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ABSTRACT

Reinforcement learning (RL) for aligning visual generative models faces dual
challenges: (1) reward evaluation typically requires generation via extensive
multi-step sampling (20-40 steps), and (2) existing GRPO-Based methods ne-
cessitate complex conversions to adapt ODE-based sampling in flow matching
to the Markov Decision Process formulation. While distillation techniques en-
able few-step generation (e.g., 4 steps for a video), RL-after-distillation often
leads to model collapse, whereas conventional workflows applying RL-before-
distillation incur prohibitive computational costs. We address these limitations
through a simple yet efficient unified framework that jointly optimizes align-
ment and distillation within a single stage. Inspired by Distribution Matching
Distillation (DMD), our approach implements alignment directly via distribution
matching (DM) through separately developed novel losses: DM-PairLoss (DPO-
inspired) and DM-GroupLoss (GRPO-inspired). This methodology eliminates the
need for reverse-SDE conversions while enabling direct reward evaluation from
few-step generations. Comprehensive experiments on the Wan 2.1 text-to-video
model demonstrate that our unified approach preserves distillation capabilities
while achieving better human preference alignment, outperforming the raw base
model, standalone distilled variant, and two-stage alignment-distillation alterna-
tives on both VBench metrics and human evaluations. The synergistic optimiza-
tion enhances both human preference alignment and distillation quality. We will
release code and pretrained models to facilitate community research.

1 INTRODUCTION

Recent advances in visual generative modeling have achieved significant progress, primarily driven
by diffusion models (Ho et al., 2020; Song et al., 2020a) and flow matching models (Lipman et al.,
2022; Liu et al., 2022b). Both open-source research (Polyak et al., 2024; Kong et al., 2024; Wan
et al., 2025) and proprietary commercial models (Kuaishou, 2024; Google DeepMind, 2024) can
now generate high-quality images or videos. This progress has established a research paradigm
mirroring large language models: after foundational base models are released, subsequent studies
leverage these open-sourced base models to develop and validate new algorithms. In this work, we
focus on two key research directions in image and video generation: 1) Distillation for diffusion
(Yin et al., 2024b;a; Chadebec et al., 2025), developing techniques to reduce generation time while
maintaining output quality, enabling few-step synthesis comparable to the original multi-step base
model; 2) Post-training alignment, building upon the success of Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022) in large language models, several recent studies (Liu
et al., 2025b;a; Xue et al., 2025; Li et al., 2025) have demonstrated effective applications of Di-
rect Preference Optimization (DPO) (Rafailov et al., 2023) and Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) to flow matching models for visual generation alignment.

Previous approaches for post-training alignment in generative modeling exhibit two significant lim-
itations, as illustrated in Figure 1 (Left). First, the reward model requires complete image or video
generation before scoring, whereas base models typically need extensive sampling steps (e.g., 20-40
steps) to produce outputs. Second, for flow matching models, the Ordinary Differential Equation
(ODE)-based sampling of rectified flow conflicts with the Markov Decision Process (MDP) for-
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Figure 1: Left: Conventional RL suffers from slow sampling, ODE-SDE conversion complexity.
Right: Our DM-based framework jointly optimizes alignment and distillation, enabling fast, high-
quality generation with direct preference learning.

mulation. This incompatibility is typically resolved by unifying ODEs and Stochastic Differential
Equations (SDEs) within an SDE framework, then deriving π(at|st) through the corresponding
reverse-time SDE (Song et al., 2020b; Albergo et al., 2023). Recent work has recognized the first
issue: DanceGRPO (Xue et al., 2025) and Flow-GRPO (Liu et al., 2025a) reduce sampling steps and
generation resolution without significantly compromising performance, while MixGRPO (Li et al.,
2025) enhances sampling efficiency via SDE-ODE integration. Meanwhile, distilled models can
generate outputs in few steps (Yin et al., 2024b;a; Luo et al., 2025) (e.g., 4 steps for a video). Al-
though applying RL after distillation seems straightforward, fine-tuning such distilled models with
RL losses frequently causes model collapse (manifesting as blurred outputs).1 Consequently, the
prevailing practice conducts RL before distillation (Chen et al., 2025). This approach suffers from
the aforementioned long generation time during RL, compelling practitioners to use low-resolution
or under-sampled videos that yield suboptimal results. Furthermore, the RL and distillation stages
are not well-aligned.

To address these issues, we propose a simple yet efficient framework as shown in Fig. 1 (Right)
that jointly optimizes alignment and distillation within a single unified stage. Inspired by Distribu-
tion Matching Distillation (DMD)-series works (Yin et al., 2024b;a), we implement alignment di-
rectly through distribution matching (DM). Specifically, we design specialized DM-PairLoss (DPO-
inspired) and DM-GroupLoss (GRPO-inspired) that operate within this DM framework, enabling
direct human preference alignment via distribution matching. These novel loss formulations consti-
tute the alignment component of our unified optimization approach. Experimental results demon-
strate that our unified approach achieves synergistic optimization by integrating both distillation
and alignment stages. Crucially, our DM-based alignment eliminates the need for reverse-SDE
conversions, enabling direct preference alignment and reward evaluation within the few-step gener-
ation. Implemented on the Wan 2.1 text-to-video (T2V-1.3B) base model (Wan et al., 2025) with
VideoAlign (Liu et al., 2025b) as reward model, our method substantially outperforms all strong
baselines—including the raw base model, standalone DMD distillation, DanceGRPO, flowDPO, and
other two-stage baselines. This is demonstrated by significant gains of +4.58 and +6.55 in VBench
average score for the Pair and Group variants, alongside a large net preference gain in human evalua-
tions (+48% and +30% over base raw model, respectively), solidly validating the synergistic benefits
of unified optimization.

To summarize, our key contributions are the following: (1) we propose a simple yet efficient frame-
work that jointly optimizes alignment and distillation within a single unified stage, enabling few-step
generation during alignment sampling and harmonizing optimization objectives across both stages
to achieve superior results; (2) inspired by distribution matching (DM), we develop novel DM-
PairLoss and DM-GroupLoss methodologies that directly optimize toward higher-reward distribu-
tions, achieving human preference alignment without the reverse-SDE conversions required in prior

1Detailed experimental results are provided in the Appendix C.1.
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works; (3) through comprehensive experiments on the Wan 2.1 T2V-1.3B model, we demonstrate the
mutual enhancement between distillation and alignment objectives, maintaining distillation quality
while consistently improving human preference alignment.

2 RELATED WORK

2.1 DIFFUSION DISTILLATION

Image and video generation predominantly leverages diffusion models (Ho et al., 2020; Song et al.,
2020a) or flow matching models (Lipman et al., 2022; Liu et al., 2022b), both requiring multi-step
generation that introduces computational inefficiency and inference latency. Reducing sampling
steps while preserving output quality thus remains a fundamental challenge. Early efforts (Liu et al.,
2022a; Zhao et al., 2023; Karras et al., 2022) developed accelerated diffusion samplers to minimize
step counts in pre-trained models. A straightforward idea, referred to as trajectory distillation, trains
student networks to directly learn the teacher model’s multi-step generation outputs. Progressive dis-
tillation (Salimans & Ho, 2022) implements this concept by gradually learning shortened generation
trajectories through iterative refinement. Consistency distillation (Song et al., 2023b; Luo et al.,
2023) enforces self-consistency across the PF-ODE trajectory, enabling student models to directly
predict clean outputs from any intermediate noisy state. Alternatively, distribution distillation ex-
plicitly matches the teacher’s output distribution. Adversarial-based methods (Mao et al., 2025;
Lin et al., 2025) employ GAN-like frameworks that train discriminators and generators for direct
few-step synthesis. Distribution Matching Distillation (DMD) (Yin et al., 2024b) and its follow-up
works (Yin et al., 2024a; Shao et al., 2025) alternately optimize student models and fake models to
minimize KL divergence between distributions. Recent efforts (Luo et al., 2025; Sun et al., 2025)
integrate trajectory and distribution distillation techniques to achieve improved distillation perfor-
mance.

Initial efforts focused on image distillation; while most image distillation algorithms transfer di-
rectly to video generation, few preserve performance on video tasks. Recent work addresses video
distillation challenges involving larger models and more complex distribution matching. Prevailing
approaches primarily employ GAN-based distribution matching frameworks. APT (Lin et al., 2025)
achieves one-step generation via adversarial distribution matching, while POSE (Cheng et al., 2025)
conducts DMD initialization before adversarial refinement.

Our work builds upon DMD (Yin et al., 2024b) and DMD2 (Yin et al., 2024a), initially designed for
image distillation but later validated by the community as highly effective for video tasks with more
streamlined implementation (LightX2V, 2025). Inspired by the DMD framework, multiple recent
works (Luo et al., 2025; Shao et al., 2025; Sun et al., 2025; Gu et al., 2025) have proposed enhance-
ments primarily focused on improving distillation efficiency. However, we uniquely exploit few-step
video generation to enable efficient alignment training within a unified stage. Specifically, we inte-
grate distillation and alignment through novel DM-based DPO-like and GRPO-like losses, enabling
mutual enhancement where both objectives synergistically improve human preference alignment.

2.2 ALIGNING DIFFUSION MODELS AND FLOW MATCHING MODELS

The success of Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) in
large language models has motivated its adaptation to diffusion and flow matching models. Current
methods include training-free alignment (Yeh et al., 2024; Tang et al., 2024; Song et al., 2023a) that
injects preference signals during sampling without model training. Beyond these, a significant line
of work directly adapts RL algorithms to visual generation models. This includes: (i) DPO-based
methods applied to image/video generation (Rafailov et al., 2023; Wallace et al., 2024; Yang et al.,
2024; Liang et al., 2024; Zhang et al., 2025; Liu et al., 2025b), requiring positive/negative sample
pairs with human preference annotations; and (ii) PPO-based methods (Schulman et al., 2017; Black
et al., 2023; Fan et al., 2023; Liu et al., 2025a; Xue et al., 2025; Li et al., 2025) that derive preference
signals from reward models without requiring paired data.

Although RL algorithms for image generation are theoretically transferable to video tasks, practi-
cal implementations encounter training instability and convergence difficulties. To address video-
specific alignment, Flow-DPO (Liu et al., 2025b) proposes a dedicated video reward model and ap-
plies DPO to video generation models. DanceGRPO (Xue et al., 2025) achieves competitive results
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in both image and video generation by applying GRPO within a unified SDE framework. How-
ever, this approach requires extensive sampling steps (typically 20-40) to compute losses at multiple
trajectory points, incurring non-trivial computational overhead. Concurrent work MixGRPO (Li
et al., 2025) enhances sampling efficiency through SDE-ODE alternation, though primarily focus-
ing on image generation. In contrast, we adopt a novel DM perspective by designing GRPO-like and
DPO-like losses that directly optimize distributions toward human-preferred outputs (higher-reward
or positive samples). Crucially, we focus on unifying RL alignment and distillation—traditionally
separate stages—within a single DMD-based optimization process, enabling direct preference opti-
mization with enhanced efficiency and stability.

3 METHOD

In Section 3.1 we introduce Distribution Matching Distillation (DMD). In Section 3.2 we present
our proposed DM-PairLoss(DPO-inspired) and DM-GroupLoss(GRPO-inspired) for alignment. In
Section 3.3 we describe our algorithm framework that unifies RL and distillation into a single stage,
along with a brief analysis of our implementation.

3.1 REVIEW OF DISTRIBUTION MATCHING DISTILLATION (DMD)

The DMD series of works (Yin et al., 2024b;a; 2025; Huang et al., 2025) have established the DMD
framework. Our approach builds directly upon this foundation while preserving its most concise
formulation without additional modifications. The core objective minimizes the Kullback-Leibler
(KL) divergence between the distilled model’s output distribution (pfake) and the original teacher
model’s distribution (preal):

LDMD = DKL(pfake ∥ preal) (1)

= Ex∼pfake

[
log

pfake(x)

preal(x)

]
= Ez∼N (0;I)

x=Gθ(z)

[−(log preal(x)− log pfake(x))] . (2)

Since directly estimating probability densities for Equation 2 is intractable, DMD trains the gen-
erator via gradient descent. This requires computing the gradient with respect to parameters θ,
approximated by perturbing data distributions with Gaussian noise to create overlapping “blurred”
distributions:

∇θLDMD ≈ −Et

∫ [
sreal

(
F (Gθ(z), t

)
, t

)
− sfake

(
F (Gθ(z), t

)
, t

)]
dGθ(z)

dθ
dz. (3)

Here z ∼ N (0, I) is Gaussian noise input, F represents the forward diffusion process at noise level
t (sampled randomly across timesteps), and sreal(x) = ∇x log preal(x), sfake(x) = ∇x log pfake(x)
denote distribution scores. As shown in Fig. 2, our implementation maintains the original DMD
framework: the real model serves as a fixed teacher, while the fake model approximates the genera-
tor’s output distribution via denoising loss. We initialize the fake model from the pretrained model,
updating parameters ϕ during training by minimizing the standard denoising objective:

Ldenoise
ϕ = ∥µfake

ϕ (xt, t)− x0∥22, (4)

where x0 represents the target sample. To enhance stability, we employ alternating training cycles
(5 fake model updates per generator update). Our framework preserves the essential components of
DMD2 while omitting auxiliary losses.

3.2 DM-ALIGN LOSSES

From a distribution matching (DM) perspective, a straightforward approach would directly align the
generator’s output distribution toward human-preferred distributions. We can intuitively design an
alignment loss:

Lalign = DKL(pgen ∥ ppref) = Ex∼pgen

[
log

pgen(x)

ppref(x)

]
. (5)
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Figure 2: Overview. Unified training framework integrating DMD and DM-Align. Left: Generator
produces samples via few-step sampling, updated by DMD Grad and DM-Align Grad. Right: Fake
model approximates generator distribution via denoising loss on noisy few-step samples.

However, we cannot access a reliable score model (∇x log ppref(x)) for human-preferred distri-
butions, preventing direct optimization of this KL divergence. Conventional RL methods acquire
preference information through either: (1) pre-annotated human preference data (DPO-based), or
(2) reward models that score multiple generated samples (GRPO-based). Building upon the gra-
dient formulation in Equation 3, we develop a sample-based distribution matching approach for
alignment. Within the DMD framework, the fake model provides a stable distribution estimate. We
thus optimize:

∇θLalign ≈ −Et

∫ [
sfake

(
F (x+, t), t

)
− sfake

(
F (Gθ(z), t

)
, t

)]
dGθ

dθ
dz, (6)

where x+ denotes human-preferred samples. Intuitively, this drives the generator toward higher-
reward outputs. We can derive this gradient through reasonable approximations starting from the
Bradley-Terry preference model (Bradley & Terry, 1952), with detailed derivation provided in Ap-
pendix A. The fake model is chosen for estimation stability due to its alternating update pattern (5
updates per generator step) and consistent distribution approximation during training.

DM-PairLoss. For DPO-like alignment, we design an online loss inspired by Flow-GRPO’s online-
DPO approach (Liu et al., 2025a). This practical approach requires only human-preferred positive
samples (typically SFT data), which are readily available, while utilizing generator outputs as nega-
tive samples. We directly substitute the corresponding samples in Equation 6 to obtain the gradient
for DM-PairLoss.

DM-GroupLoss. Similarly inspired by GRPO, we adopt a group-based approach: for each input,
we sample multiple outputs from the generator, forming a sample group. Within this group, we
compute rewards and corresponding advantages using a reward model. We consider the average of
the top-n samples as an “average estimate” of human-preferred outputs and apply advantage as the
scaling factor for gradient updates. This yields the gradient for DM-GroupLoss:

∇θLDM-Group ≈ −Et

∫
A

[
sfake

(
F (x̄+, t), t

)
− sfake

(
F (Gθ(z), t

)
, t

)]
dGθ

dθ
dz, (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 DMD Training with Human Preference Alignment

Require: Pretrained real model µreal, conditional input dataset D = {c}, preference data Dpref.
Require: Few-step denoising timesteps T = {t1, . . . , tQ}, update ratio N , group size k.

1: Gθ ← copyWeights(µreal); µfake ← copyWeights(µreal)
2: while training do
3: Sample batch z ∼ N (0, I)B and c ∼ D ▷ Generate samples with intermediate timesteps
4: Sample t ∼ Uniform(T )
5: x,xfinal ← generateSamples(Gθ, z, c, t)
6: ∇LDMD ← DMDGradient(µreal, µfake,x) ▷ Eq. 3
7: if using DM-PairLoss then
8: x+ ← sample(Dpref, c)
9: ∇Lalign ← DM-PairGradient(µfake,xfinal,x+) ▷ Eq. 6

10: else if using DM-GroupLoss then
11: xgroup ← groupSamples(xfinal, k)
12: ∇Lalign ← DM-GroupGradient(µfake,xfinal,xgroup) ▷ Eq. 7
13: end if
14: ∇LG ← λDMD∇LDMD + λalign∇Lalign ▷ Combined gradient update
15: Gθ ← update(Gθ,∇LG)
16: for i = 1 to N do ▷ Update fake model N times
17: Sample t ∼ U(0, 1) and ϵ ∼ N (0, I)
18: xt ← αt ∗ stopgrad(x) + σtϵ
19: Ldenoise ← denoisingLoss(µfake(xt, t),stopgrad(x)) ▷ Eq. 4
20: µfake ← update(µfake,∇Ldenoise)
21: end for
22: end while

where x̄+ represents the average of high-advantage samples and A denotes the advantage. In-
tuitively, for low-advantage samples, we shift distributions toward preferred outputs; for high-
advantage samples, we update toward the specific sampled outputs from the average estimate. We
observe that for a given input, rewards exhibit limited variation across multiple generated samples,
thus we forgo advantage clipping. Instead, we apply gradient normalization to maintain scale com-
patibility with distillation gradients.

3.3 UNIFIED REINFORCEMENT LEARNING AND DISTILLATION

As illustrated in Fig. 2, we unify the RL and distillation stages by directly combining the DMD loss
and DM-Align loss through weighted summation within the DMD framework:

L = λalignLalign + λDMDLDMD, (8)

where λalign and λDMD are weighting coefficients. The complete training procedure is detailed in
Algorithm 1. During training, we maintain stability through alternating updates of the generator
and fake model, preserving DMD2’s concise structure. The DMD loss is computed at a randomly
sampled timestep t ∼ T from the few-step denoising schedule. Simultaneously, the generator pro-
duces final outputs xfinal by completing the full few-step denoising process. These xfinal outputs
provide more accurate estimates for human preference alignment: they serve as high-quality refer-
ence samples for pairwise comparison in DM-PairLoss or as reliable inputs for reward scoring in
DM-GroupLoss. The DMD loss enables efficient few-step sample generation, while the DM-Align
loss directly optimizes the generator to align its output distribution with human preferences using
these samples.

The weighted combination of multiple objectives is well-established, as demonstrated in both the
original DMD series (Yin et al., 2024b;a) and other distillation methods (Chadebec et al., 2025; Shao
et al., 2025). However, while prior works focused on enhancing distillation quality, our approach
prioritizes alignment with human preferences. The recent TDM method (Luo et al., 2025) suggests
accelerating fake model training via importance sampling. Although incorporating additional losses
may improve generation quality and alternative frameworks could enhance training efficiency, we
preserve DMD2’s core workflow for simplicity and leave these enhancements for future exploration.
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Beyond KL minimization, we provide intuitive interpretations and visualizations of our DM loss in
Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We employ Wan 2.1-T2V-1.3B (Wan et al., 2025) as our base model, which is a flow matching-
based model that generates 5-second videos at 16 FPS with a resolution of 832 × 480. All training
and evaluation are conducted at this resolution. For the DPO-based method, preferred samples are
center-cropped to a matching aspect ratio. We term the pair-based and group-based variants of our
method (Section 3) as DM-Align (Pair) and DM-Align (Group), respectively.

For DM-Align (Pair), we adopt the filtered ConsistID dataset (Yuan et al., 2025). We retain
videos longer than 5 seconds from the DanceGRPO-filtered subset, resulting in roughly 6K sam-
ples with corresponding text prompts. This dataset comprises real videos, which inherently exhibit
higher visual and motion quality than generated content, making it suitable for preference align-
ment. Baselines include the raw model, standalone DMD2, standalone flowDPO, and a two-stage
flowDPO+DMD2 pipeline. We implement an online sampling version of flowDPO, which was pro-
posed in FlowGRPO (Liu et al., 2025a) and has been demonstrated to achieve better performance.

For DM-Align (Group), we use the filtered VidProM dataset (Wang & Yang, 2024) following pre-
vious work (Xue et al., 2025). This dataset contains approximately 100K diverse text prompts after
filtering, though we only utilize 20K during training. Our approach relies solely on textual prompts.
However, the VideoAlign reward model (Liu et al., 2025b) exhibits certain limitations when evalu-
ating motion quality (MQ) and visual quality (VQ). Specifically, it tends to assign erroneously high
scores to degenerative content such as pure white noise or flickering frames. This issue makes both
DanceGRPO and our method susceptible to training collapse. Therefore, we primarily focus on tex-
tual alignment (TA) for this dataset. Comparative baselines include the raw base model, standalone
DMD2, standalone DanceGRPO, and a two-stage DanceGRPO+DMD2 pipeline.

For training, all experiments are conducted on 32 H100 GPUs. Hyperparameters largely follow
the DMD2 setup for fair comparison. In our combined loss function (Eq. 8), both λalign and λDMD
are set to 0.5. For other baselines, we adhere to the settings reported in their original papers to the
extent possible. Both DMD2 and flowDPO use Exponential Moving Average (EMA) for training
stability, while our method does not, as we observed negligible performance difference. DM-Align
(Group) and DMD2 converge stably within 500 steps (∼5 hours). DM-Align (Pair) is trained for an
additional 500 steps to ensure convergence. FlowDPO is also trained for 500 steps, while each step
of DanceGRPO takes approximately 20 minutes; we train it for 100 steps.

For evaluation, we adopt VBench (Huang et al., 2024) as our automated evaluation metric, which
includes 6 key metrics across 3 primary dimensions: temporal consistency, motion quality, and vi-
sual quality. For important comparisons, we conduct a human evaluation using the GSB (Good,
Same, Bad) protocol. We curated a test set of 640 samples for both automated and human evalua-
tions. For human evaluation, we select the checkpoints that achieve the highest VBench scores.

4.2 MAIN EXPERIMENTS

The experimental results on VBench are summarized in Table 1, where NFE denotes the Number
of Function Evaluations. DM-Align (Pair) outperforms all baselines, achieving the highest average
score (82.78) with only 4 NFE. Both our method and Flow-DPO significantly improve Motion Qual-
ity, but Flow-DPO shows limited gains in Visual Quality. While the two-stage Flow-DPO + DMD2
pipeline can partially recover Visual Quality, it diminishes Motion Quality benefits. In contrast, our
single-stage optimization stably improves both aspects simultaneously.

For DM-Align (Group), our method achieves the highest average score (84.40), showing substantial
improvements over other baselines. However, similar to the pair variant, the two-stage DanceGRPO
+ DMD2 pipeline suffers from performance degradation (e.g., 14.93 drop in Dynamic Degree) after
distillation. Our approach eliminates multi-step sampling and alignment without timestep averag-
ing, reducing training time by approximately 6× compared to DanceGRPO. The Textual Alignment
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Table 1: Main results on VBench comprehensive evaluation. The best results are in bold. The upper
section presents results on the ConsistID dataset using DM-Align (Pair), while the lower section
shows results on the VidProM dataset using DM-Align (Group).

Method NFE Average
Score

Temporal Consistency Motion Quality Visual Quality

Subject
Consistency

Background
Consistency

Motion
Smoothness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

DM-Align (Pair) on ConsistID Dataset

Wan-T2V-1.3B (raw model) 100 78.20 96.57 94.46 99.01 50.78 56.09 72.29
DMD2 4 79.68 98.03 95.78 99.10 52.81 57.64 74.73
Flow-DPO 100 81.54 98.10 95.56 99.25 67.13 56.32 72.91
Flow-DPO + DMD2 4 79.89 98.14 96.01 99.18 53.43 58.26 74.35
DM-Align (Pair) (Ours) 4 82.78 98.80 95.76 99.35 66.25 60.89 75.61
DM-Align (Group) on VidProM Dataset

Wan-T2V-1.3B (raw model) 100 77.85 93.93 94.63 98.63 56.40 57.33 66.20
DMD2 4 78.88 95.53 95.22 98.60 51.64 63.02 69.30
DanceGRPO 100 82.76 96.04 95.86 98.33 75.78 60.44 70.15
DanceGRPO + DMD2 4 80.54 96.60 95.89 98.43 60.85 60.71 70.81
DM-Align (Group) (Ours) 4 84.40 97.13 96.49 98.99 80.19 62.17 71.45

Figure 3: Human evaluation results.

Table 2: Textual Alignment (TA) scores
evaluated by VideoAlign reward model
on the VidProM dataset.

Method TA Score

Wan-T2V-1.3B (raw model) 0.69
DMD2 0.75
DanceGRPO 1.01
DanceGRPO + DMD2 1.05
DM-Align (Group) (Ours) 1.65

scores (Table 2) further confirm our method provides stronger guidance than all baselines (1.65 vs.
next best 1.05).

Human evaluation results (Fig. 3) indicate that both variants of our method significantly outper-
form the raw model and DMD2 in human preference. DM-Align (Pair) shows more pronounced
improvement (+48 and +32 percentage points) as it leverages real human preference data, providing
more accurate gradient directions for alignment. Although DM-Align (Group) relies on multiple
sampling and reward model estimations for preference-guided gradients, it still delivers substantial
performance gains (+30 and +12 percentage points). Appendix D provides several comparative ex-
amples of generated results. Overall, DMD2 effectively distills the 100-NFE generation process into
a more efficient 4-NFE few-step generation, demonstrating its inherent stability. Our single-stage
approach successfully integrates alignment into this framework without compromising its distilla-
tion capabilities.

4.3 VALIDATING THE DESIGN

In this section, we present a deeper analysis of our proposed algorithm. Our goal is to unify RL and
distillation within a single stage under the DMD framework through our novel DM-Align loss. A
straightforward alternative would be to directly incorporate the RL loss from DanceGRPO or Flow-
DPO into the DMD optimization process. To this end, we developed a variant for DM-Align (Group)
that simply adds the DanceGRPO loss alongside the standard DMD loss. Using an additional 128
prompts during training, we monitored the reward progression, as illustrated in Fig. 4.

Our results show that our method achieves a significant improvement in Textual Alignment (TA)
over standalone DMD. In contrast, the DanceGRPO variant performs nearly identically to DMD.
A similar phenomenon occurs with a Flow-DPO variant, where combining it with DMD yields
results almost indistinguishable from DMD alone (e.g., a difference in VBench average score of
less than 0.03). We attribute this limitation to the overly conservative gradient updates characteristic
of these standalone RL losses. This conservatism stems from the instability of applying RL to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Reward progression during the training process for different methods.

generative models, where aggressive updates can lead to rapid performance collapse. Consequently,
their corresponding loss terms are designed to be very conservative to maintain stability. While
we acknowledge that more update steps with these methods might eventually lead to improvement,
our DM-Align loss is inherently more compatible with the DMD framework, leading to superior
efficiency and effectiveness. A discussion of other potential designs and variants is provided in
Appendix C.2.

5 CONCLUSION

In this paper, we unify video generation model distillation and RL into a single stage within the
DMD framework through distribution matching—traditionally considered separate stages. Our ap-
proach eliminates complex conversions (e.g., adapting ODE-based flow matching sampling to MDP
formulations) and avoids time-intensive multi-step generation for reward computation required by
prior RL methods. We evaluate our approach on the Wan 2.1 T2V-1.3B model. Experimental results
show that our method maintains the efficiency of distillation while achieving improved alignment
with human preferences. It outperforms the original base model, individually distilled models, and
conventional two-stage pipelines on both automated VBench metrics and human evaluation.

However, several limitations exist: First, our straightforward weighted summation of losses lacks
theoretical convergence guarantees. Second, by relying on DMD, our method restricts distillation
to DMD-based techniques, excluding other recent GAN-based alternatives (Mao et al., 2025; Lin
et al., 2025; Cheng et al., 2025) that have been shown to achieve better distillation. We believe this
work provides inspiration for future research in two directions: a more detailed theoretical analysis
of DM-based losses (including convergence and generalization properties), and the exploration of
how to unify RL and distillation within broader distribution matching frameworks. More broadly,
it invites a higher-level perspective on distillation and RL as two commonly employed yet often
separated stages in base model optimization.
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A FROM BRADLEY-TERRY PREFERENCE TO DM-ALIGN GRADIENT

This appendix outlines the motivation and conceptual derivation behind the alignment gradient in
Equation equation 6, which connects preference learning with distribution matching.

Preference Model and Loss. We adopt the Bradley-Terry model to define the probability that a
human-preferred sample x+ is ranked higher than a generated sample x = Gθ(z), using the log-
likelihood under the fake model’s distribution sθ(·) = log pθ(·) as the scoring function:

Pθ(x+ ≻ x) =
exp(sθ(x+))

exp(sθ(x+)) + exp(sθ(x))
. (9)

The associated loss for a pair (x, x+) is the negative log-likelihood:

Lpair = − logPθ(x+ ≻ x) = log

(
1 +

pθ(x)

pθ(x+)

)
. (10)

Motivation via an Approximate Objective. Directly optimizing Lpair is challenging. To derive a
more tractable objective, we consider the scenario where the generator is initially unaligned, leading
to a large quality gap: pθ(x+)≫ pθ(x). Under this imbalance assumption (ε := pθ(x)/pθ(x+)≪
1), a first-order Taylor expansion yields:

Lpair = log(1 + ε) ≈ ε =
pθ(x)

pθ(x+)
. (11)

Up to an additive constant, this can be further approximated by:

Lpair ≈ − (log pθ(x+)− log pθ(x)) = sθ(x)− sθ(x+). (12)

Taking expectations, we arrive at an approximate overall objective:

Lalign(θ) ≈ Ez,x+ [sθ(x)− sθ(x+)] . (13)

Minimizing Eq. equation 13 simultaneously minimizes the likelihood of generated data while max-
imizing the likelihood of preferred data, effectively performing distribution matching between pgen
and ppref.

From Objective to Practical Gradient. The exact gradient of sθ(x̃) = log pθ(x̃) is intractable.
However, the DMD framework (Yin et al., 2024b) provides a practical and stable approximation for
its direction. Specifically, DMD uses the fake model’s score function sfake along the probability flow
to estimate the gradient of the log-likelihood for any sample x̃.

Inspired by this, we approximate the gradient of our objective Lalign by leveraging the fake model’s
score. This leads us to the practical gradient update rule used in our method:

∇θLalign ≈ −Et,z,x+

[(
sfake

(
F (x+, t), t

)
− sfake

(
F (Gθ(z), t), t

))
· dGθ

dθ

]
, (14)

which is the form presented in Equation equation 6. This gradient intuitively pushes the generator
towards regions of high density under the fake model’s estimate of the preferred data distribution.

B INTERPRETATION OF THE DM-ALIGN LOSS VIA VISUALIZATION

This appendix provides visualizations of key intermediate results during DMD training, offering an
intuitive perspective to interpret how DMD operates. Through these visual explanations, we aim to
develop a simpler understanding of our proposed DM-Align loss and elucidate why it effectively
aligns generative models with human preferences.
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Figure 5: Visualization of DMD gradient and latent predictions. Top row: Predictions from the
generator (Gen Pred), fake model (Fake Pred), and fixed real model (Real Pred). Bottom row: DMD
gradient visualization (DMD Grad) and implicit target latent sample derived from gradient updates
(Implicit Pred).

Visualizing the DMD Grad Since the DMD loss operates in the latent space, we visualize its core
components (gradient direction, model predictions, and implicit update targets) by decoding latent
vectors through a corresponding VAE decoder. As shown in Fig. 5, during DMD training, the initial
few-step generations from the model are blurry, and the predictions from the fake model are similarly
indistinct. However, the fixed real model provides a relatively clearer and more stable target. This
creates a gradient direction that effectively points from a blurry state towards a sharper one, roughly
outlining the contour of a higher-quality sample. By computing this gradient and converting it into
a model update via MSE, we can visualize the implicit “target” latent sample (Implicit Pred). The
discrepancy between the real and fake models provides an update signal that pushes the current
generated latent towards a slightly clearer version, guiding the generator to produce higher-quality
samples iteratively.

Gaussian noise

Preferred Area

Non-preferred Area

Fake Model Pred
Raw Grad
DM Grad

DM-Align Grad

Gaussian noise

Sharp Area

Blurry Area

Fake Model Pred

DM Grad

DMD Grad

Real Model Pred

Figure 6: An intuitive visualization of the gradient directions. (Left) The DMD gradient. (Right)
The DM-Align gradient. Both methods utilize a simpler, more attainable proximal target to guide
each optimization step.

Analogous Interpretation of DM-Align From this perspective, our DM-Align gradient functions
analogously. While standard DMD drives the update from a blurry generation towards a sharper
one (a clarity advantage innate to the fixed real model), our DM-Align gradient drives the update
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from a generated sample that is poorly aligned with human preferences towards one that is better
aligned (an advantage conferred by the annotated preference data or reward model assessment). An
intuitive visualization of this process is shown in Fig. 6. We conjecture that the core efficacy of the
algorithm stems from its use of a simpler, more attainable proximal target for each update. Although
theoretically, a more direct gradient estimate (e.g., towards the ground-truth sample or without noise
scheduling) might seem preferable, our validation experiments (Appendix C.1) found that such ap-
proaches often lead to stable training loss but persistently blurry and low-quality generated content.
In essence, both methods leverage the fake model’s unified estimation and noise scheduling to es-
tablish a consistent optimization path. DMD leverages the additional fixed real model to guide this
path towards incremental clarity, while our method leverages human preference signals (from pair-
wise comparisons or reward models) to guide this path towards incremental alignment with human
preferences.

C ANALYSIS OF ALTERNATIVE APPROACHES

C.1 TRAINING ON DISTILLED MODELS

Video generation models, after distillation, can produce high-quality videos in very few sampling
steps. A seemingly straightforward approach is to perform RL training after the distillation process,
leveraging this fast sampling to compute rewards efficiently. However, our experiments reveal that
fine-tuning the distilled model in this manner leads to rapid degradation in generated video quality,
manifesting as noticeable blurring artifacts and flickering motions, which ultimately progresses to a
complete model collapse. This phenomenon is visually demonstrated in Fig. 7.

Figure 7: Visual examples of model collapse when fine-tuning a distilled model.

In practice, we found that any subsequent training (be it SFT or RL variants) on top of a distilled
model is highly susceptible to collapse. Although the training loss might decrease, the model grad-
ually degrades, producing blurred content and losing its few-step generation capability. We hypoth-
esize that the distilled model’s parameters become extremely sensitive; even minor adjustments can
destabilize the output, making it exceedingly difficult to optimize for objectives beyond the original
distillation goal.

C.2 OTHER VARIANTS

Our DM-Align is designed based on the core structure of DMD2, introducing an alignment loss atop
it. Naturally, numerous design choices and potential variants exist. Specifically, key considerations
include whether to add noise before computing the alignment gradient, and whether to estimate this
gradient using the generator, the (DMD) fake model, the real model, or another approximation.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We empirically explored many of these variants. While several achieved decent results, our final
design in Sec. 3 was selected for its superior training stability while maintaining simplicity. We
note that the gradient information in our Align loss—computed across different samples using the
same fake model—and that in the DMD loss—computed across different fake and real models for
the same sample—exhibit a complementary, almost dual-like, structural relationship. We hope our
work inspires future research into better frameworks for unifying RL and distillation.
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D MORE VISUALIZATION RESULTS

In this section, we present additional visualization results of our proposed method, where the up-
per part of each figure shows results from the raw model, and the lower part presents results after
applying DM-Align.

Figure 8: Visualization results of DM-Align (Pair). From top to bottom, compared with the base
model, our improvements include: correctly generating the kitchen background, generating two
persons with more natural movement (previously frozen in base model outputs) and improved yacht
movement in the background (previously static in base model generations).
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Figure 9: Visualization results of DM-Align (Group). From top to bottom, compared with the base
model, our improvements include: correctly generating the red star, better character movement (the
skirt flutters in the wind), correctly generating the red Porsche, and correctly generating three people.
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