraints
and a generic more flexible layer but penalize the more flexible path via a lower prior probability.
Through the difference in prior probability, explanations of the data using only the constrained
solutions are prioritized by the model; however, if the data is more complex the residual between the
target and the constrained layer will be explained using the flexible layer. We can apply this procedure
to any restriction priors, such as linearity, locality, markovian structure, and of course equivariance.

The Residual Pathway Prior draws inspiration from the residual connections in ResNets [20, 21],
whereby training stability and generalization improves by providing multiple paths for gradients to
flow through the network that have different properties. One way of interpreting a residual block
and shortcut connection f(x) = x + h(x) in combination with l2 regularization, either explicitly
from weight decay or implicitly from the training dynamics [39], is as a prior that places higher prior
likelihood on the much simpler identity mapping than on the more flexible function h(x). In this way,
h(x) need only explain the the difference between what is explained in the previous layer (passed
through by I) and the target.

We can leverage a similar approach to convert the hard constraints of a restriction prior specified
through a given network architecture into a soft prior that merely places higher prior likelihood on
such models. Supposing we have an equivariant layer A(x), and a more flexible non-equivariant
layer B(x) which contains A as a special case, we can allow the model to explain part of the data
with A and part with B by forming the sum A(x) + B(x). A given a prior likelihood on the size
of A and B such as p(A) ∝ exp (−‖A‖2/2σ2

a) and p(B) ∝ exp (−‖B‖2/2σ2
b ) with σa > σb, a

MAP optimized model will favor explanations of the data using the more structured layer A and only
resort to using layer B to explain the difference between the target and what is already explained by
the more structured model A. Adding these non-equivariant residual pathways to each layer of an
equivariant model, we have a model that has the same expressivity of a network formed entirely of B
layers, but with the inductive bias towards a model formed entirely with the equivariant A layers. We
term this a residual pathway prior (RPP).

To make the approach concrete, we first consider constructing equivariance priors using the constraint
solving approach known as Equivariant Multi-Layer Perceptrons (EMLP) from Finzi et al. [14].

Equivariant MLPs EMLPs provide a method for automatically constructing exactly equivariant
layers for any given group and representation by solving a set of constraints. The way in which
the vectors are equivariant is given by a formal specification of the types of the input and output
through defining their representations. Given some input vector space Vin with representation ρin and
some output space Vout with representation ρout the space of all equivariant linear layers mapping
Vin → Vout satisfies

∀g ∈ G : ρout(g)W =Wρin(g).

These solutions to the constraint form a subspace of matrices Rnout×nin which can be solved for
and described by a r dimensional orthonormal basis Q ∈ Rnoutnin×r. Linear layers can then be
parametrized in this equivariant basis. The elements of W can be parametrized vec(W ) = Qβ for
β ∈ Rr for the linear layer v 7→Wv, and symmetric biases can be parametrized similarly.

Equivariance Priors with EMLP In order to convert the hard equivariance constraints in EMLP
into a soft prior over equivariance that can accomodate approximate symmetries, we can apply the

4



RPP procedure from above to each these linear layers in the network. Instead of parametrizing
the weights W directly in the equivariant basis vec(W ) = Qβ, we can instead define W as the
sum W = A + B of an equivariant weight matrix vec(A) = Qβ with a Gaussian prior over β
and an unconstrained weight matrix B ∼ N (0, σ2

b I) with a Gaussian prior. A Gaussian prior over
β ∼ N (0, σ2

aI) is equivalent to the Gaussian prior A ∼ N (0, σ2
aQQ

>). Since Q is an orthogonal
matrix, we can breakdown the covariance of B into the covariance in the equivariant subspace Q as
well as the covariance in the orthogonal complement P , σ2

b I = σ2
bQQ

> + σ2
bPP

>. Therefore the
sum of the weight matrices is distributed as A+B =W ∼ N (0, (σ2

a + σ2
b )QQ

> + σ2
bPP

>).

Regardless of the values of the prior variances σ2
a and σ2

b , solutions in the equivariant subspace QQ>
are automatically favored by the model and assigned higher prior probability mass than those in
the subspace PP> that violate the constraint. Even if σb > σa, the model still favors equivariance
because the equivariance solutions are contained in the more flexible layer A. We show in Section 5.2
that RPPs are insensitive to the choice of σa and σb provided that σa is large enough to be able to fit
the data. By replacing each of the equivariant linear layers in an EMLP with a sum of an equivariant
layer and an unconstrained layer and adding in the negative prior likelihood to the loss function, we
arrive at RPP-EMLP that can accommodate approximate or incorrectly specified symmetries. 1

RPPs With Other Equivariant Models While in EMLP these equivariant bases are solved for
explicitly, the argument holds for the linear layers in other equivariant networks in precisely the
same way. A good example of this is the translationally equivariant convolutional neural network
(CNN) which can be viewed as a restricted subset of a fully connected network. Though the layers
are parametrized as convolutions, the convolution operation can be expressed as a Toeplitz matrix
residing within the space of dense matrices. Adding the convolution to a fully connected layer and
choosing a prior variance σ2

a and σ2
b over each, we have the same RPP prior

W ∼ N(0, σ2
aQQ

> + σ2
b I) (1)

where Q is the basis of (bi-)Toeplitz matrices corresponding to 3 × 3 filters. This RPP CNN has
the biases of convolution but can readily fit non translationally equivariant data. Likewise for other
equivariant models like GCNNs [10], and we can even apply the RPP principle to the breaking of a
given symmetry group to a subgroup.

5 How and Why RPPs Work

In this section we explore how and why RPPs work on a variety of domains, applying RPPs in settings
where constraints are known to be helpful, cannot fully describe the problem, and are misspecified.

5.1 Dynamical Systems and Levels of Equivariance

In order to better understand how and why residual pathway priors interact with the symmetries
of the problem we move to settings in which we can directly control both the type of symmetry
and the level to which the symmetries are violated. We examine how RPPs coupled with EMLP
networks perform (RPP-EMLP) on the inertia and double pendulum datasets featured in Finzi et al.
[14] in 3 experimental settings: (i) the original inertia and double pendulum datasets which preserve
exact symmetries with respect to the to O(3) and O(2) groups respectively; (ii) modified versions
of these datasets in which add an additional terms (such as wind on the double pendulum) that lead
to approximate symmetries; and (iii) versions with misspecified symmetry groups which break the
symmetries entirely (described in Appendix C).

The results for these 3 settings are given in Figure 4. Across all settings RPP-EMLP match the
performance of EMLP when symmetries are exact, perform as well as an MLP when the symmetry is
misspecified and better than both when the symmetry is approximate. For these experiments we use a
prior variance of σ2

a = 105 on the EMLP weights and σ2
b = 1 on the MLP weights.

Exact Symmetries As part of the motivation, RPPs should properly attribute prior mass to both
constrained and unconstrained solutions, we test cases in which symmetries are exact, and show that

1For the EMLP that uses gated nonlinearities which do not always reduce to a standard Swish, we likewise
add a more general Swish weighted by a parameter with prior variance σ2

b .

5



RPP MLP EMLP10 1

100

M
SE

Inertia

RPP MLP EMLP10 1

100

101

M
SE

Modified Inertia

RPP MLP EMLP100

101

M
SE

Inertia; SL(3)

RPP MLP EMLP5 10 4

5 100

M
SE

Double Pendulum

(a) Exact Symmetries

RPP MLP EMLP10 4

10 3

M
SE

Windy Double Pendulum

(b) Approximate Symmetries

RPP MLP EMLP

10 3

10 2

10 1

M
SE

Pendulum; SO(3)

(c) Mis-specified Symmetries

Figure 2: A comparison of test performance over 10 independent trials using RPP-EMLP and equiva-
lent EMLP and MLP models on the inertia (top) and double pendulum (bottom) datasets in which we
have three varying levels of symmetries. The boxes represent the interquartile range, and the whiskers
the remainder of the distribution. Left: perfect symmetries in which EMLP and the equivariant
components of RPP-EMLP exactly capture the symmetries in the data. Center: approximate symme-
tries in which the perfectly symmetric systems have been modified to include some non-equivariant
components. Right: mis-specified symmetries in which the symmetric components of EMLP and
RPP-EMLP do not reflect the symmetries present in the data.

RPP-EMLP is capable of performing on par with EMLP which only admits solutions with perfect
symmetry. The results in Figure 4a show that although the prior over models as described RPP-EMLP
is broader than that of EMLP (as we can admit non-equivariant solutions) in the presence of perfectly
equivariant data RPP-EMLP do not hinder performance, and we are able to generalize nearly as well
as the perfectly prescribed EMLP model.

Approximate symmetries To better showcase the ideas of Figure 1 we compare RPP-EMLPs to
EMLPs and MLPs on the modified inertia and windy pendulum (Figure ??) datasets. In these datasets
we can think about the systems as primarily equivariant but containing non-equivariant contributions.
As shown in 4b these problems are best suited for RPP-EMLP as MLPs have no bias towards the
approximately symmetry present in the data, and EMLPs are overly constrained in this setting.

Misspecified symmetries In contrast to working with perfect symmetries and showing that RPP-
EMLPs are competitive with EMLPs, we also show that when symmetries are misspecified the bias
towards equivariant solutions does not hinder the performance of RPP-EMLPs. For the inertia dataset
we substitute the group equivariance in EMLP from O(3) to the overly large group SL(3) consisting
of all volume and orientation preserving linear transformations, not just the orthogonal ones. For the
double pendulum dataset, we substitute O(2) symmetry acting on R3 with the larger SO(3) rotation
group that contains it but is not a symmetry of the dataset.

By purposefully misspecifying the symmetry in these datasets we intentionally construct EMLP and
RPP-EMLP models with incorrect inductive biases. In this setting EMLP is incapable of making
accurate predictions as it has a hard constraint on an incorrect symmetry. Figure 4c shows that even
in cases where the model is intentionally mis-specified that RPPs can overcome a poorly aligned
inductive bias and recover solutions that perform as well as standard MLPs, even where EMLPs fail.

5.2 Prior Levels of Equivariance

To test the effect of prior variances we use the modified inertia dataset, which represents a version
of a problem in which perfect equivariance has been broken by adding new external forces to the
dynamical system. Shown in Figure 3 (right) is a comparison of mean squared error on test data
as a function of the prior precision terms on both the equivariance and basic weights. As a general
trend we see that when the regularization on the equivariant weights is too high (equivalent to a
concentrated prior around 0) we find instability in test performance, yet when we apply a broad prior
to the equivariant weights performance is typically both better in terms of MSE, and more stable to
the choice of prior on the basic model weights.
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Figure 3: Left: Kernel density estimators of log equivariance error across training epochs for 10
independently trained networks. Here the color denotes the dataset these models were trained on.
Treating these samples as a proxy for posterior density, we see that on the non-equivariant Modified
Inertia dataset, the posterior is shifted upward to match the level of equivariance in the data during
training. Right: Test MSE as a function of the weight decay parameters on the equivariant and basic
weights on the modified inertia dataset. We observe that so long as the prior in the basis of equivariant
weights is broad enough, we can achieve low test error with RPPs.

As the prior variances over the equivariant basis Q and the non-equivariant basis P describe our bias
towards or away from equivariant solutions we investigate how the choice of prior variance relates
to the level of symmetry present in a given dataset. In the windy pendulum dataset of Figure ?? we
have control over the level of wind and thus how far our system is from perfect equivariance.

5.3 Posterior Levels of Equivariance

RPPs describe a method for setting a prior over equivariance, and in the presence of new data we
expect the posterior distribution over equivariance to change accordingly. Using samples from a
deep ensemble to query points of high density in the posterior we estimate how the distribution over
equivariance error progresses through training. Recalling that with an equivariant function f we have
ρ2(g)f(x) = f(ρ1(g)x), we compute equivariance error as

EquivErr(f, x) = RelErr(ρ2(g)f(x), f(ρ1(g)x)) where RelErr(a, b) =
‖a− b‖
‖a‖+ ‖b‖

. (2)

We train one deep ensemble on the inertia dataset which exhibits perfect symmetry, and another on the
modified inertia dataset which has only partial symmetry, with each deep ensemble being comprised
of 10 individual models using the same procedure as in Section 5.1. In Figure 3 (left) we see that
throughout training the models trained on the modified inertia concentrate around solutions with
substantially higher equivariance error than models trained on the dataset with the exact symmetry.
This figure demonstrates one of the core desiderata of RPPs: that we are able to converge to solutions
with an appropriate level of equivariance for the data.

5.4 RPPs and Convolutional Structure

Using the RPP-Conv specified by the prior in Eqn 1 we apply the model to CIFAR-10 classification
and UCI regression tasks where the inputs are reshaped to zero-padded two dimensional arrays
and treated as images. Notably, the model is still an MLP and merely has larger prior variance in
the convolutional subspace. As a result it can perform well on image datasets where the inductive
bias is aligned, as well as on the UCI data despite not being an image dataset as shown in Table 1.
While retaining the flexibility of an MLP, the RPP performs better than the locally connected MLPs
trained with β-lasso in Neyshabur [38] which get 14% error on CIFAR-10. The full details for the
architectures and training procedure are given in Appendix C.

6 Approximate Symmetries in Reinforcement Learning

Both model free and model based reinforcement learning present opportunities to take advantage
of structure in the data for predictive power and data efficiency. On the one hand stands the use of
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CIFAR-10 Energy Fertility Pendulum Wine

MLP 37.61± 0.56 0.39± 0.48 0.049± 0.0044 4.65± 0.50 0.66± 0.058
RPP 12.62± 0.34 0.73± 0.44 0.060± 0.0097 4.25± 0.50 0.69± 0.031
Conv 12.03± 0.46 1.34± 0.38 0.076± 0.0157 4.63± 0.36 0.79± 0.092

Table 1: Mean test classification error on CIFAR-10 and MSE on 4 UCI regression tasks, with one
standard deviation errors taken over 10 trials. Similar to Figure 4, we find that whether the constrained
convolutional structure is helpful (CIFAR) or not (UCI), RPP-Conv performs similarly to the model
with the correct level of complexity.
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Figure 4: Example illustrations of symmetries and representations from the Mujoco environments.
Left: left-right symmetry in the Walker2d environment, center: front-back symmetry in the Swimmer
environment, and right: In-out similarity in the HalfCheetah environment

model predictive control in the engineering community where finely specified dynamics models are
constructed by engineers and only a small number of parameters are fit with system identification
to determine mass, inertia, joint stiffness, etc. On the other side of things stands the hands off
approach taken in the RL community, where general and unstructured neural networks are used for
both transition models [9, 52, 22] as well as policies and value functions [17]. The state and action
spaces for these systems are highly complex with many diverse inputs like quaternions, joint angles,
forces, torques that each transform in different ways under a symmetry transformation like a left-right
reflection or a rotation. As a result, most RL methods treat these spaces a black box ignoring all of
this structure, and as a result they tend to require tremendous amounts of training data, making it
difficult to apply to real systems without the use of simulators.

We can make use of this information about what kinds of objects populate the state and action spaces
to encode approximate symmetries of the RL environments. As shown in van der Pol et al. [49],
exploiting symmetries in MDPs by using equivariant networks can yield substantial improvements
in data efficiency. But symmetries are brittle, and minor effects like rewards for moving in one
direction, gravity, or even perturbations like wind, a minor tilt angle in CartPole, or other environment
imperfections can break otherwise perfectly good symmetries. As shown in Table 2, broadening the
scope to approximate symmetries allows for leveraging a lot more structure in the data which we can
exploit with RPP. While Walker2d, Swimmer, Ant, and Humanoid have exact left/right reflection
symmetries, Hopper, HalfCheetah, and Swimmer have approximate front/back reflection symmetries.
Ant and Humanoid have an even more diverse set, with the D4 dihedral symmetry by reflecting and
cyclicly permuting the legs of the ant, as well as continuous rotations of the Ant and Humanoid
within the environment which can be broken by external forces or rewards. Identifying this structure
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Figure 5: Average reward curve of RPP-SAC and SAC trained on Mujoco locomotion environments
(max average reward attained at each step). Mean and one standard deviation taken over 4 trials
shown in the shaded region. Incorporating approximate symmetries in the environments improves the
efficiency of the model free RL agents.

in the data, we are able to use the generality of EMLP to construct an equivariant model for this data,
and then turn it into a soft prior using RPP.

Symmetries Walker2d Hopper HalfCheetah Swimmer Ant Humanoid

Exact Z2 7 7 Z2 Z2 Z2

Approximate Z2 Z2 Z2 Z2 × Z2 D4 ×O(2) Z2 ×O(2)

This work Z2 Z2 Z2 Z2 × Z2 Z4 SO(2)

Table 2: Exact and approximate symmetries of Mujoco locomotion environments of which we use
the subgroups in the bottom row, see Appendix D for the detailed action and state representations.

6.1 Approximate Symmetries in Model Free Reinforcement Learning

We evaluate RPPs on the standard suite of Mujoco continuous control tasks in the context of model-
free reinforcement learning. With the appropriately specified action and state representations detailed
in Appendix D, we construct RPP-EMLPs which we use as a drop-in replacement for both the policy
and Q-function in the Soft Actor Critic (SAC) algorithm [17], using the same number of layers and
channels. In contrast with van der Pol et al. [49] where equivariance is used just for policies, we
find that using RPP-EMLP for the policy function alone is not very helpful with Actor Critic (see
Figure 5). With the exception of the Humanoid-v2 environment where the RPP-EMLP destabilizes
SAC, we find that incorporating the exact and approximate equivariance with RPP yields consistent
improvements in the data efficiency of the RL agent as shown in Figure 5.

6.2 Better Transition Models for Model Based Reinforcement Learning

We also investigate whether the equivariance prior of RPP can improve the quality of the predictions
for transition models in the context of model based RL. To evaluate this in a way decoupled from the
complex interactions between policy, model, and value function in MBRL, we instead construct a
static dataset of 50, 000 state transitions sampled uniformly from the replay buffer of a trained SAC
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Swimmer-v2 Hopper-v2 Ant-v2
Rollout MLP RPP MLP RPP MLP RPP

10 Steps 0.51± 0.02 0.40± 0.04 1.1± 0.1 0.9± 0.1 4.2± 0.1 5.2± 0.3
30 Steps 1.6± 0.2 1.26± 0.14 3.8± 0.3 3.1± 0.5 11.3± 0.2 13.9± 0.7
100 Steps 3.9± 1.0 2.75± 0.31 9.8± 0.5 7.0± 0.7 16.0± 0.3 20.0± 1.1

Equiv Err 46% 19% 98% 32% 36% 31%

Table 3: Transition model rollout relative error in percent % averaged over 10, 30, and 100 step
rollouts (geometric mean over trajectory). Errorbars are 1 standard deviation taken over 3 random
seeds. Equivariance error is computed from as the geometric mean averaged over the 100 step rollout.

agent. Since the trajectories in the replay buffer come from different times, they capture the varied
dynamics MBRL transition models often encounter during training.

State of the art model based approaches on Mujoco tend to use an ensemble of small MLPs that
predict the state transitions [9, 52, 22, 2], without exploiting any structure of the state space. We
evaluate test rollout predictions via the relative error of the state over different length horizons
for the RPP model against an MLP, the method of choice. As shown in Table 3, RPP transition
models outperform MLPs on the Swimmer and Hopper environments, especially for long rollouts
showing promise for use in MBRL. On these environments, RPP learns a smaller but non-negligible
equivariance error that still enables it to fit the data.

7 Limitations

Using RPP-EMLP for the state and action spaces of the Mujoco environments required identifying
the meaning of each of the components in terms of whether they are scalars, velocity vectors, joint
angles, or orientation quaternions, and also which part of the robot they correspond to. This can be an
error-prone process. While RPPs are fairly robust to such mistakes, the need to identify components
makes using RPP more challenging than standard MLP. Additionally, due to the bilinear layers within
EMLP, the Lipschitz constant of the network is unbounded which can lead to training instabilities
when the inputs are not well normalized. We hypothesize these factors may contribute to the training
instability we experienced using RPP-EMLP on Humanoid-v2.

8 Conclusion

In this work we have presented a method for converting restriction priors such as equivariance
constraints into flexible models that have a bias towards structure but are not constrained by it.
Given uncertainty about the nature of the data, RPPs are a safe choice. These RPP models are able
to perform as well as the equivariant models when exact symmetries are present, and as well as
unstructured MLPs when the specified symmetry doesn’t exist, and better than both for approximate
symmetries. We have shown that encoding approximate symmetries can be a powerful technique
for improving performance with the messy and complex state and action spaces in reinforcement
learning, as well as in a more general regression setting.

We hope that RPP enables designing more expressive priors for neural networks that capture the kinds
of high level assumptions that machine learning researchers actually hold when developing models,
rather than low level characteristics about the parameters that are hard to interpret. Building better
techniques for enforcing high level properties helps lower the cost of incorporating prior knowledge,
and better accommodate the complexities of data even if they don’t match our expectations.
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