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ABSTRACT

Multimodal VAEs have recently gained significant attention as generative mod-
els for weakly-supervised learning with multiple heterogeneous modalities. In
parallel, VAE-based methods have been explored as probabilistic approaches for
clustering tasks. At the intersection of these two research directions, we propose
a novel multimodal VAE model in which the latent space is extended to learn data
clusters, leveraging shared information across modalities. Our experiments show
that our proposed model improves generative performance over existing multi-
modal VAEs, particularly for unconditional generation. Furthermore, we propose
a post-hoc procedure to automatically select the number of true clusters thus miti-
gating critical limitations of previous clustering frameworks. Notably, our method
favorably compares to alternative clustering approaches, in weakly-supervised set-
tings. Finally, we integrate recent advancements in diffusion models into the pro-
posed method to improve generative quality for real-world images.

1 INTRODUCTION

Multimodal VAEs are powerful generative models for weakly-supervised learning with multiple
modalities. Different from initially proposed models (Suzuki et al., 2017; Vedantam et al., 2018),
more recent scalable approaches (Wu & Goodman, 2018; Shi et al., 2019; Sutter et al., 2021; Hwang
et al., 2021; Palumbo et al., 2023) can handle a large number of modalities efficiently, thereby en-
abling compelling applications in segmentation tasks or data integration in the healthcare domain
(Lee & van der Schaar, 2021; Dorent et al., 2019). Multimodal VAEs have been mostly investi-
gated in the realm of generative tasks, demonstrating significant success in cross-modal generation,
despite less remarkable results for unconditional generation (Hwang et al., 2021; Palumbo et al.,
2023). However, VAE-based approaches generally fall behind in image synthesis applications, often
yielding blurry generated images. Among several extensions proposed to address these limitations
(Vahdat & Kautz, 2020; Bredell et al., 2023), the most promising approaches integrate recent ad-
vancements in Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) into the VAE framework (Pandey et al., 2022; Preechakul et al., 2022). They retain a
meaningful and decodable representation of the input while leveraging the generative capability of
diffusion models. Even though these methods have demonstrated to greatly enhance the quality of
generated samples, their adaptation to multimodal VAEs remains unexplored.

A parallel line of research has explored VAE-based generative approaches for clustering tasks (Jiang
et al., 2017; Dilokthanakul et al., 2016). In particular, deep variational clustering methods have
been employed to identify sub-groups of patients in survival analysis (Manduchi et al., 2022), or
to integrate domain knowledge from clinicians through prior probabilities (Manduchi et al., 2021).
Other works use VAE-based methods to learn interpretable representations for clustering time-series
(Fortuin et al., 2019), and hierarchical structures of latent semantic concepts of the data (Li et al.,
2018).

With this work, we position ourselves at the intersection of these two lines of research by proposing
a deep variational generative approach for clustering in a multimodal setting, where shared infor-
mation across modalities is integrated to model data clusters. In particular, we introduce a novel
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multimodal VAE model, called Clustering Multimodal VAE (CMVAE). An overview of the method
is illustrated in Figure 1. The proposed approach divides the latent space into shared and modality-
specific embeddings (Palumbo et al., 2023), and imposes as prior a mixture distribution to enforce
a clustering structure in the shared latent representation of the data (see Figure 1(a)). In our experi-
ments, we show that our method represents an improvement over existing multimodal VAEs, partic-
ularly for unconditional generation, where existing methods struggle to achieve satisfactory results.
Moreover, we showcase the effectiveness of CMVAE for clustering weakly-supervised data, where
unimodal approaches fail to achieve adequate performance, in comparison to alternative weakly-
supervised methods. Notably, we introduce a post-hoc procedure to effectively infer the number
of clusters at test time, without the need for training multiple instances of our model with differ-
ent hyperparameters. The proposed algorithm selects the optimal configuration of latent clusters,
to minimize the entropy of the posterior distribution of cluster assignments (see Figure 1 (b)). Fi-
nally, inspired by the work of Pandey et al. (2022), we propose to integrate DDPMs (Sohl-Dickstein
et al., 2015; Ho et al., 2020) into the CMVAE framework, to further improve the generative qual-
ity of reconstructed and generated images while retaining the clustered latent space of CMVAE. In
particular, we train the diffusion process conditioned on the CMVAE reconstructions, using both
the self and the cross-modal reconstructions, thus enhancing the model’s capacity of generalization
(see Figure 1 (c)). Overall our approach significantly improves over alternative methods in realistic
settings and is able to generate cluster-specific sharp images.

Our main contributions in this work can be summarized as follows:

• we propose CMVAE, a novel multimodal VAE model designed to model data clusters in
the latent space and we show that our approach (a) outperforms existing multimodal VAEs,
with a remarkable improvement in unconditional generation, and (b) outperforms alterna-
tive scalable weakly-supervised methods for clustering tasks in multimodal datasets;

• we propose a post-hoc procedure for selecting the optimal latent clusters at test time, in-
spired by previous work, thereby avoiding the need to specify the correct number of clusters
a-priori during training;

• we propose the integration of DDPMs into our framework, yielding D-CMVAE, to improve
the generative performances in multi-modal real-world settings, taking a crucial step in the
design of multimodal VAEs for realistic applications.

2 RELATED WORK

Multimodal VAEs Multimodal VAEs extend the well-known VAE framework (Kingma & Welling,
2014) to handle data consisting of multiple modalities, leveraging the pairing across modalities as
weak supervision. While early approaches (Suzuki et al., 2017; Vedantam et al., 2018) faced scala-
bility challenges due to inference requiring a separate encoder network for each subset of modalities,
more recent scalable approaches (Wu & Goodman, 2018; Shi et al., 2019; Sutter et al., 2020; 2021;
Hwang et al., 2021) assume the joint encoder decomposes in terms of unimodal encoders. Despite
promising applications (Lee & van der Schaar, 2021; Dorent et al., 2019), recent work (Daunhawer
et al., 2022) has uncovered important limitations for three main formulations of multimodal VAEs.
In particular, these approaches exhibit a trade-off between generative quality (the similarity of gener-
ated samples to real ones) and generative coherence (the semantic consistency in generated samples
across modalities). Since then, attempts to enhance the performance of multimodal VAEs involved
additional regularization terms (Sutter et al., 2020; Hwang et al., 2021), or mutual supervision (Joy
et al., 2022). Recently, Palumbo et al. (2023) proposed to model shared and private subspaces (Sutter
et al., 2020; Lee & Pavlovic, 2021; Wang et al., 2016) and design an ELBO that exploits auxiliary
distributions to facilitate the estimation of cross-modal likelihood terms. The resulting MMVAE+
model proves to achieve both high generative quality and high generative coherence.

Variational approaches for clustering Following the seminal work of Kingma & Welling (2014),
variational autoencoders (VAEs) have been investigated for clustering with approaches such as GM-
VAE (Dilokthanakul et al., 2016) and VaDE (Jiang et al., 2017). More recently, there has been a
revived interest in these models. In particular, Manduchi et al. (2021) have proposed an ELBO for
clustering data and incorporate prior knowledge in the form of prior probabilities. In another work,
(Manduchi et al., 2022) use a VAE approach to cluster patients in subgroups for survival analysis.
Finally, Xu et al. (2021) propose a variational approach to cluster multi-view data, that however has
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Figure 1: (a) CMVAE divides the latent space into shared and modality-specific embeddings. It
enforces a mixture distribution as prior on the shared latent subspace, to create a clustering structure
in the shared representation. (b) A post-hoc procedure infers the number of clusters at test time
efficiently by minimizing the entropy of p(c|z), penalized by the normalized joint log-likelihood.
(c) D-CMVAE integrates DDPMs into the framework by conditioning the reverse process on the
self and cross-modal CMVAE reconstructions. This enhances the generative performance while
maintaining the clustered latent space.

the limitation of not handling missing modalities for inference, which impacts its scalability to a
large number of modalities.

Scalable weakly-supervised clustering Weakly-supervised clustering refers to clustering algo-
rithms that integrate high-level and often noisy sources of supervision to improve the clustering
performance. While several forms of weak supervision have been previously investigated in the lit-
erature, such as coarse-grained labels (Ni et al., 2022), bag level labels (Oner et al., 2019), and pair-
wise similarities (Manduchi et al., 2021), in this work we restrict ourselves to methods that exploit
weak-supervision in the form of multiple modalities. In the multimodal setting, weakly-supervised
clustering methods are often not designed to scale to a large number of modalities (Alwassel et al.,
2020; Chen et al., 2021; Zhou & Shen, 2020). For instance, DeepCluster (Caron et al., 2018) is a
unimodal clustering approach that iteratively learns cluster assignments and neural network param-
eters. An adaptation of this method for two modalities, XDC, was introduced by Alwassel et al.
(2020). XDC relies on pseudo-labels from one modality to learn better feature representation for an-
other modality, improving unimodal clustering for both, but is not intended to generalise to a larger
number of modalities. Learning representations from datasets of a large number of views has been
investigated, for instance, in the realm of contrastive approaches. As an example, Tian et al. (2020)
propose the CMC loss which maximizes mutual information between different views with a con-
trastive objective, and can be extended to a large number of views. While not specifically developed
for clustering tasks, training a K-means model on the learned representations can be used as a proxy
for the adaptability of the learned representations for clustering.

3 METHOD

3.1 A SCALABLE VAE OBJECTIVE FOR MODELING LATENT CLUSTERS IN MULTIMODAL
DATA

We assume data consisting of M modalities X := x1, . . . ,xM is generated according to the
following process. For each datapoint xi1, . . . ,x

i
M where i ∈ {1, . . . , N} and N is the dataset

size, a cluster assignment ci is drawn from a categorical distribution pπ(c) with probabilities
π = π1, . . . , πK where K is the number of clusters. Then the M modalities are drawn ac-
cording to xi1, . . . ,x

i
M ∼ pθ1(x1|wi

1, z
i), . . . , pθM (xM |wi

M , zi) where the shared encoding
zi ∼ p(z|ci) is generated conditioning on cluster assignment, while modality-specific encodings
wi

1 ∼ p(w1), . . . ,w
i
M ∼ p(wM ) are drawn from prior distributions. The resulting generative

model is pΘ(X,W , z, c) = pπ(c)p(z|c)
∏M
m=1 pθm(xm|wm, z)p(wm), where priors and likeli-

hoods are assumed to belong to a specific family of distributions, e.g. Gaussian or Laplace, and
likelihoods are parameterized by neural network decoders. Note that the shared encoding z and
modality-specific encodings w1, . . .wM =: W are assumed to be independent.
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To obtain a tractable objective, variational encoders qΦz (z|X), qϕw1
(w1|x1), . . . , qϕwM

(wM |xM ),

q(c|z,X) are introduced to approximate posterior inference for each of the latent variables. In
line with our generative assumptions, the shared and modality-specific encoders are assumed to be
conditionally independent given the observed data. As in previous approaches (Shi et al., 2019;
Palumbo et al., 2023), to achieve scalability in the number of modalities, we model the joint encoder
for z as a mixture of experts qΦz (z|X) = 1

M

∑M
m=1 qϕzm

(z|xm). In our objective, we incorporate
two key ideas from previous related work. First, to accurately model both shared and modality-
specific information in separate latent subspaces without conflicts, as in (Palumbo et al., 2023),
we use auxiliary distributions r1(w1), . . . , rM (wm) for private features to estimate cross-modal
reconstruction likelihoods (second summand in the right-hand side of Equation (2)). This leads to
our proposed ELBO objective

LCMVAE(X) =
1

M

M∑
m=1

E q(c|z,X)
qϕzm

(z|xm)

qϕwm
(wm|xm)

[
Gπ,Φz,ϕwm ,Θ

(X, c, z,wm)
]
, (1)

where

Gπ,Φz,ϕwm ,Θ(X, c, z,wm) = log pθm(xm|z,wm) +
∑
n ̸=m

Ew̃n∼rn(wn)[log pθn(xn|z, w̃n)]

+ β log
pπ(c)pθ(z|c)p(wm)

qΦz (z|X)qϕwm
(wm|xm)q(c|z,X)

, (2)

and a β hyperparameter weights latent space regularization. Furthermore, instead of learning an
additional encoder to approximate inference in c, we adopt the formulation for the approximate
posterior of cluster assignments given z proposed in the work of (Jiang et al., 2017), which has the
advantage of not requiring additional parameters

q(c|z,X) = p(c|z) = p(c)p(z|c)∑K
c′=1 p(c

′)p(z|c′)
.

Different from the expectations with respect to the qΦz (z|X), qϕw1
(w1|x1), . . . , qϕwM

(wM |xM )
encoders, that need be approximated via sampling with reparameterization, Eq(c|z,X) can be com-
puted exactly since c assumes a discrete finite set of values. Finally, our proposed CMVAE objective
is a valid evidence lower bound (ELBO), and Appendix A contains a formal proof.

3.2 ENTROPY OF POSTERIOR CLUSTER ASSIGNMENT DISTRIBUTION FOR POST-HOC
LEARNING OF THE NUMBER OF CLUSTERS

A critical limitation of many existing methods for deep clustering is the need to specify the number
of clusters a-priori. This can result in highly complex model selection procedures, in failure cases
when a proxy for this information cannot be obtained, or in limiting modelling capacity. As with
other methods, CMVAE requires specifying a K value for the number of latent clusters assumed in
the generative process for training. However, the true number of clusters in the data K̄ is in general
unknown, and in practice K may differ from K̄. While few approaches use non-parametric prior
distributions to overcome this challenge (Goyal et al., 2017; Hu et al., 2015; Griffiths et al., 2003),
we instead propose a simpler post-hoc procedure to recover the optimal clusters in the data given an
instance of our model trained with an over-specified number of clusters, i.e. K > K̄.

The proposed procedure is described in the pseudocode in Algorithm 1, and aims at obtaining a
posterior cluster distribution p(c|z) where exactly K̄ clusters have positive probability and each
latent cluster correctly models a different true cluster of the data. In other words, it aims at recovering
the true K̄ clusters in the data without adding extra complexity in the number of model parameters.
In a nutshell, the procedure iterates over the data, ranking latent clusters by their importance. At
each iteration, unimportant clusters are pruned by setting their prior probability to zero, and the
entropy of p(c|z) is kept as a metric to select the optimal set of clusters to model the data. More
specifically, the clusters are ranked by the probability mass each one is assigned to, and the average
normalized entropy of p(c|z) is computed. Note that cluster assignments are determined by majority
voting between modalities. Then, the latent cluster with the lowest probability mass is set null
prior probability at the next iteration, with the remaining probabilities recomputed accordingly to
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maintain a valid probability distribution. Iteratively, the latent clusters are effectively pruned, while
the average normalized entropy of p(c|z) is calculated at every step. We select the optimal cluster
configuration as corresponding to the lowest value for the normalized entropy penalized by the
normalized joint log-likelihood to avoid overly restricting modeling capacity (Biernacki et al., 2000;
Baudry et al., 2010). By minimizing the entropy overlapping clusters are effectively pruned and
the data are partition into meaningful subsets. In fact, as confirmed in our results in Figure 5a
and Appendix B, when unimportant latent clusters are pruned, the normalized entropy term p(c|z)
decreases, as uncertainty over cluster assignments is reduced, up to a minimum, which is attained at
the true number of clusters K̄. As clusters are further pruned, not all data clusters are represented in
the latent space, which results in the entropy term increasing again. Note this procedure is performed
on a separate validation dataset in our experiments (see Appendix D.2), and is fully unsupervised.
Finally, note this procedure obtains high clustering performance without limiting modelling capacity.

3.3 INTEGRATING DIFFUSION PROBABILISTIC MODELS INTO MULTIMODAL VAES

We hereby propose to incorporate Denoising Diffusion Probabilistic Models (DDPMs) into the CM-
VAE framework. For this section we will denote the input data X as X0 := x10 , . . . ,xM0

. Then,
for each modality m we define a sequence of T noisy representations of the input xm0

, yelding
xm1:T

. As in standard DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020) we define a forward
process q (xm1:T

| xm0) that gradually destroys the structure of each data modality xm0 :

q (xm1:T
| xm0

) =

T∏
t=1

q
(
xmt

| xmt−1

)
(3)

q
(
xmt | xmt−1

)
= N

(√
1− βmtxmt−1 , βmtI

)
(4)

q (xmt
| xm0

) = N
(√

ᾱmt
xm0

, (1− ᾱmt
) I

)
where αmt

= (1− βmt
) , ᾱmt

=
∏
t

αmt
, (5)

where βmt
for t = 1, . . . , T and m = 1, . . . ,M are the noise schedules. We then follow the work of

Pandey et al. (2022) to define a reverse process that is conditioned on the VAE reconstructions x̂m0
:

pψ (xm0:T
| x̂m0) = p (xmT

)

T∏
t=1

pψ
(
xmt−1 | xmt

)
(6)

pψ
(
xmt−1

| xmt
, x̂m0

)
= N (µψ (xmt

, t, x̂m0
) ,Σψ (xmt

, t, x̂m0
)) . (7)

In practice, the VAE reconstruction x̂m0
are concatenated to the reverse process representation xmt

at each time step t to obtain xmt−1 . While DiffuseVAE (Pandey et al., 2022) is designed for a VAE
with one data modality, we extend it to the multimodal setting and we sample from both the self and
cross-modal reconstructions of CMVAE with equal probability:

x̂m0
∼


pθm(xm|z,wm),

z∼qϕzm
(z|xm),

wm∼qϕwm
(wm|xm) if b = 0 self-reconstruction

pθm(xm|z, w̃m),
z∼qϕzn

(z|xn),

w̃m∼rm(wm),
n∼Cat(M, 1

M )
if b = 1 cross-reconstruction,

(8)

where b is sampled from a Bernoulli distribution with p = 0.5. Using the cross-modal reconstruc-
tions, which are usually noisier than the self-reconstructions, improves and stabilizes the training,
making the diffusion process more robust at test time.

The new objective function is then defined as

LD-CMVAE(X0) = LCMVAE(X0) +
1

M

M∑
m=1

E qϕzm
(z|xm0

)

qϕwm
(wm|xm0

)

LDDPMm
(X0, z,wm) (9)

LDDPMm
(X0, z,wm) = Eq(xm1:T

|xm0)

[
pψ (xm0:T

| x̂m0
)

q (xm1:T
| xm0

)

]
. (10)

As in DiffuseVAE (Pandey et al., 2022), we first train CMVAE using Equation (1) and then we
freeze the CMVAE’s weights and train the M diffusion processes.
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Algorithm 1 Post-hoc selection of optimal latent clusters.
H̄ denotes normalized entropy, |·| indicates the number of dimensions of a given latent variable, assignc defines
the cluster assignment step, and computeπ the prior probability update operation.

Input: pπK (c), p(z|c), qϕz1
(z|x1) . . . , qϕzM

(z|xM ) from trained CMVAE with K > K̄, data X1:N

Output: pπ
K̂

, with πK̂ s.t.
∑K̂

k=1 1πk ̸=0 = K̂
for k = K to 2 do

for xi
1, . . ., xi

M in x1:N
1 , . . ., x1:N

M do
zi
1, . . . , z

i
M ∼ qϕz1

(z|xi
1), . . . , qϕzM

(z|xi
M )

for m = 1 to M do
p(c|zm) =

pπk
(c)p(zm|c)∑k

c′=1
pπk

(c′)p(zm|c′)

end for
cias = assignc(p(c|z1), . . . , p(c|zM ))

hi
k = 1

M

∑M
m=1 H̄(p(c|zm))− log p(z,c)

|z|
end for
hk = 1

N

∑N
n=1 h

n
k

πk−1 = computeπ(c
1:N
as ,πk)

end for
pπ

K̂
where K̂ = argmink(h1, . . . , hk, . . . , hK)

4 EXPERIMENTS

We test the performance of CMVAE, in comparison with alternative approaches, on both semi-
synthetic and real-world datasets. We first validate our contributions on the PolyMNIST dataset
(Sutter et al., 2021), a semi-synthetic five-modality dataset depicting MNIST (LeCun et al., 2010)
digits with modality-specific backgrounds, well-established as a benchmark for multimodal VAEs
(Sutter et al., 2021; Hwang et al., 2021; Palumbo et al., 2023). In Section 4.1, we compare the
generative capabilities of our approach with alternative multimodal VAEs: CMVAE outperforms
existing approaches, particularly in unconditional generation. In Section 4.2 we test the clustering
capabilities of CMVAE in comparison with alternative unimodal and scalable weakly-supervised
approaches. In particular, we validate our proposed post-hoc procedure to determine the optimal set
of latent clusters at inference time, hence avoiding the need for a-priori knowledge of the true number
of clusters. Finally, in Section 4.3 we validate our contributions in a real-world experiment. We
introduce a variation of the CUB Image-Captions dataset (Wah et al., 2011; Shi et al., 2019), which
we name the CUB Image-Captions for Clustering (CUBICC) dataset. As the original CUB Image-
Captions dataset consists of images of birds paired with matching captions, we group sub-species of
birds in the original dataset in eight single species—namely Blackbird, Gull, Jay, Oriole, Tanager,
Tern, Warbler, Wren—obtaining a challenging realistic multimodal clustering dataset illustrated in
Figure 2b. Details for the datasets are in Appendix D.1.

(a) PolyMNIST dataset: Each column
is a single data point in this dataset,
consisting of five image modalities
with matching digit. Each row show-
cases samples from a given modality.

(b) CUBICC dataset: Example of the variability within a single
bird class, Oriole. Here we show the images (modality 1) with
their corresponding captions (modality 2).

Figure 2: Illustrative samples for the PolyMNIST (a) and CUBICC (b) datasets.

4.1 IMPROVED GENERATION PERFORMANCE OVER EXISTING MULTIMODAL VAES

In this section, we compare the generative capabilities of our model against the main existing formu-
lations of multimodal VAEs on the PolyMNIST dataset. Successful generative performance of mul-
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timodal VAEs requires satisfying two criteria: achieving high semantic coherence across generated
modalities (i.e., high generative coherence), as well as having high similarity between generated
samples and real samples (i.e. high generative quality). Consistently with previous work (Sutter
et al., 2021; Hwang et al., 2021; Palumbo et al., 2023), we compare models in terms of generative
quality and generative coherence for both generation with latents sampled from prior distributions
(i.e. unconditional generation) and cross-modal generation (i.e., conditional generation), and report
our results in Figure 3. In line with prior research (Shi et al., 2019; Daunhawer et al., 2022; Hwang
et al., 2021; Palumbo et al., 2023), we adopt the FID score (Heusel et al., 2017) as a proxy for gen-
erative quality, and use pre-trained digit classifiers to assess generative coherence. For more details
on these metrics, see Appendix D.3. Results show that CMVAE outperforms existing multimodal
VAEs, across different hyperparameter values controlling latent space regularization, for both con-
ditional and unconditional generation. While the improvement for conditional generation is mod-
erate, CMVAE outperforms the other methods by a significant margin in unconditional generation,
particularly for unconditional coherence. This is an important advancement over state-of-the-art
multimodal VAEs, where unconditional generation performance represents a critical weakness.
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Figure 3: Unconditional (left) and conditional (right) generation performance of CMVAE compared
with existing multimodal VAEs on PolyMNIST. Three independent runs for each model, with differ-
ent symbols denoting different values of the β hyperparameter. In both plots, generative coherence
is measured on the y-axis (higher is better), while on the x-axis generative quality is assessed via the
FID-score (lower is better). Therefore optimal performance is at the top-right corner of each plot.

Figure 4: Generative performance for CMVAE and D-CMVAE on the PolyMNIST dataset. Each
row showcases generated samples for each modality, with at the top CMVAE generations and cor-
responding D-CMVAE generations below. We report three generations for all learned clusters, each
one corresponding to a different column, across all modalities.

4.2 WEAKLY-SUPERVISED CLUSTERING VIA POST-HOC SELECTION OF LATENT CLUSTERS
AND SHARP GENERATIONS WITH DDPMS

In this section, we look at clustering results for our method on the PolyMNIST setting and validate
the procedure described in Section 3.2 to learn the optimal number of clusters in the data with
CMVAE. Specifically, we train multiple instances of CMVAE with K = 40 clusters, markedly
different from the true number of clusters K̄ = 10, corresponding to the ten digits. Once an instance
of the model is trained, we apply our proposed post-hoc procedure to select the optimal clusters in
the latent space, whose effectiveness is showcased in Figure 5. In particular, Figure 5a shows the
trend of our proposed entropy-based criterion as the latent clusters are pruned, reaching a minimum
when the true latent number of clusters is achieved, consistently across runs. In addition, Figures 5b,
5c, and 5d show how clustering metrics evolve as clusters are pruned: the showcased trends show
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that the procedure gradually converges to the solution in which the true clusters are modeled in
the latent space, and clustering metrics, therefore, have the best results. These results also confirm
that the procedure not only finds the correct number of clusters, but more to the point a minimal
set of latent clusters, each one modeling a true cluster in the data. Results in Figure 4 confirm
our quantitative analysis from a qualitative standpoint, and in addition show the effectiveness of
incorporating DDPMs into our model to increase the quality of generations. Finally in Appendix B,
by varying the number of modalities for inference, we show that CMVAE effectively exploits the
presence of multiple modalities in computing cluster assignments at test time.

In Table 2 we compare the performance of CMVAE in multimodal clustering with alternative meth-
ods. A first natural baseline to report is VaDE (Jiang et al., 2017), a well-established unimodal VAE-
based clustering model. However, in order not to restrict ourselves to only variational approaches
for unimodal clustering, we include in the comparison the well-known DeepCluster (Caron et al.,
2018). In this setting, unimodal clustering approaches fail to achieve good performance (see also
Appendix E.2.1): we find they rather model background features, which are prominent pixel-wise in
the images, instead of the relevant digit content. As a baseline from the realm of contrastive learn-
ing, we adopt CMC (Tian et al., 2020), mainly due to its scalability to numerous modalities, with an
instance of K-means trained on the learned latent representations. Not surprisingly, this approach
achieves comparable yet not superior performance to CMVAE in this setting, as it closely resembles
a multi-view setting for which this approach is conceived. However, CMC achieves a comparable
performance to our approach on the condition of having a-priori information on the true number
of clusters in the data, which is not realistic in real-world scenarios. As shown in Appendix E.2.1,
when a-priori information is not available, our method has markedly better performance. Moreover,
for more heterogeneous modalities, the gap in performance between the two methods is substantial,
as the next section will show. More details about the baselines are reported in Appendix E.2.
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Figure 5: Post-hoc optimal latent cluster selection with the procedure in Algorithm 1. (a) Evolution
of the entropy term (y-axis) as clusters (x-axis) are pruned. The minimal entropy recovers the true
number of clusters. The trends for test NMI (b), ARI (c) and accuracy (d) support the validity of our
procedure, showing the procedure selects a minimal set of latent clusters to correctly model the true
data clusters. Additional evidence is shown qualitatively in Appendix B.

PolyMNIST CUBICC

NMI ARI ACC NMI ARI ACC K̄ not given
for training

VaDE 0.43 (0.04) 0.36 (0.04) 0.54 (0.05) 0.15 (0.01) 0.08 (0.01) 0.27 (0.01) ✗
DeepCluster 0.12 (0.02) 0.08 (0.02) 0.26 (0.04) 0.19 (0.01) 0.10 (0.01) 0.29 (0.01) ✗

CMC 0.97 (0.01) 0.97 (0.01) 0.99 (0.01) 0.37 (0.05) 0.10 (0.03) 0.31 (0.04) ✗
CMVAE 0.97 (0.02) 0.97 (0.02) 0.99 (0.01) 0.67 (0.07) 0.59 (0.09) 0.76 (0.07) ✓

Table 2: Quantitative comparison of clustering performance on PolyMNIST and CUBICC datasets.

4.3 CUBICC

In this section we test CMVAE on the realistic CUBICC dataset. Note that recent work shows the
nature of such a dataset is challenging for most existing multimodal VAEs (Palumbo et al., 2023).
Additional challenges arise in modelling data clusters, corresponding to the eight bird species, due
to similar appearances (e.g. Gull and Tern), and high intra-cluster variability as a result of the group-
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ing of sub-species (see Figure 2b). In spite of these challenges, our results in Figure 6 and Table 2
show that in this setting CMVAE accurately models the true latent clusters in the data, without prior
knowledge of their number and in a completely unsupervised fashion. In particular, results in Ap-
pendix B, validate our proposed procedure to find the optimal number of clusters in a real-world
setting. A quantitative comparison with alternative approaches in Table 2 validates the effective-
ness of CMVAE in this challenging setting, where it outperforms both unimodal and alternative
weakly-supervised approaches. In Figure 6 we show the CMVAE and D-CMVAE generations for
each learned cluster. As it can be seen, integrating DDPMs into the generative process is highly
beneficial to generate sharp images. However, given the scarcity of the training samples and the di-
versity of bird species, conditioning the diffusion process only on the self-reconstructions produces
sub-optimal generative results (see Figure 15 in the Appendix). The integration of cross-modal re-
constructions proves to be crucial for obtaining high-quality generations. Finally, in Figure 7, we
showcase the performance of D-CMVAE in conditional generation on this dataset, where it gener-
ates sharp images, that closely align with text prompts given as input. Notably, D-CMVAE achieves
an average FID score of ≈ 28 on this dataset, a tremendous improvement over generative quality of
existing multimodal VAEs in a related setting (see Table 1 in Palumbo et al. (2023)).

Figure 6: CMVAE (left) and D-CMVAE (right) generations on CUBICC dataset, for each learned
cluster. Labels for the clusters are matched by looking at the most frequent label for the samples on
the validation set assigned to the given cluster.

Figure 7: Five instances of conditional caption-to-image generation performance for CMVAE and
D-CMVAE: CMVAE and D-CMVAE generations are shown in sequence.

5 CONCLUSION

In this work we introduce CMVAE, a novel multimodal VAE, which extends recent advances for
multimodal VAEs by enforcing a clustering structure in the latent space. Our experiments show that
CMVAE outperforms existing multimodal VAEs in terms of generative performance, in particular
showing a remarkable improvement in unconditional generation. Additionally, we show that our
proposed model can accurately model data clusters in the latent space, without prior knowledge
of the true number of clusters or any other form of supervision. This can be achieved by using a
post-hoc procedure to accurately select the optimal number of clusters in the data, without requiring
multiple trained instances of the model. Notably, we validate the effectiveness of our approach
on the PolyMNIST and the CUBICC datasets. In the latter, introduced as a realistic multimodal
clustering setting, CMVAE achieves markedly superior clustering performance compared to both
scalable weakly-supervised methods and unimodal approaches. Finally, by incorporating DDPMs
into our proposed model we achieve outstanding generative results, previously unseen in multimodal
VAEs, significantly boosting the applicability and relevance of our method in real-world scenarios.

Limitations and future work: While DDPMs are crucial for high-quality generations, their in-
tegration results in a computational overhead both at training and at inference time. Indeed, each
modality needs to be modeled by a distinct diffusion process as the different modalities may have
varying input dimensions and different features. However, simplification is feasible when the modal-
ities share the same input space, by conditioning a single DDPM on the different modalities. While
we proved the effectiveness of our approach on challenging semi-synthetic and realistic datasets, the
application to a real-world dataset with a large number of modalities is a main focus for future work.
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A CMVAE OBJECTIVE AS LOWER BOUND ON THE LOG-EVIDENCE

Lemma A.1. The CMVAE objective is a valid lower bound on log pΘ(X).

Proof. We can prove the proposed CMVAE objective is a valid ELBO using arguments from the
proof of Lemma 1 from Palumbo et al. (2023). As described in Section 3.1, we assume the data
X = x1, . . . ,xM for M modalities is generated according to the following process,

pΘ(X,W , z, c) = pπ(c)p(z|c)
M∏
m=1

pθm(xm|wm, z)p(wm),

where the latent variables c, z encode cluster assignment and shared information across modalities
respectively. Modality-specific latents w1, . . . ,wM encode private information for the correspond-
ing modality. Note that shared and modality-specific latents are assumed to be independent. To
obtain a tractable lower bound on the log-evidence log pΘ(X), we start by approximating posterior
inference for z, c with an encoder qΦz (z, c|X). In line with our assumptions for the generative
model, we assume the encoder qΦz (z, c|X) to factorize as qΦz (z, c|X) = qΦz (z|X)q(c|z,X).
To achieve scalability in the number of modalities, as in previous works (Shi et al., 2019; Palumbo
et al., 2023), we assume a mixture-of-experts encoder for the shared latent code z of the form
qΦz (z|X) = 1

M

∑M
m=1 qϕzm

(z|xm). Hence, we can derive the following ELBO

log pΘ(X) ≥ E q(c|z,X)
qΦz (z|X)

[
log

pΘ(X, z, c)

qΦz (z|X)q(c|z,X)

]
(11)

=
1

M

M∑
m=1

E q(c|z,X)
qϕzm

(z|xm)

[
log

pΘ(X, z, c)

qΦz (z|X)q(c|z,X)

]
(12)

=
1

M

M∑
m=1

E q(c|z,X)
qϕzm

(z|xm)

[
log

pπ(c)p(z|c)
∏M
m=1 pθm(xm|z)

qΦz (z|X)q(c|z,X)

]
, (13)

which is a sum indexed by the unimodal encoders, where for each term a given unimodal encoder
is used for inference. Now, as in (Palumbo et al., 2023), we adopt two different estimators for the
self-reconstruction likelihood term pθm(xm|z), i.e. reconstruction of modality used for inference,
and cross-reconstruction likelihood terms pθn(xn|z), i.e. reconstruction of modalities not used for
inference. Specifically, we estimate log pθm(xm|z) adopting an encoder qϕwm

(wm|xm) for the
private latents leading to the lower bound

log pθm(xm|z) ≥ Eqϕwm
(wm|xm)

[
log

pθm(xm|wm, z)p(wm)

qϕwm
(wm|xm)

]
. (14)

In contrast, to estimate cross-reconstruction likelihoods, we adopt the lower-bound

log pθn(xn|z) = logEw̃n∼rn(wn)pθn(xn|z, w̃n) ≥ Ew̃n∼rn(wn) log pθn(xn|z, w̃n), (15)

which uses an auxiliary prior distribution rn(wn) specific to each target modality, and is derived by
the definition of conditional expectation and Jensen’s inequality.

Plugging the derived expressions in (14) and (15) in Equation (13), recovers the CMVAE objective
in (1). The fact that (13) is an ELBO and (14) and (15) are lower bounds proves that the CMVAE
objective is a valid ELBO. Note a β hyperparameter can be plugged in as in (1) to weight latent
space regularization.

B ADDITIONAL CLUSTERING RESULTS FOR CMVAE AND A DEEPER LOOK
INTO POST-HOC SELECTION OF OPTIMAL CLUSTERS

In this section, we show additional clustering results for CMVAE on PolyMNIST and CUBICC, with
a specific focus on two aspects: the entropy-based post-hoc selection of latent clusters described in
Section 3.2 and clustering performance when modalities are missing at test time. In particular, as we
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mentioned in Section 2, the efficient handling of missing modalities separates recent advancements
in the class of multimodal VAEs from early approaches. In this section we further elaborate on the
importance of these features for multimodal clustering models.

More results for post-hoc selection of optimal latent clusters Figure 9 complements the results
shown in Figure 5a, by displaying generation results from selected clusters, at different steps of
our proposed post-hoc procedure, along with the associated values for entropy of posterior cluster
assignments with likelihood penalization. The plot showcases how the minimal value for penalized
entropy corresponds to true clusters being modeled in the latent space. In contrast, when K is over-
specified certain true clusters are modeled by two or more latent clusters. Finally, when necessary
clusters to model the data are pruned, uncertainty in cluster assignments augments, leading to an
increase in penalized entropy.

Post-hoc selection of optimal latent clusters in a realistic setting Figure 10 showcases the cor-
responding quantitative analysis presented in Figure 5 for PolyMNIST on the CUBICC dataset. As
such, the results in this section complement those shown in Section 4.3, demonstrating the effec-
tiveness of our proposed entropy-based latent cluster selection procedure also in a realistic scenario.
In particular, we train CMVAE on CUBICC with K = 35 latent clusters, as assumed in our ex-
periments, and Figure 10a illustrates the trend of our proposed entropy-based criterion as the latent
clusters are pruned on the CUBICC dataset. As explained in Appendix D.1, this represents a com-
plex and realistic setting where intra-cluster variability can make it challenging to identify the latent
clusters within the data. In spite of this, our post-hoc procedure consistently recovers the true num-
ber of clusters, which are accurately modeled in the latent space, with only minor variations across
five independent runs. Similar to Figure 5, the trends shown for test NMI, ARI, and accuracy in
Figure 10a, Figure 10b and Figure 10c respectively confirm that our procedure not only identifies
the correct number of clusters, but also a minimal set of latent clusters necessary to correctly model
the data.

CMVAE clustering performance varying number of modalities present at test time In this
section, we analyze the clustering performance of CMVAE on PolyMNIST, varying the number of
modalities available for inference. As mentioned in Section 2, scalability in the number of modal-
ities is a crucial feature of our proposed approach, setting it apart from alternative methods (e.g.
MultiVAE (Xu et al., 2021), XDC (Alwassel et al., 2020)). From the results in Figure 8 and Table 3
we can draw the following important conclusions. First, as more modalities are present for infer-
ence, CMVAE clustering performance improves. While this aspect might be easily overlooked, it is
crucial that for successful multimodal learning, particularly for the successful performance of mul-
timodal VAEs, adding modalities does not degrade model performance (Shi et al., 2019; Palumbo
et al., 2023).

Moreover, we report an additional comparison to validate the importance and effectiveness of clus-
tering in the presence of weak-supervision. Specifically, we train VaDE (Jiang et al., 2017) on the
MNIST dataset and compare the results with the ones obtained with CMVAE when a single modal-
ity is present at test time. In fact, a single modality of the PolyMNIST dataset essentially presents
a slightly more challenging version of the MNIST dataset, where instead of grayscale images, the
background is a random crop from a given colored image (Sutter et al., 2021). Notably, CMVAE’s
clustering performance when tested on a single PolyMNIST modality surpasses that of VaDE trained
(and tested) on the grayscale MNIST dataset, where we control for latent space regularization, and
VaDE is trained with the correct number of latent clusters, namely 10. This, despite the slightly
more challenging nature of a PolyMNIST modality compared to grayscale MNIST. This indicates
that weak supervision during training can be beneficial even when testing is done on a single modal-
ity.
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Figure 9: Generated qualitative examples of the clustering capabilities of CMVAE on PolyMNIST
dataset. Each column corresponds to the generated samples of one of the five modalities, while each
row reports generation results for a different latent cluster.
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Figure 8: CMVAE clustering results in terms of test NMI (a), ARI (b), and accuracy (c) on PolyM-
NIST, varying the number of modalities present at test time. Results for five independent runs are
shown.

# modalities Accuracy ARI NMI

5 0.985 (0.01) 0.969 (0.02) 0.971 (0.02)

4 0.977 (0.01) 0.952 (0.02) 0.955 (0.01)

3 0.962 (0.01) 0.920 (0.02) 0.924 (0.01)

2 0.949 (0.01) 0.893 (0.03) 0.900 (0.02)

1 0.900 (0.02) 0.790 (0.03) 0.807 (0.02)

Accuracy ARI NMI

VaDE
MNIST grayscale

0.739 (0.07) 0.619 (0.07) 0.688 (0.04)

CMVAE
PolyMNIST

single modality

0.900 (0.02) 0.790 (0.03) 0.807 (0.02)

Table 3: Left: CMVAE clustering results trained on PolyMNIST, varying the number of modalities
present at test time. Right: Comparison of CMVAE trained on PolyMNIST when a single modality
is present at test time, and VaDE trained (and tested) on the grayscale MNIST dataset.
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Figure 10: Post-hoc optimal latent cluster selection with the procedure in Algorithm 1 on the CU-
BICC dataset. (a) Evolution of the entropy term (y-axis) as clusters (x-axis) are pruned.The minimal
entropy recovers the true number of clusters with only minimal variations. The trends for test NMI
(b), ARI (c) and accuracy (c) support the validity of our procedure, showing the procedure selects a
minimal set of latent clusters to correctly model the true data clusters.

C ADDITIONAL QUALITATIVE RESULTS FOR CONDITIONAL AND
UNCONDITIONAL GENERATION

In this section, we report qualitative results for CMVAE to complement the quantitative analysis
in Figure 3. We do this by providing qualitative examples for both unconditional and conditional
generation in Figure 12 and Figure 11, respectively. In particular, here as in Section 4.1 we report
generations using CMVAE trained with β = 2.5, without resorting to the D-CMVAE extension, for
a fair comparison with alternative multimodal VAEs tested. Importantly, these results are in line
with our quantitative results in Figure 12, in particular the high semantic coherence in unconditional
generation, which separates our model from previous approaches is evident. To have a qualitative
comparison with the other models reported in Figure 3, we refer to Appendix G.1 in the work of
Palumbo et al. (2023). In Figure 13, we show conditional generation results on PolyMNIST when
adopting D-CMVAE, which boosts generative quality while at the same time generative coherence
is preserved.

(a) modality 2 (b) modality 3 (c) modality 4 (d) modality 5

Figure 11: Conditional generation from the first modality to the remaining ones for CMVAE trained
with β = 2.5 on the PolyMNIST dataset. In each image, on the top row are starting samples, and
below ten instances of conditional generation for the corresponding target modality. Qualitative
results complement the analysis in Figure 3.
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(a) modality 1 (b) modality 2 (c) modality 3

(d) modality 4 (e) modality 5

Figure 12: Uncondtional generation for CMVAE traind with β = 2.5 on the PolyMNIST dataset.
A hundred instances across modalities are shown. Qualitative results complement the analysis in
Figure 3.

Figure 13: D-CMVAE conditional generation on the PolyMNIST dataset: on the top row are the
starting samples from the first modality and on the four remaining rows are the conditional genera-
tions in the remaining modalities.

In Figure 14, we show CMVAE unconditional generations on the CUBICC dataset, jointly generat-
ing images and captions. As expected, the results show high coherence across the two modalities.
Also, as quality of the images in VAE generations is somehow limited, so is quality of text, which
could be improved in future work. However, these results favourably compare to related results
from recent work (Palumbo et al., 2023). Finally, we perform an ablation on the D-CMVAE model
and test the generative performance by conditioning the reverse diffusion process on only the self
reconstructions of CMVAE. As can be seen in Figure 15, this produces sub-optimal generative re-
sults. The integration of the cross-modal reconstructions in the training procedure is crucial to obtain
high-quality generations.

Figure 14: Six instances of CMVAE unconditional generation on the CUBICC dataset, where we
jointly generate images and captions. We do not employ D-CMVAE in these results.
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Figure 15: D-CMVAE random generations of CUBICC data by conditioning the reverse diffusion
process on only the self reconstructions of CMVAE. This results in sub-optimal generative quality.

D DETAILS ON DATASETS, METRICS AND IMPLEMENTATION

D.1 DATASETS

In this section, we provide detailed information about the datasets used in this work. The first
dataset we use is the PolyMNIST dataset (Sutter et al., 2021), a semi-synthetic yet challenging
dataset consisting of five image modalities: each modality depicts MNIST (LeCun et al., 2010) digits
patched on random crops from five distinct background images, one for each modality. Figure 2a
showcases some illustrative samples from the dataset. Note that the digit label is the only shared
information across modalities, while the background features and the handwriting style differ across
modalities in each data point.

As a second experimental setting, we introduce a modified version of the CUB Image-Captions
dataset (Wah et al., 2011; Shi et al., 2019). This dataset originally consists of images of birds
paired with corresponding descriptive captions. Our version, named the CUB Image-Captions for
Clustering (CUBICC) dataset, serves as a benchmark for evaluating multimodal clustering methods
under more realistic conditions. To create this dataset, we grouped sub-species of birds into a single
species category, as illustrated in Figure 16. As a result, the CUBICC dataset consists of eight
classes, each representing a different bird species. The grouping of sub-species into a single class
introduces significant variability within each class, posing a considerable modeling challenge.

Figure 16: CUBICC dataset structure. Bird sub-species are grouped together in a single category.

D.2 IMPLEMENTATION DETAILS

To implement all multimodal VAEs (Wu & Goodman, 2018; Shi et al., 2019; Sutter et al., 2020;
2021; Hwang et al., 2021; Palumbo et al., 2023) included in Section 4.1 for comparison in terms of
generative performance we follow the same settings as in Palumbo et al. (2023) for training these
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models on the PolyMNIST dataset and get best performance. In particular, we use the same ResNet
encoder and decoder networks for all compared models. CMVAE is trained for 250 epochs on
this dataset, with 1e−3 learning rate. As done for MMVAE+, again following the original work of
Palumbo et al. (2023), we set both the number of dimensions for the shared and modality-specific
latent subspaces of CMVAE to 32 for experiments on PolyMNIST. To train CMVAE on the CU-
BICC dataset, we use ResNet and convolutional encoder/decoder networks for the image and text
modalities respectively. As in Palumbo et al. (2023), on this dataset we use a 10-sample estimator in
our CMVAE ELBO objective and resort to the DReG estimator for gradients (Tucker et al., 2019).
Again, we train the model for 250 epochs. We set 64 dimensions and 32 dimensions for shared and
modality-specific latent spaces respectively. For the methods reported as baseline comparisons for
clustering tasks, we ensure compatibility with the encoder networks and shared latent space size
adopted by CMVAE for a fair comparison. For more details see also Appendix E.2. We follow
best practices in their original work for training, but without resorting to any pre-training procedures
(for e.g. VaDE (Jiang et al., 2017)), again for a fair comparison with CMVAE. On PolyMNIST and
CUBICC, CMVAE is trained with K = 40 and K = 35 respectively, before the post-hoc procedure
described in Section 4.2 is applied. Experimental results across the paper are reported averaging
over five independent seeds and we report standard deviations, with the exception of results in Fig-
ure 3 and Table 4 where we use three independent seeds. In our clustering experiments for both
PolyMNIST and CUBICC datasets we have independent training, validation, and test splits. For
PolyMNIST there are 60000 samples for training, 5000 samples for validation, and 5000 samples
for testing. For CUBICC, we have 11834 training, 638 validation, and 659 test samples. With CM-
VAE, we perform the post-hoc procedure described in Section 4.2 for optimal cluster selection on the
validation datasets for both experiments, while clustering results for all models are always reported
on the test set. We share the code for our model at https://github.com/epalu/CMVAE.

D.3 METRICS

Consistently with previous work (Sutter et al., 2021; Daunhawer et al., 2022; Hwang et al., 2021;
Palumbo et al., 2023), to assess generative quality in our experiments, we resort to the FID score
Heusel et al. (2017), which is a well-established metric that has been shown to correlate well with
human judgement. Moreover, again consistently with previous work (Shi et al., 2019; Palumbo et al.,
2023), we assess generative coherence for our comparisons on the PolyMNIST dataset resorting to
the usage of M pre-trained digit classifiers, each one trained on a given modality. In particular,
to evaluate m1 → m2 generative coherence, where m1,m2 are two distinct modalities, we feed
conditionally generated samples using m1 as input and m2 as target modality, to the pre-trained
digit classifier trained on modality m2. Then we compute the rate with which the given classifier
predicts the correct label, i.e., the label from the input samples from modality m1. Finally, to obtain
a single metric, we average results for conditional coherence across target and input modalities.
To assess generative coherence for unconditional generation, we feed generated samples for each
modality to the corresponding pre-trained classifier and compute the rate with which the predicted
label matches across all modalities.

E ADDITIONAL AND EXTENSIVE QUANTITATIVE RESULTS

E.1 QUANTIATIVE RESULTS OF GENERATIVE PERFORMANCE OF MULTIMODAL VAES

Table 4 provides a summary of generative performance, including both average and corresponding
standard deviation, derived from three independent runs for the multimodal VAEs illustrated in
Figure 3. Both conditional and unconditional generation performance across different values of the
regularization hyperparameter β are reported.
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β = 1.0 Unconditional Conditional

FID Coherence FID Coherence
MVAE 50.65 (0.72) 0.007 (0.001) 82.59 (6.22) 0.093 (0.009)

MVTCAE 110.85 (2.61) 0.000 (0.000) 58.98 (0.62) 0.509 (0.006)

mmJSD 179.76 (2.97) 0.054 (0.011) 209.98 (1.26) 0.785 (0.023)

MoPoE-VAE 98.56 (1.32) 0.037 (0.002) 160.29 (4.12) 0.723 (0.006)

MMVAE 165.17 (3.40) 0.222 (0.019) 152.11 (4.11) 0.837 (0.004)

MMVAE+ 86.64 ( 1.04) 0.095 (0.020) 80.75 (0.18) 0.796 (0.010)

CMVAE 78.52 (0.63) 0.560 (0.025) 74.53 (0.64) 0.806 (0.009)

β = 2.5 Unconditional Conditional

FID Coherence FID Coherence
MVAE 58.53 (0.12) 0.080 (0.006) 85.23 (9.37) 0.298 (0.044)

MVTCAE 87.07 (0.89) 0.003 (0.000) 62.55 (1.30) 0.591 (0.004)

mmJSD 180.55 (8.67) 0.060 (0.010) 222.09 (5.34) 0.778 (0.003)

MoPoE-VAE 107.11 (0.780) 0.141 (0.005) 178.27 (2.01) 0.720 (0.008)

MMVAE 164.71 (3.17) 0.232 (0.010) 150.83 (2.69) 0.844 (0.010)

MMVAE+ 96.01 (2.10) 0.344 (0.013) 92.81 (0.78) 0.869 (0.013)

CMVAE 85.68 (0.66) 0.781 (0.021) 85.12 (0.75) 0.897 (0.003)

β = 5.0 Unconditional Conditional

FID Coherence FID Coherence
MVAE 61.25 (0.40) 0.112 (0.010) 90.37 (3.20) 0.301 (0.024)

MVTCAE 85.43 (2.80) 0.029 (0.001) 74.61 (3.41) 0.604 (0.004)

mmJSD 186.49 (2.89) 0.076 (0.018) 226.20 (2.91) 0.784 (0.029)

MoPoE-VAE 122.68 (1.96) 0.238 (0.001) 182.99 (1.96) 0.673 (0.002)

MMVAE 164.29 (2.97) 0.229 (0.017) 152.11 (3.18) 0.839 (0.010)

MMVAE+ 109.08 (1.41) 0.421 (0.006) 107.78 (0.88) 0.836 (0.023)

CMVAE 103.95 (0.16) 0.775 (0.024) 102.36 (0.83) 0.882 (0.010)

Table 4: Conditional and unconditional generative performance of multimodal VAEs across different
values of hyperparameter β.

E.2 BASELINE MODELS IN CLUSTERING EXPERIMENTS

In this section, we report further results for the baseline methods we include in our clustering ex-
periments. Specifically, we compare our proposed CMVAE with existing unimodal clustering ap-
proaches, namely VaDE (Jiang et al., 2017) and DeepCluster (Caron et al., 2018), as well as with
weakly-supervised multimodal approaches, namely XDC (Alwassel et al., 2020) and CMC (Tian
et al., 2020). The reported results in the main text correspond to giving as input the true a-priori
number of clusters to the model. In particular for the unimodal approaches, we select the best per-
formance across all modalities. It is important to note that all these methods require a pre-specified
value for the number of clusters K, unlike CMVAE. On PolyMNIST, we test these models using
K = 100, K = 40, and K = 10. The rationale behind this choice is as follows: testing with
K = 40 allows for a fair comparison with CMVAE, which is trained with K = 40 in our PolyM-
NIST experiments, providing a fair and realistic scenario where prior information on the true number
of clusters is unavailable. Furthermore, we evaluate these methods with K = 100 to give them a
large modeling capacity. Finally, we explore a facilitated setting where the true number of clusters
K = 10 is given for training. Similarly, in the CUBICC dataset, we evaluate all corresponding
baseline methods with K = 100, K = 35, and K = 8 clusters, following the same rationale as in
the PolyMNIST experiment.

E.2.1 POLYMNIST EXPERIMENT

Unimodal approaches Here we present the results for the unimodal clustering approaches on the
PolyMNIST dataset. We evaluate VaDE using different values of the regularization hyperparameter
β in the VAE objective, specifically 1.0, 2.5, and 5.0, selecting the value corresponding to best
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performance for our comparisons in the main text. The results for these approaches trained on each
modality are reported in Table 5. Values reported in the main text are underlined.

PolyMNIST: Unimodal clustering

m0 m1 m2 m3 m4

VaDE

β=1.0
NMI 0.031 (0.01) 0.123 (0.05) 0.013 (0.01) 0.391 (0.04) 0.004 (0.00)

ARI 0.011 (0.00) 0.074 (0.03) 0.005 (0.01) 0.313 (0.04) 0.000 (0.00)

Acc 0.147 (0.01) 0.231 (0.04) 0.130 (0.01) 0.500 (0.05) 0.120 (0.00)

β=2.5
NMI 0.025 (0.01) 0.154 (0.05) 0.008 (0.01) 0.431 (0.04) 0.007 (0.00)

ARI 0.010 (0.01) 0.094 (0.03) 0.002 (0.00) 0.364 (0.04) 0.002 (0.00)

Acc 0.141 (0.01) 0.262 (0.04) 0.124 (0.01) 0.544 (0.05) 0.127 (0.00)

β=5.0
NMI 0.031 (0.02) 0.101 (0.06) 0.035 (0.04) 0.415 (0.09) 0.004 (0.00)

ARI 0.014 (0.01) 0.054 (0.03) 0.018 (0.02) 0.355 (0.10) 0.000 (0.00)

Acc 0.145 (0.02) 0.208 (0.04) 0.147 (0.03) 0.538 (0.10) 0.120 (0.00)

DeepCluster

K=10
NMI 0.023 (0.01) 0.038 (0.02) 0.023 (0.01) 0.122 (0.02) 0.006 (0.00)

ARI 0.009 (0.01) 0.015 (0.01) 0.010 (0.01) 0.079 (0.02) 0.002 (0.00)

Acc 0.140 (0.01) 0.125 (0.06) 0.143 (0.013) 0.258 (0.04) 0.124 (0.00)

K=35
NMI 0.089 (0.01) 0.132 (0.03) 0.076 (0.02) 0.141 (0.02) 0.013 (0.00)

ARI 0.024 (0.00) 0.047 (0.01) 0.023 (0.01) 0.051 (0.01) 0.001 (0.00)

Acc 0.096 (0.00) 0.138 (0.01) 0.100 (0.02) 0.145 (0.01) 0.060 (0.00)

K=100
NMI 0.163 (0.02) 0.210 (0.03) 0.105 (0.02) 0.180 (0.02) 0.033 (0.00)

ARI 0.026(0.00) 0.039 (0.01) 0.014 (0.09) 0.031 (0.01) 0.001 (0.00)

Acc 0.069 (0.01) 0.088 (0.01) 0.054 (0.01) 0.081 (0.01) 0.031 (0.00)

Table 5: Baseline results for unimodal clustering on PolyMNIST dataset. Including ablation of β
for VaDE and number of clusters for DeepCluster. Mean and standard deviation of five independent
runs are reported. The underlined results correspond to those reported in Table 2 in the main text.

Multimodal approaches In addition, we present results on the multimodal benchmarks. XDC is
designed for two modalities and it does not directly scale to a larger number of modalities, hence,
we do not include it in the main text, but we show it here for reference. To adapt XDC for PolyM-
NIST, we select uniformly at random which other modality to extract the pseudo-labels from at each
iteration. Nevertheless, its low performance highlights that the method is not properly scalable. The
second baseline, CMC, is a contrastive-based approach for multi-view representation learning. To
evaluate its clustering capabilities, we train an instance of K-means on the embedding space. As
discussed in Section 4.2, the high performance of CMC on PolyMNIST is on par with our proposed
CMVAE. However, this performance is obtained only when the model has a-priori knowledge of the
number of clusters, which is not realistic in practice. Particularly, in Table 6 we can see how without
a-priori information, i.e. K being 40 as in CMVAE, CMC performance decreases significantly and
is no-longer on par with CMVAE. For this analysis, we explore values of K 10, 20, 35, 40, and 100
to illustrate how such high performance is only attainable with an oracle-informed a-priori K. For
both CMC and XDC, the final metrics are reported in Table 6 after averaging the embedding space
generated by each modality and clustering using K-means on the average space. The results used in
the main text are underlined in Table 6 .
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PolyMNIST: Multimodal clustering

XDC

K=10
NMI 0.020 (0.01)

ARI 0.009 (0.01)

Acc 0.145 (0.01)

K=35
NMI 0.118 (0.13)

ARI 0.053 (0.05)

Acc 0.102 (0.05)

K=40
NMI 0.122 (0.07)

ARI 0.038 (0.03)

Acc 0.100 (0.02)

K=100
NMI 0.360 (0.08)

ARI 0.082 (0.02)

Acc 0.101 (0.02)

CMC

K=10
NMI 0.970 (0.01)

ARI 0.969 (0.02)

Acc 0.986 (0.01)

K=20
NMI 0.876 (0.01)

ARI 0.706 (0.02)

Acc 0.617 (0.02)

K=35
NMI 0.800 (0.00)

ARI 0.480 (0.01)

Acc 0.407 (0.01)

K=40
NMI 0.784 (0.00)

ARI 0.448 (0.01)

Acc 0.380 (0.01)

K=100
NMI 0.685 (0.00)

ARI 0.261 (0.11)

Acc 0.219 (0.09)

Table 6: Baseline results for multimodal clustering on the PolyMNIST dataset, including ablation
of the number of clusters K. Underlined results are reported in the main text.

E.2.2 CUBICC EXPERIMENT

Unimodal and multimodal approaches In this section, we present results for the clustering ap-
proaches on the CUBICC dataset. As in the PolyMNIST dataset, we examine VaDE’s performance
using different values of the β hyperparameter. We also test DeepCluster with varying K. Results
are reported in Table 7. Note that only the image modality is reported for DeepCluster, as it is a
method for image data. The multimodal results are displayed in Table 8. Unlike the PolyMNIST
dataset, CUBICC involves two modalities, aligning with XDC’s original design, which is reflected in
the performance improvement observed. In both tables, the results reported in the main manuscript
are underlined.

Latent space ablation Previous results in this experimental setting used a 64-dimensional latent
space. Here we increase the latent space size to 96 dimensions and show in Table 9 that this in-
crease in latent space capacity does not result in significant changes in performance for the reported
methods.
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CUBICC: Unimodal clustering

Image Text

VaDE

β=1.0
NMI 0.079 (0.02) 0.021 (0.00)

ARI 0.041 (0.01) 0.002 (0.00)

Acc 0.243 (0.03) 0.180 (0.00)

β=2.5
NMI 0.112 (0.03) 0.020 (0.00)

ARI 0.063 (0.02) 0.000 (0.00)

Acc 0.259 (0.02) 0.174 (0.00)

β=5.0
NMI 0.155 (0.01) 0.019 (0.00)

ARI 0.084 0.01) 0.000 (0.00)

Acc 0.269 (0.01) 0.171 (0.00)

DeepCluster

K=8
NMI 0.191 (0.01) -
ARI 0.100 (0.01) -
Acc 0.294 (0.01) -

K=35
NMI 0.247 (0.00) -
ARI 0.058 (0.00) -
Acc 0.146 (0.00) -

K=100
NMI 0.310 (0.01) -
ARI 0.035 (0.00) -
Acc 0.099 (0.01) -

Table 7: Baseline results for unimodal clustering on test images from CUBICC dataset, including
ablation of β for VaDE and number of clusters K for DeepCluster. Underlined results are the ones
reported in Section 4.2 in the main text, namely the ones corresponding to the best modality and the
best β for VaDE and to the true number of clusters for DeepCluster.

CUBICC: Multimodal clustering

XDC

K=8
NMI 0.218 (0.06)

ARI 0.109 (0.02)

Acc 0.281 (0.05)

K=35
NMI 0.262 (0.02)

ARI 0.116 (0.10)

Acc 0.224 (0.10)

K=100
NMI 0.323 (0.00)

ARI 0.035 (0.00)

Acc 0.091 (0.01)

CMC

K=8
NMI 0.374 (0.05)

ARI 0.097 (0.03)

Acc 0.310 (0.04)

K=35
NMI 0.586 (0.02)

ARI 0.313 (0.07)

Acc 0.385 (0.09)

K=100
NMI 0.556 (0.01)

ARI 0.180 (0.02)

Acc 0.211 (0.02)

Table 8: Baseline results for multimodal clustering on CUBICC dataset. Including ablation of
number of clusters. Underlined results are the ones reported in Section 4.2 in the main text.
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CUBICC: 96-dimensional latent space

Vade β=5.0
NMI 0.178 (0.01)

ARI 0.103 (0.01)

Acc 0.297 (0.00)

DeepCluster K=8
NMI 0.195 (0.02)

ARI 0.106 (0.02)

Acc 0.304 (0.02)

XDC K=8
NMI 0.246 (0.04)

ARI 0.142 (0.03)

Acc 0.339 (0.02)

CMC K=8
NMI 0.313 (0.05)

ARI 0.124 (0.12)

Acc 0.268 (0.04)

Table 9: Results of clustering baselines on a latent space of 96 dimensions for the CUBICC dataset.
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