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Abstract

Self-supervised contrastive learning (CL) effectively learns
transferable representations from unlabeled data containing
images or image-text pairs but suffers vulnerability to data
poisoning backdoor attacks (DPCLs). An adversary can
inject poisoned images into pretraining datasets, causing
compromised CL encoders to exhibit targeted misbehavior
in downstream tasks. Existing DPCLs, however, achieve
limited efficacy due to their dependence on fragile implicit
co-occurrence between backdoor and target object and in-
adequate suppression of discriminative features in back-
doored images. We propose Noisy Alignment (NA), a DPCL
method that explicitly suppresses noise components in poi-
soned images. Inspired by powerful training-controllable CL
attacks, we identify and extract the critical objective of noisy
alignment, adapting it effectively into data-poisoning sce-
narios. Our method implements noisy alignment by strate-
gically manipulating contrastive learning’s random crop-
ping mechanism, formulating this process as an image lay-
out optimization problem with theoretically derived optimal
parameters. The resulting method is simple yet effective,
achieving state-of-the-art performance compared to exist-
ing DPCLs, while maintaining clean-data accuracy. Fur-
thermore, Noisy Alignment demonstrates robustness against
common backdoor defenses. Codes can be found at https:
//github.com/jsrdcht/Noisy-Alignment.

1. Introduction
Self-supervised contrastive learning has revolutionized rep-
resentation learning by mapping data into embedding spaces
where semantic similarity correlates with proximity [7, 15].
Modern implementations like CLIP [29] and DINOv2 [28]
leverage web-scale datasets to achieve remarkable zero-shot
generalization and have wide application potential in dif-
ferent downstream tasks. However, the uncurated nature of
these data introduces a significant risk of data contamination.
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Such datasets typically scraped from internet sources (e.g.,
Google, YouTube) [28, 29], often lack manual review before
being fed into the model. Recent studies indicate that con-
trastive learning is susceptible to data poisoning backdoor
attacks [3, 5, 21, 30, 43]. In extreme cases, it is feasible
to manipulate a contrastive learning model to misclassify a
backdoored test input by corrupting as little as one millionth
of the pre-training dataset [5].

DPCL exploits the co-occurrence from random augmen-
tations of backdoor triggers and target object patterns in
images [5, 43]. Given an image, CL randomly generates aug-
mented views and enforces similarity (dissimilarity) between
features of positive (negative) views. By poisoning pre-
training data with malicious images containing dog patterns
and backdoor triggers, victim CL models learn to associate
triggers with dogs (the attack target). Consequently, down-
stream classifiers inherit this bias and misclassify triggered
images as "dog". Existing DPCL methods [3, 5, 21, 30, 43]
universally leverage this principle. For instance, Saha et
al. [30] physically superimpose triggers onto targets, while
Zhang et al. [43] optimize co-occurrence probabilities. This
paper focuses on image-modal CL, with Section 7 extending
our approach to image-text CL.

Current DPCLs exhibit limited attack effectiveness. To
bridge this gap, we draw inspiration from a theoretical up-
per bound backdoor attack to CL (called oracle attack) that
controls model training [18, 34, 38, 39]. Oracle attack es-
sentially maximizes the feature similarity between reference
images (collected target-class images guiding the attack) and
noisy backdoored images. By decomposing the oracle attack
objective, i.e., noisy alignment, into representation-space ref-
erence alignment components that capture the co-occurrence
of backdoor and target object patterns and noise compression
components that capture the degradation of original noisy
patterns, we demonstrate that the noise compression term
inherently compresses the subspace orthogonal to reference
features. As illustrated in Figure 1, backdoored panda im-
ages may fail due to domination by non-trigger features. En-
hancing attack performance requires suppressing the neural
network’s extraction of undesirable elements (e.g., pandas or
trees) beyond the backdoor trigger. Formal analysis appears
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in Section 4. Existing DPCLs only consider the alignment
component, lacking the compression component, which we
hypothesize leads to their limited attack efficacy.

Oracle attacks require control over the training process,
which becomes infeasible in data poisoning scenarios. Our
objective is to approximate oracle attack effectiveness
under practical data poisoning constraints. Noisy align-
ment can be simulated by treating augmented views of both
image types as positive pairs. If one augmented view con-
tains (a part of) a noisy backdoored image and the other
contains (a part of) a reference image, the CL model would
produce similar features for both views. To this end, we pro-
pose a novel DPCL method, termed NA (Noisy Alignment),
explicitly achieving the reference alignment and noise com-
pression objectives of oracle attacks by manipulating the
random cropping augmentation. Our method introduces two
key innovations to address existing DPCL limitations. (1)
We explicitly formulate noise compression as a part of the
attack objective. This is achieved by collecting a small set
of images and converting them into backdoored noisy im-
ages. This compels CL encoders to suppress discriminative
features orthogonal to the attack target, thereby amplifying
trigger effectiveness. (2) We devise an offline, optimal poi-
son crafting strategy to achieve noisy alignment under data
poisoning scenarios. Our method inverts the random crop-
ping in CL, ensuring poison images’ random crops capture
either noisy or reference images. To maximize the probabil-
ity of satisfying these conditions simultaneously, we model
poison crafting as a two-dimensional layout optimization
problem between reference and backdoored noisy image
regions and theoretically derive optimal crafting parameters.

We compare our method with existing DPCLs on dif-
ferent datasets and CL models. Our experiments show
that Noisy Alignment achieves state-of-the-art performance,
with ASR improvements ranging from 1.2% to 45.9% on
ImageNet-100, while keeping the utility on the clean data.
Our Noisy Alignment can be easily adapted to image-text
contrastive learning. Additionally, we evaluated potential
defenses, including supervised methods, those tailored for
self-supervised learning, and our own adaptive defense. We
demonstrate that both supervised and self-supervised back-
door detection methods struggle to detect our attack. Our
adaptive defense nullifies the backdoor by disrupting the
malicious co-occurrence, further validating the core intuition
of our approach.

Our contributions are outlined as follows:
• We propose a new DPCL objective called Noisy Align-

ment, which explicitly approximates powerful oracle at-
tacks in data poisoning scenarios.

• We develop a poisons crafting strategy to get the optimal
poisons layout to achieve Noisy Alignment.

• We validate the effectiveness of Noisy Alignment through
extensive experiments.

Panda (𝑝=54%)

Attack Target: Dog (𝑝=32%)Alignment

Tree (𝑝=4%)
Butterfly (𝑝=10%)
…

Compression

Figure 1. Illustration of our intuition.

2. Related Work
2.1. Data Poisoning-based Backdoor Attacks to

Self-Supervised Contrastive Learning
Generally, an adversary augments the original dataset with
poisoning samples that contain a trigger in order to in-
duce the model trained on this dataset to behave incorrectly.
SSLBKD [30] naively embeds triggers into the target class
samples. CTRL [21] proposed using frequency-domain
backdoor to enhance backdoor stealthiness. PoisonedEn-
coder [24] explored backdoor attacks to CL under a targeted
poisoning setup. CorruptEncoder [43] carefully placing the
trigger to maximize the probability that the interested object
co-occurs with the trigger. BLTO [33] crafts the dynamic
trigger by training a generative covolutional neural network.
Li et al. [22] show that DPCL entangles backdoor features
with those of the target class, making defense more difficult.
Another line of research [18, 34, 38, 39, 41, 42] focuses on
backdooring pre-trained SSL encoders.

2.2. Noise in Self-Supervised Learning
Noise undermines self-supervised learning by degrading rep-
resentation quality [2]. However, tackling this noise may
improve outcomes. Denoising itself can be supervision,
[4, 20] train denoising models with paired noisy observa-
tions. InfoMin [36] suggests that models can be encouraged
to compress excess noise in data. The noisy views and
mismatched pairs that commonly arise in large-scale or mul-
timodal SSL can be explicitly modeled. [11] corrects the
bias from false negatives in InfoNCE using a PU-learning
view. For misaligned video-text pairs, MIL-NCE [26] uses
multiple-instance matching to tolerate temporal misalign-
ment, while Robust Audio-Visual Instance Discrimination
[27] reweights false positives/negatives across modalities.

3. Preliminaries
In this section, we introduce our threat model and notations.
Following previous work [21, 30, 43], we take the image
classification as the downstream task for clarity.
Data poisoning in Self-supervised contrastive learning.
Suppose the original pre-training dataset is Dpr ⊂ X where
X is the image space. A victim trains an encoder fθ : X →
Rd on Dpr with contrastive loss Lcl : Rd ×Rd → R to learn
representations. After that, the downstream users train a
downstream classifier based on the representation from the
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Figure 2. Comparison of different DPCL variants. (a) ASR of
different DPCL variants. (b) Singular value distribution of repre-
sentation matrix. Smaller singular values indicate reduced rank and
collapse in the space.

infected encoder to perform any given downstream task. Let
θf be the parameters of the encoder. For a specific interested
downstream task, the adversary injects a corresponding small
set of poisons Dp ⊂ X into the pre-training data to mislead
the downstream classifier built on the pre-trained infected
encoder fθ̂f to incorrectly classify poisoned examples as the
pre-defined target class t. In this paper, hat notation ·̂ denotes
the infected version of the original variable.
Adversary’s knowledge and capability: Similar to pre-
vious work [21, 30, 43], the adversary can collect a small
reference set Dref ⊂ X corresponding to the interested class
t to guide the poisoning process and inject a small set of
poisons Dp into the training data, e.g., |Dp|

|Dpr| ≤ 0.5%. Apart
from this, we assume that the adversary has access to a small
subset Dshadow of the reference distribution. The adversary
lacks insight into (i) the model details (e.g., network archi-
tectures or CL methods) and (ii) detailed training settings
(e.g., optimizers or learning rate schedulers).

4. Improving DPCLs by Compressing Noise
As shown in Table 1, existing DPCLs [21, 30, 43] lag far be-
hind training-controllable self-supervised contrastive learn-
ing backdoor attacks [18, 34] in terms of attack performance.
In this section, we analyze the reasons behind this phe-
nomenon and explore ways to improve DPCLs to bridge
the gap. Since training-controllable methods represent the
upper bound of DPCL performance, we refer to them as
oracle attacks. The oracle attack can be formulated as the
malicious objective below:

min
θf

Ex∼Dpr [Lcl]+Exs∼Dshadow
xr∼Dref

[1− cos (f(xs ⊕ p), f(xr))]︸ ︷︷ ︸
noisy alignment loss Lalign

(1)
where Lalign enforces that board infected shadow examples
x̂s=xs⊕p align with reference examples via cosine similar-
ity. ⊕ is the trigger embedding operation which is typically
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Figure 3. 2D projection visualization of the training trajectories.
Bold markers indicate the start point, and arrows indicate the train-
ing direction. Darker colors represent smaller traces of the feature
covariance matrix, indicating stronger collapse in the v⊥ space
defined in Equation (2).

used to embed a backdoor trigger p ∈ X into any victim
image x to craft an infected version x̂. Specifically, for each
poisoned shadow image during training, we randomly select
a reference image xr∼Dref and minimize their feature dis-
tance in hyperspherical space. Objective (1) is from [18] and
simplifies the loss terms that are unrelated to the attack.

Intuitively, the noisy alignment term performs the attack
by projecting malicious samples into the feature neighbor-
hood of the target class. However, we demonstrate that, in
addition to enforcing reference alignment, the noisy align-
ment loss implicitly accomplishes the task of noise compres-
sion. Specifically, by decomposing the features of any xs⊕p
in the hyperspherical space, we reveal implicit geometric
constraints in Lalign. Let f(xr) = u denote the unit-norm
reference feature (L2-normalized as per contrastive learning
convention), and f(xs ⊕ p) = v be the poisoned feature.
We decompose v into two orthogonal components:

v = (v⊤u)u︸ ︷︷ ︸
Alignment component

+ v⊥︸︷︷︸
Compression component

, (2)

where v⊥ = v− (v⊤u)u represents the residual component
orthogonal to u. The cosine similarity term in Lalign then be
formulated as:

cos(v,u) =
v⊤u

∥v∥
=

α√
α2 + ∥v⊥∥2

,

where α = v⊤u. Substituting this into Lalign, we get:

Lalign = E

[
1− α√

α2 + ∥v⊥∥2

]
.

This formulation reveals two implicit objectives:
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Figure 4. Maximizing likelihood of joint probability.

• Alignment Term: Maximizing α to increase the projec-
tion of poisoned features onto the reference direction u;

• Compression Term: Minimizing ∥v⊥∥2 to suppress fea-
tures orthogonal to u, effectively compressing the variance
of poisoned samples’ features.

The gradient dynamics confirm this decomposition. The
gradient of Lalign with respect to α and ∥v⊥∥2 becomes:

∂Lalign

∂α
∝ − ∥v⊥∥2

(α2 + ∥v⊥∥2)3/2
,

∂Lalign

∂∥v⊥∥2
∝ α

2(α2 + ∥v⊥∥2)3/2
.

These gradients simultaneously push α → +∞ (perfect
alignment) and v⊥ → 0 (dimensional collapse). Con-
sequently, the poisoned features cluster tightly around u,
discarding their original discriminative features from xs.
This dual mechanism explains why simple alignment losses
can achieve effective backdoor implantation. The com-
pression effect prevents poisoned features from dispersing
across the embedding space. Consider E[f(xs ⊕ p)] =
E[f(p)] + E[f(xs) + Risidual Terms], noise compression
forces the shadow features and Risidual Terms vectors to be
collapsed into null space of noisy alignment loss since they
are noisy and hard to align with the reference features.

Building on the insight above, we design a data poisoning
variant that integrates noisy alignment constraints into con-
trastive learning. For each reference sample xr ∈ Dref, we
generate two augmented views: 1) reference view T1(x) 2)
shadow view T2(xs⊕p) where xs ∼ Dshadow. T1, T2

i.i.d.∼ T
where T is the CL augmentation distribution. For each batch
containing clean pairs (x,x) where x∼Dpr and malicious
pairs (xs,xr)∼Dshadow×Dref, we define the oracle poisoning
variant as

Loracle-poisoning = min
θf

Ex∼Dpr [Lcl]+

Exs∼Dshadow
xr∼Dref

[
Lcl

(
f(T1(xs ⊕ p)), f(T2(xr))

)]
. (3)

The variant enforces alignment between shadow-reference
pairs while maintaining the form of contrastive learning.

Discussion. Figure 2a demonstrates that oracle poisoning
variant matches the ASR of the oracle attack. The baseline is
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Figure 5. Optimal parameters for left-right layout according to
Theorem 1 and 2.

from [30]. Geometric analyses of the training dynamics of in-
fected samples in Figures 2b-3 confirm the same observation:
poisoned representations collapse orthogonally to the refer-
ence direction u (formalized in Eq. (2)). Despite its effective-
ness, oracle poisoning requires real-time access to training
batches for generating malicious pairs (xs⊕p,xr). This vio-
lates our data poisoning threat model. We next eliminate this
dependency by reformulating the noise-compression effects
into static constraints pre-computable on Dp.

5. Offline Noise Compression for DPCL
We reformulate the noisy alignment as a static data perturba-
tion by interpreting the backdoor implantation as a adaptive
inverse of CL augmentation. Let T⊕ : (xs ⊕p,xr) 7→ x̂s,xr
where x̂s,xr ∈ X is the composite image denotes our poi-
soning function that combines trigger-embedded shadow
images and reference images. To simulate oracle poison-
ing’s dynamics without training access, we pre-optimize T⊕
to maximize the likelihood of any malicious pair (xs⊕ p,xr)
being treated as positive pairs in contrastive learning. Specif-
ically, we define the objective as

max
T⊕

E
T1,T2

i.i.d.∼T
xs,xr∼Dshadow×Dref

[
Pr

(
T1(x̂s,xr) ∈ A(xs ⊕ p)

∧ T2(x̂s,xr) ∈ A(xr)
)]

(4)

where A(·) denotes the augmentation neighborhood of an
input. This objective ensures that random augmentations
of the composite sample preserve both the trigger pattern
from xs ⊕ p and discriminative features from xr. However,
the expectation of joint probability is intractable due to the
inability to access the victim’s data augmentation process.
Following observations in [7, 43], random cropping domi-
nates CL poisoning. We thus simplify the joint probability
by decoupling it into independent events as

Pr

(p ⊆ V1 ⊆ xs ⊕ p)︸ ︷︷ ︸
trigger retention

∧ (V2 ⊆ xr)︸ ︷︷ ︸
reference matching

∧(V1 ∩ V2 = ∅)︸ ︷︷ ︸
view disjoint

,


(5)



Algorithm 1 Crafting Poisoned Dataset

Require: Backdoor trigger p, reference set Dref, shadow
set Dshadow

Ensure: Poisoned dataset Dp
1: Initialize poisoned dataset Dp ← ∅
2: while not converged do
3: Sample reference image xr ∼ Dref
4: Sample shadow image xs ∼ Dshadow
5: Embed trigger into shadow image: xs ⊕ p
6: Sample layout direction from {left-right, right-left,

up-down, down-up}
7: Determine optimal parameters based on Theorems 1

& 2:
8: Set reference position (r∗x, r

∗
y), shadow position

(s∗x, s
∗
y), trigger position (e∗x, e

∗
y) at center of shadow

image, canvas size (c∗w, c
∗
h)

9: Create composite image x̂s,xr = T⊕(xs ⊕ p,xr)
based on layout

10: Update poisoned dataset: Dp ← Dp ∪ {x̂s,xr}
11: end while
12: return Dp

where V1 = T1(x̂s,xr),V2 = T2(x̂s,xr). This reduces the
Equation (4) to a practical 2D layout optimization problem
under random cropping distributions. We demonstrate our
intuition in Figure 4. We enforce spatial disjointness to pre-
vent information leakage through that would enable models
to bypass contrastive optimization via shortcut [36]. The ad-
versary needs to maximize the likelihood of trigger retention
and reference matching by carefully designing the layout of
the composite image T⊕(xs ⊕ p,xr).

Formally, we denote by xr the reference image, xs the
shadow image, p the trigger and T1, T2 are random cropping
operations independently and identically distributed in T .
We define the layout optimization problem as inserting the
trigger p into the shadow image xs and inserting the xr,xs⊕
p into a 2D canvas to maximize the likelihood defined in
Equation (5). The size of the reference image (rl, rl) and
the size of the trigegr el are frozen, and 1) the location of
the reference image (rx, ry) 2) the location of the trigger
(ex, ey) 3) the location of the shadow image (sx, sy) 4) the
canvas size (cw, ch) are all variables to be optimized. To
simplify the problem, we assume that the reference image,
shadow image, trigger are all square and the shadow image
share the same size with the reference image.

Assuming the cropped regions are squares and they have
the same size s (the conclusion holds if the cropped regions
have different sizes). We denote by p1(s) the probability of
a randomly cropped view containing the trigger and within
the infected shadow image, and p2(s) the probability of a
randomly cropped view is within the reference image. The
reference image and the infected shadow image are expected

to be disjoint. Following the formulation in [43], we cast the
objective (5) as the following maximization problem:

pjoint =
1

S − el

∫
s∈(el,S]

p1(s)p2(s)p3(s) ds. (6)

where p1(s) = Pr{(p ⊆ V1) ∧ (V1 ⊆ (xs ⊕ p))}, p2(s) =
Pr{V2 ⊆ xr} and p3(s) = Pr{V1 ∩ V2 = ∅}.
The optimizable parameters for Objective (6) include
rx, ry, sx, sy, ex, ey, cw, ch. The region size s is uniformly
distributed in the range (el, S].

Depending on the relative positions of the reference im-
age and the infected shadow image, there are four possible
layout categories: 1) left-right, 2) right-left, 3) up-down,
and 4) down-up. For example, a left-right layout indicates
that the reference image is positioned to the left of the in-
fected shadow image, meaning a vertical line can separate
the two images. Different layouts can be achieved through
rotational symmetry (or flipping), thus we primarily focus
on the left-right layout. When generating a poisoned image,
we randomly choose one of these four layouts.

Theorem 1 (Locations of Reference Image, Trigger and
Shadow Image). Suppose the left-right layout is used. For
any ch ≥ rl, cw ≥ 2rl, the following locations maximize
the likelihood in Equation (6). (r∗x, r

∗
y) = (0, 0) is the op-

timal location of the reference image. (s∗x, s
∗
y) = ( cw2 , 0)

with sx ≥ 2rl is the optimal location of the infected
shadow image. The optimal location of the trigger is
the center of the infected shadow image, i.e., (e∗x, e

∗
y) =(

s∗x + rl−el
2 , s∗y +

rl−el
2

)
.

Proof. See Appendix A.

Theorem 2 (Canvas Size). Suppose the left-right layout and
the optimal locations in Theorem 1 are used. For any width
cw ≥ 2rl, the optimal canvas height is c∗h = rl. For height
ch = rl, the optimal canvas width is c∗w = 2rl.

Proof. See Appendix A.

Theorem 1 and 2 analytically derive the optimal parame-
ters of the left-right layout which is shown in Figure 5. For
other layouts, the optimal parameters can be derived simi-
larly. Algorithm 1 summarizes the poison crafting process.

6. Experiments
6.1. Experimental Setup
Datasets. We primarily use ImageNet-100 and CIFAR-
10 [19] for evaluation. ImageNet-100 is a 100-class subset
of ImageNet-1K [12], with the split provided by [30]. We
randomly sample a 50K subset from CC3M [32], called CC-
50K, to train the CLIP model which then is evaluated on
ImageNet-1k.



Table 1. Effectiveness of attacks on different datasets. Bold indicates the highest ASR value, and underline indicates the second highest.
CTRL-NG refers to CTRL without Gaussian blur augmentation. BLTO-N normalizes the BLTO ASR by the ASR of the uninfected model.

Dataset Attack MoCo v2 BYOL SimSiam SimCLR

CA BA ASR CA BA ASR CA BA ASR CA BA ASR

ImageNet-100

Supervised Learning ASR: 24.8%
SSLBKD [30] 67.9% 30.1% 50.9% 80.3% 24.1% 70.2% 66.5% 29.1% 51.2% 70.9% 49.1% 33.9%

CTRL [21] 67.6% 67.6% 1.1% 76.3% 76.2% 4.7% 65.6% 65.4% 0.1% 69.2% 69.6% 0.1%
CorruptEncoder [43] 68.0% 31.9% 55.1% 73.3% 40.1% 20.4% 66.1% 25.0% 26.1% 70.3% 39.1% 42.1%

BLTO [33] 68.4% 35.5% 45.1% 72.1% 16.3% 77.6% 65.7% 44.2% 31.6% 70.1% 21.2% 51.0%
BLTO-N 68.4% 35.5% 34.0% 72.1% 16.3% 47.1% 65.7% 44.2% 23.1% 70.1% 21.2% 33.8%
Our NA 68.3% 12.2% 84.8% 79.2% 10.8% 71.4% 66.5% 2.6% 97.1% 70.1% 21.1% 64.8%

Oracle-Poisoning 68.1% 2.4% 97.3% 79.0% 1.5% 98.5% 66.3% 3.5% 96.1% 70.3% 2.1% 97.7%
BadEncoder [18] ASR: 97.1% ASR: 98.4% ASR: 94.2% ASR: 95.1%

CIFAR-10

Supervised Learning ASR: 80.9%
SSLBKD [30] 82.0% 17.1% 67.6% 89.3% 48.2% 40.1% 70.1% 21.2% 69.1% 70.0% 18.2% 69.2%

CTRL [21] 82.3% 63.7% 11.2% 84.1% 80.2% 13.4% 72.9% 70.2% 13.4% 72.4% 60.0% 22.0%
CTRL-NG 79.0% 45.7% 40.1% 82.3% 39.7% 67.9% 70.4% 36.9% 68.5% 69.1% 12.3% 81.1%
BLTO [33] 82.6% 10.9% 99.1% 81.3% 10.1% 99.4% 70.3% 11.0% 99.1% 71.1% 10.1% 98.7%
BLTO-N 82.6% 10.9% 13.1% 81.3% 10.1% 9.1% 70.3% 11.0% 17.7% 71.1% 10.1% 15.6%
Our NA 82.8% 18.6% 75.9% 89.9% 19.6% 72.6% 70.8% 16.2% 79.9% 68.3% 12.5% 85.6%

Oracle-Poisoning 66.5% 15.2% 69.3% 89.5% 16.9% 74.1% 70.3% 18.1% 78.9% 68.9% 12.6% 79.5%
BadEncoder [18] ASR: 72.2% ASR: 81.8% ASR: 65.1% ASR: 77.9%

Image Baseline GT Baseline class t Baseline Overall Our GT Our class t Our Overall

Figure 6. Class activation maps (CAM) [31] of attacks. GT means Ground Truth and class t means attack target. Our attack produces a more
focused heatmap.

Evaluation. We benchmark four contrastive learning frame-
works: MoCo v2 [10], SimCLR [7], BYOL [14], and Sim-
Siam [8]. Unless otherwise noted, we adopt MoCo v2
with a ResNet-18 backbone as the default pre-training setup
and conduct all experiments on ImageNet-100. After pre-
training, we freeze the encoder and train a linear classifier
on top for downstream evaluation. Following the normal-
ization trick in [16], we apply ℓ2 feature normalization to
stabilize training. We compare our attack with four state-of-
the-art self-supervised backdoor baselines: SSLBKD [30],
CTRL [21], CorruptEncoder+ [43], and BLTO [33]. For
CorruptEncoder we adopt their official reference images and
report the results of the improved CorruptEncoder+. We
report clean accuracy (CA), backdoored accuracy (BA), and
attack success rate (ASR). Unless specified otherwise, all
metrics are measured at convergence rather than at the best
intermediate checkpoint.

Attack Settings. Following former practice [30, 43], we
inject ∼650 poisoned images for ImageNet-100 and ∼2500
poisoned images for CIFAR-10 (poisoning ratio 0.5%). The
shadow and reference sizes are set equal to the number of
poisoned images. The triggers are from [30] and will be
resized to 50×50 for ImageNet-100 and 8×8 for CIFAR-10.
More details can be found in Appendix.

6.2. Attack Effectiveness

Table 1 reports attack results on ImageNet-100 and CIFAR-
10. Our method consistently delivers state-of-the-art ASR
across all datasets and self-supervised methods, even sur-
passing the oracle BadEncoder on CIFAR-10 for MoCo
v2, SimSiam, and SimCLR. BLTO attains high ASR (con-
sistently ∼99% on CIFAR-10), though its poisons exhibit
strong target-class semantics that yield 80-90% ASR even
without backdoor training. We therefore normalize ASR
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Figure 7. Impact of (a) size of shadow images and (b) size of
reference images.

Table 2. ASR of NA on CLIP.

Image-text Pairs Top1 Top5

Reference images + Reference texts 87.1% 95.9%
Noisy images + Reference texts 100.0% 100.0%

Table 3. Multi-target attack of NA.

Class Names CA ASR

Shih-Tzu, Ski Mask 66.2% 97.4%
Carbonara, Mixing Bowl 66.4% 98.3%
Honeycomb, Little Blue Heron, Coyote 65.7% 96.7%
Tripod, Ski Mask, Chesapeake Bay Retriever 65.9% 96.5%
Pickup Truck, Chihuahua, Vacuum, Bookcase 65.6% 94.3%
Throne, Pedestal, Pickup Truck, Borzoi 65.9% 92.7%

using clean encoder baselines. Both CTRL and BLTO rely
on invisible triggers that are especially sensitive to CL aug-
mentations, leading to a noticeable performance drop on the
larger ImageNet-100. Removing Gaussian blur (a common
CL augmentation) notably boosts CTRL ASR on CIFAR-10
as shown in Table 1. For reference, we trained supervised
models with CrossEntropy on the SSLBKD poisons. Super-
vised models achieve 24.8% (80.9%) ASR on ImageNet-100
(CIFAR-10). All evaluated attacks maintain encoder utility,
achieving performance comparable to clean encoders, shown
in Appendix, across datasets and CL methods.
Multiple Target Classes. Table 3 summarizes the attack
performance targeting several categories. Each class is as-
signed distinct trigger from [30] while keeping the per-class
poisoning ratio fixed at 50%. We adopt SimSiam for pre-
training. As the number of attacked classes increases, ASR
drops because the model capacity is shared among more
objectives. Nonetheless, our proposed NA retains a strong
ASR of 92.7% even in the challenging four-class scenario,
underscoring its scalability to multi-target settings.

6.3. Abalation Study
Figure 8a shows the ASR of NA and SSLBKD with different
poisoning ratios. Figure 8b shows the ASR of NA with

Table 4. Attack performance across different image-text contrastive
models.

Different pipelines ACC (%) ASR (%)

clip-base-patch16-224 + finetune 60.2 100.0
siglip-base-patch16-224 + finetune 65.1 99.0
clip-vit-base-patch32 + train from scratch 16.2 93.1

different neural network architectures. Figure 8d shows the
ASR with different trigger sizes. Our attack generalizes
across architectures and achieves significant ASR (>50%) at
a poisoning ratio of 0.2% and trigger size of 30×30. Figure
8c evaluates ASR under four fixed layouts. Although a
fixed layout achieves higher ASR, we adopt randomized
layouts for better generalization. Figure 7 shows the impact
of the number of shadow images and reference images on
CIFAR10. We observe that the ASR saturates at around 200
shadow images and 1000 reference images, respectively.

7. Extension to Image-Text CL

Our framework naturally generalizes to the image-text con-
trastive setting. Consider a victim model that employs
CLIP [29] to align images with their textual descriptions.
We construct poisoned image-text pairs to maximize the
cosine similarity between the embeddings of backdoored im-
ages and those of reference sentences that depict the target
category (e.g., “a photo of a dog”). In this formulation, the
reference sentence assumes the same role as the reference
image in the purely visual scenario. To assess the attack,
we train a CLIP model from scratch on the CC-50K dataset
with CleanCLIP implementation [3]. We randomly sample
250 clean images (merely 0.05% of the training split) to
craft noisy backdoored examples. As reported in Table 2,
our noisy alignment drives the ASR to 100%. To mimic a
practical scenario in which the defender is unaware of the
underlying contrastive learning paradigm, we additionally
inject various image-modal poisons directly into CLIP. The
corresponding results are summarized in the Appendix Table
10. Table 4 compares the attack effectiveness across various
image-text models. By default, we fine-tune two pre-trained
encoders, CLIP ViT-Base and SigLIP ViT-Base. We fur-
ther consider training CLIP ViT-Base from scratch for 50
epochs. Despite reaching only 16.2% top-1 accuracy, this
scratch-trained model still attains a high ASR of 93.1%.

8. Defense

We challenge our NA attack with commonly used defenses.

Distillation. We take the unsupervised distillation Com-
Press [1]. We adopt an available clean subset budget setup
with 25%, 10%, and 5%. In Figure 9, we observed that
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Table 5. Detection performance of different detections. We mark the successful backdoor detection by marker * for DECREE, SSL-Cleanse,
and Beatrix. For Beatrix, we mark images beyond 95-th percentile as poisoned images.

CIFAR10 ImageNet-100

DECREE [13] SSL-Cleanse [44] DeDe [17] Beatrix [25] DECREE [13] DeDe [17]

Metric BadEnc. SSLBKD Ours BadEnc. SSLBKD Ours BadEnc. SSLBKD Ours BadEnc. SSLBKD Ours BadEnc. SSLBKD Ours BadEnc. SSLBKD Ours

Recall 0.99* 0.92 0.92* * False False 0.81 0.61 0.73 0.87 0.66 0.96* 0.82 0.82 0.99 0.69 0.71 0.49
Precision 0.99* 0.54 0.89* * False False 0.90 0.79 0.81 0.98 0.91 0.95* 0.51 0.51 0.50 0.61 0.51 0.57
AUC 1.0* 0.47 0.96* * False False 0.93 0.82 0.87 0.97 0.91 0.99* 0.52 0.52 0.31 0.67 0.52 0.58

Table 6. Performance under adaptive defenses.

Method ACC (%) ASR (%)

baseline 66.1 82.3
+minimal crop rario (0.8) 42.9 0.5
+no random cropping 36.1 0.9

unsupervised distillation effectively mitigates backdoor at-
tacks, reducing the ASR to below 1%. However, the cost is
a significant reduction in the clean accuracy.

Detection. We evaluate our attack against both supervised
and self-supervised backdoor detection methods. We report
the Recall (the proportion of detected poisons), Precision
(the proportion of true poisons among detected poisons), and
AUC (area under the ROC curve). We employ the default
threshold for DeDe [17] and select the optimal one for DE-
CREE [13] via Youden’s J statistic. For supervised detection,
we assume access to a 5% clean data subset. While state-
of-the-art methods can detect our attack on CIFAR-10, their
performance degrades significantly on ImageNet-100. This
indicates that attacks in high-dimensional spaces present con-
siderable challenges to existing detections. More defenses
can be found in Appendix.

Adaptive Defense. We present the performance of adap-
tive defenses in Table 6. NA relies on malicious co-
occurrence from random augmentation, and the adaptive
defense disrupts it. Although adaptive defense can effec-
tively defend against NA, it may also impair the model’s
performance.
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Figure 9. Distillation defense.

9. Conclusion

In this paper, we propose a novel data poisoning backdoor at-
tack against contrastive learning (DPCL), where noisy back-
doored images are aligned with reference images. We for-
mulate noisy alignment as an image placement problem in
2D space and derive the optimal layout. Despite its simplic-
ity, our method achieves state-of-the-art attack performance.
Extensive experiments demonstrate that common defenses
struggle to mitigate our attack effectively. Our study high-
lights the urgent need for more robust defenses.
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A. Proof of Theorem 1 and Theorem 2
We firstly prove that the optimal location of the trigger is
the center of the infected shadow image. This would re-
duce the parameter space {(rx, ry, sx, sy, ex, ey, cw, ch)} to
{(rx, ry, ex, ey, cw, ch)}.

A.1. Optimality of Centered Position
For any legal (ex, ey) satisfying ex ∈ [sx, sx + rl − el]
and ey ∈ [sy, sy + rl − el], the probability p1(s) can be
computed as the ratio between the area of upper-left corners
of T1(x̂) such that T1(x̂) ⊆ xs⊕p∧p ⊆ T1(x̂) and that of
all possible T1(x̂) ⊆ xs.

We analyze the valid crop regions for the trigger p within
the infected shadow image xs ⊕ p. Let rl denote the side
length of the shadow image and el the trigger size. Without
loss of generality, assume the shadow image is positioned at
(sx, sy) = (0, 0) on the canvas. The valid upper-left corner
coordinates (tx, ty) of a cropped view T1(x̂) must satisfy:

tx ≤ ex, ty ≤ ey

(trigger containment),

tx + s ≥ ex + el, ty + s ≥ ey + el

(trigger containment),

tx ≥ 0, ty ≥ 0, tx + s ≤ rl, ty + s ≤ rl

(boundary constraints).

For fixed crop size s ≥ el, the valid intervals for tx and ty
are constrained by:{

max(ex + el − s, 0) ≤ tx ≤ min(ex, rl − s),

max(ey + el − s, 0) ≤ ty ≤ min(ey, rl − s).

The lengths of these intervals are:

Lx = min(ex, rl − s)−max(ex + el − s, 0),

Ly = min(ey, rl − s)−max(ey + el − s, 0).

Maximizing Lx · Ly at Center. Assume ex = ey = rl−el
2

(centered trigger position). We analyze two cases:
Case 1: el ≤ s ≤ rl+el

2

max(ex + el − s, 0) =
rl − el

2
+ el − s =

rl + el
2
− s,

min(ex, rl − s) =
rl − el

2
.

Thus,

Lx =
rl − el

2
−

(
rl + el

2
− s

)
= s− el,

and symmetrically Ly = s− el. Hence, Lx ·Ly = (s− el)
2.

Case 2: rl+el
2 < s ≤ rl

max(ex + el − s, 0) = 0

(since
rl − el

2
+ el − s =

rl + el
2
− s < 0),

min(ex, rl − s) = rl − s.

Thus,
Lx = rl − s− 0 = rl − s,

and symmetrically Ly = rl− s. Hence, Lx ·Ly = (rl− s)2.
Non-Centered Positions Degrade Lx · Ly. For any offset
∆ ̸= 0, let ex = rl−el

2 +∆. We then prove that the optimal
∆ = 0. Due to symmetry, we only analyze Lx:
Case 1: el ≤ s ≤ rl+el

2
If ∆ > 0, the lower bound becomes max(ex + el − s, 0) =
rl+el

2 − s+∆. However:

min(ex, rl − s) = min

(
rl − el

2
+ ∆, rl − s

)
≤ rl − el

2
+ ∆. (7)

The valid interval Lx ≤ rl−el
2 + ∆ −

(
rl+el

2 − s+∆
)
=

s − el. Thus, Lx · Ly < (s − el)
2. Similar analysis holds

for ∆ < 0.
Case 2: rl+el

2 < s ≤ rl
For ∆ > 0:

min(ex, rl − s) ≤ rl − s,

with equality only when ∆ = 0. Thus, Lx · Ly ≤ (rl − s)2,
strictly smaller for ∆ ̸= 0.

For all s ∈ [el, rl], Lx ·Ly is maximized when (ex, ey) =

( sx+rl−el
2 ,

sy+rl−el
2 ) (centered trigger). Any deviation ∆ ̸=

0 strictly reduces the valid area. This proves the optimality
of the central position.

A.2. Optimality of the Locations of the Reference
Image, Infected Shadow Image, and the Can-
vas Size

Let p1(s) denote the joint probability that a randomly
cropped view T1(x̂) contains the trigger p while remain-
ing entirely within the infected shadow image xs ⊕ p. We
decompose p1(s) into conditional probabilities to isolate the
impact of trigger positioning:

p1(s) = Pr
(
p ⊆ T1(x̂)

∣∣T1(x̂) ⊆ xs ⊕ p
)︸ ︷︷ ︸

q1(s)

· Pr (T1(x̂) ⊆ xs ⊕ p)︸ ︷︷ ︸
q2(s)

. (8)



Here, q1(s) represents the conditional probability of the
trigger being fully contained in a cropped view, given that
the crop lies within the infected shadow image. Critically,
q1(s) depends solely on the relative position (ex, ey) of the
trigger within xs ⊕ p, while q2(s) depends on the absolute
position (sx, sy) of the shadow image within the canvas.

With trigger centering providing maximal q1(s)
for all s, optimization now focuses on maximizing
the remaining terms 1

S−el

∫
q2(s)p2(s)p3(s)ds. This

reduces the original 8-dimensional parameter space
{rx, ry, sx, sy, ex, ey, cw, ch} to {rx, ry, ex, ey, cw, ch}.

Based on the above analysis, we now transition to con-
necting our optimization framework with established results.
With q1(s) maximized by trigger centering, our objective
reduces to optimizing 1

S−el

∫
q2(s)p2(s) ds. The p3(s) term

is temporarily omitted, as it can be optimized once the
remains have reached their optima. Here, the constraint
T1(x̂) ⊆ xs ⊕ p enforces that cropped regions lie entirely
within the infected shadow image—a geometric condition
formally equivalent to the trigger cropping constraint studied
in [43]. Specifically, by treating xs ⊕ p as all the possible
trigger cropped region in their formulation, with (ex, ey)
parameterizing its positional offset, our q2(s)p2(s) becomes
structurally identical to their probabilistic integral.

Lemma 1 (Theorem 1 in [43]). Suppose left-right layout
is used and cw ≥ rl, ch ≥ rl.

(
r∗x, r

∗
y

)
= (0, 0) is the

optimal location of the reference image, and
(
e∗x, e

∗
y

)
=(

cw+rl−el
2 , ch−el

2

)
is the optimal location of the trigger.

Lemma 2 (Theorem 2 in [43]). Suppose left-right layout
is used and and the optimal locations in Lemma 1 are used.
For cw ≥ rl, the optimal height of the canvas is c∗h = rl.

A.3. Optimality of the Width of the Canvas
The above analysis reduces the parameter space to the can-
vas width cw. We then proceed to express the optimization
objective analytically as a function of cw through IOU-based
overlap modeling. Let g be the horizontal buffer width be-
tween the reference image xr and infected shadow image
xs ⊕ p, parameterizing the canvas width as cw = 2rl + g.
Parameterize p1(s; g) and p2(s; g) with Optimal Layout.
Reference image is fixed at (0, 0), size rl × rl. Infected
shadow image is positioned at (rl+g, 0), size rl×rl. Trigger
is centered in xs⊕p: e∗x = rl+g+ rl−el

2 . Canvas dimensions
is cw = 2rl+g, ch = rl because any extra area located right
of the infected shadow image is redundant. Let p1(s; g) be
probability that V1 contains the trigger and intersects with
xs ⊕ p. From Theorem 1, the centered trigger maximizes
containment. The valid region for V1 is:

p1(s; g) =
(s− el)

2

(2rl + g − s)(rl − s)
for el ≤ s ≤ rl + el

2
,

p1(s; g) =
(rl − s)2

(2rl + g − s)(rl − s)
for

rl + el
2

< s ≤ rl.

Valid horizontal range for V2: 0 ≤ t2x ≤ rl − s. Total
horizontal space: cw − s = 2rl + g − s.

p2(s; g) =
(rl − s)(rl − s)

(2rl + g − s)(rl − s)
=

rl − s

2rl + g − s
.

Model p3(s; g) via IOU Overlap Probability. p3(s; g) =
Pr(IOU(V1,V2) ≤ τ), where τ is a small threshold (e.g.,
0.05). Unlike p1 and p2 , p3 allows the cropped region to
be not entirely contained within the reference image or the
infected shadow image. We explain the intuition behind
our modeling in Section B. For left-right layouts, horizontal
overlap dominates. Let ∆x = max(0, t2x + s − t1x) be the
horizontal gap. We approximate:

IOU ≈ ∆x · s
2s2 −∆x · s

≤ τ ⇒ ∆x ≤
2τs2

s+ τs
=

2τs

1 + τ
.

Valid crpping regions are V1: t1x ∈ [rl+g−s, rl+g+rl−s]
and V2: t2x ∈ [0, rl]. The non-overlap condition is

0 ≤ t2x + s− t1x ≤ ∆,

where ∆ = 2τs
1+τ . The overlap probability requires double

integration over valid crop positions:

p3(s; g) =
1

r2l

∫ rl

t2x=0

∫ min
(
2rl+g−s, t2x+s

)
t1x=max

(
rl+g−s, t2x+s−∆

) dt1x dt2x ds.
Let A = rl + g − s and B = 2rl + g − s. The valid t1x
range becomes [max

(
rl + g − s, t2x + s −∆

)
,min

(
2rl +

g − s, t2x + s
)
].

Non-overlap requires t2x+s−∆ ≤ rl+A and A ≤ t2x+s.
The valid width is:

min(B, t2x + s)−max(A, t2x + s−∆).

Subcases depend on t2x:
Case 1: t2x + s−∆ ≤ A
Lower bound = A, upper bound = min(B, t2x + s). Though
τ is small, t2x + s ≤ A+∆ = A+ 2τs

1+τ ≤ B. Thus upper
bound is t2x + s.

p3(s; g) =
1

r2l

∫ ∫ min(A−s+∆,rl)

t2x=max(A−s,0)

[(t2x + s)−A] dt2xds,

limτ→0 ∆=0
=

1

r2l
(s−A)∆

∫
A−s>0

ds

+
∆

2r2l

∫
A−s>0

(2A− 2s+∆)ds. (9)

Case 2: B ≤ t2x + s
since τ is small, t2x + s −∆ ≥ B −∆ ≥ A. Valid width



= B − t2x − s+∆.

p3(s; g) =
1

r2l

∫ ∫ min(B+∆−s,rl)

t2x=B−s

[B − t2x − s+∆]dt2xds,

=
∆

r2l

∫
B−s<rl

(B − s+∆)ds− ∆

r2l

∫
B−s<rl

(2B − 2s+∆)ds,

=
∆

r2l

∫
B−s<rl

(B − s)ds =
∆

r2l

∫
B−s<rl

(2rl + 2g − 2s)ds.

(10)

Case 3: A+∆ ≤ t2x + s ≤ B
Lower bound = t2x + s−∆ and upper bound is t2x + s. The
width is ∆.

p3(s; g) =
1

r2l

∫ ∫ min(B−s,rl)

t2x=A+∆−s

[∆]dt2xds,

=
∆

r2l

∫
B−s<rl

(rl −∆)ds+
∆

r2l

∫
B−s>rl

(∆− g)ds.

(11)

Integrating over all three cases, we have

p3(s; g)
limτ→0 ∆=0

= +
∆

r2l

∫
A−s>0

(rl − 2s+ 3∆/2)ds

+
∆

r2l

∫
B−s<rl

(3rl + 2g − 2s−∆)ds (12)

Find the Optimal Width of the Joint Probability.

J(g) =
1

S − el

∫ rl

s=el

p1(s; g)p2(s; g)p3(s; g)ds

=
∆

(S − el)r2l

[∫ rl+g

2

el

p1p2 · (rl − 2s+ 3∆/2) ds

]
,

+

∫ rl

rl+g

2

p1p2 (3rl + 2g − 2s−∆) ds

]
(13)

Table 7. Clean performance on 10% clean available subset.

Dataset MoCo v2 BYOL SimSiam
ACC ASR ACC ASR ACC ASR

CIFAR10 69.0% 8.0% 88.3% 8.0% 71.1% 9.1%
ImageNet-100 66.5% 0.9% 80.1% 2.2% 66.1% 1.2%

WLOG, assume g < el (conclusion holds for g ≥ el):

J(g) =
1

S − el

∫ rl

s=el

p1(s; g)p2(s; g)p3(s; g)ds

=
∆

(S − el)r2l

[

∫ rl+g

2

el

(s− el)
2

(2rl + g − s)2
· (rl − 2s+ 3∆/2) ds︸ ︷︷ ︸

J1(g)

+

∫ rl+el
2

rl+g

2

(s− el)
2

(2rl + g − s)2
· (3rl + 2g − 2s−∆) ds︸ ︷︷ ︸

J2(g)

+

∫ rl

rl+el
2

(rl − s)2

(2rl + g − s)2
· (3rl + 2g − 2s−∆) ds︸ ︷︷ ︸

J3(g)

]

(14)

Using Leibniz Rule for Differentiation Under the Integral
Sign, we can easily find ∂J1(g)

∂g < 0.Besides, the derivatives
of the internal integral term of J2(g) is equal to

−2(s− el)
2 (3rl + 2g − 2s)

(2rl + g − s)3
+

2(s− el)
2

(2rl + g − s)2
,

= −2(s− el)
2 (rl + g − s)

(2rl + g − s)3
< 0.

Again, with Leibniz Rule for Differentiation Under the In-
tegral Sign, we can find ∂J2(g)

∂g < 0, similarly for J3(g).
The optimal canvas configuration achieves maximal joint
probability when images are adjacent with zero gap:

g = 0 .

This corresponds to minimum canvas width 2rl with tight
image adjacency.

B. The Information Theory Perspective of Our
Attack

Given a pair of random variables v1 and v2, contrastive
learning aims to train a parameterized function fθ that maps
inputs from sample x ∈ X into a representation space Rd.
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Figure 10. Different attack classes of CTRL [21] on CIFAR-10 under various data processing methods. We use Gaussian noise and JPEG
compression to perturb the poisons.
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Figure 11. ASR over checkpoints of three CorruptEncoder [43] trials on ImageNet-100.

The objective is to distinguish between positive pairs sam-
pled from the joint distribution p(v1|x)p(v2|x) and negative
pairs drawn independently from the marginal distributions
p(v1)p(v2). The reuslting function f is a mutual information
estimator between v1 and v2 [36, 37]. Tipically, minimiz-
ing InfoNCE loss [15, 37] equivalently maximizes a lower
bound of I(v1; v2). Note that views v1 and v2 are obtained
from samples through data augmentation.

[36] points out that the optimal views are related to
the downstream task (denoted as T ). Ideally, the mu-
tual information between augmented views should contain
only the information relevant to the downstream task, i.e.,
I(v1, v2;T ) = I(v1, T ) = I(v2, T ). Inspired by this view-
point, we hope that the views generated by random cropping

contain the backdoor trigger and the reference image, respec-
tively.
Optimal Layout under the Information Theory Perspec-
tive. Given the optimal views, we need to design the layout
to maximize the probability of its occurrence. Let S(v)
denote the set of pixels in the view v. We can categorize
the information sharing between the views v1 and v2 into
different scenarios:

1. Missing information: S(v)∩S(p) = ∅ ∧ S(v)∩S(xr) =
∅,∀v ∈ {v1, v2}. This is irrelevant to the attack and could
degrade the efficiency of the attack.

2. Sweet spot: S(p) ⊆ S(v1) ∧ S(v1) ∩ S(xr) = ∅ ∧
S(v2) ⊆ S(xr). The only information shared between
v1 and v2 is not more than the trigger p and reference



Table 8. Performance of irregular and invisible triggers.

Method ACC (%) ASR (%)

baseline 66.1 82.3
+Blended triggers [9] 65.8 88.2

patterns, i.e., I(v1; v2) ≤ I(p; v2).
3. Information leak: S(v) ∩ S(p) ̸= ∅ ∧ S(v) ∩ S(xr) ̸=
∅,∀v ∈ {v1, v2}. This leads to I(v1; v2) > I(p; v2) and
I(v1; v2) > I(p; v1), which could harm the attack. Infor-
mation other than the attacks shared by v1 and v2 may
become a shortcut for model learning, thus neglecting
beneficial information from the attacks.

C. Experimental Details

Figure 12. Augmented views of the poisoned data. Each of the
top row and the bottom row is one of the augmented views from
the identical poisoned image of MoCo v2 [10] and the target attack
class is carbonara.
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Figure 13. Illustration of the patch triggers.

Trigger. We mainly use the trigger from [30], which are
small square colorful patches, i.e. random 4×4 RGB images,
as Figure 13 shows. They are resized to the desired size when
attached to the poisoned image. We demonstrate augmented
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target
suspiciousTarget 1

Figure 14. Activation Cluster defense.

views on ImageNet-100 in Figure 12. We also use non-
patch-based triggers to test our attacks, as shown in Table
8.

Hyperparameters. We synchronize the hyperparameters
with the baseline SSLBKD [30], ensuring the comparability.
Note that we slightly scale the training length to 300 epochs,
as SSL methods typically require longer to converge. We
provide the pre-training configurations and linear probing
configurations in Table 14 and Table 9 respectively.

D. More Analysis of Attack Dynamics
Decline in attack performance during the late training
stage. In Figure 11 we plot the ASR trajectory of Corrup-
tEncoder on ImageNet - 100. The attack converges swiftly,
attaining 60–80% ASR within the first 50–100 epochs for
both MoCo v2 and BYOL. Training beyond this point, how-
ever, often causes the ASR to degrade. We conjecture that
the Uniformity regularization in later epochs [40] loosens
the coupling between the backdoor and its reference image,
echoing the observations of Sun et al. [33]. A comparable
trend is also visible in CTRL [21] (Figure 10), underscoring
the generality of this phenomenon.

Representation Visualization. Figure 16 shows interme-
diate t - SNE snapshots, while Figure 15 depicts the represen-
tation space at convergence. Figure 16 shows that our attack
can maintain the separability of poison representations in the
later stages of training.

Reference Distribution Shift. Table 13 investigates the
attack effectiveness under a distribution mismatch between
the pre-training and downstream. ImageNet-100-O is an
alternative subset that is disjoint from ImageNet-100. Such a
shift hampers both benign performance and attack strength,
since feature representations become sub-optimal for the
new domain. Nevertheless, NA still delivers competitive at-



Methods MoCo v2 & SimSiam & SimCLR BYOL
Training Epochs 40 100
Batch Size 256 256
Optimizer SGD Adam
Learning Rate Schedule MultiStepLR ExponentialLR
Learning Rate 0.01 0.01
Weight Decay 1× 10−4 5× 10−6

Momentum 0.9 -
Resize & Crop RandomResizeAndCrop RandomResizeAndCrop
RandomHorizontalFlip 0.5 0.5

Table 9. Hyperparameters for linear probing.

Table 10. ASR of directly poisoning CLIP with different image-
modal poisons.

Metrics SSLBKD SIG Gaussian noise NA

Top1 99.9% 59.3% 99.8% 91.3%
Top5 99.9% 63.3% 99.9% 96.0%

Table 11. SCAn results on CIFAR10 and ImageNet-100.

Dataset CIFAR10 ImageNet-100

MoCo v2 SimSiam MoCo v2 SimSiam

CAP 100% 100% 0% 0%
TPR 11.5% 28.7% 26.2% 3.7%
FPR 0.0% 0.1% 3.0% 4.9%

Table 12. PatchSearch defense.

Metric MoCo SimSiam

Poisons Removed 38,710 28,666
Recall (%) 46.3 49.1
Precision (%) 0.8 1.2
ASR after defense (%) 61.0 77.1

Table 13. ASR on difference reference distributions.

Pre-training Reference Model Results
Dataset Dataset CA ASR

ImageNet-100

ImageNet-100-O MoCo v2 61.1% 77.1%
SimSiam 54.7% 84.3%

STL-10 MoCo v2 70.2% 59.0%
SimSiam 70.5% 52.1%

CIFAR-10 MoCo v2 52.2% 42.9%
SimSiam 53.5% 49.8%

tack efficacy, demonstrating that it can effectively generalize
beyond the original pre-training distribution.

E. More Defenses
PatchSearch. PatchSearch [35] is a poison detection method
design for SSL. Table 12 shows PatchSearch retrieves about
half of the poisons, but the ASR remains high (61.0% for
MoCo v2 and 77.1% for SimSiam).

Statistical Contamination Analyzer (SCAn) . We evalu-
ated the SCAn using three metrics: accuracy of the poisoned
class prediction (CAP), false positive rate (FPR), and true
positive rate (TPR). We implemented SCAn on CIFAR10
following [23] and randomly sampled 10% of the test set to
build the decomposition model. Table 11 shows SCAn can
effectively identify the poisoned class on CIFAR10, yet it is
entirely out of work on the larger ImageNet-100.

Activation Clustering (AC) . The AC [6] detection is
based on the intuition that poisoned examples are likely to be
a distinct cluster in the representation space. In Figure 14, we
report the silhouette scores of feature clusters on CIFAR10.
AC fails to accurately detect the corresponding attack class,
as indicated by lower silhouette scores compared to other
unpoisoned categories.



20 10 0 10 20

30

20

10

0

10

20

30

(a) MoCo v2

20 10 0 10 20 30 40
30

20

10

0

10

20

(b) SimCLR

20 10 0 10 20 30

20

10

0

10

20

30

(c) BYOL

20 10 0 10 20 30

20

10

0

10

20

30

(d) SimSiam

Figure 15. t-SNE visualization of the representation space of our attack. Black triangles ▲ are poison centers and colors represent different
classes. Star and circle markers represent the poisoned and clean samples, respectively.
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Figure 16. t-SNE visualization at various training stages on ImageNet-100. Circles represent clean samples, while stars denote poisons.
Different classes are distinguished by color.

Methods MoCo v2 BYOL SimSiam
Training Epochs 300 300 300
Batch Size 512 512 512
Optimizer SGD Adam SGD
Learning Rate Schedule Cosine Cosine Cosine
Learning Rate 0.06 0.002 0.05
Weight Decay 1× 10−4 1× 10−6 1× 10−4

Moving Average 0.999 0.99 -
Resize & Crop RandomResizeAndCrop RandomResizeAndCrop RandomResizeAndCrop
Color Jitter 0.4 0.4 0.4
RandomHorizontalFlip 0.5 0.5 0.5
Min Crop Scale 0.2 0.2 0.2
RandomGrayscale 0.2 0.1 0.2
GaussianBlur(p=0.5) [.1, 2.] [.1, 2.] [.1, 2.]

Table 14. Hyperparameters for pre-training.
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