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Abstract

The past decade has witnessed the flourishing of
a new profession as media content creators, who
rely on revenue streams from online content rec-
ommendation platforms. The rewarding mecha-
nism employed by these platforms creates a com-
petitive environment among creators which affect
their production choices and, consequently, con-
tent distribution and system welfare. In this work,
we uncover a fundamental limit about a class of
widely adopted mechanisms, coined Merit-based
Monotone Mechanisms, by showing that they in-
evitably lead to a constant fraction loss of the wel-
fare. To circumvent this limitation, we introduce
Backward Rewarding Mechanisms (BRMs) and
show that the competition games resulting from
BRM possess a potential game structure, which
naturally induces the strategic creators’ behavior
dynamics to optimize any given welfare metric. In
addition, the class of BRM can be parameterized
so that it allows the platform to directly optimize
welfare within the feasible mechanism space even
when the welfare metric is not explicitly defined.

1. Introduction

Online recommendation platforms, such as Instagram and
YouTube, have become an integral part of our daily life
( , ). Their impact extends beyond merely
aligning users with the most relevant content: they are also
accountable for the online ecosystem it creates and the long-
term welfare it promotes, considering the complex dynamics
driven by the potential strategic behaviors of content cre-
ators ( s ). Typically, creators’ utilities are
directly tied to the visibility of their content or economic
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incentives they can gather from the platform, and they con-
stantly pursue to maximize these benefits( , ;

s ). This fosters a competitive environment
that may inadvertently undermine the social welfare, i.e., the
total utilities of all users and content creators in the system

( , )-

To account for the potentially negative effects induced
by strategic content creators, the platform can design re-
ward signals that influence the creators’ perceived utilities,
thereby steering content distribution at equilibrium towards
enhanced social welfare. In reality, many platforms share
revenue with creators via various mechanisms ( , ;

, ; s ; s ). These incentives
are typically proportional to user satisfaction measured by
various metrics, such as click-through rate and engagement
time. We model such competitive environment within a
general framework termed content creator competition I(@5))
game that generalizes and abstracts a few established mod-
els including ( , ; s

; s ; s ), and frame
a class of prevailing rewarding mechanisms as Merit-based
Monotone Mechanisms (M?). The M? are characterized
by a few simple properties, intuitively meaning better con-
tent should be rewarded more (i.e., merit-based) and sum of
creators’ utilities increase whenever any creator increases
her content relevance (i.e., monotone). However, we show
that M3 necessarily incur a constant fraction of welfare loss
in natural scenarios due to the fact that it undesirably encour-
ages excessive concentration of creators around the majority
user groups and leaves minority groups underserved. To
resolve this issue, we introduce Backward Rewarding Mech-
anisms (BRM) which discards monotonicity in the sense
that when creators’ competition within some user group
surpasses a limit that begins to harm welfare, their total
reward is reduced. The strength of BRM lies in three as-
pects: 1. any C® game under BRM forms a potential game
( , ); 2. there exists a BRM in-
stance such that the induced potential function is equivalent
to the social welfare metric. As a result, the net effect of
creators’ competition aligns perfectly with maximizing the
social welfare. 3. BRM contains a parameterized subspace
that allows empirical optimization of social welfare. This
flexibility becomes especially crucial in practice when the
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welfare is not explicitly defined. These merits of BRM are
supported by our empirical studies, in which we developed
simulated environments, demonstrating the welfare induced
by BRM outperforms baseline mechanisms in M?3.

2. Related Work

The theoretical studies of content creators’ strategic behav-
ior under the mediation of an RS date back to the seminal
work from ( ; ), where
they proposed the Shapley mediator that guarantees the exis-
tence of pure Nash equilibrium (PNE) and several fairness-
related requirements. In these studies, the RS was only
empowered to design the matching probability, and it was
observed that user welfare could be significantly compro-
mised. In contrast, our work considers a more realistic and
contemporary platform that can determine the reward for
each content creator. We propose BRM and show that the
Shapley mediator ( , ) is an
instance of BRM. Several recent work ( s ;

, ) studied the proper-
ties of supply- 51de equlhbrlum under the C® game. In (

, ; , ), creators are assumed
to directly compete for user exposure without the mediation
of an RS. These studies focus on characterizing the prop-
erties of Nash Equilibrium (NE). On the other hand, (

s ) demonstrated that the user welfare loss under a
conventional RS using top- K ranking is upper-bounded by
O( Tog K) Our research reveals that any merit-based mono-
tone mechanism, including those based on user exposure or
engagement, unavoidably incurs a welfare loss of % How-
ever, if the platform have the freedom to design arbitrary
incentive signals, social welfare can be further optimized.

3. A General Model for Content Creator
Competition

In this section, we formalize the Content Creator Competi-
tion (C®) game under the platform’s rewarding mechanisms.
Each C3 instance G is defined by a tuple

({S }z 1’{Cl i= 1,X,0’,M,{7‘i}?:1):

Basic setups: a finite set of users X = {x; € R},
and a set of content creators denoted by [n] = {1,--- ,n}.
Each creator 7 can take an action s;, often referred to as a
pure strategy in game-theoretic terms, from an action set
S; C R?. s, can be understood as the embedding of content

that creator ¢ can produce.

Relevance function o (s, z) : R x R? — R>( which mea-
sures the relevance between a user * € X and content s.
Without loss of generality, we normalize o to [0, 1], where 1
suggests perfect matching. We focus on modeling the strate-
gic behavior of creators and thus abstract away the estima-
tion of 0. For simplicity, we use 0; ;(s) to denote o (s;, ;)
given any joint strategy profile s = (s1,--- ,8,) € S. We

may omit the argument s when the context is clear.

Rewarding mechanisms: given joint strategy s =
(s1,---,8n) € S, the platform generates a reward u; ; €
[0, 1] for each user-creator pair (s;, x;). We generally allow
u; ; to depend on s;’s relevance o; ; and also other creators’
relevance 0_; ; = {0 ;|1 <t < n,t # i}. Thus, a re-
warding mechanism M is a mapping from (o; ;,{o—; ;})
to [0, 1], or formally,

_M(Ul,ja J) (1)

Such rewarding mechanisms given by function M (-, -) can
be understood as the expected payoff for creator ¢ under
any user-content matching strategy and some post-matching
rewarding scheme.

Creator utilities: creator-i’s utility is defined as the sum of
the reward gained from each individual user minus the cost
for producing content s;, i.e.,

§ Ug,5 — i

where ¢; is the cost function for creator-i. As an example,
one may have c;(s;) = \;||s; — 8;||3 where §; represents
the type of content that creator ¢ is most comfortable or
confident with.

i), Vi € [n], 2)

User utility and the social welfare: Before formalizing
the welfare objective, we first define each user-j;’s utility
from consuming a list of ranked content. Since user’s atten-
tion usually decreases in the rank positions, we introduce
discounting weights {ry ; € [0,1]}; for each user-j to
represent his/her “attention” over the k-th ranked content.
Naturally, we assume 7 ; > - -+ > 1, j, i.e., higher ranked
content receives more user attention. Consequently, user-;’s
utility from consuming a list of content {;(k)}7_,, which
is a permutation of [n] ranked in a descending order of con-

tent relevance to user-j (i.e., 0y,(1),; = *** = 0y,(n),j)» 1S
defined by the following weighted sum
S) = Z rkr,jo'lj(k),j(s)~ (3)
k=1

In the special case where the platform always recommends
the top-K ranked content, we shall have r; = 0,Vi > K.
We refer to this important special case as the top-K environ-
ment, which is popular in almost all practical RS. A concrete
example is when 7, ; = m, which reduces W;(s) to
the well-known metric Discounted Cumulative Gain (DCG)
( R ) used in information retrieval.
We remark that the user utility definition (3) is compatible
with most natural ranking strategies in addition to top-K;
we provide additional examples of more general ranking
rules in Appendix A.1.
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Finally, the social welfare is defined as the sum of total user
utilities and total creator utilities, minus the platform’s cost:

W(s;{rk,;}) = ZWJ(S)+ZUZ ZZ i,j

j=1 =1
=Y Wi(s) = _ci(si). )
j=1 i=1

To simplify our discussion in the following sections, we
assume {ry, ;} is independent of the user index j and simply
use 7, in place of ry ;. Our results can also be generalized
to 1, ; with dependency on j, up to more complex notations.

Our research questions: creator incentive design. Un-
like previous works ( R ; s

; s ) that primarily focus on
designing user-content matching mechanisms, we con-
sider the design of a different “knob” to improve social
welfare, i.e., creators’ rewarding scheme. Each reward-
ing mechanism M establishes a competitive environment
among content creators, encapsulated by a C® instance
G({S:},{ci}, X, 0, M, {r;}). Our objective is to design
mechanisms M that: 1. guarantee the existence of PNE,
thereby ensuring a stable outcome, and 2. maximize social
welfare at the PNE.

4. The Fundamental Limit of Merit-based
Monotone Mechanisms

In this section, we show an intrinsic limitation for a generic
class of reward mechanisms commonly utilized in the prac-
tice. These reward schemes, employed by numerous plat-
forms, exhibit common properties that can be summarized
by the following definition.

Definition 1 (Merit-based Monotone Mechanism (M?3)).
We say M is a merit-based monotone mechanism if for any
relevance scores 1 > o1 > --- > o, > 0, M satisfies the
following properties:

¢ Merit-based:

- (Normality) M (0,0_;) =0, M(1,{0,---,0}) > 0,

— (Fairness) M (0;,0_;) > M(cj,0_;),Yi > j,

- (Negative Externality) Vi, if o_; < o', (0; <
0%, Vj # i), then M(0y,0-;) > M(0y,0";).

* Monotonicity: the total rewards » ., M(c;,0_;)
[0,1]™ — R>( is non-decreasing in o; for every i € [n].

In addition, we write M € M? if M is a merit-based
monotone mechanism with parameter n.

The two properties underpinning M? are quite intuitive.
Firstly, the merit-based property consists of three natural
sub-properties: 1. zero relevance content should receive

zero reward, whereas the highest relevance content deserves
a non-zero reward; 2. within the given pool of content with
scores {0;};c[n)» the higher relevance content should re-
ceive a higher reward; 3. any individual content’s reward
does not increase when other creators improve their content
relevance. Secondly, monotonicity means if any content
creator ¢ improves her relevance o;, the total rewards to
all creators increase. This property is naturally satisfied
by many widely adopted rewarding mechanisms because
platforms in today’s industry typically reward creators pro-
portionally to user engagement or satisfaction, the fotal of
which is expected to increase as some creator’s content be-
comes more relevant. Unsurprisingly, many popular reward-
ing mechanisms falls into the class of M?3. For instances,
two mechanisms that are widely adopted in current industry
practices for rewarding creators ( , ; s ;

, ; , ) are exposure/engagement
based, i.e., creators’ utilities are set to the total content ex-
posure/engagement. We show in Appendix A.2 that both of
them are in M?3. However, we show that any mechanism
in M? can result in a quite suboptimal welfare, even ap-
plied to some natural C*® game environment. Specifically,
we abstract out the following representative subset of C3
instances, which capture the essence of many real-world
situations. We term this subclass of situations as Trend v.s.
Niche (TvN) games.

Definition 2 (TvN games). Denote £ = {e1,- - ,e,} C
R™ as the set of unit basis vectors in R™. Consider a user
population X = {mj}?il suchthat z; = e, for1 < j <
n+1,&,42 = es, -, X2, = e,. All creators have zero
costs and share the same action set S; = E. The relevance
is measured by the inner product, i.e., o(s,z) = s x. The
attention discounting weights {r;} is induced by a top-K
environment, i.e., 71 > -+ > T > TE4] = =Ty =
0. For any mechanism M, we call such a game instance
G({Si}, {ci =0}, X,0,M,{r;}) aTvN game.

The TvN game models a scenario where the user population
comprises multiple interest groups, each with orthogonal
preference representations. In this game, the largest group
consists of nearly half the population. Each content cre-
ator has the option to cater to one—and only one—user
group. While this game is simple and stylized, it captures
the essence of real-world user populations and the dilemmas
faced by creators. Our subsequent result shows that if the
platform adopts M? in the TvN game, this tension of con-
tent creation turns out to be a curse in the sense that a unique
PNE is achieved when all players opt for the same strategy
— catering to the largest user group — and we quantify the
social welfare loss at this PNE in the following.

Theorem 1. For any rewarding mechanism M € M?3 ap-
plied to any TvN instance, we have: 1. the resultant game
admits a unique NE s*; 2. the welfare of this NE is at most
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KL_H [fraction of the optimal welfare for large n. Formally,

W(s*) K 1
maxses W(s) K +1 0 (n> ’ )

The proof is in Appendix A.3, where we explicitly charac-
terize both s* and the welfare maximizing strategy profile
and calculate their difference in terms of welfare. Eq. (5)
suggests that the welfare loss of G under M? could be as
significant as 1/2 for users who primarily care about the top
relevant content, which is shown to be realistic given the
diminishing attention spans of Internet users ( , ).

5. Backward Rewarding Mechanisms

In observation of the negative result in Theorem 1, we
introduce the class of Backward Rewarding Mechanisms
(BRMs), in which the monotonicity is compromised. The
name of BRM suggests its essential characteristic: the re-
ward for a specific creator-i depends solely on their ranking
and the relevance of content from creators ranked lower
than ¢. The formal definition of BRM is provided below:

Definition 3 (BRM and BRCM). We say M is a Backward
Rewarding Mechanism (BRM) if for any relevance score
sequence 1 > o1 > --- > 0, > 0, there exists a sequence
of Riemann integrable functions { f;(¢) : [0,1] — R>o}7,
fi(t) = -+ > fu(t) such that

n Ok

Moo= [ s, ©)

k=i Y Ok+1

where 0,11 = 0 and f1(t) > 0,Vt. We use BRM to
denote the set of all BRMs with parameter n, and use
M f1(t), -, fn(t)] to denote an element M € BRM when
it is associated with { f;(¢)} ;.

In addition, we identify a subset BRCMCBRM which
includes those M such that {f;(t) = f;} are a set of
constant functions. Clearly, any M & BRCM can be
parameterized by a n-dimensional point in the polytope

To get an better intuition of how BRM works, let us consider
a special case M € BRCM such that f; = --- = fx =1
and f = 0,k > K + 1. By the definition, any score se-
quence o1 > --- > o, will be mapped to a reward sequence
of (61 —ok41,"* ,0Kk —0K+1,0,---,0). Consequently,
the top-K ranked creators will experience a significant re-
duction in rewards if the (K + 1)-th ranked creator increases
its content relevance. This mechanism can deter an unnec-
essary concentration of creators on a specific strategy, as
when the number of creators with high scores exceeds a
certain threshold, even those ranked highly can receive a
decreasing reward. This backward rewarding mechanism
thus encourages diversity in content creation and mitigates

the risk of oversaturation in any particular group of users. A
more comprehensive understanding about the construction
of BRM can be obtained through the lens of congestion
games and we defer the discussion in Appendix A.4.

5.1. Properties of BRM

While the class of BRM might appear abstract at the first
glance, one can confirm that it preserves all merit-based
properties, making it a natural class of rewarding mecha-
nisms. Nevertheless, in order to secure a better welfare
guarantee, the monotonicity is dropped, as characterized in
the following:

Proposition 1. Any M € BRM is merit-based but not nec-
essarily monotone.

The detailed proof is provided in the Appendix A.5. Next
we establish formal characterizations about the welfare guar-
antee of BRM. First, we show that any C® game under BRM
possesses a PNE because it is a potential game (

, ). A strategic game is called a potential game

if there exists a function P : [[, S; — R such that for any
strategy profile s = (s1,---,Sy,), any player-i and strat-
egy s, € S;, whenever player-i deviates from s; to s}, the
change of his/her utility function is equal to the change of P,
ie., P(s},s_;) — P(si,s_;) = u;(8;,5_;) — u;i(s;,8-).
This leads us to the main result of this section:
Theorem 2. Any C° game G({S;}, {c:}, X, 0, M, {r;}) in-
duced by any M € BRM is a potential game and thus has
a PNE. Moreover, if the mechanism M = M|ry,--- ,r,] €
BRCMEBRM, the potential function is precisely the welfare
Sunction, i.e., W(s) = P(s; M).

The proof is in Appendix A.6, where we construct its poten-
tial function explicitly. According to ( ,
), we also conclude: 1. the maximizers of P are the
PNEs of G, and 2. if the evolution of creators’ strategic
behavior follows a better response dynamics (i.e., in each
iteration, an arbitrary creator deviates to a strategy that in-
creases his/her utility), their joint strategy profile converges
to a PNE. Theorem 2 suggests another appealing property
of BRM: one can always select an M within BRM to align
the potential function with the welfare metric, which can be
simply achieved by setting each f; identical to r;. Conse-
quently, any best response dynamic among creators not only
converges to a PNE but also generates a strictly increasing
sequence of W, thus ensuring at least a local maximizer
of W. Denote the set of PNEs of G as PNE(G). When
PNE(G) coincides with the global maximizers of its po-
tential function, i.e., PNE(G) = argmax, P(s; M), we
conclude that any PNE of G also maximizes the welfare W.
The following corollary indicates that such an optimistic
situation occurs in TvN games, providing a stark contrast to
the findings in Theorem 1. The proof is in Appendix A.7.

Corollary 1. For any TvN instance G, there exists M &€
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BRCM such that any PNE s* € PN E(G) attains the opti-
mal W, i.e.,

max W (s)

nax = W (s®). 7

5.2. Welfare Optimization within BRCM

Theorem 2 suggests that, provided the parameters {r;} are
known, the platform can select a mechanism within BRCM
with a better welfare guarantee. However, in many practical
scenarios, the platform may not have access to the exact
values of {r;} but can only evaluate the resulting welfare
metric using certain aggregated statistics. This presents a
challenge as it may not be analytically feasible to pinpoint
the optimal M as suggested by Theorem 2. In these cases,
we can formulate the following bi-level optimization:
max

ylmax - W(s™(M)) ®
s.t,  8*(M) = argmax P(s; M) )

In problem (8), the inner optimization (9) is executed by cre-
ators: for any given M, we have justified that the creators’
strategies is very likely to settle at a PNE s* (M) that cor-
responds to a maximizer of P(s; M). However, the exact
solution to the inner problem is neither analytically solvable
by the platform (owing to the combinatorial nature of P)
nor observable from real-world feedback (due to creators’
potentially long feedback cycles). Therefore, we propose
to approximate its solution by simulating creators’ strategic
response sequences (See Appendix A.8, Algorithm 2), on
top of which we solve (8). Algorithm 2 is a variant of better
response dynamics, incorporating randomness and practical
considerations to more accurately emulate creator behavior,
and will be employed as a subroutine in Algorithm 1.

Another challenge of solving (8) lies in the presence of rank-
ing operations in W, which makes it non-differentiable
in s and renders first-order optimization techniques in-
effective. Consequently, we resort to coordinate update
and apply finite differences to estimate the ascending di-
rection of W with respect to each M parameterized by
f=(f,,fn) €F. Ourproposed optimization algo-
rithm for solving (8) is presented in Algorithm 1, which is
structured into L; epochs. At the beginning of each epoch,
the optimizer randomly perturbs the current M along a di-
rection within the feasible polytope and simulates creators’
responses for Lo steps using Algorithm 2. Welfare is re-
evaluated at the end of this epoch, and the perturbation on
M is adopted if it results in a welfare increase.

6. Experiments

To validate our theoretical findings and demonstrate the effi-
cacy of Algorithm 1, we simulate the strategic behavior of
content creators and compare the evolution of social welfare
under various mechanisms. These include Algorithm 1 and
several baselines from both the M? and BRCM classes.

Algorithm 1 Optimize W in BRCM
Input: Time horizon T' = L Lo, learning rate 1y, 12,
(u;i(s),S;) for each creator.
Initialization: Unit basis {e;}?_, in R, initial strategy
profile s(0 = (sﬁ”, -, s, initial parameter £(©) =
(fl(o), o, £19) € F and mechanism M[£©)].
fort=0toL; —1do
Generate i € [n] and g; € {—e;, e;} uniformly at
random. .
Update fi(Hf) as the projection of fi(t) +n1g; on F.
Simulate s(**1) = simStra(s®); Ly, 0o, {u;, Si 1,
/I Implemented by Algo. 2
it W(stD) > W (s®) then
f(t+1) _ f(t+%)'
else

FOEHD = p0),

6.1. Specification of Environments

We conduct simulations on game instances
G({Si}, {ci}, X,0,M,{r;}) constructed from syn-
thetic data and MovieLens-1m dataset (
). Result on MovieLens is deferred to Appendix A. 9

For the synthetic data, we first generate the user popula-
tion X as follows: we fix the embedding dimension d and
randomly sample Y cluster centers, denoted as ¢y, - - - , cy,
on the unit sphere S?~!. For each center c;, we generate
users belonging to cluster-: by first independently sampling
from a Gaussian distribution Z ~ N(c;,v?1,), and then
normalize it to S71, i.e., z = &/||&||2. The sizes of the
Y user clusters are denoted by a vector z = (z1,- - , 2y ).
In this manner, we generate a population X = UY_ | X;
with size m = 23/:1 z;. The number of creators is set
to n = 10, with action sets S; = S%~!. The relevance
function o(x, s) = L(sTa + 1) is the shifted inner prod-

2
uct such that its range is exactly [0, 1]. {m ™, is set to
1

1
{ee Tam) Tod TaE) ba©) o).

We consider two types of game instances, denoted G; and
G-, distinguished by their cost functions. In G, creators
have zero cost and their initial strategies are set to the cen-
ter of the largest user group. This environment models the
situation where the social welfare is already trapped at sub-
optimal due to its unbalanced content distribution. In G,
creators have non-trivial cost functions ¢; = 0.5||s; — 5|3,
where the cost center 5, is randomly sampled on S~ . Their
initial strategies are set to the corresponding cost centers,
i.e., all creators start with strategies that minimize their
costs. This environment models a “cold start” situation for
creators: they do not have any preference nor knowledge
about the user population and gradually learn about the envi-
ronment under the platform’s incentivizing mechanism. In
our experiment, we set (d,v, Y, m) = (10,0.3,8,52) and

MIFUTD)).
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Figure 1. Social welfare curve and average user utilities per group. Error bars represent half standard deviation range (0.50), and are
generated from simulations on 10 randomly sampled game instances.

the cluster sizes z = (20,10,8,5,3,3,2,1). The 8 clus-
ters are devided into 3 groups ((20), (10, 38), (5, 3,3,2,1)),
namely group-1,2,3, corresponding to the majority, minority,
and niche groups.

6.2. Algorithm and Baseline Mechanisms

We simulate the welfare curve produced by Algorithm 1
alongside five baseline mechanisms below. BRCM,;:
This refers to the dynamic mechanism realized by opti-
mization Algorithm 1. The starting point is set to f(©)
(1,1,1,1,1,0,---,0). The parameters are set to T’
1000, L; = 200, Ly = 5,1 = 12 = 0.1. BRCM*: This
denotes the theoretically optimal mechanism within BRCM,
as indicated by Theorem 2. The corresponding parame-
ters of M are derived based on the knowledge of {r;}? ;.
BRCM;: BRCM; = M|1,3,%,%,%,0,---,0] € BRCM.
This baseline aims to assess the impact of deviation from the
theoretically optimal mechanism on the result. M3(0): This
mechanism assigns each content creator a reward equal to
the relevance score, i.e., M (0;,0_;) = o;. Itis obvious that
this mechanism belongs to the M?3 class and is therefore
denoted as M3(0). Under M?3(0), each creator’s strategy
does not affect other creators’ rewards at all, and thus every
creator will be inclined to match the largest user group as
much as their cost allows. This mechanism acts as a ref-
erence to indicate the worst possible scenario. M3 (expo.):
The mechanism based on exposure, defined in Section 4
with K = 5, 8 = 0.05. M?(enga.): The mechanism based
on engagement, defined in Section 4 with K = 5, 8 = 0.05.

6.3. Results

We record the social welfare and average group utility dis-
tribution at the end of simulations with Algorithm 2. The
results under two environments are shown in Figure 1. As
illustrated in Figure 1(a), BRCM family consistently outper-
formed M?3. As anticipated, M3(0) does little to enhance
social welfare when creators have already primarily focused
on the most populous user group. The M3(expo.) and
M3 (enga.) mechanisms demonstrate a notable improve-
ment over M?3(0) as they instigate a competitive environ-

ment for creators striving to reach the top-K positions. Nev-
ertheless, they still do not perform as effectively as BRCM;,
even though BRCM; ’s parameter deviates from the theoret-
ically optimal one. Within the BRCMs, BRCM,,,; exhibits
remarkable performance and even surpasses the theoreti-
cally optimal instance BRCM*. One possible explanation
for the empirical sub-optimality of BRCM* is the stochastic
nature of creators’ response dynamics, which prevent the
convergence to PNE associated with the maximum welfare
without sufficient optimization. This observation under-
scores the importance of Algorithm 1, as it empowers the
platform to pinpoint an empirically optimal mechanism in
more practical scenarios. As depicted in Figure 1(b), the
primary source of advantage stems from the increased util-
ity among minority and niche user groups: compared to
M3 (expo.) and M3(enga.), BRCM class results in higher
average utility for groups 2 and 3 while preserving overall
satisfaction for group-1. Similar observations can be made
for G,. However, it is worth noting that BRCM,,,; under-
performed slightly in comparison to BRCM* as shown in
Figure 1(c). Despite this, the BRCM class of mechanisms
continued to significantly surpass those in M3. Figure 1(d)
highlights that BRCM mechanisms lead to a more equi-
table distribution of average user utility across different user
groups. Nevertheless, the gap in comparison becomes less
pronounced, which is probably because creators burdened
with such costs are inherently inclined towards serving spe-
cific user groups, making them less susceptible to the influ-
ence of platform’s incentives.

7. Conclusion

Our work reveals an intrinsic limitation of the monotone re-
ward principle, widely used by contemporary online content
recommendation platforms to incentivize content creators,
in optimizing social welfare. As a rescue, we introduce
BRM, which ensures a stable outcome, guides content cre-
ators’ strategic responses towards optimizing social welfare,
and offers a parameterized subspace that allows the platform
to empirically optimize social welfare.
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A. Supplementary Material
A.1. Additional Examples of User Utility Function

For simplicity of notations we always assume o1 > --- > ¢,. As discussed in Section 3, if the platform presents the top-K
ranked content in terms of their relevance quality, user j’s utility function has the following form:

W;(s) :ZTWIW (10
k=1

where o), = o (s, x;) is the relevance score between user j and content creator ranked at the k-th position, and {rj }}_,
are user-j’s “attention” over the k-th ranked content such that r, = 0,k > K + 1.

It is worth noting that our user utility model is compatible with various matching strategies. In this regard, we provide
additional examples that incorporate a modified version of the top-K approach, taking into account considerations of
advertised content. For instance, let’s consider a scenario where K = 5 and the platform intends to promote the content
originally ranked at position 6 to position 2 with probability p € (0, 1). Consequently, the resulting utility function can be
expressed as follows:

Wj(s) = p(T‘lUl + 206 + r302 -|—’I"4U3 + 7’50’4) + (]. —p)(rlal + 2079 + 303 + 404 + 7’50’5)
=101+ [pr3 + (1 = p)ra]oz + [pra + (1 = p)rslos + [prs + (1 — p)ralos + (1 — p)rsos + praos

n
E fkak.
k=1

This example shows that user utility function under any position-based perturbation of top- K ranking can be expressed in
the form of (10), and in general the values of i, k > K can be non-zero.

A.2. Examples of M3

In this section we formally justify that the two examples given in Section 4 belong to the class of M?3.

1. When the creators’ utilities are set to the total content exposure ( s ; s ;
1. . .
, ), we have M (0;,0_;) = 1[i < K] % , with a temperature parameter 3 > 0 controlling the
j=1 J
spread of rewards.

The validity of three merit-based properties are straightforward. In terms of monotonicity, we have > - | M (0;,0_;) =1
which is a constant and thus monotone.

2. When the creators’ utilities are set to the total user engagement ( s ), we have M(o;,0_;) = [[i <
-1g, K —
K]%W(Ul, .- ,0p), where 7(oq,- -+ ,0,) = Blog (ijl exp(S 10j)).
The first two merit-based properties are obvious (Normality and Fairness). In terms of monotonicity, we have
Yo M(o;,0-;) = Blog (Zszl exp(ﬁflaj)) which is monotone in each ;. To verify negative externality, it
. log(5E exp(B"oy))

suffices to show the function SR om(B10))
log(#)

—5— is decreasing when ¢ > e, we conclude that M satisfies negative externality when n > 3.

is decreasing in o, V5. Since exp(x) is increasing in z, and function

A.3. Proof of Theorem 1

Before showing the proof, we define the following notion of local maximizer:

Definition 4. We say s = (s1,- - , S,) is a local maximizer of W (s) if for any ¢ € [n] and any s € S,
W(817"' 3 Sy ,Sn) Z W(Slv"' 3827"' 7871)'

The set of all the local maximizers of W is denoted by Loc(W).

8
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According to the definition, for any join strategy profile s € Loc(W), no creator can unilaterally change his/her strategy to
increase the value of function W. And clearly we have arg maxses W (s) € Loc(W'). Now we are ready to present the
proof of Theorem 2.

Proof. We start by showing that any TvN game instance with M € M3 possesses a unique NE at s* = (e, ,eq). It
suffices to show that:

1. For any joint strategy profile (s1, - , 8, ) in which there are k& < n creators occupy e, there exists a creator who can
receive a strict utility gain if she change her strategy to e;.

2. Ats* = (e1,- - ,eq), any player would suffer a utility loss when changing her strategy.

For the first claim, suppose there are k players in s who play e; and let ¢ be any player who does not play e;. In addition,
there are t < n — k players who play the same strategy as s;. By the definition of M3, we have

wilsitsg) = L M(L o+ L0, 0) + (n+ 1) - M(0, -+ 0,1+, )
t n—t —k k

1
1o om(l-e 11,0, ,0) + (n+1) -0

t ——— ——

t n—t
1
== a1, ,1,0,---,0). (11)

t H{_/H:t_/

If player-i changes her strategy from s; to s, = e;, the new utility would be

uz(3;7s—z):(n+1)M(1a 71a07 a0)+le(Oa)
k+1 n—k—1 J#

= 'W(17"'71703"'70)7 (12)

1 1
S ox(1,--,1,0,---,0) n+ x(1,- 1,0, ,0). (13)
t —— N — k+1 —— N —
t n—t k+1 n—k—1
And a sufficient condition for (13) to hold is
t n—t

——
k+1 =(1,---,1,0,---,0)

=2 -1 14
m=an=n +0§r1?§3z(71 t m(l,---,1,0,---,0) 14
—_—
k1 n—k—1
Denote 7y, = w(1,---,1,0,---,0). By the monotonicity of 7, we have 7, > --- > 7; = M(1,0,---,0) > 0. Therefore,
—_— —

k n—k
the RHS of (14) is a finite number. Moreover, when t < k + 1, we have

t Th+1 b Tre1 1

n,

9
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and when ¢t > k + 1, based on the negative externality principle of merit-based rewarding mechanism we have

i t n—t
k4l A ME-S100)
3 ﬁk-‘rl_M(la"'vlaOa"'ao)i .
—— ———

k+1 n—k—1

Therefore, the RHS of Eq. (14) is strictly less than 2n — 1.

For the second claim, we have

n+1._
Tn,y

* *

ui(s7;8%;) =

n

and if player-¢ changes her strategy from s} = e; to any s; = e;, j # 1, her new utility becomes

n+1_
T = ui(8758%;).

-1

ui(s);8%,) =7 <7, <

Therefore, we conclude that s* = (eq, - - , e1) is the unique NE of G.

Next we estimate the welfare loss of s* under any sequence {r;}X . First of all, note that for any s = (s, -

,8n) €

Loc(W) and any 2 < k < n, if there exists 7 # j such that s; = s; = ey, then there must be &’ € [n] such that e ¢ s,;.
In this case, W strictly increases if s; changes to ey/. Therefore, for any 2 < k < n, the number of elements in s that equal

to ey, is either 0 or 1. Let the number of elements in s that equal to e; be q. By definition,

min(K,q)
W(s)=(n+1) Z ri + (n—q)r,
i=1
K
W(s*)=(n+1) Z T
i=1

Since ¢ maximizes the RHS of (15), we have 1 < ¢ < K and (n + 1)rg41 < < (n+ 1)r,. Therefore,

maxges W(s) Milge 1oc(W) W(s)
W(s*) — Wi(s*)
_ ()Y 4 (0= gy
(n+1) Zz 17
(m+1)Y i rit(m—qn

SECES1) SR e
_ (n — K)r
_1+(n—|—1) L ori+(K—qr
S 14 (n—K)r
— (n+D)g+ (K —q)lr
1+1/q
"~ 1+ng/K noree

(15)

Since 1 < ¢ < K, we conclude that %SV;/(S) >1-— O(%) + % when n is sufficiently large. And therefore we conclude

that

W(s*) K 1
< — .
maxses W(s) - K+1 +0 (n>

10
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A.4. Additional Discussion of BRM

Another notable special case within BRCMEBRM is MM = M1, 1, -- -, 1], which coincides with the Shapley mediator
proposed in ( s ). One key feature of M SM s that for any sequence 1 > o1 > --- > 0, >0,

it holds that " | M SM(g,,0_;) = o1 < 1. This implies that the platform can avoid providing explicit incentives and
merely implement these rewards as matching probabilities. However, to do so, it must accommodate the possibility of not
matching a user with any creators, corresponding to a probability of 1 — o1. Furthermore, it does not support the top- K
ranking strategy.

As pointed out by ( , ), every finite potential game is isomorphic to a congestion game. Furthermore,
the definition of M as outlined in (6) can be interpreted as the utility that creator 7 acquires from the following congestion
game:

1. The set of congestible elements are given by the continuum E = X x [0, 1], where each element (x,t) = e € E
corresponds to a user « with satisfaction level ¢.

2. The n players are n content creators.

3. Each creator’s pure action s; € S; can be mapped to a subset of F in the following way: the action s; determines the
relevance score o(s;, ) over each x € X, and then s; is mapped to a subset {(z, )|z € X,t € [0,0(s;,x)]} = S; C
E.

4. For each element e and a vector of strategies (51, - - - , Sp,), the load of element e is defined as z. = #{i : e € S;}, i.e.,
the number of players who occupy e.

5. For each element e, there is a payoff function de : N — R that only depends on the load of e.

6. For any joint strategy (S1,- -, Spn), the utility of player i is given by > g de(ze), i-€., the sum of reward he/she
collects from all occupied elements. For each occupied element e, the reward is determined by its “congestion” level z.,
which is characterized by the payoff function d.

To better understand the constructed congestion game and the utility definition given in (6), we can consider each element in
E (i.e., a user with a particular satisfaction level) as an atomic “resource”. Each production strategy adopted by an individual
creator can be thought of as occupying a subset of these resources. Given a fixed strategy profile, the load of e = («, t) is
determined by the number of creators who achieve a relevance score exceeding ¢ for user x, thereby linking the ranking of
each creator in the relevance score sequence for . Consequently, we can reformulate the utility for a creator who is ranked
in the ¢-th position for user x as

> de(we) = Y di(ze)

ecS; te[0,0(s;,x))

=2, 2, i)

k=ite[o(Sk41,2),0(sk,x)]

n

> > d (k) (16)

i t€[o(Sk41,2),0(SK,x)]

n ok

= fr(t)dt.

k=i
k=i 7/ Okt1

(16) holds because for any resource e = (x,t) such that ¢ € [0(Sg+1, ), 0(sk, x)], the load of e is exactly given by k.
As a result, by letting f5(t) = di(k), we recover the utility function defined in (6), where the value of function f;(¢) at
t = t( indicates the atomic reward for each creator if his/her strategy covers “resource” (x, ty), given that there are exactly 4
creators occupy (&, to). This relationship also rationalizes why it is natural to assume that f; > --- > f,,: as an increase in
competition for the same resource from multiple creators should correspondingly reduce the return that can be accrued from
that resource.

11
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A.5. Proof of Proposition 1

Proof. To prove that any M € BRM is merit-based, we need to verify the following by definition:

1. M(0,0_:) = [ fu(t)dt =0, M(1, {0, - = [} fi(t)dt > 0.
2. M(0s,0.4) = M(0j,05) = Y4 f;kil fr(t)dt > 0.

3. for any {0;}}_;,{0}}"_, such that o_; < o’ ;, we can transform {o;}7_, to {0} }7_, by taking finite steps of the
following operations: 1 increase a certain value of 0;,j # i to d; and it does not change the order of the current
sequence; 2. increase a certain value of 0, j # i to G, and 0;’s ranking position decreases after this change. We will
show that after each operation the value of M (o;, -) under the perturbed sequence does not increase.

Let the perturbed sequence be &. For the first type of operation, if j < 4, we have M (0;,6_;) = M (0;,0-;). If j > 4,
we have

Mlow-) =Moo = [ v [7 o [T patae- [ g

J J Tj+1

- [0 g0 <o.

J

For the second type of operation, with out loss of generality let’s assume o0;11 has increased to ;41 such that
0; < 041 < 0;_1. In this case we have

o Oit1
M(04,5-1) — M(os0_) / fadt— [ fitydt - / fraa (1)t
Oit2 Oig1 o

i+2

-/ " i £t <.

it+1

Therefore, M is merit-based. On the other hand, there exist instances in BRM that are not monotone. For example, if we let
f1(t) = 1and f(t) = 0,Vk > 2. Then we have

1
M(1,0,0,--- ,0) = / fut)dt >0,
0

0 1
M(1,1,0,---,0) :/ fl(t)dt+/ fa(t)dt =
0 0

As aresult, 7(1,0,0,---,0) > 0=x(1,1,0,---,0), which violates monotonicity. O

A.6. Proof of Theorem 2

Proof. For the first claim, consider the potential function of the following form:

=33 [ fuo-Yat

j=11i=1

91, ()J

where 0 j = o (s;,x;) and 0y, (1),5 > T1;(2),5 = 2 O1(n) 5

By the definition of potential games, we need to verify that for any set of functions { f; ;} and a strategy pair s;, s; € S; for
player-¢, it holds that
wi(sh,8_;) —ui(s;,8_;) = P(s},8_;) — P(s;,8_;). (17

For any user j € [m], let 0; j = o(si, ), 0; ; = o(s],x;),Vi € [n]. It suffices to show that

91, (1)1 zmj
M(0ij,0-15) — M(0} j,0-4;) Z/ fig(t)dt — Z/ t, (18)

12
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Since the summation of (18) over j gives (17). With out loss of generality, we omit subscript 7 in Eq. (18) and assume
o1 > >0y > > 05 >+ > 0p. After player-i changes her strategy from s; to s/, the relevance ranking increases
fromitod,ie, o0 > >0y_1 >0, >0y > >0y

Therefore, we have

LHS 0f(18):/ fegdt+ Y Fes (), (19)
i k=i/41" k-1
n o z —1
RHSof(18):Z/O frj(t)dt — / frj(t dt+/ fur i ()dt + Z / Fri (@)
= k=i'+1
/ fur i (8)dt + Z / frj(t)dt — / fir j(t)dt — Z / i ()
k=i"4+1 k=i'4+1

/ fir ;()dt + Z fk,j(t)dt

k=i/4+1v k-1
Hence, (18) holds for any 5 which completes the proof.
For the second claim, we can verify that when f; ; = r;, Vi, j,

e

Ul()]

n
Y ets
=1

Jj=11i=1
= Z ZTiUlj(i),j - Z ci(si)
j=1i=1 i=1
m n
=S Wils) = Y cilsi)
j=1 i=1
=W(s).

A.7. Proof of Corollary 1

Proof. We show that any TvN game instance G with M = M[ry,--- ,rk,0,--- ,0] € BRCM possesses a unique NE s*
which maximizes W (s). From Theorem 2 we know that under M, G is a potential game and its potential function P is
identical to its welfare function W. Therefore, any PNE of G belongs to Loc(W). Next we show that all elements in
Loc(W) yield the same value of W, thus any PNE of G maximizes social welfare .

First of all, note that for any s = (s1,--- , 8,) € Loc(W) and any 2 < k < n, if there exists ¢ # j such that s; = s; = ey,
then there must exist &’ € [n] such that e;s ¢ s;. In this case, W strictly increases if s; changes strategy to ej. Therefore,
for any 2 < k < n, the number of elements in s that equal to ey, is either 0 or 1. Let the number of elements in s that equal
to e; be g. By definition, the welfare function writes

min(K,q)

W(s)=@n+1) > ri+@n-grn. (20)

i=1

It is clear that the ¢ that maximizes (20) satisfies 1 < ¢ < K and (n + 1)rg41 <1 < (n+ 1)r,, and all such ¢ yields the
same objective value of . Therefore, we conclude that any PNE of G attains the optimal social welfare 1. O

A.8. Content Creator Response Simulator

Algorithm 2 functions as follows: at each step, a random creator 7 selects a random improvement direction g;. If creator ¢
discovers that adjusting her strategy in this direction yields a higher utility, she updates her strategy along g;; otherwise, she

13
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Algorithm 2 (simStra) Simulate content creators’ strategy evolving dynamic

Input: Time horizon 7', learning rate 7, utility function strategy set (u;(s), S;) for each player, current mechanism M [ f]
parameterized by f.
Initialization: Initial strategy profile s(0) = (sgo), e sslo)).
fort=0to7 — 1do
Generate i € [n] and g; € S¥~! uniformly at random.

if ui(s(-t) + g, s(t)) > u;(s®)) then

i —1
D o0 1 g,

1
Find sl(.tﬂ) as the projection of sE-tJr 2) in Si.

€
(D — g

Output: s(7),

retains her current strategy. This approach is designed to more closely mimic real-world scenarios where content creators
may not have full access to their utility functions, but instead have to perceive them as black boxes. While they may aim
to optimize their responses to the current incentive mechanism, identifying a new strategy that definitively increases their
utilities can be challenging. Therefore, we model their strategy evolution as a trial-and-exploration process. We should note
that the specifics of the simulator are not critical to our proposed solution: the optimizer can select any equilibrium-finding
dynamic to replace our Algorithm 2, as long as it is believed to better represent creators’ responses in reality.

A.9. Additional Experiments

o Experiments using MovieLens-1m We use deep matrix factorization ( , ) to train user and movie
embeddings predicting movie ratings from 1 to 5 and use them to construct the user population X and creators’ strategy set
{S;}. The dataset contains 6040 users and 3883 movies in total, and the embedding dimension is set to d = 32. To validate
the quality of the trained representation, we first performed a 5-fold cross-validation and obtain an averaged RMSE = 0.739
on the test sets, then train the user/item embeddings with the complete dataset.

To construct a more challenging environment for creators, we avoid using movies that are excessively popular and highly
rated or users who are overly active and give high ratings to most movies. This ensures that the strategy of “producing
popular content for the majority of active users” does not become a dominant strategy under any rewarding mechanism.
Thus, we filtered out users and movies who have more than 500 predicted ratings higher than 4. After the filtering,
we have m = |X| = 2550 and |S;| = 1783,Vi € [n]. The remaining users are used as the user population X', and
remaining movies become the action set {S;} for n = 10 creators. To normalize the relevance score to [0, 1], we set
o(s,x) = clip({s,x)/2.5—1,0,1). {r;}_, is set to {logi(Z)’ logi(f})’ logi(ﬁl)’ log;(S)’ logi((i) ,0,--+,0}. We also consider
two types of game instances, namely G; and G5, as we elaborated on in Section 6.1. Specifically, in G; creators’ initial
strategies are set to the most popular movie among all users (i.e., the movie that enjoys the highest average rating among X’)
and the cost functions are set to be zero. In G, we set creators’ cost functions to ¢; = 10||s; — 5;||3 and let creator i start at
the cost center §;. {8;}1_, are sampled at random from all the movies.

For each baseline in Section 6.2, we plot the welfare curve over T' = 500 steps using Algorithm 2 and also the average user
utility distribution at the end of simulations. The parameters of Algorithm 1 are setto Ly = 100, Ly = 5,171 = 0.5,1m2 =
0.1, f(© =(1,1,1,1,1,0,--- ,0). The results are presented in Figure 2.

The new results obtained reinforce the findings presented in Section 6. In both the G; and G- environments, the BRCM
family continues to outperform M3 overall. Specifically, BRCM,,;, BRCM;, and BRCM* consistently demonstrate strong
performance in social welfare, highlighting the robustness of BRCM across different environments. When creators initially
adopt the most popular strategy in Gy, M3(0) does not yield any improvement since no creator would change their strategy
in such a situation under M3(0). In the case of Go, the advantage of BRCM over M? diminishes slightly, which aligns with
our observations from the synthetic dataset. The main reason is that the cost function discourages creators to deviate from
their default strategies. Additionally, Figure 2(b) provides further evidence that the welfare gain achieved by BRCM arises
from enhanced utility for a wider range of users.
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Figure 2. Social welfare curve and average user utility distributions under two different environments. Error bars represent 0.2 standard
deviation range, and they are generated from 10 independent runs. Game instances are generated from MovieLens-1m dataset.
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