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Abstract

World model emerges as a key module in de-001
cision making, where MuZero and Dreamer002
achieve remarkable successes in complex tasks.003
Recent work leverages Large Language Models004
(LLMs) as general world simulators to simulate005
the dynamics of the world due to their generaliz-006
ability. LLMs also serve as the world model for007
deliberative reasoning in Reasoning via Plan-008
ning (RAP) and Tree of Thought (ToT). How-009
ever, the world model is either evaluated as a010
general world simulator, or as a functional mod-011
ule of the agent, i.e., predicting the transitions012
to assist the planning. In this work, we pro-013
pose a comprehensive evaluation of the world014
models with LLMs from the decision making015
perspective. Specifically, we leverage the 31016
diverse environments from (Wang et al., 2023,017
2024) and curate the rule-based policy of each018
environment for the diverse evaluation. Then,019
we design three main tasks, i.e., policy verifi-020
cation, action proposal, and policy planning,021
where the world model is used for decision022
making solely. Finally, we conduct the com-023
prehensive evaluation of the advanced LLMs,024
i.e., GPT-4o and GPT-4o-mini, on the environ-025
ments for the three main tasks under various026
settings. The key observations include: i) GPT-027
4o significantly outperforms GPT-4o-mini on028
the three main tasks, especially for the tasks029
which require the domain knowledge, e.g., sci-030
entific tasks, ii) the performance of the world031
models with LLMs depends predominantly on032
their performance in key steps, while the total033
number of steps required for task completion034
is not a reliable indicator of task difficulty, and035
iii) the combination of different functionalities036
of the world model for decision making will037
bring unstability of the performance and par-038
tially obscures the performance gap between039
the stronger and weaker models.040

1 Introduction041

The remarkable achievements of MuZero (Schrit-042

twieser et al., 2020) and Dreamer (Hafner et al.,043

2019, 2021, 2023) have established world mod- 044

els (Ha and Schmidhuber, 2018) as a fundamental 045

module in decision-making systems. World mod- 046

els serve as learned simulators that encode rich 047

representations of environment dynamics, enabling 048

agents to predict future states based on their ac- 049

tions. By learning to predict how the world evolves 050

in response to actions, these models enable several 051

key capabilities. Recent advances have expanded 052

the scope of world models beyond traditional re- 053

inforcement learning applications. Systems like 054

Genie (Bruce et al., 2024) and Vista (Gao et al., 055

2024) demonstrate how world models can serve as 056

general-purpose simulators that users can directly 057

interact with. These developments suggest a future 058

where world models might serve as foundational 059

building blocks for artificial general intelligence, 060

providing systems with interactive understanding 061

of how the world works. 062

Large Language Models (LLMs) achieve re- 063

markable success in enormous natural language 064

tasks in the past five years (Brown et al., 2020; 065

OpenAI, 2023). Several recent works leverage 066

LLMs as the general world models to provide the 067

environment knowledge for various complex tasks, 068

e.g., math and reasoning. With the fine-tuning 069

over pre-collected data from the environments, the 070

LLMs can predict the action sequences across dif- 071

ferent tasks over environments while maintaining 072

the capabilities on other domains (Xiang et al., 073

2023). LLMs also serve as the world model ex- 074

plicitly in Reasoning via Planning (RAP) (Hao 075

et al., 2023) and Reason for Future, Act for Now 076

(RAFA) (Liu et al., 2023), where the LLMs pre- 077

dict the next states based on the actions executed 078

at current states, e.g., the states of blocks in the 079

BlocksWorld (Valmeekam et al., 2023), which is 080

used to assist the planning methods. LLMs serve 081

as the world model implicitly in the widely-used 082

Tree of Thoughts (ToT) (Yao et al., 2023), as well 083

as Graph of Thoughts (GoT) (Besta et al., 2024), 084
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Figure 1: Evaluation of World Model with LLM for Decision Making.

where the LLMs need to predict the states and085

evaluate the thoughts to help the selection of the086

thoughts to advance the reasoning. Recent work087

also consider LLMs as world simulators (Wang088

et al., 2024; Xie et al., 2024), where they evaluate089

the performance of LLMs on the prediction of next090

states and the game progress, demonstrating the091

potentials of LLMs as general world models. We092

provide a comprehensive review of related works093

in Appendix B for better understanding.094

Most of the previous works evaluate the world095

models with LLMs either as general world simula-096

tors (Wang et al., 2024), or as additional modules of097

the agents to make decisions (Liu et al., 2023). The098

comprehensive evaluation of world models from a099

decision-making perspective has been largely over-100

looked. This evaluation is crucial for two main101

reasons. First, general world simulators need to102

estimate the state transition from any state s ∈ S,103

while in many environments, only a small portion104

of the state space will be visited (Svisit ≪ S) when105

computing the optimal policy. For example, Alp-106

haZero finds the super-human policy (Silver et al.,107

2018) by only exploring a small proportion (less108

than 1%) of the state space. Therefore, we argue109

that world models with LLMs should be evaluated110

in a more decision-oriented perspective, i.e., fo-111

cusing more on the states relevant to the task at112

hand (Svisit). Furthermore, the number of states113

visited by the optimal policy is even smaller (i.e.,114

Sopt ≪ Svisit). Second, the influence of the world115

models is usually coupled with the actors who116

choose the actions, i.e., if the actor cannot pick117

the correct actions, the task cannot be completed118

even when the world model is accurate. The cou-119

pling of the actors and the world models brings 120

additional difficulties to understand the world mod- 121

els, brings the obstacles for researchers to build 122

better world models for decision making. 123

Based on the above three key observations, we 124

propose a comprehensive evaluation of world mod- 125

els with LLMs for decision making. Specifically, 126

we leverage 31 diverse environments from (Wang 127

et al., 2023, 2024) with different tasks varying from 128

daily tasks, e.g., washing clothes, to scientific tasks, 129

e.g., forging keys, and curate the rule-based pol- 130

icy for each environment for the evaluation. Then, 131

we design three main tasks: i) policy verification: 132

verifying whether the policy can complete the task, 133

ii) action proposal: proposing the top-K actions 134

that can potentially complete the task, and iii) pol- 135

icy planning: finding the policy solely with the 136

combination of the different functionalities, i.e., 137

policy verification and action proposal. Finally, we 138

conduct the comprehensive evaluation of the ad- 139

vanced LLMs, i.e., GPT-4o and GPT-4o-mini, on 140

the environments for three tasks under various set- 141

tings. The key findings include: i) GPT-4o signifi- 142

cantly outperforms GPT-4o-mini on the three main 143

tasks, especially for the tasks which requires the 144

domain knowledge, e.g., scientific tasks, ii) the per- 145

formance of the world models with LLMs depends 146

predominantly on their performance in key steps, 147

while the total number of steps required for task 148

completion is not a reliable indicator of task diffi- 149

culty, and iii) the combination of different function- 150

alities of world models for decision making brings 151

unstability of the performance and partially ob- 152

scures the performance gap between stronger and 153

weaker models, e.g., GPT-4o and GPT-4o-mini. 154
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2 Preliminaries155

Markov Decision Process (MDP). A decision156

making problem is usually represented as a Markov157

decision process (MDP) (Sutton and Barto, 2018),158

which is defined by the tuple (S,A, T,R, γ), where159

S is the state space, A is the action space, T :160

S × A → S is the transition dynamics, which161

specifies the next state s′ given the current state s162

and action a, R : S×A → R is the reward function,163

which specifies the agent’s reward given the current164

state s and action a, and γ is the discount factor.165

The agent’s policy is defined by πθ : S × A →166

[0, 1], parameterized by θ, which takes the state s167

as the input and outputs the action a to be executed.168

The objective of the agent is to learn an optimal169

policy π∗ := argmaxπ Eπ

[∑∞
t=0 γ

trt|s0
]

is the170

expected return and s0 is the initial state.171

Large Language Models (LLMs). Large Lan-172

guage models (LLMs) learn from text data us-173

ing unsupervised learning. LLMs optimize the174

joint probabilities of variable-length symbol se-175

quences as the product of conditional probabil-176

ities by P (x) =
∏n

i=1 P (si|s1, ..., si−1), where177

(s1, s2, ..., sn) is the variable-length sequence of178

symbols. With the billions of parameters and ex-179

tensive training data, the vast amounts of common180

knowledge encoded in LLMs lead to the remark-181

able generalization across various NLP tasks with182

simple prompting and in-context learning, with-183

out the need for task-specific fine-tuning (Touvron184

et al., 2023; OpenAI, 2023). Given the generaliz-185

ability, LLMs present a promising foundation for186

constructing comprehensive world models.187

World Models. The world model Ω is introduced188

to predict the dynamics of the environment, thus189

supporting the decision making process. Specifi-190

cally, the world model is trained or prompted to191

predict the next state s′, the reward r, and the termi-192

nal function d, given the current state s and action193

a. The world model can be one or multiple neu-194

ral networks specially trained on the environments195

for the three prediction tasks (Hafner et al., 2019;196

Schrittwieser et al., 2020), which cannot general-197

ize across different environments. Recent work198

leverage LLMs to build the general world models,199

where the prompting (Xie et al., 2024), in-context200

learning (Wang et al., 2024), retrieval-augmented201

generation, and even fine-tuning methods (Xiang202

et al., 2023; Lin et al., 2024) are used to transform203

the LLMs to the world models.204

3 Key Motivating Observations 205

In this section, we present the key motivating ob- 206

servations for designing the three main tasks. 207

BA

True Value

B B

Case 1 Case 2

80 100
200

70

Figure 2: Picking the action with higher value. The true
value of A and B are 80 and 100, respectively, therefore,
B is the correct action. Case 1’s prediction 200 is worse
than in Case 2’s prediction 70 (compared to the true
value 80). However, in Case 1 the most valuable action
is B, which is also the case in the true value setting. This
shows that more accurate predictions (Case 2) do not
always lead to correct decisions (Case 1).

Observation 1: Prediction is important, but not 208

that important. An illustrative example is dis- 209

played in Figure 2, which indicates that more accu- 210

rate predictions do not lead to correct decisions.1 211

This phenomenon is also observed in other decision 212

making scenarios, e.g., financial trading (Sun et al., 213

2023). The success of MuZero Unplugged (Schrit- 214

twieser et al., 2021) also demonstrate that we can 215

learn good policies from inaccurate world models 216

which are trained only with limited data. This moti- 217

vates us that the evaluation of the world models for 218

decision making should focus on the predictions 219

which relevant to the desired policy, rather than 220

as general world simulators. Besides, the decision 221

making usually involves multiple steps and the er- 222

rors of the one-step predictions are accumulated 223

when the number of steps increases. Therefore, the 224

accuracy of the one-step predictions is not adequate 225

for the evaluation of the world model for decision 226

making and novel tasks should be proposed. 227

Observation 2: Selecting potential actions 228

should be an important feature for world mod- 229

els. Most of the previous works in world model 230

focus on next state and reward prediction, and the 231

action selection is usually completed by the actors, 232

i.e., the model trained for generate a single action 233

for executing. We argue that with more knowledge 234

about the world, the world model may make a better 235

selection of the potential actions. Besides, selecting 236

a set of potential actions, e.g., 10 potential actions, 237

1The issue in Figure 2 can be elicited by various methods,
e.g., rank prediction. This is just to illustrate the discrepancy
between prediction and decision, motivating us to reconsider
the evaluation of the world model for decision making.
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may significantly reduce the difficulties of the tasks238

and improve the performance when combing with239

planning. World models can also be viewed as240

game engines (Valevski et al., 2024), which have to241

provide potential actions to guide fresh players to242

complete tasks, e.g., Red Dead Redemption 2 (Tan243

et al., 2024). Therefore, action proposal should244

be considered for evaluation, which can be easily245

implemented for the world models with LLMs.246

𝑠!

𝑠" 𝑠#

𝑠$ 𝑠%

𝑎" 𝑎#

𝑎$ 𝑎%

Q: I am at 𝑠!, if I take the actions (𝑎", 𝑎#), 
can I complete the task?

WM: You are at 𝑠!, if you take 𝑎", you will 
transit to 𝑠". At 𝑠", if you take 𝑎#, you will 
reach 𝑠#, which is the target state. So you 
will complete the task. 

Figure 3: An example to show that the critic is not nec-
essary. We can query all the possible action sequences
and let the world model to determine whether the action
sequence can complete the task.

Observation 3: Planning with world models247

can find the policies solely. With the prediction248

of the next states and the action proposal, we can249

leverage planning methods or search methods to250

find the policies. It is observed that most state-of-251

the-art methods for complex decision-making tasks,252

e.g., Chess or Go, is based on the planning with an253

accurate simulator (Silver et al., 2018; Monroe and254

Chalmers, 2024) or the world model (Schrittwieser255

et al., 2020). Most works introduce the critic (i.e.,256

the value function) to evaluate the actions imme-257

diately for efficient planning (Schrittwieser et al.,258

2020; Hao et al., 2023). We note that the critic is259

not necessary for finding policies (as showed in260

Figure 3) and may also influence the performance.261

Therefore, we argue that only the planning with262

the next state prediction and the action proposal is263

necessary when incorporating the world model in264

decision making. This focused approach allows for265

better isolation and evaluation of the world models.266

4 World Models with LLMs for Decision267

Making268

In this section, we introduce the world model with269

LLM for decision making. Specifically, we will270

introduce the next state prediction, the reward and271

terminal prediction. Then, we will introduce how272

the world model will be used to complete the con-273

sidered three main tasks, i.e., policy verification,274

action proposal, and policy planning. We provide275

the relationship between the three tasks and the two276

kinds of predictions in Figure 4 for better under-277

standing of the rationale behind the three tasks.278

The world model considered in this work mainly 279

follows the design in (Wang et al., 2024), where the 280

representation of the states includes the objects in 281

the environments and their properties. The prompts 282

to the LLM, e.g., GPT-4o, also include the object 283

rules, the action rules, and the score rules, which 284

provides the necessary knowledge of the environ- 285

ments for the LLM to make accurate predictions. 286

For the next state prediction, we ask the LLM to 287

predict the state changes, i.e., the change of the 288

objects’ properties, which is demonstrated to be ef- 289

ficient for the prediction (Wang et al., 2024). With 290

the predicted state changes, we can recover the full 291

state for further predictions. For the reward/ter- 292

minal prediction, the LLM needs to predict three 293

features: i) gameScore: the reward received from 294

the environment, ii) gameOver: whether the task 295

is terminated, and iii) gameWon: whether the task 296

is successfully completed or not. For the action 297

and object rules used for the prediction, we refer 298

to (Wang et al., 2024) for more details and the 299

code to generate the prompts is also provided in 300

Appendix D.1 for completeness.2 301

Next State
Prediction

Reward/Terminal 
Prediction

Policy 
Verification

Action 
Proposal

Policy 
Planning

Task I

Task II

Task III

Figure 4: The next state prediction and reward/terminal
prediction are considered in (Wang et al., 2024). With
the two predictions, we can complete policy verifica-
tion. We introduce the action proposal of the world
model and the policy planning can be completed with
the policy verification and action proposal.

Policy Verification. Motivated by Observation 302

1, we propose policy verification, one of the most 303

straightforward task to evaluate the world models in 304

terms of the multi-step predictions. The basic idea 305

of policy verification is given an action sequence, 306

the world model need to prediction whether the 307

sequence can complete the task or not. The pro- 308

cess for the policy verification is displayed in Al- 309

gorithm 1. Specifically, given the environment env, 310

the action sequence a with length N to verify and 311

the proportion of the action sequence to verify ρ, 312

2Due to the space constraints and the extreme length of the
prompts, we cannot provide a complete example in the paper.
We will release all codes for readers to replicate our results.
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Algorithm 1 Policy Verification
1: Given the env, the action sequence a to verify

with N = len(a), ρ the proportion of a to
verify, the world model Ω

2: s0 = env()
3: for t ∈ {1, 2, ..., N − 1} do
4: if t < ρ ·N then
5: st+1, rt, dt = env(at)
6: else
7: st+1, rt, dt = Ω(st, at)
8: end if
9: end for

10: return rN , dN

we will run the game for the first ρ ·N steps (Line 5313

of Algorithm 1), and leverage the world model to314

continue the last (1− ρ)N steps (Line 7 of Algo-315

rithm 1). The returned results rN , dN will be com-316

pared with the true results from the environment to317

evaluate the performance of the world model.318

Action Proposal. The action proposal is a novel319

task for world model, based on Observation 2.320

Basically, we will ask the world model to recom-321

mend top-K actions that can potentially complete322

the task. Specifically, we follow the representa-323

tion of the state in the next state prediction, with324

the additional information: i) the examples of ac-325

tions, and ii) the previous actions. The previous326

actions can help the LLMs to understand the game327

progress. The code to LLM for the action proposal328

is displayed in Appendix D.2. One key issue for329

the action proposal is that the action generated by330

the world model may not be valid for the game at331

the current state. Therefore, given the predicted332

action a′ and the set of possible actions to be exe-333

cuted at the current state A′, we leverage the text-334

embedding model (OpenAI, 2022) to query the335

most similar actions with the cosine similarity, i.e.,336

a∗ = argmax{emb(a′, a), ∀a ∈ A′}.337

Policy Planning. The policy planning task is mo-338

tivated by Observation 3, which combines the339

policy verification and the action proposal (as dis-340

played in Figure 4). The process of policy planning341

is displayed in Algorithm 2. Specifically, we exe-342

cute the actions in the given a on the environment343

for ρN steps (Line 3 in Algorithm 2) and then plan344

for 2(1− ρ)N steps with the world model (Line 6345

in Algorithm 2), where both the action to execute346

and the state transitions are generated by the world347

model. The returned action sequence a′ will be348

Algorithm 2 Policy Planning
Given the env, the action sequence a with N =
len(a), ρ the proportion of a for planning, the
world model Ω, the planning sequence a′ = []
for t ∈ {1, 2, ..., ρ ·N} do
st+1, rt = env(at),a

′.append(at)
for t ∈ {ρ ·N, · · · , (2− ρ)N} do

at = Ω(st)
st+1, rt, dt = Ω(st, at),a

′.append(at)
if dt then break

end for
end for
return a′

evaluated in the environment to verify the correct- 349

ness. We note that only top-1 action is generated 350

in Algorithm 2 for illustration. When more actions 351

are generated, we need to enumerate all possible 352

outcomes or leverage advanced search methods, 353

which will be tackled in future work. 354

5 Environments 355

Tasks. We leverage the 31 diverse environments 356

from (Wang et al., 2023)3 with different tasks vary- 357

ing from daily tasks, e.g., washing clothes, to sci- 358

entific tasks, e.g., forging keys. This task suite is 359

more related to the real physical world, including 360

the physical objects, e.g., bulb and bathtub, and 361

the iterations with these physical objects, i.e., turn 362

on the hot tap to improve the temperature of the 363

water in the bathtub. Compared with other widely 364

used environments, such as the grid world, e.g., 365

BabyAI (Chevalier-Boisvert et al., 2019) and the 366

web environments, e.g., MiniWob++ (Shi et al., 367

2017), this task suite is more relevant to the com- 368

mon knowledge encoded in the LLMs. A full list 369

of the descriptions and the taxonomy of the envi- 370

ronments can be found in Appendix C.1. 371

Rule-based Policies. There are various random- 372

ness in the environments, including the specific 373

tasks, e.g., the target color can be “orange”, “pur- 374

ple”, “green”, “black” in the paint task. However, 375

for each task, only a single playthrough is provided 376

in (Wang et al., 2024), which is not enough for a 377

comprehensive evaluation of the world model for 378

decision making. Therefore, we curate the rule- 379

based policy for each environment and verify the 380

3We note that there are 32 environments in (Wang et al.,
2023) and the dish-washing environment is used as the exam-
ple for the world model, which is excluded for fair evaluation.
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Figure 5: The accuracy of the world model to verify the correct policies

correctness for 200 runs. The scripts for the rule-381

based policies are provided in Appendix C.2, which382

can help readers to understand the process to com-383

plete the tasks, as well as the complexities of tasks.384

We provide the statics of the number of steps to385

complete the tasks for 200 runs in Figure 8.4386

6 Evaluations387

In this section, we present the comprehensive eval-388

uation of the world model for decision making over389

the diverse 31 environments on the three tasks un-390

der various settings. We use the advanced LLMs,391

i.e., GPT-4o and GPT-4o-mini5, as the backbone392

LLM for the world model. We set the temperature393

of the LLM to be 0 to reduce the variance of the394

generation and all results are averaged over 30 runs395

due to the randomness of the environments.396

6.1 Task I: Policy Verification397

Evaluation Protocol. Given the action sequence398

a generated by the rule-based policy, we leverage399

the world model to verify the last ρ proportion of400

the policy, where ρ ∈ {0.25, 0.5, 0.75, 1.0}. We401

note that when ρ = 1.0, the world model will402

verify the full action sequence with only the ini-403

tial observation of the environment. We say the404

verification of the policy is correct if all three fea-405

tures, i.e., gameScore, gameOver, and gameWon,406

are correct. We note that only correct policies are407

4The names on the figure may differ from (Wang et al.,
2023) for plotting. Please refer to Table 1 for correspondence.

5Due to the limited budget, we do not take Claude and
Gemini into consideration.

verified, as there are enormous wrong policies for 408

an environment, which is useless for decision mak- 409

ing. Furthermore, there would also be other action 410

sequences to finish the tasks, where we cannot enu- 411

merate all policies to complete the tasks. 412

Evaluation Results. The policy verification re- 413

sults are displayed in Figure 5.6 We observe that 414

GPT-4o outperform GPT-4o-mini in most tasks and 415

especially on the tasks which requires the domain 416

knowledge, e.g., bandage, hang, and campfire. We 417

also observe that with more steps of the verified 418

policies, the performance gap between GPT-4o and 419

GPT-4o-mini is increase. With larger proportion 420

of the action sequences to verify, i.e., ρ increase, 421

the accuracy of the verification is decreased, which 422

indicates that the accumulation of the errors in the 423

world model, either on the next state prediction 424

or the reward prediction, will influence the perfor- 425

mance of the world model. This observation is 426

consistent to the fact that the LLM may not per- 427

form well in long-term decision making tasks. We 428

also observe that more steps to complete the tasks 429

do not necessarily lead to the worse performance, 430

which indicates that the domains of the tasks play 431

a more important role for the policy verification, 432

i.e., for the tasks where the LLM has enough do- 433

main knowledge, e.g., conduct, stone, weigh and 434

photo (Wang et al., 2024), the task would be easy 435

even when the number of steps is large. We also 436

provide the accuracy of the three prediction tasks 437

6Note that the result of the policy verification is either 0 or
1, so the error bar is not plotted.
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Figure 6: The accuracy of the world model to generate the potential actions

separately in Appendix E, and we found that both438

GPT-4o and GPT-4o-mini performs worse for pre-439

dicting gameScore, while performs much better440

for predicting gameOver and gameWon. This indi-441

cates that the value prediction is more difficult for442

LLMs, which is consistent the observations from443

other works. During the experiments, both models444

frequently returned empty dictionaries, suggesting445

they may fail to properly follow the instructions.446

6.2 Task II: Action Proposal447

Evaluation Protocol. The action proposal re-448

quires the world model to generate the top-K po-449

tential actions to complete the tasks, where K ∈450

{1, 2, 3, 5, 10}. Specifically, given the action se-451

quence a generated by the rule-based policies, we452

will let the world model to generate the potential453

actions with the states along with the path of a to454

complete the task. We say the action proposal is455

correct if the actions in a in the generated actions456

by the world model. The results of the accuracy are457

averaged over the steps over the action sequence458

and 30 runs of each environment. We also note that459

the action sequence a generated by the rule-based460

policy is not the only sequence to complete the461

task and we cannot enumerate all possible actions462

which can lead to the completion of the task. We463

note that the number of available actions in the en-464

vironments is usually larger than 500, which brings465

difficulties to the RL methods for training and indi-466

cate the necessity for the world model to generate 467

the potential actions to facilitate the learning. 468

Evaluation Results. The action proposal results 469

are displayed in Figure 6. Overall, GPT-4o consis- 470

tently outperforms GPT-4o-mini across different 471

tasks and different values of K. With the increase 472

of the number of steps to complete the tasks, where 473

more analysis of the previous actions is needed to 474

understand the game progress, GPT-4o maintains 475

the better accuracy, while GPT-4o-mini shows a 476

substantial drop of the accuracy. The performance 477

gap between the two models is generally increased 478

when the number of steps to complete the tasks 479

increase. When K = 10, the accuracy of the ac- 480

tion proposal for GPT-4o is very high in most tasks. 481

With approximately 800 possible actions available 482

at each time step, the results demonstrate that GPT- 483

4o effectively identifies and selects relevant actions 484

while filtering out irrelevant ones. This capability 485

shows promising potential for successful task com- 486

pletion. Furthermore, we still observe that both 487

models obtain lower values in the tasks requiring 488

the domain knowledge, i.e., blood and conduct, 489

which is consistent to the observation in (Wang 490

et al., 2024) that LLMs, e.g., GPT-4, is more likely 491

to make errors when scientific knowledge is needed. 492

We also provide the step accuracy of the action pro- 493

posal in Appendix F to illustrate the prediction 494

of the relevant actions along with the steps. We 495
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Figure 7: The success rate of the world model to complete the tasks

observe that there are some key steps that has ex-496

tremely low accuracies, which indicates that the497

critical steps significantly influences the difficul-498

ties of the tasks, rather than the number of steps to499

complete the tasks. We also observe that both GPT-500

4o and GPT-4o-mini can generate wrong actions501

even when the action rules are given, especially502

for the environments where the domain scientific503

knowledge is needed, e.g., ‘space-walk’.504

6.3 Task III: Policy Planning505

Evaluation Protocol. The policy planning is506

based on the policy verification and the action pro-507

posal, as showed in Algorithm 2. Similar to the pol-508

icy verification, we let ρ ∈ {0.25, 0.5, 0.75, 1.0} to509

vary the number of steps for the planning. We only510

consider the case with K = 1, i.e., the world model511

only generates the top-1 action with the given states.512

Finally, we evaluate the planned policy a′ in the513

environment to verify the correctness. We note514

that when K = 1, no advanced search method is515

needed, while when K > 1, we cannot enumerate516

all possible outcomes for larger steps, e.g., 10. Be-517

sides, a critic is also needed to choose among the518

outcomes for verifying in the environments. There-519

fore, we only consider the case with K = 1 and520

leave the case K > 1 into future work.521

Evaluation Results. The policy planning results522

are displayed in Figure 7, where GPT-4o and GPT-523

4o-mini achieve comparable performance for the524

tasks with less steps and smaller values of ρ, e.g.,525

0.25 and GPT-4o generally achieve better results526

in tasks with more steps. When the value of ρ in-527

creases, the performance is generally decreasing. 528

With the coupling of the policy verification and 529

action proposal, we observe more unstabilities of 530

the performances of models over tasks and settings. 531

This indicates the necessity of decoupling the func- 532

tionalities of the world model for the evaluation. 533

Similar to the model-based RL (Schrittwieser et al., 534

2020), where introducing the world model may 535

bring the training unstabilities, we need to be care- 536

fully to apply the world models with LLMs to the 537

decision making due to the inherent complexity. 538

During the experiments, we also observe the for- 539

mat errors of the outputs from both models, which 540

may interrupt the running of the experiments. The 541

frequency of these failures depends on the envi- 542

ronments, where the ‘hang-painting’, ‘space-walk’, 543

and ‘make-campfire’ are the three environments we 544

experiences most of the failures. Therefore, with 545

the interaction of the different functionalities of the 546

world model, the system is more unstable. 547

7 Conclusions 548

The evaluation of world models with LLMs for 549

decision making is unsatisfactory. This work evalu- 550

ates policy verification, action proposal, and policy 551

planning over 31 diverse environments. The key 552

findings include: i) GPT-4o significantly outper- 553

forms GPT-4o-mini on environments requiring the 554

domain knowledge, ii) key steps is more important 555

than the number of steps, and iii) the combination 556

of different functionalities brings unstabilites. We 557

hope this work can help to build better world mod- 558

els with LLMs for decision making. 559
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Limitations560

There are several limitations of this work. i) For561

the policy planning task, we only consider the case562

with K = 1, i.e., the world models only predict563

1 potential action. We will tackle the cases with564

K > 1 in future work by introducing the advanced565

searching methods, e.g., DFS. ii) The tasks consid-566

ered in this work is relatively straightforward, other567

complex tasks for utilizing world models for deci-568

sion making will considered in future work, e.g.,569

training the actor to select the actions by only in-570

teracting with the world models and planning with571

the safety constraints. Solving these complex tasks572

requires more sophisticated combinations of differ-573

ent functionalities of the world models. iii) The574

number of environments considered in this work is575

still limited and more diverse environments will be576

considered in future work, including the web envi-577

ronments (Zhou et al., 2024), the board games (Li578

et al., 2023), and the street maps of cities (Vafa579

et al., 2024). By evaluating world models with580

LLMs across these comprehensive environments581

and tasks, we believe world models will become582

fundamental in guiding decision-making processes,583

particularly in areas of generalization, safety, and584

ethical considerations. iv) We only consider the585

world models with different prompts for different586

environments. There are several methods which587

can be incorporated to improve the world models,588

including the in-context learning (Agarwal et al.,589

2024), retrieval-augmented generation (Lewis et al.,590

2020), and fine-tuning (Hu et al., 2022). We will591

include these advanced methods into the evaluate592

of the world model in the future work.593

Ethics Statement594

We confirm that we have fully complied with the595

ACL Ethics Policy in this study. All the environ-596

ments are publicly available and have been exten-597

sively used in the research.598
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A Frequently Asked Questions (FAQs)809

A.1 Why World Models and Why World Models with LLMs?810

i) Generalization to novel tasks: World models have demonstrated impressive transfer learning abili-811

ties (Byravan et al., 2020), allowing agents to adapt to previously unseen scenarios by leveraging their812

learned understanding of world dynamics. This generalization capacity is particularly valuable in robotics813

and control applications where agents must handle diverse situations (Robey et al., 2021; Young et al.,814

2023). ii) Efficient planning: The predictive capabilities of world models enable the sophisticated planning815

algorithms (Sekar et al., 2020; Hamrick et al., 2021; Schrittwieser et al., 2020). By simulating possible816

futures, agents can evaluate different action sequences and select optimal strategies without requiring817

actual interaction with the environment. This “imagination” or “mental simulation” capability dramatically818

improves sample efficiency and safety in decision-making. iii) Offline learning: World models have proven819

especially valuable in offline reinforcement learning settings (Schrittwieser et al., 2021; Yu et al., 2020,820

2021), where agents must learn from pre-collected datasets without direct environment interaction. The821

ability to learn accurate dynamics models from historical data has opened new possibilities for training822

agents in scenarios where online interaction is impractical or costly.823

A.2 More Justifications of the Proposed Tasks824

In this section, we will provide a mode detailed justification of the three tasks proposed in this work.825

Policy Verification. Policy verification can be viewed as a generalization of the next state prediction.826

Instead of focusing on the accuracy of the one-step prediction about the next states and the reward/terminal827

prediction, which is considered in most previous works, policy verification may accumulate the multi-step828

predictions and judging whether the given policy can complete the task or not. This task is more relevant829

to the world model for decision making, as if the world model can verify any given policy correctly, with830

the enough number of sampling of the policy, i.e., action sequences, we can complete the task in the end.831

Action Proposal. As observing in the ToT (Yao et al., 2023), generating useful thoughts is critical832

which can significantly improve the performance. However, with multiple thoughts generated, we have833

to select one to executed. We can test these thoughts in the environments, however, this is not always834

doable. Therefore, building a world model is the straightforward way to do this. On the other hand, action835

proposal is necessary for the world model as the game engine to guide the fresh players to complete the836

game. With increasing the number of recommend actions, the difficulty of the action proposal is decreased.837

However, this task is not considered in the previous work for the world model. We believe that this task838

should be an important task to evaluate the world model for decision making.839

Policy Planning. Policy planning is a combination of policy verification and action proposal. Conceptu-840

ally, if the world model performs well on both tasks, we can obtain the policy with world model only and841

no actor is needed. This can help us to understand the world model through decoupling the world model842

with any other modules. Besides, this planning task is consistent with the System 2 thinking, i.e., with843

more time for the planning, the world model may find better policies.844

A.3 The Objective of This Paper845

The primary objective of this paper is proposing the new evaluation tasks for the evaluation of the world846

models with LLMs for decision making.847

• Evaluating world model for decision making is difficult, given that the decision making tasks usually848

involves multiple steps of the predictions. Therefore, the one-step prediction tasks considered in849

most previous works is not suitable.850

• Instead of treating the world models as world simulators or supporting modules for the actors, we851

identify that the world model can solve the tasks solely with the combination of the policy verification852

and action proposal. Therefore, the world model should be researched with the same importance.853
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• World models have traditionally been evaluated through a top-down approach, where complex 854

systems are constructed to complete tasks, constraining analysis to high-level observations. By 855

examining fundamental capabilities like policy verification and action proposal, we propose a 856

bottom-up evaluation that enables more systematic and granular assessment of world models. 857

A.4 Selection of Backbone LLMs 858

• We need to evaluate the three novel tasks over 31 environments, and each with 30 runs, we roughly 859

use 3000 dollars for all the experiments for GPT-4o and GPT-4o-mini. Due to the limited budget, we 860

cannot afford to test on Claude and Gemini. 861

• For the open-sourced models, we test on some open-sourced models, e.g., Qwen 7B model, and find 862

that current open-sourced models still cannot generate the responses with correct formats, i.e., JSON. 863

This brings difficulties for the evaluation. 864

A.5 Comparison with Decision Transformer and Trajectory Transformer 865

Decision transformer (DT) (Chen et al., 2021) trains the transformer to predict the action conditional on 866

the experiences and the target reward or the goal. Language DT (LDT) (Gontier et al., 2023) extends 867

DT to consider the text-based games and include the state prediction in the training as an auxiliary tasks. 868

However, during the inference, i.e., decision making, the model still generates the action directly, which is 869

not based on the world model because the state prediction is only used for training and not for acting. 870

Trajectory Transformer (TT) (Janner et al., 2021) also consider the decision making problem as a 871

sequence modeling problem, where the transformer is trained to predict the state, the action and the reward. 872

Compared with DT, TT is more related to the world model, where the state and reward prediction is used 873

to generating actions and the search methods, e.g., beam search, is used. However, only the continuous 874

robot control is considered in TT (Janner et al., 2021) and the trained TT model is domain and problem 875

specific, which cannot generalize to other problems. 876

Recently, LLMs provide a promising way to build the general world model and the world model with 877

LLMs emerge as a novel research field. However, most of these work focus on the single-step prediction 878

and a comprehensive evaluate is needed. This work is inspired by TT and extends the insights from TT to 879

the world model with LLMs for text-based games. Specifically, we consider the policy verification, the 880

action proposal and the policy planning tasks, where the TT combines these tasks to generate the actions 881

and only investigate the performance for the decision. Instead of only considering the performance of the 882

decision makings, our three tasks provide a bottom-up analysis of the world model for decision making. 883

A.6 Code and Dataset Availability 884

We will release all the code and datasets upon the paper acceptance. The anonymous code can be access 885

at: https://anonymous.4open.science/r/marx_world_acl. 886
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B Related Work887

World Models in Decision Making. World models are actively explored by researchers to further888

improve the agent’s performance and the sample efficiency (Ha and Schmidhuber, 2018; Janner et al.,889

2019; Hafner et al., 2019; Schrittwieser et al., 2020). Dreamer (Hafner et al., 2019) is a practical model-890

based reinforcement learning algorithm that introduces the belief over states as a part of the input to891

the model-free DRL algorithm used. Trajectory Transformer (Janner et al., 2021) trains the transformer892

to prediction the next state and action as a sequence modeling problem for continuous robot control.893

MuZero (Schrittwieser et al., 2020) is a remarkable success of model-based RL, which learns the world894

model and conduct the planning in the latent space. MuZero achieves the superior performances over other895

model-based and model-free RL methods. The world models trained in these methods are problem-specific896

and cannot be generalized to other problems, which motivates researchers to seek to more generalizable897

world models, e.g., LLMs as world models. The world model with LLM in (Xiang et al., 2023) is trained898

to gain the environment knowledge, while maintaining other capabilities of the LLMs. Dynalang (Lin899

et al., 2024) proposes the multimodal world model, which unifies the videos and texts for the future900

prediction in decision making.901

LLMs as World Simulators. World simulators are developed to model the dynamics of the world (Bruce902

et al., 2024). LLMs serve as the world simulator due to their generalizability across tasks. Specifically,903

The LLMs (i.e., GPT-3.5 and GPT-4) is evaluated to predict the state transitions, the game progress904

and scores with the given object, action, and score rules, where these rules are demonstrated to be905

crucial to the world model predictions (Wang et al., 2024). The world models with LLMs in (Xie et al.,906

2024) need to additionally identify the valid actions. We move a step further to ask the world model907

to propose the potential actions to complete the tasks (Observation 2). Both methods mainly focus on908

the prediction of the state, which may be not suitable for the evaluation of the world model for decision909

making (Observation 1).910

World Models in LLMs. The concept of world model also be explored in the deliberation reasoning911

of LLMs. Specifically, Reasoning via Planning (RAP) (Hao et al., 2023) leverage the planning methods912

(e.g., Monte Carlo Tree Search (MCTS)) with the world model with LLMs for plan generation and math913

reasoning, where LLMs need to predict the next state and the reward to guide the search. Tree of Thought914

(ToT) (Yao et al., 2023) implicitly leverage the LLMs as the world model to predict the next state and the915

reward for the search over different thoughts. Reason for future, act for now (RAFA) (Liu et al., 2023)916

combine the planning and reflection with the world model for complex reasoning tasks. However, these917

methods do not focus on the evaluation of the world models, and several interdependent modules are918

coupled with each other for completing the task (Observation 3).919
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C Environments 920

C.1 Introduction of Tasks 921

There are 32 environment in (Wang et al., 2023) and dish-washing is selected as the example in the prompt, 922

which is excluded for fair evaluation. Specifically, the environments can be categorized into two domains: 923

• Daily-life tasks, including use-bandage, hang-painting, sunburn, sweep-floor, bath-tub-water- 924

temperature, make-campfire, refrigerate-food, cooking, take-photo, plant-tree, boil-water, and wash- 925

clothes. For these tasks, the world model need to have the common knowledge about the procedure 926

of completing these tasks, e.g.. first collecting the dirty clothes, then put them into the washing 927

machine, then use the detergent and turn on the washing machine for the wash-clothes task. 928

• Scientific tasks, including mix-paint, blood-type, thermometer, clean-energy, lit-lightbulb, scale- 929

weigh, multimeter, volume, space-walk, volume-container, conductivity, volume-stone, bird-life- 930

cycle, balance-scale-weigh, metal-detector, make-ice-cubes, forge-key and inclined-plan. These 931

tasks requires the scientific knowledge to complete the tasks, e.g., the world model need to know that 932

the friction may decrease the speed of a block sliding down of the plane for the inclined-plane. Then, 933

the world model need to generate build a micro-simulation to compare the frictions of the two planes. 934

C.2 Code for Demo Actions Generation 935

Only one playthrough of the game is provided in (Wang et al., 2024), which is not enough due to the 936

randomness in the environments. Therefore, we curate the rule-based policy for each environment. Note 937

that due to the randomness of the environments, e.g., the target color in the mix-paint task, the generated 938

action sequences are different for different instantances of the same environment. 939

Code Sample 1: mix-paint
940

def get_demo_actions(self): 941
target_color = self.useful_info [0][0] 942
paint_names = self.useful_info [1] 943

944
color_dict = { 945

# "red": (1, 0, 0), 946
"orange": ["red", "yellow"], 947
# "yellow ": (0, 1, 0), 948
"green": ["yellow", "blue"], 949
# "blue": (0, 0, 1), 950
"purple": ["red", "blue"], 951
"black": ["red", "yellow", "blue"], 952

} 953
paint_names_to_idx = {} 954
for paint_idx , paint_name in enumerate(paint_names): 955

paint_names_to_idx[paint_name] = paint_idx 956
color_mix_plan = color_dict[target_color] 957

958
demo_actions = [] 959
to_idx = -1 960
for color_idx , color_mix in enumerate(color_mix_plan): 961

if color_idx == 0: 962
to_idx = paint_names_to_idx[color_mix] 963
continue 964

demo_actions.append( 965
"pour {} paint (ID: {}) in cup {} (ID: {})".format( 966

color_mix , 967
2 * (paint_names_to_idx[color_mix] + 1) + 1, 968
to_idx , 969
2 * (to_idx + 1), 970

) 971
) 972

demo_actions.append("mix cup {} (ID: {})".format(to_idx , 2 * (to_idx + 1))) 973
974

return demo_actions 975976
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Code Sample 2: blood-type
977

def get_demo_actions(self):978
useful_info = self.useful_info [1]979

980
return [981

"give Type {} {} blood (ID: 3) to patient (ID: 2)".format(982
useful_info [0], useful_info [1]983

),984
"take Type {} {} blood (ID: 3)".format(useful_info [0], useful_info [1]),985
"give Type {} {} blood (ID: 3) to patient (ID: 2)".format(986

useful_info [0], useful_info [1]987
),988

]989990

Code Sample 3: thermometer
991

def get_demo_actions(self):992
demo_actions = [993

"take thermometer (ID: 4)",994
"use thermometer (ID: 4) on water (ID: 3)",995
"answer {} Celsius degree".format(self.water_temperature),996

]997
return demo_actions998999

Code Sample 4: clean-energy
1000

def get_demo_actions(self):1001
demo_actions = []1002
change_station = {1003

"sun": "solar farm",1004
"water": "hydroelectric power station",1005
"wind": "wind farm",1006

}1007
for region in self.regions:1008

demo_actions.append(1009
"change {} to {}".format(1010

region.name , change_station[region.properties["resource"]]1011
)1012

)1013
1014

return demo_actions10151016

Code Sample 5: lit-lightbulb
1017

def get_demo_actions(self):1018
return [1019

"connect light bulb (ID: 2) terminal1 to red wire (ID: 3) terminal1",1020
"connect red wire (ID: 3) terminal2 to battery (ID: 6) anode",1021
"connect battery (ID: 6) cathode to black wire (ID: 4) terminal1",1022
"connect black wire (ID: 4) terminal2 to light bulb (ID: 2) terminal2",1023

]10241025

Code Sample 6: scale-weigh
1026

def get_demo_actions(self):1027
demo_actions = [1028

"take {}".format(self.useful_info [0]. name),1029
"put {} on {}".format(self.useful_info [0].name , self.useful_info [1]. name1030

),1031
"look",1032
"answer {}g".format(self.target_weight),1033

]1034
1035

return demo_actions10361037

Code Sample 7: use-bandage
1038
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def get_demo_actions(self): 1039
demo_actions = [ 1040

"open bandage box (ID: 8)", 1041
"look", 1042
"take bandage (ID: 9)", 1043

] 1044
return demo_actions + [ 1045

"put bandage (ID: 9) on {} (ID: 3)".format(self.useful_info [0]) 1046
] 10471048

Code Sample 8: hang-painting
1049

def get_demo_actions(self): 1050
demo_actions = [ 1051

"take nail (ID: 7)", 1052
"take hammer (ID: 6)", 1053
"hammer nail (ID: 7) on {} with hammer (ID: 6)".format( 1054

self.target_wall.name 1055
), 1056
"take {}".format(self.target_picture.name), 1057
"hang {} on nail (ID: 7)".format(self.target_picture.name), 1058

] 1059
1060

return demo_actions 10611062

Code Sample 9: multimeter
1063

def get_demo_actions(self): 1064
demo_actions = [ 1065

"set multimeter (ID: 2) to resistance mode", 1066
"connect multimeter (ID: 2) terminal1 to resistor {} (ID: 3) terminal1". 1067

format( 1068
self.target_resistor_id 1069

), 1070
"connect multimeter (ID: 2) terminal2 to resistor {} (ID: 3) terminal2". 1071

format( 1072
self.target_resistor_id 1073

), 1074
"look", 1075
"answer {} ohm".format(self.target_resistance), 1076

] 1077
1078

return demo_actions 10791080

Code Sample 10: volume
1081

def get_demo_actions(self): 1082
demo_actions = [ 1083

"take {}".format(self.useful_info [1]. name), 1084
"measure the length of the {} with the {}".format( 1085

self.useful_info [0].name , self.useful_info [1]. name 1086
), 1087
"measure the width of the {} with the {}".format( 1088

self.useful_info [0].name , self.useful_info [1]. name 1089
), 1090
"measure the height of the {} with the {}".format( 1091

self.useful_info [0].name , self.useful_info [1]. name 1092
), 1093
"answer {} cubic cm".format(self.target_box_volume), 1094

] 1095
1096

return demo_actions 10971098

Code Sample 11: sunburn
1099

def get_demo_actions(self): 1100
return [ 1101

"use sunscreen (ID: 4)", 1102
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"move to beach (ID: 3)",1103
"look",1104
"take ball (ID: 8)",1105
"move to house (ID: 2)",1106
"put ball (ID: 8) in box (ID: 5)",1107

]11081109

Code Sample 12: space-walk
1110

def get_demo_actions(self):1111
return [1112

"put on space suit (ID: 7)",1113
"open inner door (ID: 5)",1114
"move to airlock (ID: 3)",1115
"look",1116
"close inner door (ID: 5)",1117
"open outer door (ID: 6)",1118
"move to outer space (ID: 4)",1119

]11201121

Code Sample 13: sweep-floor
1122

def get_demo_actions(self):1123
sweep_actions = []1124
for garbage in self.useful_info:1125

sweep_actions.append(1126
"sweep {} to dustpan (ID: 3) with broom (ID: 2)".format(garbage.name1127

)1128
)1129

1130
demo_actions = (1131

["take broom (ID: 2)", "take dustpan (ID: 3)"]1132
+ sweep_actions1133
+ [1134

"open garbage can (ID: 4)",1135
"dump dustpan (ID: 3) to garbage can (ID: 4)",1136

]1137
)1138

1139
return demo_actions11401141

Code Sample 14: volume-container
1142

def get_demo_actions(self):1143
demo_actions = [1144

"take {}".format(self.useful_info [0]. name),1145
"put {} in sink (ID: 2)".format(self.useful_info [0]. name),1146
"turn on sink (ID: 2)",1147
"turn off sink (ID: 2)",1148
"take {}".format(self.useful_info [0]. name),1149
"pour water in {} into {}".format(1150

self.useful_info [0].name , self.useful_info [1]. name1151
),1152
"look",1153
"answer {} mL".format(self.target_water_container_volume),1154

]1155
1156

return demo_actions11571158

Code Sample 15: bath-tub-water-temperature
1159

def get_demo_actions(self):1160
1161

water_temp = self.useful_info [0]1162
1163

cooling = [1164
"turn on cold tap (ID: 5)",1165
"turn off cold tap (ID: 5)",1166
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"use thermometer (ID: 6) on water (ID: 3)", 1167
] 1168
hotting = [ 1169

"turn on hot tap (ID: 4)", 1170
"turn off hot tap (ID: 4)", 1171
"use thermometer (ID: 6) on water (ID: 3)", 1172

] 1173
1174

if water_temp > 40: 1175
cooling_times = (water_temp - 35) // 5 1176
water_actions = cooling * cooling_times 1177

1178
elif water_temp < 35: 1179

hotting_times = (40 - water_temp) // 5 1180
water_actions = hotting * hotting_times 1181

else: 1182
water_actions = [] 1183

1184
demo_actions = ( 1185

[ 1186
"take thermometer (ID: 6)", 1187
"use thermometer (ID: 6) on water (ID: 3)", 1188

] 1189
+ water_actions 1190
+ ["bath"] 1191

) 1192
1193

return demo_actions 11941195

Code Sample 16: conductivity
1196

def get_demo_actions(self): 1197
demo_actions = [ 1198

"connect light bulb (ID: 2) terminal1 to red wire (ID: 3) terminal1", 1199
"connect red wire (ID: 3) terminal2 to battery (ID: 6) anode", 1200
"connect battery (ID: 6) cathode to black wire (ID: 4) terminal1", 1201
"connect black wire (ID: 4) terminal2 to fork (ID: 7) terminal1", 1202
"connect fork (ID: 7) terminal2 to blue wire (ID: 5) terminal1", 1203
"connect blue wire (ID: 5) terminal2 to light bulb (ID: 2) terminal2", 1204
"look", 1205
"take fork (ID: 7)", 1206

] 1207
if self.useful_info [0]: 1208

return demo_actions + ["put fork (ID: 7) in red box (ID: 8)"] 1209
1210

else: 1211
return demo_actions + ["put fork (ID: 7) in black box (ID: 9)"] 12121213

Code Sample 17: make-campfire
1214

def get_demo_actions(self): 1215
return [ 1216

"take axe (ID: 4)", 1217
"use axe (ID: 4) on tree (ID: 5)", 1218
"look", 1219
"use axe (ID: 4) on chopped down tree (ID: 5)", 1220
"look", 1221
"take firewood (ID: 5)", 1222
"put firewood (ID: 5) in fire pit (ID: 2)", 1223
"take match (ID: 3)", 1224
"use match (ID: 3) on firewood (ID: 5)", 1225

] 12261227

Code Sample 18: refrigerate-food
1228

def get_demo_actions(self): 1229
take_objects = [] 1230

1231
put_objects = [] 1232
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for food in self.useful_info:1233
take_objects.append("take {}".format(food.name))1234
put_objects.append("put {} in fridge (ID: 2)".format(food.name))1235

1236
demo_actions = (1237

take_objects1238
+ ["open fridge (ID: 2)"]1239
+ put_objects1240
+ [1241

"close fridge (ID: 2)",1242
"look",1243
"look",1244
"look",1245

]1246
)1247

1248
return demo_actions12491250

Code Sample 19: volume-stone
1251

def get_demo_actions(self):1252
demo_actions = [1253

"take measuring cup (ID: 4)",1254
"put measuring cup (ID: 4) in sink (ID: 2)",1255
"turn on sink (ID: 2)",1256
"turn off sink (ID: 2)",1257
"take measuring cup (ID: 4)",1258
"examine measuring cup (ID: 4)",1259
"take stone (ID: 3)",1260
"put stone (ID: 3) in measuring cup (ID: 4)",1261
"examine measuring cup (ID: 4)",1262
"answer {}".format(self.answer_volume),1263

]1264
1265

return demo_actions12661267

Code Sample 20: bird-life-cycle
1268

def get_demo_actions(self):1269
return [1270

"sit on egg",1271
"sit on egg",1272
"sit on egg",1273
"sit on egg",1274
"sit on egg",1275
"feed young bird",1276
"feed young bird",1277
"feed young bird",1278
"feed young bird",1279
"feed young bird",1280

]12811282

Code Sample 21: balance-scale-weigh
1283

def get_demo_actions(self):1284
weight_list = [1, 1, 2, 5, 10]1285
weight_list_index = [False] * 51286

1287
def _find_combination ():1288

remaining = self.cube_weight1289
1290

# using 101291
if remaining >= 10:1292

weight_list_index [-1] = True1293
remaining -= 101294

1295
# using 51296
if remaining >= 5:1297

weight_list_index [-2] = True1298
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remaining -= 5 1299
1300

# using 2 1301
if remaining >= 2: 1302

weight_list_index [-3] = True 1303
remaining -= 2 1304

1305
if remaining > 0: 1306

if remaining == 1: 1307
weight_list_index [0] = True 1308

if remaining == 2: 1309
weight_list_index [0] = True 1310
weight_list_index [1] = True 1311

1312
_find_combination () 1313

1314
weight_actions = [] 1315
for idx , weight_list_idx in enumerate(weight_list_index): 1316

if weight_list_idx: 1317
weight_actions += [ 1318

"take {}".format(self.useful_info[idx].name), 1319
"put {} in right side of the balance scale (ID: 4)".format( 1320

self.useful_info[idx].name 1321
), 1322
"look", 1323

] 1324
1325

demo_actions = ( 1326
[ 1327

"take cube (ID: 10)", 1328
"put cube (ID: 10) in left side of the balance scale (ID: 3)", 1329

] 1330
+ weight_actions 1331
+ ["answer {}g".format(self.cube_weight)] 1332

) 1333
1334

return demo_actions 13351336

Code Sample 22: metal-detector
1337

def get_demo_actions(self): 1338
agent_init_position = self.useful_info [0] 1339
targe_position = self.useful_info [1] 1340

1341
direction = ( 1342

targe_position [0] - agent_init_position [0], 1343
targe_position [1] - agent_init_position [1], 1344

) 1345
h_dir_list = ( 1346

["south"] * direction [0] 1347
if direction [0] > 0 1348
else ["north"] * (-direction [0]) 1349

) 1350
v_dir_list = ( 1351

["east"] * direction [1] if direction [1] > 0 else ["west"] * (-direction 1352
[1]) 1353

) 1354
1355

dir_list = h_dir_list + v_dir_list 1356
self.random.shuffle(dir_list) 1357

1358
detect_actions = [ 1359

"detect with metal detector (ID: 15)", 1360
] 1361
for dir_step in dir_list: 1362

detect_actions.append("move {}".format(dir_step)) 1363
detect_actions.append("detect with metal detector (ID: 15)") 1364

1365
demo_actions = ( 1366

["take metal detector (ID: 15)", "take shovel (ID: 16)"] 1367
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+ detect_actions1368
+ ["look", "dig with shovel (ID: 16)", "look", "take metal case (ID: 11)1369

"]1370
)1371

1372
return demo_actions13731374

Code Sample 23: cooking
1375

def get_demo_actions(self):1376
cooking_actions = [1377
]1378

1379
for cooking_item in self.receipt:1380

operations = self.receipt[cooking_item]1381
cooking_actions += ["take {}".format(cooking_item.name)]1382
for operation in operations:1383

if operation in ["slice", "dice", "chop"]:1384
cooking_actions += [1385

"{} {} with {}".format(1386
operation , cooking_item.name , self.useful_info["knife"].1387

name1388
)1389

]1390
if operation in ["fry"]:1391

cooking_actions += [1392
"cook {} in {}".format(1393

cooking_item.name , self.useful_info["stove"].name1394
)1395

]1396
if operation in ["roast"]:1397

cooking_actions += [1398
"cook {} in {}".format(1399

cooking_item.name , self.useful_info["oven"].name1400
)1401

]1402
1403

demo_actions = (1404
[1405

"take {}".format(self.useful_info["cook_book"].name),1406
"read {}".format(self.useful_info["cook_book"].name),1407
"take {}".format(self.useful_info["knife"].name),1408

]1409
+ cooking_actions1410
+ [1411

"prepare meal",1412
]1413

)1414
1415

return demo_actions14161417

Code Sample 24: make-ice-cubes
1418

def get_demo_actions(self):1419
return [1420

"open freezer (ID: 2)",1421
"examine freezer (ID: 2)",1422
"take ice cube tray (ID: 3)",1423
"put ice cube tray (ID: 3) in sink (ID: 4)",1424
"turn on sink (ID: 4)",1425
"turn off sink (ID: 4)",1426
"take ice cube tray (ID: 3)",1427
"put ice cube tray (ID: 3) in freezer (ID: 2)",1428
"close freezer (ID: 2)",1429
"look",1430
"look",1431
"look",1432

]14331434
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Code Sample 25: balance-scale-heaviest
1435

def get_demo_actions(self): 1436
1437

demo_actions = [ 1438
"take {}".format(self.useful_info [0][0]. name), 1439
"put {} in left side of the balance scale (ID: 3)".format( 1440

self.useful_info [0][0]. name 1441
), 1442
"take {}".format(self.useful_info [1][0]. name), 1443
"put {} in right side of the balance scale (ID: 4)".format( 1444

self.useful_info [1][0]. name 1445
), 1446
"look", 1447

] 1448
1449

if len(self.useful_info) == 2: 1450
if self.useful_info [0][1] > self.useful_info [1][1]: 1451

# left is heavier 1452
1453

demo_actions.append("take {}".format(self.useful_info [0][0]. name)) 1454
demo_actions.append( 1455

"put {} in {}".format( 1456
self.useful_info [0][0]. name , self.answer_box.name 1457

) 1458
) 1459
return demo_actions 1460

elif self.useful_info [0][1] < self.useful_info [1][1]: 1461
# right is heavier 1462
demo_actions.append("take {}".format(self.useful_info [1][0]. name)) 1463
demo_actions.append( 1464

"put {} in {}".format( 1465
self.useful_info [1][0]. name , self.answer_box.name 1466

) 1467
) 1468
return demo_actions 1469

else: 1470
demo_actions.append("take {}".format(self.useful_info [0][0]. name)) 1471
demo_actions.append( 1472

"put {} in {}".format( 1473
self.useful_info [0][0]. name , self.answer_box.name 1474

) 1475
) 1476

1477
demo_actions.append("take {}".format(self.useful_info [1][0]. name)) 1478
demo_actions.append( 1479

"put {} in {}".format( 1480
self.useful_info [1][0]. name , self.answer_box.name 1481

) 1482
) 1483
return demo_actions 1484

1485
on_scale = [0, 1] 1486
for i in range(2, len(self.useful_info)): 1487

if self.useful_info[on_scale [0]][1] > self.useful_info[on_scale [1]][1]: 1488
demo_actions += [ 1489

"take {}".format(self.useful_info[on_scale [1]][0]. name), 1490
"take {}".format(self.useful_info[i][0]. name), 1491
"put {} in right side of the balance scale (ID: 4)".format( 1492

self.useful_info[i][0]. name 1493
), 1494
"look", 1495

] 1496
on_scale [1] = i 1497

else: 1498
demo_actions += [ 1499

"take {}".format(self.useful_info[on_scale [0]][0]. name), 1500
"take {}".format(self.useful_info[i][0]. name), 1501
"put {} in left side of the balance scale (ID: 3)".format( 1502

self.useful_info[i][0]. name 1503
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),1504
"look",1505

]1506
on_scale [0] = i1507

max_weight = 01508
if self.useful_info[on_scale [0]][1] > self.useful_info[on_scale [1]][1]:1509

demo_actions.append("take {}".format(self.useful_info[on_scale [0]][0].1510
name))1511

demo_actions.append(1512
"put {} in {}".format(1513

self.useful_info[on_scale [0]][0]. name , self.answer_box.name1514
)1515

)1516
max_weight = self.useful_info[on_scale [0]][1]1517

else:1518
demo_actions.append("take {}".format(self.useful_info[on_scale [1]][0].1519

name))1520
demo_actions.append(1521

"put {} in {}".format(1522
self.useful_info[on_scale [1]][0]. name , self.answer_box.name1523

)1524
)1525
max_weight = self.useful_info[on_scale [1]][1]1526

1527
for cube , cube_mass in self.useful_info:1528

if cube_mass == max_weight:1529
demo_actions += [1530

"take {}".format(cube.name),1531
"put {} in {}".format(cube.name , self.answer_box.name),1532

]1533
1534

return demo_actions15351536

Code Sample 26: take-photo
1537

def get_demo_actions(self):1538
speed = self.camera.properties["current_shutter_speed"]1539
iso = self.camera.properties["current_iso"]1540
aperture = self.camera.properties["current_aperture"]1541

1542
target_aperture = self.useful_info [0]1543
target_speed = self.useful_info [1]1544
target_iso = self.useful_info [2]1545

1546
adjust_actions = [1547

"focus {}".format(self.target_food.name),1548
]1549
if target_aperture > aperture:1550

adjust_actions += ["rotate aperture clockwise"] * (1551
target_aperture - aperture1552

)1553
elif target_aperture < aperture:1554

adjust_actions += ["rotate aperture anticlockwise"] * (1555
-target_aperture + aperture1556

)1557
else:1558

pass1559
if target_speed > speed:1560

adjust_actions += ["rotate shutter speed clockwise"] * (1561
target_speed - speed1562

)1563
elif target_speed < speed:1564

adjust_actions += ["rotate shutter speed anticlockwise"] * (1565
-target_speed + speed1566

)1567
else:1568

pass1569
if target_iso > iso:1570

adjust_actions += ["rotate iso clockwise"] * (target_iso - iso)1571
elif target_iso < iso:1572
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adjust_actions += ["rotate iso anticlockwise"] * (-target_iso + iso) 1573
else: 1574

pass 1575
1576

demo_actions = ["take camera (ID: 2)"] + adjust_actions + ["press shutter"] 1577
1578

return demo_actions 15791580

Code Sample 27: plant-tree
1581

def get_demo_actions(self): 1582
return [ 1583

"take shovel (ID: 2)", 1584
"dig with shovel (ID: 2)", 1585
"take tree (ID: 8)", 1586
"look", 1587
"put tree (ID: 8) in hole (ID: 9)", 1588
"inventory", 1589
"put soil (ID: 10) in hole (ID: 9)", 1590
"take jug (ID: 7)", 1591
"put jug (ID: 7) in sink (ID: 5)", 1592
"turn on sink (ID: 5)", 1593
"turn off sink (ID: 5)", 1594
"take jug (ID: 7)", 1595
"pour water in jug (ID: 7) into soil (ID: 10)", 1596

] 15971598

Code Sample 28: boil-water
1599

def get_demo_actions(self): 1600
return [ 1601

"take pot (ID: 4)", 1602
"put pot (ID: 4) in sink (ID: 3)", 1603
"examine sink (ID: 3)", 1604
"turn on sink (ID: 3)", 1605
"examine sink (ID: 3)", 1606
"turn off sink (ID: 3)", 1607
"take pot (ID: 4)", 1608
"look", 1609
"put pot (ID: 4) on stove (ID: 2)", 1610
"examine stove (ID: 2)", 1611
"turn on stove (ID: 2)", 1612
"examine stove (ID: 2)", 1613
"examine stove (ID: 2)", 1614
"examine stove (ID: 2)", 1615

] 16161617

Code Sample 29: forge-key
1618

def get_demo_actions(self): 1619
demo_actions = [ 1620

"take copper ingot (ID: 4)", 1621
"put copper ingot (ID: 4) in foundry (ID: 3)", 1622
"turn on foundry (ID: 3)", 1623
"look", 1624
"look", 1625
"look", 1626
"look", 1627
"look", 1628
"look", 1629
"pour copper (liquid) (ID: 4) into key mold (ID: 6)", 1630
"look", 1631
"look", 1632
"take copper key (ID: 4)", 1633
"open door (ID: 5) with copper key (ID: 4)", 1634

] 1635
1636

return demo_actions 16371638
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Code Sample 30: inclined-plane
1639

def get_demo_actions(self):1640
look_table = {1641

0.5: ["look"] * 5,1642
1: ["look"] * 5,1643
1.5: ["look"] * 5,1644
2: ["look"] * 5,1645

}1646
1647

a1 = self.useful_info [0][0]1648
a2 = self.useful_info [0][1]1649
a1_look = look_table[a1]1650
a2_look = look_table[a2]1651

1652
demo_actions = (1653

[1654
"take stopwatch (ID: 5)",1655
"take block (ID: 4)",1656
"put block (ID: 4) on inclined plane 1 (ID: 2)",1657
"activate stopwatch (ID: 5)",1658

]1659
+ a1_look1660
+ [1661

"deactivate stopwatch (ID: 5)",1662
"examine stopwatch (ID: 5)",1663
"reset stopwatch (ID: 5)",1664
"take block (ID: 4)",1665
"put block (ID: 4) on inclined plane 2 (ID: 3)",1666
"activate stopwatch (ID: 5)",1667

]1668
+ a2_look1669
+ [1670

"deactivate stopwatch (ID: 5)",1671
"examine stopwatch (ID: 5)",1672

]1673
)1674
if a1 > a2:1675

return demo_actions + ["focus on inclined plane 2 (ID: 3)"]1676
else:1677

return demo_actions + ["focus on inclined plane 1 (ID: 2)"]16781679

Code Sample 31: wash-clothes
1680

def get_demo_actions(self):1681
washing , drying , busketing = [], [], []1682

1683
for cloth in self.dirty_clothes:1684

washing += [1685
"take {}".format(cloth.name),1686
"put {} in washing machine (ID: 2)".format(cloth.name),1687

]1688
1689

drying += [1690
"take {}".format(cloth.name),1691
"put {} in dryer (ID: 3)".format(cloth.name),1692

]1693
1694

busketing += [1695
"take {}".format(cloth.name),1696
"put {} in basket (ID: 12)".format(cloth.name),1697

]1698
1699

for cloth in self.clean_clothes:1700
busketing += [1701

"take {}".format(cloth.name),1702
"put {} in basket (ID: 12)".format(cloth.name),1703

]1704
1705

demo_actions = (1706
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[ 1707
"open washing machine (ID: 2)", 1708

] 1709
+ washing 1710
+ [ 1711

"use bottle of detergent (ID: 4) on washing machine (ID: 2)", 1712
"close washing machine (ID: 2)", 1713
"turn on washing machine (ID: 2)", 1714
"wait", 1715
"look", 1716
"look", 1717
"open washing machine (ID: 2)", 1718
"open dryer (ID: 3)", 1719

] 1720
+ drying 1721
+ [ 1722

"close dryer (ID: 3)", 1723
"turn on dryer (ID: 3)", 1724
"wait", 1725
"look", 1726
"look", 1727
"open dryer (ID: 3)", 1728
"take skirt (ID: 5)", 1729

] 1730
+ busketing 1731

) 1732
1733

return demo_actions 17341735

C.3 Analysis of Demo Actions 1736

Figure 8 displays the numbers of steps of the generated rule-based policies for environments to complete 1737

the tasks. We note that the number of steps may vary due to the randomness in the environments. For 1738

example, in mix paint, if the target color is black, 3 steps are needed, and other colors may only require 2 1739

steps.
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Table 1: Environments (Wang et al., 2024)

Environments Task Description

mix-paint (paint) Your task is to use chemistry to create black paint.
blood-type (blood) Your task is to give a correct type of blood to the patient.
thermometer (thermo) Your task is to figure out the temperature of the water in the pot.

clean-energy (energy)
Your task is to change all fossil-fuel power stations to use renewable
energy while keeping the same capacity.

lit-lightbulb (bulb) Your task is to lit the light bulb.
scale-weigh (scale) Your task is to figure out the weight of the apple.
use-bandage (bandage) Your task is to put bandages on any cuts.
hang-painting (hang) Your task is to hang the picture of a girl (ID: 11) on the back wall (ID: 5).
multimeter (multi) Your task is to figure out the resistance of the resistor 0.
volume (volume) Your task is to figure out the volume of the green box.

sunburn (sunburn)
It is a summer noon. The sky is clear. Your task is to take a ball from the
beach and put it in the box in the house. Protect yourself from sunburn!

space-walk (space) Your task is to conduct a space walk.
sweep-floor (sweep) Your task is to clean the garbage on the ground to the garbage can.
volume-container (con-
tainer)

Your task is to figure out the volume of the glass.

bath-tub-water-
temperature (bathtub)

Your task is to make the temperature of the water in the bath tub to 35 -
40 Celsius degree by adding water from the taps. When you are done,
take the action "bath".

conductivity (conduct)
Your task is to figure out if the fork is conductive or not. If the fork is
conductive, put it in the red box. Otherwise, put it in the black box.

make-campfire (campfire) Your task is to make a fire in the fire pit.
refrigerate-food (fridge) Your task is to prevent the foods from spoiling.
volume-stone (stone) Your task is to figure out the volume of the stone.
bird-life-cycle (bird) Your task is to hatch the egg and raise the baby bird.
balance-scale-weigh
(weigh)

Your task is to figure out the weight of the cube. Use the answer action
to give your answer.

metal-detector (metal)
Your task is to find the buried metal case on the beach. You win the game
by putting the metal case in your inventory.

cooking (cooking)
Your task is to prepare a meal following the instructions of the cook
book.

make-ice-cubes (ice) Your task is to make ice cubes.
balance-scale-heaviest
(heavy)

Your task is to put all heaviest cubes into the box.

take-photo (photo)
Your task is to take a nice picture of orange (ID: 4), using a camera with
shutter speed of 1/2, aperture of 16, and iso of 1600.

plant-tree (plant) Your task is to plant the tree and water it.
boil-water (boil) Your task is to boil water.
forge-key (key) Your task is to forge a key to open the door.

inclined-plane (plane)
Here are two inclined planes with the same angle. Your task is figure
out which of the two inclined planes has the most friction. Focus on the
inclined plane with the most friction after your experiment.

wash-clothes (washing) Your task is to wash the dirty clothes and dry them.
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D Prompts for World Model 1741

D.1 Prompt for Next State and Reward/Terminal Predictions 1742

Code Sample 32: Code for Prompts of Generating Potential Actions.
1743

prompt = ( 1744
"You are a simulator of a text game. Read the task description of a text 1745

game. " 1746
"Given the current game state in JSON , " 1747
"you need to decide the new game state after taking an action including 1748

the game score.\n" 1749
) 1750
prompt += ( 1751

"Your response should be in the JSON format. " 1752
"It should have three keys: 'modified ', 'removed ', and 'score '. " 1753
"The 'modified ' key stores a list of all the object states that are 1754

added or changed after taking the action. " 1755
"Keep it an empty list if no object is added or modified. " 1756
"The 'removed ' key stores a list of uuids of the objects that are 1757

removed. " 1758
"Keep it an empty list if no object is removed. " 1759
"The 'score ' key stores a JSON with three keys: " 1760
"'score ', 'gameOver ', and 'gameWon '. " 1761
"'score ' stores the current game score , " 1762
"'gameOver ' stores a bool value on whether the game is over , " 1763
"and 'gameWon ' stores a bool value on whether the game is won. \n" 1764

) 1765
1766

last_action = "" if len(self.last_actions) == 0 else self.last_actions [-1] 1767
max_UUID = importlib.import_module(self.game_name).UUID 1768
if current_state is None: 1769

current_state = get_state(self.game , last_action , max_UUID , self. 1770
game_name) 1771

current_state_for_prompt = make_game_state(current_state) 1772
max_uuid = current_state["max_UUID"] 1773

else: 1774
# print("use the predicted state") 1775

1776
current_state_for_prompt = current_state 1777
max_uuid = len(current_state["game_state"]) 1778

1779
# start adding examples 1780

example_prompt = self.build_examples () 1781
prompt += example_prompt 1782
# end of adding examples 1783
# Task 1784
prompt += "Here is the game that you need to simulate :\n" 1785
prompt += "Task Description :\n" 1786
prompt += f"{self.task_desc }\n" 1787

1788
# load rules 1789
obj_desc = preprocess_obj_desc(self.obj_rules[self.game_name ]) 1790
action_desc = self.action_rules[self.game_name] 1791
score_desc = self.score_rules[self.game_name] 1792

1793
prompt += "Here are the descriptions of all game objects properties :\n" 1794
prompt += obj_desc.strip() 1795
prompt += "\n" 1796
prompt += "Here are the descriptions of all game actions :\n" 1797
prompt += action_desc.strip() 1798
prompt += "\n" 1799
prompt += "Here is a description of the game score function :\n" 1800
prompt += score_desc.strip() 1801
prompt += "\n" 1802

1803
# data_state , data_UUID_base , data_action = None , None , None 1804
prompt += "Here is the game state:\n" 1805
prompt += f"{current_state_for_prompt }\n" 1806
prompt += "\n" 1807
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1808
prompt += f"The current game UUID base is {max_uuid }\n"1809
prompt += f"The action to take is:\n{action }\n"18101811

Code Sample 33: The Predicted Next State and Reward/Terminal in lit-lightbulb (bulb) environment.
1812

{'game_state ': [{'name': 'room (ID: 1)', 'uuid': 1, 'type': 'World ', 'properties ': {1813
'isContainer ': True , 'isMoveable ': True , 'isOpenable ': False , 'isOpen ': True , '1814
containerPrefix ': 'in'}, 'contains ': ['agent (ID: 0)', 'light bulb (ID: 2)', '1815
red wire (ID: 3)', 'black wire (ID: 4)', 'blue wire (ID: 5)', 'battery (ID: 6)'1816
]}, {'name': 'agent (ID: 0)', 'uuid': 0, 'type': 'Agent ', 'properties ': {'1817
isContainer ': True , 'isMoveable ': True , 'isOpenable ': False , 'isOpen ': True , '1818
containerPrefix ': 'in'}, 'contains ': []}, {'name': 'light bulb (ID: 2)', 'uuid':1819
2, 'type': 'LightBulb ', 'properties ': {'isContainer ': False , 'isMoveable ': True1820

, 'is_electrical_object ': True , 'conductive ': True , 'connects ': {'terminal1 ':1821
[3, 'terminal1 '], 'terminal2 ': [None , None]}, 'on': False}, 'contains ': []}, {'1822
name': 'red wire (ID: 3)', 'uuid': 3, 'type': 'Wire', 'properties ': {'1823
isContainer ': False , 'isMoveable ': True , 'is_electrical_object ': True , '1824
conductive ': True , 'connects ': {'terminal1 ': [2, 'terminal1 '], 'terminal2 ': [1825
None , None]}, 'is_wire ': True}, 'contains ': []}, {'name': 'black wire (ID: 4)',1826
'uuid': 4, 'type': 'Wire', 'properties ': {'isContainer ': False , 'isMoveable ':1827
True , 'is_electrical_object ': True , 'conductive ': True , 'connects ': {'terminal1 '1828
: (None , None), 'terminal2 ': (None , None)}, 'is_wire ': True}, 'contains ': []}, {1829
'name': 'blue wire (ID: 5)', 'uuid': 5, 'type': 'Wire', 'properties ': {'1830
isContainer ': False , 'isMoveable ': True , 'is_electrical_object ': True , '1831
conductive ': True , 'connects ': {'terminal1 ': (None , None), 'terminal2 ': (None ,1832
None)}, 'is_wire ': True}, 'contains ': []}, {'name': 'battery (ID: 6)', 'uuid':1833
6, 'type': 'Battery ', 'properties ': {'isContainer ': False , 'isMoveable ': True , '1834
is_electrical_object ': True , 'conductive ': True , 'connects ': {'cathode ': (None ,1835
None), 'anode ': (None , None)}}, 'contains ': []}]}, {'score ': 0, 'gameOver ':1836
False , 'gameWon ': False}18371838

D.2 Prompts of Generating Potential Actions.1839

Code Sample 34: Code for Prompts of Generating Potential Actions.
1840

prompt = (1841
"You are a simulator of a text game. "1842
"Read the task description and the descriptions of all game actions of a1843

text game. "1844
"Given the current game state in JSON , and the previous actions that1845

lead to the current game state , "1846
"you need to decide the most {} actions "1847
"that can help to complete the task step by step at the current state.\n1848

".format(1849
k1850

)1851
)1852
prompt += (1853

"Each of your action should in one phrase with one verb and the objects1854
it operates on. "1855

"Examples of actions includes :\n"1856
"move south" + ",\n"1857
"detect with metal detector (ID: 15)" + ",\n"1858
"dig with shovel (ID: 16)" + ",\n"1859
"open freezer (ID: 2)" + ",\n"1860
"put ice cube tray (ID: 3) in sink (ID: 4)" + ",\n"1861
"dice patato (ID: 2) with knife (ID: 8)" + ",\n"1862
"give Type O negative blood (ID: 3) to patient (ID: 2)" + ",\n"1863
"read cook book (ID: 7)" + ".\n"1864

)1865
1866

prompt += (1867
"Your response should be in the JSON format. "1868
"It should have one key: 'avail_actions ', which includes the list of the1869

recommended actions. \n"1870
)1871

1872
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last_action = "" if len(self.last_actions) == 0 else self.last_actions [-1] 1873
max_UUID = importlib.import_module(self.game_name).UUID 1874
if current_state is None: 1875

current_state = get_state(self.game , last_action , max_UUID , self. 1876
game_name) 1877

current_state_for_prompt = make_game_state(current_state) 1878
max_uuid = current_state["max_UUID"] 1879

else: 1880
# print("use the predicted state") 1881

1882
current_state_for_prompt = current_state 1883
max_uuid = len(current_state["game_state"]) 1884

1885
# start adding examples 1886

# example_prompt = self.build_examples () 1887
# prompt += example_prompt 1888
# end of adding examples 1889
# Task 1890
prompt += "Here is the game that you need to simulate :\n" 1891
prompt += "Task Description :\n" 1892
prompt += f"{self.task_desc }\n" 1893

1894
# load rules 1895
obj_desc = preprocess_obj_desc(self.obj_rules[self.game_name ]) 1896
action_desc = self.action_rules[self.game_name] 1897
score_desc = self.score_rules[self.game_name] 1898

1899
prompt += "Here are the descriptions of all game objects properties :\n" 1900
prompt += obj_desc.strip() 1901
prompt += "\n" 1902
prompt += "Here are the descriptions of all game actions :\n" 1903
prompt += action_desc.strip() 1904
prompt += "\n" 1905
prompt += "Here is a description of the game score function :\n" 1906
prompt += score_desc.strip() 1907
prompt += "\n" 1908

1909
# data_state , data_UUID_base , data_action = None , None , None 1910
prompt += "Here is the game state:\n" 1911
prompt += f"{current_state_for_prompt }\n" 1912
prompt += "\n" 1913

1914
prompt += f"The current game UUID base is {max_uuid }\n" 1915

1916
if len(self.last_actions) == 0: 1917

prompt += "There is no previous actions." 1918
else: 1919

prompt += "The previous actions {}:\n".format( 1920
"is" if len(self.last_actions) == 1 else "are" 1921

) 1922
for action in self.last_actions: 1923

prompt += action + "\n" 19241925

Code Sample 35: The Generated Actions of make-ice-cubes (ice) environment.
1926

{'avail_actions ': ['open freezer (ID: 2)', 'take ice cube tray (ID: 3) from freezer 1927
(ID: 2)', 'put ice cube tray (ID: 3) in sink (ID: 4)', 'turn on sink (ID: 4)', ' 1928
take ice cube tray (ID: 3) from sink (ID: 4)', 'put ice cube tray (ID: 3) in 1929
freezer (ID: 2)', 'close freezer (ID: 2)', 'wait for ice to form', 'open freezer 1930
(ID: 2)', 'check ice cube tray (ID: 3) for ice']} 19311932
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E Accuracy of Policy Verification1933

We provide the accuracy of the policy verification regarding the three criteria, i.e., score, gameWon and1934

gameOver. We note that the performance on gameWon and gameOver predictions are far better than the1935

prediction of score.1936
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Figure 9: The accuracy of the world model to verify the correct policies on score
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Figure 10: The accuracy of the world model to verify the correct policies on gameOver
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Figure 11: The accuracy of the world model to verify the correct policies on gameWon
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F Step Accuracy of Action Proposal1937

We also provide the accuracy of each steps for the action proposal tasks. We observe for most of the1938

task, there is some key steps that the world model has low accuracy for the action proposal, which brings1939

difficulties for the world model to complete the tasks.
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Figure 12: Step correctness of the action proposal of GPT-4o-mini
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Figure 13: Step correctness of the action proposal of GPT-4o
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