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ABSTRACT

Audio is a fundamental modality for analyzing speech, music, and environmental
sounds. While pretrained audio models have significantly advanced audio un-
derstanding, they remain fragile in real-world scenarios where data distributions
evolve over time. In this work, we present the first systematic benchmark for
audio continual learning (CL) with pretrained models (PTMs) and provide a com-
prehensive analysis of its unique challenges. Unlike in the vision domain where
parameter-efficient fine-tuning (PEFT) has proven effective for CL, directly ap-
plying such strategies to audio leads to poor performance. This is due to a fun-
damental property of audio backbones: they emphasize low-level spectral details
rather than structured semantics, resulting in severe upstream–downstream mis-
alignment. Through extensive empirical analysis, we identify a promising techni-
cal route based on analytic classifiers with first-session adaptation (FSA), but also
uncover two major limitations: representation saturation in coarse-grained sce-
narios and representation shifts in fine-grained scenarios. To address these chal-
lenges, we propose PACE, an innovative method that improves FSA via a regular-
ized analytic classifier and introduces multi-session adaptation through adaptive
subspace-orthogonal PEFT for better semantic alignment. Additionally, we design
spectrogram-based boundary-aware perturbations to mitigate representation over-
lap and improve stability. Experiments across six diverse audio CL benchmarks
demonstrate that PACE substantially outperforms state-of-the-art baselines, repre-
senting a significant step toward robust and scalable audio CL with PTMs.

1 INTRODUCTION

Audio is central to human communication and environmental perception, supporting numerous ap-
plications such as speech recognition (Abdel-Hamid et al., 2014), acoustic event detection (Zhuang
et al., 2010), and sound scene understanding (Nakamura et al., 2000). With the rise of large-scale
supervised (Gong et al., 2021) and self-supervised pretraining (Gong et al., 2022; Chen et al., 2024;
2022; Li et al., 2024), pretrained audio models have achieved remarkable success across a wide
range of downstream tasks. However, in real-world scenarios where audio distributions evolve con-
tinuously, these models often struggle to effectively adapt without incurring catastrophic forgetting,
exposing a key limitation for audio-related applications.
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Figure 1: Audio CL (a) on SC2 suffers from clearly
much stronger representation shifts between adjacent
sessions than vision CL (b) on ImageNet-R.

Continual learning (CL) aims to address
this limitation by enabling models to learn
new tasks while retaining old knowl-
edge. While recent progress in the vi-
sion domain has demonstrated the effec-
tiveness of parameter-efficient fine-tuning
(PEFT) for CL with pretrained models
(PTMs) (Wang et al., 2022b;a), their ex-
tension to audio remains largely under-
explored and highly non-trivial.1 Pre-
trained vision models generally encode
stable and well-structured semantic repre-
sentations (Janson et al.), leading to rela-
tively mild representation shifts across ad-

1Due to the page limit, we present a comprehensive summary of related work in Sec. C.
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jacent sessions (see Fig. 1(b)). In contrast, audio recognition depends heavily on fine-grained spec-
tral cues (Wang et al.; Wu et al.), whereas CL requires progressively adapting high-level semantic
objectives to acquire discriminative representations. Pretrained audio models (Chen et al., 2024;
Gong et al., 2022; Alex et al., 2025), typically trained via spectrogram reconstruction objectives,
prioritize low-level time-frequency patterns over structured semantics (Tabassum et al., 2024; Bao
et al.; Epstein & Meir, 2019). Despite the learning objective, the upstream–downstream mismatch
can be further enlarged by discrepancies between the pretraining and downstream data distributions,
reflected in Fig. 10. These mismatches force the backbone to continually reshape its internal rep-
resentations across sessions, inducing substantial representation shifts that often surpass the subtle
spectral differences between classes, leading to severe catastrophic forgetting (see Fig. 1(a)).

To systematically investigate whether and how pretraining-based CL methods can be effectively
applied to audio, we construct a comprehensive benchmark and uncover three key findings: First,
we find that representative vision-domain CL methods, particularly those relying on task-shared
representations, exhibit significant performance degradation when transferred to audio. We identify
a simple but effective technical route, which integrates first-session adaptation (FSA), backbone
freezing, and second-order analytic classification (McDonnell et al., 2023; Zhuang et al., 2022).
Second, although this approach achieves strong performance on coarse-grained benchmarks with
relatively small domain gaps, it exhibits representation saturation when learning the first task (Li
et al., 2020), which hinders subsequent adaptation. Third, this approach becomes less effective
when applied to the more demanding fine-grained scenarios (e.g., musical instrument and speaker
classification) that involve substantial upstream-downstream mismatch. As a result, a pronounced
performance gap remains compared to the joint training upper bound.

To close this gap, we propose PACE (Pretrained Audio Continual lEarning), a novel method de-
signed to fully harness pretrained audio models while overcoming upstream-downstream mismatch
in both coarse- and fine-grained CL scenarios. Unlike vision CL where freezing the pretrained
backbone often suffices (Zhang et al., 2023; 2024), PACE selectively adapts the later backbone lay-
ers with an audio-specific PEFT strategy tailored for FSA, enabling more effective representation
learning, particularly on coarse tasks. To extend adaptability across sessions in fine-grained scenar-
ios, PACE further introduces (1) multi-session adaptation (MSA), which incorporates an adaptive
subspace-orthogonal PEFT strategy to enable progressive adaptation while constraining the drift of
previously learned features, thereby achieving a principled balance between stability and plasticity;
and (2) a boundary-aware perturbation mechanism, which applies targeted time–frequency trans-
formations to approximate historical decision boundaries, enhancing intra-class compactness and
inter-class separability in the learned representation space.

We conduct extensive experiments across three coarse-grained benchmarks (ESC-50, US8K, SC2)
and three fine-grained benchmarks (TIMIT-2, TIMIT-3, VocalSet). PACE consistently outperforms
state-of-the-art CL methods, with notable gains of at least +5.3% on TIMIT-2, +4.1% on TIMIT-
3, and +6.3% on VocalSet. Moreover, it significantly reduces the gap to the joint training upper
bound, achieving performance within 0.8% on ESC-50, 0.6% on US8K, 3.5% on SC2, 4.3% on
TIMIT-2, 1.2% on TIMIT-3, and 7.6% on VocalSet. To facilitate future research, we will release all
constructed benchmarks and reproduced baselines along with our codebase.

2 BENCHMARKING AUDIO CONTINUAL LEARNING

To systematically investigate audio CL with PTMs, we first introduce the problem formulation and
then present comprehensive benchmark results that reveal the unique challenges of this setting.

Pretrained CL. CL with PTMs assumes access to a pretrained backbone f0 parameterized by θ0
obtained from a source domain, which is incrementally adapted to a sequence of T tasks T1, · · · , TT
without retraining from scratch. Each task Tt = (Dt,Yt) updates the model from θt−1 to θt using
Dt, and evaluation is performed over the accumulated label space

⋃t
i=1 Yi.

Pretrained Audio CL. In audio CL, each input xn,t ∈ Xt is a raw audio signal, and each label
yn,t ∈ Yt belongs to a task-specific category, where Yi ∩Yj = ∅ for i ̸= j. The objective is to learn
from sequential datasets D1, · · · ,DT while preserving performance on all previous classes. Unlike
vision CL, pretrained audio models face additional challenges in this setting due to a fundamental
mismatch between pretraining objectives and downstream task granularity.
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Figure 2: Comparison of vision CL and audio CL. (a) and (b) present performance patterns on audio
and image datasets in both coarse- and fine-grained settings. (c) shows that, despite strong first-task
plasticity with PEFT-FT, large representation shifts lead to severe forgetting.

In our empirical evaluation, we adopt EAT (Chen et al., 2024), a general-purpose audio self-
supervised model pretrained on large-scale audio and speech datasets (Gemmeke et al., 2017), as the
default f0. We construct six representative audio CL benchmarks. The first three, ESC-50 (Piczak,
2015), UrbanSound8K (Salamon et al., 2014), and Speech Commands V2 (SC2) (Warden, 2018),
represent coarse-grained tasks such as environmental sound classification and keyword spotting.
These tasks are relatively well aligned with the EAT pretraining objective (Li & Angelov, 2024),
leading to a comparably smaller upstream–downstream mismatch. To explore more challenging sce-
narios involving severe distribution changes, we further introduce three fine-grained benchmarks:
TIMIT-2&3 (Garofolo et al., 1993) for speaker identification, and VocalSet (Wilkins et al., 2018)
for musical instrument recognition. These tasks demand structured semantic understanding that is
notably misaligned with EAT’s pretraining, thus posing greater challenges for CL. Detailed dataset
description and task configurations are provided in Sec. 4.1 and Sec. D.

From the benchmarking results, we identify three key empirical findings:

Finding 1: Vision CL methods degrade on audio tasks. As shown in Figs. 2(a) and 2(b), directly
transferring CL methods from vision to audio yields different performance patterns. In particular,
PEFT-based CL methods such as L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b), and
S-Prompt++ (Wang et al., 2022a) exhibit significantly worse performance in the audio domain, with
degradation nearly three times larger than in vision. These methods rely on shared representations
for prompt-key matching or task-incremental adaptation, which appear less effective when handling
the fine-grained spectral structures of audio. In contrast, statistics-based methods use a once-tuned
backbone with an analytic classifier built on second-order statistics, exemplified by RanPAC (Mc-
Donnell et al., 2023) and ACL (Zhuang et al., 2022), and consistently deliver stronger, more stable
results compared to PEFT-based methods in audio CL. We attribute this performance gap to the pro-
nounced representation shifts in the audio domain (see Figs. 1(a) and 1(b)), which manifest in rapid
and substantial forgetting once a new session is learned (see Fig. 2(c)). While RanPAC sacrifices
model plasticity for continual updates, it mitigates the more severe audio representation shifts,
making this trade-off more suitable for audio CL. These observations motivate us to adopt an an-
alytic classifier with second-order statistics upon a frozen backbone as the foundational technical
route for pretrained audio CL.
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Figure 3: Analysis of representation tuning in CL. (a) and (b) show RanPAC’s first-session, future-
session, and average performance across FSA epochs relative to joint training. (c) shows the gains
from simply freezing shallow layers. (d) is the t-SNE visualization of VocalSet after FSA.

Finding 2: Representation saturation on coarse-grained datasets. As shown in Figs. 3(a)
and 3(b), RanPAC achieves high first-session accuracy on coarse datasets even without FSA, sug-
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gesting a relatively small domain gap between pretraining and downstream tasks in these scenarios.
Although FSA further improves first-session accuracy, it fails to meaningfully improve future-task
accuracy, even with extended training, leaving a noticeable gap to the joint training upper bound.
This indicates that the pretrained backbone already captures most of the relevant information in the
first session, limiting its ability to extract additional discriminative features to benefit subsequent
tasks, a phenomenon we refer to as representation saturation. Furthermore, Fig. 3(c) shows that
freezing shallow layers during FSA improves performance, while full-layer tuning often degrades
it, even falling below the no-FSA baseline. This highlights the risk of blindly fine-tuning all layers,
which can erode generalizable low-level representations obtained from pretraining.

Method TIMIT-2 VocalSet

w/o FSA 75.87 61.51
Naive FSA 89.92 62.85
Extended FSA 83.25 61.18
Joint Training 95.22 76.65

Table 1: Preliminary results on fine-
grained benchmarks.

Finding 3: Larger performance gap on fine-grained
benchmarks. When applied to fine-grained scenarios, the
identified technical route (FSA and analytic classification)
quickly degrades, exposing substantial limitations caused by
upstream–downstream mismatch. As shown in Fig. 3(d),
while FSA improves clustering of first-session classes, it fails
to produce coherent distributions for future-session classes.
Moreover, Table 1 shows that extended training on the first
session can worsen performance on subsequent tasks, sug-
gesting a strong tendency toward overfitting. This effect is
especially pronounced in datasets with high semantic complexity. For instance, on VocalSet, the
performance gap relative to joint training reaches 13.8%, compared to only 3% and 1% on ESC-50
and UrbanSound8K, respectively. These results suggest that first-session data alone is insufficient to
bridge the semantic gap between pretraining and downstream objectives in fine-grained audio tasks.
Together, these findings highlight the need for progressively aligning pretrained representations with
downstream tasks over multiple sessions, while avoiding overfitting in early-stage adaptation.

3 OUR PACE METHOD: PRETRAINED AUDIO CONTINUAL LEARNING

3.1 NOTATIONS AND DESIGN OVERVIEW

Notations. Let f(·) denote a pretrained backbone with L layers and g(·) a classification head. Given
an input audio signal, we first compute its time-frequency map x ∈ RTx×Fx (e.g., via STFT followed
by Mel filtering), where Tx and Fx are the numbers of frames and Mel bins, respectively. The
backbone produces a representation z = f(x) ∈ RD, where D is the feature dimension. z is then
passed through the head to predict class probabilities ŷ = g(z) in Y .

Reviewer ViWM
W1

Design Overview. Motivated by the empirical findings in Section 2, we introduce PACE (Fig. 4), a
unified, stage-wise framework for realigning pretrained audio representations with continual learn-
ing (CL) objectives. We decompose the problem into two components: the pretrained backbone
and the output head, and design targeted strategies for each.

Improved First-Session Adaptation (FSA). Empirical evidence from Finding 1 and the
embedding-space analysis in Fig. 1 shows that naive backbone adaptation causes severe cross-
session representation shift. This motivates adopting an analytic classifier as the default technical
route. As shown in Finding 2, pretrained audio models already encode strong coarse-grained se-
mantics, making them prone to first-session saturation. Naively fine-tuning the output head distorts
these representations, limiting forward learning. To address this, we propose improved first-session
adaptation (FSA) that freezes the output head and adapts only deeper layers using LoRA modules
{Al

1B
l
1 | Ltune < l ≤ L}. Once adapted, the parametric head h1(·) is replaced with an analytic

classifier ϕ1(·) to preserve pretrained semantics while avoiding unnecessary parameterization.

Multi-Session Adaptation (MSA) with Subspace Projection. Although FSA performs well
on coarse-grained tasks, it is insufficient for fine-grained scenarios where a stronger up-
stream–downstream mismatch exists. Thus, we introduce multi-session adaptation (MSA),
which progressively aligns representations using multiple sessions’ distributions. However, as re-
vealed by Findings 1 & 3, naive MSA exacerbates the representation shift, resulting in catastrophic
forgetting. To ensure replay-free solution, we allow adaptation only when needed and constrain it
via subspace-orthogonal MSA. In sessions 2 ≤ t ≤ T3, gradients are projected onto an interference-
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Figure 4: The proposed PACE framework. Stage 1 performs first-session adaptation with LoRA,
followed by analytic inference. Stage 2 introduces subspace-orthogonal PEFT via LoRA subtraction
and gradient projection. Boundary-aware regularization involves adaptation in the first two stages.
Stage 3 freezes the backbone for stable adaptation. : frozen; : tuning; −→: adaptation path.

free subspace U l
t (via LoRA subtraction (Liu & Chang, 2025)), enabling controlled updates without

distorting earlier knowledge. Inference remains analytic via ϕt(·).
Boundary-Aware Regularization. One remaining challenge highlighted by Finding 3 is the over-
lapping class boundaries. As representations stabilize, new classes may be forced into suboptimal,
overlapping regions. This degrades both adaptation and generalization. To mitigate this, we intro-
duce boundary-aware regularization. For each sample xi,t, we generate perturbed variants x̃i,t

that approximate class-boundary regions Bt. During training, xi,t is pulled toward its class prototype
µ(xt) and pushed away from Bt, increasing inter-class margins and promoting compact, separable
representations. This reduces boundary collisions and improves stability during MSA.

Each component of PACE is detailed in the following sections, including the improved FSA
(Sec. 3.2), and the subspace-orthogonal MSA (Sec. 3.3) with boundary-aware regularization.

3.2 IMPROVED FIRST-SESSION ADAPTATION (FSA)

Empirical analysis shows that in coarse-grained audio CL, pretrained models already provide strong
semantic priors. However, naively fine-tuning the full model during the first session tends to disrupt
these well-aligned representations, leading to early saturation. This indicates that the first session
should emphasize targeted refinement, not full backbone adaptation. To this end, our improved
FSA incorporates three key ideas: (1) restricting updates to the output head so that gradients flow
primarily into the backbone; (2) adapting only deeper, semantic-relevant layers; and (3) replacing
the trainable head with an analytic classifier after adaptation to ensure stability in later sessions.
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Figure 5: CKA (Kornblith et al.,
2019) visualization shows repre-
sentation changes of the first ses-
sion classes across layers in CL.

Restricted Head Learning. Existing FSA methods jointly train
a linear output head with an essentially frozen backbone, which
often causes the output head to overfit while leaving the back-
bone insufficiently adapted for meaningful refinement. To ad-
dress this, we introduce two modifications: (1) enforcing im-
balanced optimization by setting the head’s learning rate ηhead
significantly lower than that of the backbone ηbb; and (2) adopt-
ing a staged strategy that first trains the head for Ehead epochs
with the backbone frozen, followed by backbone fine-tuning for
E0 epochs with the head fixed (Ehead ≪ E0). This asymmetric
training scheme compels the backbone to absorb most gradient
signals, progressively enhancing representation quality with lim-
ited data and achieving performance close to the upper bound. It
is worth noting that our strategy is opposite to those of LAE (Gao
et al., 2023) and SLCA (Zhang et al., 2023), where backbone up-
dates are suppressed to mitigate forgetting. This contrast high-
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lights the unique characteristics of audio backbones, where selectively encouraging backbone adap-
tation is critical for effective transfer without incurring catastrophic forgetting.

Later Layer LoRA. The empirical analysis in Fig. 3(c) suggests that the first-session performance
may improve when adaptation is restricted to deeper layers, i.e., freezing early layers while tuning
later ones. This aligns with the hierarchical structure of audio models: shallow layers tend to encode
domain-general time–frequency and acoustic patterns (Niizumi et al., 2021; Cramer et al., 2019),
whereas deeper layers capture higher-level semantic abstractions that are more task-specific (Liu
et al., 2020a; Baevski et al., 2020). Further supported by the centered kernel alignment (CKA)
visualization in Fig. 5, which shows that the model tends to stay relatively stable in the early layers,
we freeze encoder layers 1 through Ltune − 1 and only adapt layers l ≥ Ltune. The boundary layer
Ltune is determined via representation shift analysis during full fine-tuning: we select the shallowest
layer whose CKA deviation from the pretrained model exceeds a threshold ρlayer. Implementation
details are provided in Algorithm 1 and elaborated in Sec. B.

Combining the above strategies, we apply LoRA to the tunable layers l ∈ [Ltune, L], where L denotes
the total layer number. For each such layer, the adapted weight is given by:

W l
1 = W l

0 +Al
1B

l
1, for Ltune ≤ l ≤ L, (1)

where W l
0 ∈ Rd×d is the pretrained weight, and Al

1 ∈ Rd×r, Bl
1 ∈ Rr×d are trainable low-rank

matrices with rank r ≪ d. This design allows us to efficiently refine task-relevant semantic features
while preserving general audio representations, yielding robust FSA without full model tuning.

Analytic Classifier. To maximally leverage the stabilization of prior representations and prevent
accumulated biases from a trainable head ht(·), we adopt an exemplar-free recursive analytic clas-
sifier (McDonnell et al., 2023) for final predictions. Given a random projector Wproj ∈ RD×Dproj

to enhance feature discriminability (Tran et al., 2025), we can obtain the projected feature ma-
trix Ẑt = WprojZt = [ẑi,t, · · · , ẑNt,t]

⊤ ∈ RNt×Dproj and corresponding one-hot label matrix
Yt ∈ RNt×|Yt|, the autocorrelation matrix Rt is initialized with a regularization term γ > 0, i.e.,
Rt = (Ẑ⊤

t Ẑt + γI)−1. This is then recursively updated using the Woodbury identity:

Rt = Rt−1 −Rt−1Ẑ
⊤
t (I + ẐtRt−1Ẑ

⊤
t )−1ẐtRt−1. (2)

Classifier weights Ŵt are then updated via a closed-form rule:

Ŵt = Ŵt−1 −RtẐ
⊤
t ẐtŴt−1 +RtẐ

⊤
t Yt. (3)

In inference, a new feature zi,t is classified by: ŷi,t = ϕt(Wprojzi,t) = ẑi,tŴt. This design al-
lows continual, exemplar-free updates to decision boundaries while preserving alignment with the
stabilized representation space, ensuring robust and non-destructive learning.

3.3 ADAPTIVE MULTI-SESSION SUBSPACE-ORTHOGONAL PEFT

FSA (Zhuang et al., 2022; McDonnell et al., 2023) mitigates catastrophic representation shifts in
the audio domain by refining pretrained representations during the first task. While this is often
sufficient for coarse-grained datasets with minimal domain gap, it severely constrains backbone
plasticity, limiting its applicability in fine-grained scenarios. In such settings, bridging the semantic
mismatch between pretraining and downstream tasks requires learning new representations beyond
those established in the first session. To address this challenge, we propose Adaptive Multi-Session
Subspace-Orthogonal PEFT that enables adequate adaptation across multiple sessions while avoid-
ing destructive interference with previously acquired representations. Our key idea is to leverage
data from multiple tasks to reshape the representation space, aligning it with downstream semantics
under large domain gaps, while simultaneously preserving the geometry of the previous representa-
tion space to maintain compatibility with the analytic classifier. Once further backbone adaptation
offers diminishing returns, we freeze the backbone for long-term stability, entering Stage 3 (t > T3).

Multi-Session Adaptation (MSA). We extend FSA to the multi-session setting by introducing
session-specific LoRA (Hu et al., 2021), allowing each session to adapt the backbone while re-
taining the parameters from previous ones. Specifically, for each session t ∈ (1, T3], we augment
the base weights W0 with new low-rank updates AtBt, forming the session-specific parameters
Wt = W0 +

∑t−1
τ=0 BτAτ + BtAt, where {Aτ , Bτ}t−1

τ=0 are frozen to prevent retroactive inter-
ference. However, updates may still misalign with earlier representations, leading to catastrophic
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forgetting on decision boundaries. To counter this, we aim to ensure that the backbone update gupdate
does not significantly alter the representations of past tasks. Formally, for any old sample xi,τ ∈ Xτ

with τ < t, the representation change should satisfy

∆ft(xi,τ ) = −ηbb g
⊤
updatexi,τ ≈ 0, (4)

where ηbb is the backbone learning rate. To achieve this, we constrain gupdate to lie in the null space
of the subspace spanned by previous representations. Specifically, let goriginal denote the gradient
computed from the cross-entropy loss Lce between the current model predictions gt(ft(Xt)) and
their labels Yt. We then define the projected update as

gupdate = PUt
goriginal = PUt

∇θLce(gt(ft(Xt)),Yt), (5)

where PUt = UtU
⊤
t , and Ut is an orthonormal basis spanning the null subspace Ut of all previ-

ously acquired representations. This projection ensures that adaptation updates minimally affect old
samples, thereby preventing distortion of learned representations and maintaining stability in CL.

To compute the null space Ut, a naive way would require storing all historical features from
X1, . . . ,Xt−1 (Wang et al., 2021; 2024b), resulting in extensive storage overheads. Inspired by
LoRA Subtraction (Liu & Chang, 2025; Ilharco et al., 2023), we instead construct an unlearned
model by subtracting all previous LoRA parameters W unlearn

t = W0 −
∑t−1

τ=0 AτBτ .

For computational efficiency, we then compute the uncentered covariance matrix of the current ses-
sion’s features by Xucov

t = f unlearn
t (Xt)

⊤f unlearn
t (Xt) ∈ RD×D, which shares the same principal

subspace with f unlearn
t (Xt)

⊤ ∈ RNt×D where f unlearn
t (·) denotes the frozen feature extractor using

W unlearn
t , and D is the feature dimension. Through performing singular value decomposition (SVD)

on Xucov
t , we obtain its eigendecomposition: Xucov

t = U l
tΛ

l
t(U

l
t)

⊤, and define the layer-wise pro-
jection operator as PUl

t
= U

l,(1:m)
t (U

l,(1:m)
t )⊤, where

m = argmax
m

∑m
i=1 λi∑D
i=1 λi

> ρsvd, λi : i-th max diagonal entry of Λl
t. (6)

Despite orthogonal projection, continual adaptation can still accumulate shifts that subtly degrade
early-session compatibility, especially when class sizes are small. We empirically find that control-
ling the cumulative number of seen samples offers a good stability–plasticity trade-off. Specifically,
we define the threshold as T3 = argmaxT3

∑T3

i=0 Nt > Nstop, where Nstop is a threshold controlling
the stability–plasticity trade-off. Once the backbone stabilizes, we transition to Stage 3 by freezing
the backbone to preserve learned knowledge and update only the analytic classifier thereafter.

Boundary-Aware Regularization. While MSA preserves representations of previous sessions, it
may reduce the plasticity needed for learning new sessions (Liu & Chang, 2025), especially when
new- and old-class representations become entangled. This entanglement can cause updated decision
boundaries to confuse past representations. To enhance separation, we introduce a boundary-aware
regularization that encourages intra-class compactness and inter-class margin enlargement.

Specifically, for each input xi,t at session t, we generate perturbed samples x̃k
i,t = Q(xi,t, rT , rF )

using time-frequency masking (Park et al., 2019), where Q randomly masks time and frequency
dimensions with ratios rT ≤ RT and rF ≤ RF , producing Np perturbations per input. To detect
boundary-prone samples, we examine whether these perturbations are consistently misclassified by
a temporary model θtemp, which frozen the backbone from the previous model θt−1 with only the
classification head adjusted to session t. We include such samples in the boundary set Bt:

Bt =
{
f̄t−1(xi,t)

∣∣ 1

Np

Np∑
k=1

1
[
ŷθtemp(x̃

k
i,t) ̸= yi,t

]
> ρp

}
. (7)

where 1(·) is the indicator function, and ρp is the misclassification threshold.

To regularize representations, we define the following loss for each clean input and its perturbations:

Lreg(i) = max

(
0, δ +

1

|Si|
∑
u∈Si

∥∥f̄t(u)− µ̄(xc)
∥∥2
2
− min

b∈Bt

∥∥f̄t(xi,t)− b
∥∥2
2

)
, (8)

where Si = {xi,t, x̃
1
i,t, . . . , x̃

Np

i,t } and µ̄(xc) is the centroid of class c. This pulls features toward
their class center and pushes them away from nearby boundary points, mitigating future confusion.

7
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4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

We adopt EAT (Chen et al., 2024), a general-purpose self-supervised audio backbone pretrained
on AudioSet-2M (∼ 5000 hours) (Gemmeke et al., 2017), as the default implementation. EAT
is a spectrogram-based masked prediction model following a ViT architecture with 12 Trans-
former (Vaswani et al., 2017) blocks. We benchmark performance across 3 coarse-grained and 3
fine-grained datasets, spanning environmental sounds, speech, and music. All datasets are randomly
split into an 8:2 ratio for training and testing. Additional details are provided in Sec. D.

Coarse-grained Audio CL Benchmark. ESC-50 (Piczak, 2015) consists of 2000 samples from 50
classes (5 seconds each), covering numerous environmental sounds such as barking, rain, doorbell,
and sawing. UrbanSound8K (US8K) (Salamon et al., 2014) contains 8732 samples from 10 urban
sound classes (up to 4 seconds each), representing typical city sounds such as air conditioner and
car horn. Speech Command v2 (SC2) (Warden, 2018) includes 105k one-second recordings from
35 speech classes for keyword recognition. For CL, ESC-50 is split into 10 sessions with 5 classes
each, US8K into 5 sessions with 2 classes each, and SC2 into 7 sessions with 5 classes each. These
datasets are either domain-matched with the pretrained model or well-adapted in the first session.

Fine-grained Audio CL Benchmark. TIMIT (Garofolo et al., 1993) is a classic speech corpus
with 630 speakers from 8 U.S. dialects, each reading 10 phonetically rich sentences, totaling about
6300 utterances. We reformulate TIMIT as a continual speaker identification benchmark with 2 set-
tings: TIMIT-2 (315 tasks with 2 speakers each) and TIMIT-3 (210 tasks with 3 speakers each).
VocalSet (Wilkins et al., 2018) is a curated dataset for singing technique recognition and singer
identification. It contains about 3560 clips (≈10 hours) from 20 singers, covering 16 vocal tech-
niques such as vibrato and belt. To balance the dataset, we randomly sample 79 clips per technique
(64 for training and 15 for testing), and further split them into 8 sessions with 2 classes each.

Baseline Methods. We adopt the EAT (Chen et al., 2024) backbone, pretrained on AudioSet-
2M (Gemmeke et al., 2017) with ∼5,000 hours of audio. EAT follows the ViT design with 12
Transformer (Vaswani et al., 2017) blocks. To validate the effect of pretrained audio CL models, we
consider state-of-the-art (SoTA) baselines developed for vision domain, including (1) PEFT-based
methods such as L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b), S-Prompt++ (Wang
et al., 2022a), LoRASub (Liu & Chang, 2025), and HiDe-PET (Wang et al., 2023; 2025), and (2)
statistics-based methods, such as Nearest-Prototype Classification (NPC) (Rebuffi et al., 2017b),
RanPAC (McDonnell et al., 2023) and ACL (Zhuang et al., 2022).

4.2 EXPERIMENTAL RESULTS

Overall Performance. We evaluate PACE against SoTA methods across six audio CL benchmarks,
using the self-supervised pretrained audio model EAT (Chen et al., 2024). In Table 2, PACE consis-
tently outperforms all baselines, achieving the best performance across both coarse and fine bench-
marks. We also conduct additional benchmarks on non-human audio and cross-domain evaluation,
and further validate the effectiveness of PACE with another self-supervised pretrained audio model
SSLAM (Alex et al., 2025), as shown in Sec. E.3 and Sec. E.5, respectively.

On coarse-grained benchmarks (ESC-50, US8K, SC2), joint training with LoRA yields strong
results by fully leveraging task-specific supervision, highlighting the potential backbone plasticity
under non-continual conditions. However, prompt-based methods such as L2P, DualPrompt, and
S-Prompt++ perform poorly in CL due to their reliance on shared prompt keys, which are highly
vulnerable to forgetting. Their hybrid use of task-shared and task-specific components often induces
representation shifts, sometimes performing worse than naive PEFT. HiDe-PET partially addresses
classifier forgetting via feature replay, but its effectiveness is limited as the stored features them-
selves suffer continual representation shifts. LoRASub mitigates drift to some extent but still inher-
its continual classifier degradation and requires parameter expansion over long task sequences (e.g.,
TIMIT). In contrast, statistics-based methods such as RanPAC and ACL freeze the backbone and
rely on FSA with analytic classifier, offering more robust performance by avoiding drift. Nonethe-
less, they encounter a ceiling due to representation saturation, particularly in early adaptation. PACE
overcomes this limitation via layer-aware tuning and adaptive subspace-orthogonal regularization,
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Table 2: A sample of average top-1 accuracy (%) of different methods on six audio CL benchmarks.

Method
Coarse-Grained Fine-Grained

ESC-50 US8K SC2 TIMIT-2 TIMIT-3 VocalSet

Naive Methods

EAT (LoRA) + Joint Training 96.50 98.07 95.91 95.22 95.22 76.65
EAT (Frozen) + Linear probe 40.50 49.99 32.84 2.30 4.92 13.82
EAT (Prompt) + Linear Probe (Lester et al., 2021) 58.75 44.98 41.54 1.67 1.43 22.04
EAT (Adapter) + Linear Probe (Houlsby et al., 2019) 59.25 38.76 55.33 6.22 14.12 16.45
EAT (LoRA) + Linear Probe (Hu et al., 2021) 64.00 49.68 30.56 0.00 2.62 15.79

PEFT-Based CL Methods

L2P (Wang et al., 2022c) 39.50 38.75 14.70 1.50 2.53 20.39
DualPrompt (Wang et al., 2022b) 57.00 42.40 21.92 5.87 10.00 12.50
S-Prompt++ (Wang et al., 2022a) 55.00 42.57 27.23 6.43 8.25 17.76
HiDe-Prompt (Wang et al., 2023) 83.75 79.89 40.10 47.78 49.60 48.36
HiDe-LoRA (Wang et al., 2025) 88.75 76.48 33.66 47.30 49.60 46.05
HiDe-Adapter (Wang et al., 2025) 82.75 78.03 33.71 7.14 12.22 49.67
LoRASub (Liu & Chang, 2025) 57.50 57.81 34.24 0.00 0.00 24.01

Statistics-Based CL Methods

Nearest Class Mean (NCM) (Rebuffi et al., 2017b) 33.25 36.09 9.30 6.90 6.83 32.89
Nearest Class Mean (NCM) w/ FSA 49.00 42.44 57.60 23.97 34.68 34.53
ACL (High-Order) (Zhuang et al., 2022) 90.00 95.98 80.29 75.56 75.56 62.50
RanPAC (High-Order) w/o FSA 92.50 96.49 81.22 75.87 75.87 61.51
RanPAC (High-Order) (McDonnell et al., 2023) 92.25 97.08 90.53 85.63 89.92 62.82

PACE (Ours) 95.75 97.49 91.87 90.95 94.05 69.08

Table 3: Ablation results of our improved FSA
on coarse-grained datasets.

Method ESC-50 US8K SC2

w/o FSA 92.50 96.49 81.22
Naive FSA 92.25− 0.27% 97.08+ 0.61% 90.53+11.46%

Low Learning Rate 93.75+ 1.35% 97.35+ 0.89% 90.95+11.98%

Learning & Freeze 94.50+ 2.16% 97.38+ 0.92% 91.30+12.41%

Our FSA 95.75+ 3.51% 97.49+ 1.04% 91.87+13.11%

Table 4: Ablation results of our key components
on fine-grained datasets.

Method TIMIT-2 TIMIT-3 VocalSet

Ours 90.95 94.05 69.08
Ours w/o FSA 75.87−16.57% 75.87−19.35% 61.51−10.97%

Ours w/o MSA 85.63− 5.86% 89.92− 4.40% 62.82− 9.06%

Ours w/o Lreg 89.21− 1.91% 93.73− 0.34% 66.78− 3.33%

Ours w/o GP 88.01− 3.23% 89.05− 5.31% 58.55−15.26%

enhancing representation plasticity while maintaining stability. As a result, it consistently narrows
the gap to the joint training upper bound (e.g., 0.75% on ESC-50, 0.58% on US8K).

On fine-grained benchmarks (TIMIT-2&3, VocalSet), we observe significantly lower performance
of all baselines, including joint training, highlighting the inherent domain gap in these tasks. TIMIT
in particular suffers from instability due to the large number of classes (up to 630). Prompt-based
methods consistently fail in these settings. Statistics-based methods, while more stable, leave a
substantial gap relative to joint training. In contrast, PACE substantially narrows this gap, as FSA-
based statistical methods alone are insufficient to effectively align representations with downstream
domains. By augmenting FSA with MSA, while simultaneously mitigating representation forget-
ting, combined with audio-specific PEFT and tailored perturbation loss, PACE achieves more dis-
criminative and stable representations. Consequently, it demonstrates stronger alignment between
pretraining and downstream tasks in fine-grained scenarios, where the performance gap from joint
training is much smaller (4.27% and 1.17% on TIMIT-2 and TIMIT-3, 7.57% on VocalSet).

Reviewer 4KNg
W1

Ablation Studies. Since coarse-grained tasks are well handled by FSA alone, but fine-grained tasks
require further adaptation via MSA, we evaluate FSA design choices on coarse datasets (Table 3)
and ablate all core components on fine-grained datasets (Table 4).

Table 3 demonstrates that our improved FSA (see Sec. 3.2) outperforms the naive FSA by combin-
ing two key design choices: restricted head learning (via a low learning rate and early freezing of
the classification head) and controlled adaptation of later transformer layers. To further examine the
sensitivity of the layer-freezing threshold, we select ρlayer = 0.94 through grid search on fine-grained
datasets. This threshold determines which layers remain frozen during adaptation (see Fig. 6(a)). As
shown in Fig. 6(b), freezing exactly these layers yields the best performance, confirming the impor-
tance and effectiveness of later-layer adaptation. In addition to FSA, Table 4 shows that the full
PACE model arises from the complementary contributions of its core components, including MSA
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Figure 6: Sensitivity of the frozen-layer number
(Ltune) within our FSA strategy.
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Figure 7: Sensitivity of the adaptation-session
number (L3) within our MSA strategy.
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Figure 8: t-SNE visualization compar-
ing different perturbation effects.
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Figure 9: Heatmap visualization of the accuracy across ses-
sions: (a) Ours, (b) Ours w/o MSA, and (c) Ours w/o GP.

(see Sec. 3.3), gradient projection, and boundary-aware regularization (Lreg). Each component pro-
vides a distinct benefit, and removing any of them leads to a clear performance drop on fine-grained
tasks. We additionally examine the sensitivity of the number of adaptation sessions in our MSA
strategy. In Fig. 7, performance remains stable across a broad range of adaptation-session settings,
demonstrating that PACE is robust to this hyperparameter and that our early-stopping mechanism
effectively identifies an appropriate adaptation horizon, as further detailed in Sec. E.1. We also
examine the remaining hyperparameter sensitivities in Sec. E.6.

Reviewer ViWM
W3

Reviewer FS1X
Q3

Reviewer 4KNg
Q

Visualizations. To aid in the better understanding of our method, we provide additional visual anal-
yses. In Fig. 8, we compare perturbation effects using t-SNE: additive noise (see Fig. 8(a)) sig-
nificantly distorts the data manifold, whereas time–frequency masking (see Fig. 8(b)) preserves
local neighborhood structure and class consistency, making it suitable for boundary-aware regular-
ization. Fig. 9 visualizes accuracy across sessions, highlighting the stabilizing effect of MSA and
GP. Without GP (see Fig. 9(c)), the model suffers severe catastrophic forgetting; for example, after
completing Session 8, the accuracy on Session 1 classes drops from its initial 100% to 7.9%, indi-
cating substantial representation drift and boundary collapse. In contrast, full PACE (see Fig. 9(a))
maintains high accuracy throughout, demonstrating that GP and boundary-aware regularization ef-
fectively constrain cross-session interference and preserve earlier knowledge.

5 CONCLUSION

While PTMs with PEFT have enabled substantial progress in vision CL, their direct application
to audio faces fundamental challenges due to severe upstream–downstream mismatch. Through
systematic benchmarking, we uncover unique obstacles in audio CL, such as representation satura-
tion in early adaptation and representation shift in fine-grained scenarios. To address these issues,
we propose PACE, a unified framework that combines selective first-session adaptation, adaptive
subspace-orthogonal PEFT, and boundary-aware perturbations to enhance representation alignment
and maintain an appropriate plasticity–stability trade-off. PACE achieves state-of-the-art perfor-
mance across six diverse audio CL benchmarks. Although it requires slightly more adaptation time
than RanPAC, the overall training cost remains substantially lower than prior PEFT-based base-
lines, demonstrating its effectiveness in both coarse- and fine-grained scenarios. Beyond technical
contributions, our work offers a foundation for robust continual adaptation of pretrained audio mod-
els, with broad relevance to real-world applications in speech recognition, audio captioning, smart
homes, environmental sound understanding, and so on.
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B PSEUDOCODE OF IMPROVED FIRST SESSION ADAPTATION

Algorithm 1: Improved First Session Adaptation
Require: Pretrained backbone f0, E0, Ehead, CKA threshold ρlayer, learning rates ηbb > ηhead

1: Stage A (detect layer boundary):
2: θpre

1 ← θ0
3: for epoch = 1, · · · , E0 do
4: θpre

1 ← θpre
1 − ηbb∇θLce(hce(f

pre
1 (X1)),Y1) {PEFT on all layers}

5: end for
6: for k = 1, · · · , L do
7: sk ← CKA(f pre

1 (X1)
k, f0(X1)

k)
8: end for
9: k⋆ ← argmaxk[ s

k < ρlayer ]
10: Stage B (head warm-up, ηhead):
11: for epoch = 1, · · · , Ehead do
12: h1 ← h1 − ηhead∇hLce(h1(f0(X1)),Y1)
13: end for
14: Stage C (backbone adaptation, ηbb):
15: Freeze hce, θ0; θ1 ← θ0 + θLoRA

1
16: for epoch = 1, · · · , E0 do
17: θ1 ← θ1 − ηbb∇θLce(h1(f1(X1)),Y1) {only layers k⋆+1(Ltune):L in fθ1 trainable}
18: end for
19: Stage D (analytic phase):
20: Freeze θ1; Discard h1; Initialize statistics on ϕ(·) = f1(·); Continue with Sec. 3.3.

Algorithm 1 outlines the improved first-session adaptation procedure, designed to establish effective
yet stable representation transfer in FSA for audio CL. Stage A performs a lightweight PEFT update
across all layers to probe sensitivity, after which CKA is used to measure the similarity between f pre

1
and the pretrained backbone f0 at each layer. The boundary layer Ltune = k⋆ + 1 is identified as the
point where representation similarity tend to drop below the threshold ρlayer, indicating where proper
adaptation should begin. Stage B then train a restricted classifier head h1 with a smaller learning rate
ηhead and training epoch Ehead. Stage C adapts only the deeper layers beyond k⋆ with LoRA-style
updates and a larger learning rate ηbb, while freezing shallow layers and the head to preserve pretrain
knowledge and enhance backbone adaption. Finally, Stage D freezes the adapted backbone, discards
the temporary head, and initializes statistics for the analytic phase (see Sec. 3.3).

C RELATED WORKS

Continual learning (CL) enables models to learn continuously while mitigating catastrophic forget-
ting of previously learned knowledge (Wang et al., 2024a). Most research in CL has focused on the
vision domain, with representative regularization-based (Kirkpatrick et al., 2017; Zenke et al., 2017),
replay-based (Rolnick et al., 2019; Liu et al., 2020b), and architecture-based approaches (Douillard
et al., 2022; Kanakis et al., 2020). More recently, CL with pretrained models (PTMs) has attracted
growing attention, as PTMs provide strong general-purpose initialization (Zhou et al., 2024a) and
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obviate the need for training from scratch. This paradigm typically leverages parameter-efficient
fine-tuning (PEFT) (Rebuffi et al., 2017a; Li & Liang, 2021; Hu et al., 2021) strategies by intro-
ducing lightweight modules on top of frozen backbones (Wang et al., 2022c;b; Tran et al., 2025; Le
et al., 2024; Gao et al., 2023; Zhao et al., 2024), or combines them with regularization principles (Liu
& Chang, 2025; Liang & Li, 2024; Zhou et al., 2024b). In the vision domain, PTMs encode rel-
atively stable and semantically well-structured representations (Janson et al.), leading to only mild
representational shift across learning sessions (see Fig. 1(b)), which makes PEFT-based CL highly
effective. However, the effectiveness of this paradigm in the audio domain remains underexplored
and calls for systematic investigation.

Audio recognition covers tasks such as speech recognition (Abdel-Hamid et al., 2014; Bai et al.,
2024), acoustic event detection (Yuan et al., 2025; Li et al., 2025), and music understanding (Li et al.,
2024), where recent PTMs (Gong et al., 2022; Chen et al., 2024; Alex et al., 2025; Liu et al., 2025;
Chang et al., 2025) achieve strong results. Yet these advances usually assume offline training with
full data access, overlooking the evolving, non-stationary distributions of real-world settings (Bhatt
et al., 2024). Emerging studies on audio CL (Mulimani & Mesaros, 2025; Cappellazzo et al., 2024;
Singh et al., 2024; Mo et al., 2023; Pian et al., 2023) often borrow from vision or use simplified
settings, without tackling audio’s unique challenges. Unlike images, audio depends on fine-grained
spectral cues, making representations highly sensitive to distribution shifts and prone to catastrophic
forgetting (see Fig. 1(a)). This calls for audio-specific CL strategies compatible with pretrained
backbones and aligned with the spectral nature of audio.

D ADDITIONAL EXPERIMENTAL DETAILS

All experiments are conducted on an NVIDIA A800 GPU. The input size is 512× 128. Each audio
clip is truncated to the first 5.12 seconds, with a batch size of 24. We set ηbb = 0.05, ηhead = 0.01
for all tasks, and the number of training epochs is selected via grid search. For each task, we
report the average accuracy over all tasks, i.e., Acc = 1

T

∑T
t=1 Acct, as the primary measure of

CL performance. For hypermarameters, we set Ehead = 1, ρlayer = 0.94 for improved First-Session
Adaption, ρsvd = 0.99, Nstop = 220 for Multi-Session Adaption, Np = 20, ρp = 0.3, δ = 0.25
for Boundary-Aware Perturbation and Dproj = 8192 for our Analytic Classifier. We also provide
detailed statistics of the datasets along with their corresponding training epochs E0 in Table 5.

Table 5: Statistics of datasets used in our experiments.

Dataset Epoch Classes Session Total
Train Samples

Total
Test Samples

ESC-50 (Piczak, 2015) 10 50 10 1600 400
US8K (Salamon et al., 2014) 15 10 5 8000 2000
SC2 (Warden, 2018) 1 35 7 84651 21178
TIMIT-2 (Garofolo et al., 1993) 30 630 315 5040 1260
TIMIT-3 (Garofolo et al., 1993) 30 630 210 5040 1260
VocalSet (Wilkins et al., 2018) 6 16 8 1216 304

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 STOP SESSION FOR MSA

As we set Nstop to estimate the truncation point, we obtain a specific cutoff for each task, as shown
in Table 6. To further assess the effectiveness of this task-level stopping mechanism, we conduct
ablations on neighboring sessions around the chosen T3 = t∗ (i.e., t∗ − 1, t∗ − 2, t∗ + 1, t∗ + 2).
We observe that t∗ yields locally optimal results on most datasets (US8K, SC2, TIMIT-3, VocalSet),
substantially outperforming both w/o FSA and vanilla FSA, while maintaining more stable perfor-
mance across longer session sequences in realistic CL settings (TIMIT-2/3). Although t∗ is not
always the global optimum on ESC-50 and TIMIT-2, applying MSA in a naive manner does not
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Dataset Chosen t∗ w/o FSA FSA t∗ − 2 t∗ − 1 t∗ t∗ + 1 t∗ + 2

ESC-50 2 92.50 92.25 N/A 92.25 91.75 91.75 92.00
US8K 1 96.49 97.08 N/A N/A 97.08 95.15 81.44
SC2 1 81.22 90.53 N/A N/A 90.53 89.46 81.14
TIMIT-2 14 75.87 85.63 88.49 88.73 89.21 90.40 90.23
TIMIT-3 10 75.87 89.92 92.78 93.73 93.73 93.41 93.41
VocalSet 2 61.51 62.82 N/A 61.51 66.78 64.80 62.83

Table 6: Results of different datasets under FSA and MSA (w/o Lreg w/o Improved FSA) with
different adaptation sessions.

lead to significant degradation compared to the optimal, thus validating the necessity of our stop-
ping strategy. Additionally, it is worth noting that we generally observe a decline in performance
as the number of sessions for adaptation grows, which becomes more pronounced when the ses-
sions are relatively small. We attribute this to the backbone having already sufficiently adapted to
the downstream domain, such that the marginal gains from additional adaptation are outweighed by
cumulative representation drifts that induce forgetting on earlier tasks, underscoring the importance
of a stopping criterion.

Reviewer gWXH
W1

E.2 LEARNING VS. FORGETTING

To clarify how stability and plasticity interact during continual updates, we evaluate multi-session
adaptation (MSA) with and without gradient projection (GP) on the VocalSet benchmark. We report
five key indicators: (1) Forgetting over sessions t ≤ T3, (2) Plasticity measured by the average max-
imum accuracy, (3) Average Accuracy before T3, (4) Average Accuracy after T3, and (5) Backward
Transfer (BWT). Results are shown in Table 7.

Table 7: Comparison of MSA with and without gradient projection on VocalSet.

Setting Forgetting Plasticity Ave Acc (t ≤ T3) Ave Acc (t > T3) BWT
FSA 27.63 92.10 64.48 60.52 −10.90
MSA w/o GP 57.90 92.10 34.21 66.67 −9.02
MSA (w/ GP) 23.69 88.16 64.47 70.62 −7.14

The results indicate that gradient projection greatly reduces forgetting while maintaining plasticity.
Although both MSA variants reach comparable maximum accuracy, removing GP causes significant
representation drift, resulting in high forgetting and degraded BWT. In contrast, GP-stabilized MSA
maintains stable early-session performance and achieves higher accuracy in later sessions, demon-
strating that projection effectively constrains destructive feature shifts while preserving adaptability.

Reviewer gWXH
W2 & W4

E.3 ADDITIONAL BENCHMARKS ON NON-HUMAN AUDIO AND CROSS-DOMAIN
EVALUATION

To more comprehensively assess CL performance under diverse audio conditions, two additional
benchmarks are introduced: (1) a fine-grained non-human audio dataset and (2) a cross-domain
sound–speech dataset. These benchmarks target scenarios characterized by substantial intra-class
variation and distributional mismatch, which are central to the challenges addressed in this work.

GTZAN: Fine-Grained Non-Human Audio. Many instrument-related datasets (e.g., GTMUSIC
(Sturm, 2012)) exhibit coarse semantic granularity. Preliminary analyses show that a non-music
pretrained backbone, such as EAT, combined with a single-session adaptation step, can reach up to
99.8% accuracy, indicating minimal distribution complexity and limited suitability for CL evalua-
tion. In contrast, the GTZAN dataset (Sturm, 2013) contains 10 musical genres with richer intra-
class diversity, offering a more realistic fine-grained distribution shift that better reflects the evolving
semantic structure in non-human audio CL.
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ESC–Speech: Cross-Domain Sound–Speech Benchmark. To evaluate robustness under hetero-
geneous domain compositions, a synthetic cross-domain dataset named ESC–Speech is constructed
by combining ESC-50 (environmental sounds) and SpeechCommands V2 (spoken words). This
mixture introduces a substantial domain mismatch between non-verbal acoustic events and human
speech, forming a challenging scenario for pretrained audio models.

Experimental Protocol. Both benchmarks are evaluated under CL settings tailored to their charac-
teristics: GTZAN uses a 5-session split with 20 samples per class to capture its fine-grained musical
variability, whereas ESC–Speech adopts a 10-session split with 50 samples per class to reflect its
cross-domain (sound–speech) shifts. The results are presented in Table 8.

Table 8: CL results on more diverse benchmarks.

Dataset Attribute L2P HiDe-Prompt RanPAC PACE
GTZAN Non-human Voice (Instrument) 10.00 51.00 73.00 78.00
ESC–Speech Cross-domain (ESC + SC2) 21.50 52.58 57.00 72.17

Observations. Across both benchmarks, PACE achieves the highest performance, demonstrating
strong resilience to both intra-class variation (GTZAN) and cross-domain distribution shift (ESC–
Speech). The musical-domain evaluation further reveals a substantial representational shift in pre-
trained audio models, which intensifies the difficulty of continual adaptation. Methods originally
designed for vision-based CL (e.g., L2P) show limited effectiveness in such settings. In contrast, the
multi-session adaptation strategy in PACE enables progressive alignment of the evolving semantic
space, producing consistent improvements under both intra- and inter-domain distribution changes.
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E.4 COMPUTATIONAL COST AND TRAINING OVERHEAD

The computational overhead of PACE arises primarily from the early-stage backbone updates, which
are required to obtain a semantically aligned representation. After the first few adaptation sessions,
the method transitions to an analytic classifier together with lightweight subspace-orthogonal up-
dates, resulting in highly efficient training for all subsequent sessions.

On coarse-grained benchmarks, improved FSA provides sufficient alignment, and no additional
backbone updates are needed. In these settings, PACE achieves near joint-training performance
with essentially the same computational cost as standard fine-tuning.

On fine-grained benchmarks, PACE introduces moderate overhead relative to RanPAC, but remains
substantially more efficient than prompt-based approaches such as HiDe-Prompt, which repeatedly
optimize prompts or low-rank adapters across all sessions. The results are reported in Table 9.

Table 9: Training time and training time ratios on fine-grained datasets. Training time is calculated
on a single GPU and ratios are computed relative to RanPAC.

Dataset Training Time (sec/sample) PACE / RanPAC HiDe-Prompt / RanPAC
VocalSet 0.22 1.22 5.44
TIMIT-3 0.12 2.96 146.98
TIMIT-2 0.31 3.13 124.19

These results show that PACE delivers significant gains in accuracy while introducing only modest
computational overhead. In contrast, HiDe-Prompt incurs 5×–40× higher cost despite yielding in-
ferior performance. Although our method requires more training time than RanPAC on fine-grained
datasets, it still reaches an average speed of about 0.2 sec/sample on single GPU, which is highly
efficient in practice. Overall, PACE provides a favorable efficiency–effectiveness trade-off, particu-
larly in fine-grained continual learning scenarios.
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E.5 ADDITIONAL PRETRAINED BACKBONES

To evaluate the generality of PACE beyond a single pretrained checkpoint, we further benchmarked
the framework using SSLAM (Alex et al., 2025), a recent source-aware pretrained audio model
trained on polyphonic mixtures and sharing the same ViT backbone as EAT (Chen et al., 2024).
Experiments were conducted on two coarse-grained and two fine-grained datasets, and PACE was
compared against L2P, HiDe-Prompt, and RanPAC. Results are reported in Table 10.
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Table 10: CL performance with the SSLAM backbone on coarse- and fine-grained datasets.

Dataset Granularity Backbone L2P HiDe-Prompt RanPAC PACE

ESC-50 Coarse SSLAM 40.50 82.00 95.75 96.25
SC2 Coarse SSLAM 15.24 37.85 88.59 90.39

VocalSet Fine SSLAM 17.76 47.22 63.83 68.42
TIMIT-2 Fine SSLAM 0.32 46.24 90.08 93.81

The results demonstrate that PACE consistently outperforms all baselines across both pretrained
backbones and granularity levels. This indicates that the challenges identified in pretrained audio
models, such as representation saturation and semantic misalignment, are not specific to EAT, but
also arise in more recent models like SSLAM. Moreover, the strong performance across all settings
highlights the robustness and general applicability of PACE as a CL framework for audio.
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E.6 HYPERPARAMETER SELECTION AND SENSITIVITY ANALYSIS

This work introduces several continuous variables in the design of PACE. To make these selection
procedures explicit, we provide a comprehensive sensitivity analysis.

SVD threshold ρsvd. Following prior PEFT-based CL studies (Liu & Chang, 2025; Wang et al.,
2021), we directly adopt the same SVD energy threshold. Across all datasets, varying ρsvd within
the range [0.90, 0.99] yields nearly identical results, confirming that this hyperparameter mainly
affects numerical rank selection and has minimal influence on the learning dynamics.

Stopping threshold Nstop and freezing threshold ρlayer. These two hyperparameters govern MSA
and were jointly tuned on the fine-grained VocalSet and TIMIT-3 datasets. Using only FSA, we
searched values in {0.90, 0.92, 0.94, 0.96, 0.98, 1.00} and selected the value that best balanced adap-
tation and stability. With ρlayer fixed, we tuned Nstop using MSA without regularization. As indicated
in Figs. 7(a) and 7(b), model performance plateaus between 200 and 250 gradient steps. Although
Nstop = 250 slightly exceeds the optimal T3 on VocalSet, it still improves over FSA by approxi-
mately 2%, suggesting that the method is resilient to small deviations.

Validation of ρlayer. As shown in Fig. 6, the selected value ρlayer = 0.94 successfully avoids prema-
ture freezing of adaptable deeper layers while preserving stable low-level feature extraction, espe-
cially for fine-grained datasets such as TIMIT-3.

Sensitivity analysis. We additionally examine the sensitivity of all remaining continuous hyper-
parameters. To improve readability, we present only the average performance and highlight the
selected configurations. The results are reported in Tables 11 to 14.

Overall, PACE exhibits strong robustness across a wide range of hyperparameter configurations. The
selected values serve as stable defaults and require minimal tuning, underscoring the practicality of
the framework for CL across diverse audio scenarios.
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E.7 RATIONALE FOR TIME-FREQUENCY MASKING IN BOUNDARY-AWARE
REGULARIZATION

The choice of time-frequency masking is motivated by the spectral structure of audio signals and the
requirements of boundary-aware regularization. SpecAugment-style masking (Park et al., 2019) is
adopted as a label-preserving perturbation applied directly in the time-frequency domain. By selec-
tively removing narrow temporal or spectral bands, this operation introduces localized distortions
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Table 11: Sensitivity of the MSA stopping threshold Nstop across three fine-grained datasets.

Method TIMIT-2 TIMIT-3 VocalSet Avg.
FSA 85.63 89.92 62.82 79.46
MSA w/ 150 88.25 92.78 62.82 81.28
MSA w/ 175 89.05 93.24 66.78 83.02
MSA w/ 200 88.49 93.33 66.78 82.87
MSA w/ 210 89.21 93.33 66.78 83.11
MSA w/ 220 89.21 93.73 66.78 83.24
MSA w/ 230 90.39 93.73 66.78 83.63
MSA w/ 240 90.23 93.73 64.80 82.92
MSA w/ 250 90.23 93.41 64.80 82.81

Table 12: Sensitivity of the layer-freezing threshold ρlayer across datasets..

ρlayer TIMIT-3 SC2 VocalSet ESC-50 US8K Avg.
0.90 83.41 90.96 62.82 94.50 97.38 85.01
0.91 83.41 90.96 62.82 94.50 97.38 85.01
0.92 85.63 90.96 62.82 94.50 97.38 86.26
0.93 85.63 90.96 62.82 94.50 97.38 86.26
0.94 85.63 90.96 62.82 94.50 97.38 86.26
0.95 85.63 90.54 62.82 94.50 97.38 86.17
0.96 85.63 90.54 62.82 92.25 97.38 85.72
0.97 85.63 90.54 60.23 92.25 97.38 85.21
0.98 85.63 90.54 60.23 92.25 97.08 85.15
0.99 85.63 90.53 60.23 92.25 97.08 85.14
1.00 85.63 90.53 60.23 92.25 97.08 85.14
w/o 85.63 90.53 60.23 92.25 97.08 85.14

Table 13: Sensitivity of the boundary ratio ρratio on the VocalSet benchmark.

Ratio 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Acc 65.79 67.43 67.43 69.08 68.75 64.47 64.47

Table 14: Sensitivity of the augmentation strength on the VocalSet benchmark.

Strength 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Acc 65.79 66.12 64.80 63.49 69.08 68.10 65.79 64.47 61.51

to the spectrogram while preserving the global semantic identity of the signal. Such perturbations
enable controlled exploration of the neighborhood around each instance, supporting the construction
of boundary-prone samples without violating class consistency.

To assess whether the proposed regularization term Lreg affects robustness, we further evaluated
models on VocalSet with and without time-frequency masking applied at test time. The results are
summarized in Table 15. Models trained with Lreg exhibit substantially smaller performance degra-
dation under masked test inputs (1.83% vs. 6.26%), indicating that boundary-aware regularization
enhances robustness rather than compromising it.

E.8 CASE STUDY FOR COARSE-GRAINED AND FINE-GRAINED AUDIO CL

To further clarify the differences between fine- and coarse-grained datasets, we provide case studies
in Fig. 10. Using PEFT-FT on both types of datasets, we track the prediction dynamics of three cat-
egories from the first session across the following three sessions, while also reporting the maximum
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Table 15: Evaluation of robustness to time-frequency masking (TFM) on the VocalSet dataset.

Evaluation Test w/o TFM Test w/ TFM

Train w/o TFM 66.78 60.52
Train w/ TFM 69.08 67.25

inter-class distance in the pretrained model (measured in the first session) and the average feature
shift between sessions. It is evident from Fig. 10(a) that coarse-grained datasets exhibit relatively
large spectral patterns (e.g., the harmonic structure in Cat or the periodic energy bursts in Door
wood knock). Such pronounced differences yield large inter-class separations, making it easier to
capture them within the first session, which is reflected in the near joint-training performance of our
improved FSA in Table 2. Consequently, when applying naive PEFT-FT, the model can adapt with-
out substantial semantic changes in the representations, which corresponds to smaller cross-session
feature shifts compared to the inter-class distances. Notably, categories with highly distinctive struc-
tures (e.g., Door wood knock) are more resistant to forgetting under such naive adaptation.

When it comes to fine-grained scenarios, as shown in Fig. 10(b), we observe that different categories
share highly similar spectral patterns. In this setting, the model is required to discriminate among
630 speakers, where time–frequency details alone are insufficient to yield discriminative informa-
tion. Instead, the model must adjust its representations within each session, using only limited data,
to shape more discriminative deep features. This results in relatively small inter-class separations
(nearly half those of coarse-grained datasets) but necessitates larger representational changes. The
ultimate impact is catastrophic: although the model initially maintains high plasticity and achieves
good accuracy within the current session, naive PEFT-FT lacks the memory capacity to retain prior
knowledge, causing severe misclassification in subsequent sessions. This highlights the necessity of
our PACE method, which effectively leverages data across multiple sessions to continually adapt the
network while simultaneously constraining prior representations to remain stable.
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(a) Coarse-grained Dataset (ESC-50)   
[Maximum class distance: 16.01, Shifting across sessions: 4.70]

Cow

Cat

Door wood knock

✅, ✅, ❌, ❌ ✅, ❌, ❌, ❌ ✅, ✅, ❌, ❌

✅, ✅, ✅, ❌ ✅, ✅, ✅, ✅ ✅, ✅, ✅, ✅

✅, ✅, ✅, ✅ ✅, ✅, ❌, ❌ ✅, ✅, ✅, ❌

(b) Fine-grained Dataset (TIMIT) 
[Maximum class distance: 9.88, Shifting across sessions: 8.06]

Speaker: FAJW0

Speaker: FALK0

Speaker: FBJL0

✅, ❌, ❌, ❌ ✅, ❌, ❌, ❌ ✅, ❌, ❌, ❌

✅, ❌, ❌, ❌ ✅, ❌, ❌, ❌ ✅, ❌, ❌, ❌

✅, ❌, ❌, ❌ ✅, ❌, ❌, ❌ ✅, ❌, ❌, ❌

Figure 10: Case studies on a coarse-grained dataset (ESC-50) and a fine-grained dataset (TIMIT-3):
linear amplitude spectrograms of three classes from the first session, along with their performance
trajectories under naive PEFT-FT.
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