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Abstract

Electronic Health Records (EHR) are time-series relational databases that record
patient interactions and medical events over time, serving as a critical resource for
healthcare research and applications. However, privacy concerns and regulatory
restrictions limit the sharing and utilization of such sensitive data, necessitating
the generation of synthetic EHR datasets. Unlike previous EHR synthesis meth-
ods—which typically generate medical records consisting of expert-chosen features
(e.g., a few vital signs, structured codes only)—we introduce RawMed, the first
framework to synthesize multi-table, time-series EHR data that closely resem-
bles raw EHRs. Using text-based representation and compression techniques,
RawMed captures complex structures and temporal dynamics with minimal lossy
preprocessing. We also propose a new evaluation framework for multi-table time-
series synthetic EHRs, assessing distributional similarity, inter-table relationships,
temporal dynamics, and privacy. Validated on two open-source EHR datasets,
RawMed outperforms baseline models in fidelity and utility. The code is available
at https://github.com/eunbyeol-cho/RawMed.

1 Introduction

The digitalization of medical data has accelerated the adoption of Electronic Health Records (EHR),
one of the most significant innovations in modern healthcare. EHRs systematically store various
medical events, such as prescriptions and test results, along with corresponding timestamps in a
multi-table relational database, encompassing categorical, numerical, and text data. Due to these prop-
erties, EHRs serve as a crucial resource in various medical AI studies, including clinical prediction,
information retrieval, and question answering [1, 2].

However, since EHRs contain sensitive personal information, they are subject to privacy regulations
that hinder data sharing and research applications [3]. In response, synthetic data has emerged
as a promising solution, offering a privacy-preserving alternative that can still support research
and clinical applications [4, 5]. Progress in generative models, especially Generative Adversarial
Networks (GANs) [6], has opened up new avenues for synthesizing EHR data. Early efforts primarily
generated discrete features or heterogeneous features, often overlooking the time-series aspect [7, 8].
More recent studies incorporate both time-series and heterogeneous features, gradually approaching
a closer reflection of real EHR data [9, 10, 11, 12].

Despite this progress, existing EHR synthesis studies still face the following limitations. First,
there is a high dependence on feature selection. Most approaches [9, 10, 12] typically select
only a subset of tables and columns of the entire EHR database based on domain knowledge, and
generate synthetic data exclusively for the features within those selected columns.1 While this method

1In this paper, a column denotes a raw data field in an EHR table, while a feature refers to a processed data
representation derived from one or more columns. See Appendix A.1.
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simplifies the synthesis process, it limits the usefulness of the generated data. For example, if a new
research question or analysis requires a feature that was excluded, it is impossible to build predictive
models or perform statistical analyses based on that synthetic EHR data. Morever, prior research
[13, 14, 15] suggests that models incorporating a broader range of features tend to achieve higher
predictive accuracy, implying that richer synthetic data offers wider utility and more substantial
value across various downstream tasks. Second, many existing approaches rely on complex, lossy
preprocessing steps. Techniques such as numeric binning, term normalization, and aggregation are
commonly used, but can unintentionally distort the data or obscure meaningful patterns. For instance,
aggregating lab values over time may mask sudden anomalies while binning them into discrete ranges
may oversimplify subtle trends, reducing the synthetic data’s fidelity for predictive modeling.

Table 1: Maximum number of features
and time steps across datasets for each
method. [1]: Number of features (see
Appendix A), [2]: Number of time steps,
[3]: Uses all columns, [4]: Preserves
original values.

Method [1] [2] [3] [4]

[9] 98 24 × ×
[10] 90 50 × ×
[11] 5,373 48 × ×
[12] 15 276 × ×
RawMed 333,524 243

√ √

To address these challenges, our framework, RawMed, syn-
thesizes raw EHRs, multi-table time-series data that pre-
serve all columns and original values in their database
form, as illustrated in Figure 1. To implement this ap-
proach, RawMed adopts a text-based method, treating EHR
data as text to retain original values without additional
transformations (e.g., binning, aggregation, or term nor-
malization). This not only reduces the risk of data distor-
tion, but also makes our method generalizable to various
EHR data with different database schemas. However, as
time-series data becomes longer, its textual representation
typically grows even longer due to subword tokenization,
leading to a significant increase in computational complex-
ity.

To mitigate this, we employ Residual Quantization [16] to compress textualized time-series data,
enabling autoregressive modeling in a compressed latent space. This reduces sequence length and
computational complexity, allowing RawMed to handle multi-table EHR datasets with numerous
columns. Consequently, our framework generates raw EHRs with extensive features and time steps
surpassing most existing methods (Table 1). Our key contributions are summarized as follows:

1. First multi-table and time-Series EHR generation. This study introduces RawMed, the first
framework for generating raw multi-table time-series EHRs, preserving all columns and original
values, and demonstrating the method’s feasibility with three primary tables.

2. Novel evaluation framework for synthetic raw EHRs. Unlike prior work that synthesizes only a
subset of features, RawMed generates all elements of raw EHRs, making the quality assessment
more challenging. We propose a comprehensive evaluation framework encompassing low-order
statistics, downstream utility, multi-table interactions, time-series fidelity, and privacy protection.

3. Open-source validation and code release. We validated RawMed on two open-source EHR
datasets, confirming its effectiveness, and plan to release all source code to support further research
in synthetic EHR generation.

2 Related work

2.1 EHR data generation

Early research on EHR synthesis primarily focused on generating single data types (e.g., diagnostic
codes) using generative models such as GANs and VAEs. Subsequent studies explored mixed data
types or incorporated time-series continuity [17, 18, 19, 20, 21, 22]. However, relatively few studies
have addressed both the temporal dynamics and heterogeneous nature of EHR data simultaneously,
a gap that has only recently started to gain attention. For example, EMR-M-GAN [9] pioneered a
GAN-based approach for mixed-type time-series EHR data, using a Dual-VAE and Coupled Recurrent
Network (CRN) to capture inter-feature correlations and temporal dynamics. EHR-Safe [10] also
adopted a GAN-based framework designed to handle real-world EHR complexities comprehensively,
including missing data, diverse feature types, and both static and time-varying attributes. FLEXGEN-
EHR [11] integrated static and time-series data, focusing on missing values via optimal transport.
TIMEDIFF [12] introduced a hybrid diffusion model capable of generating both continuous and
discrete time-series data concurrently. To the best of our knowledge, no existing studies utilize all
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Figure 1: Conceptual overview of the RawMed pipeline. Left: Real-world EHR data. Center: Data
generation process. Right: Resulting synthetic data. The bottom illustrates conventional approach
focused on feature selection and domain-specific engineering, while the top illustrates RawMed, which
minimizes domain-dependent preprocessing to generate raw EHR-like data, thereby enhancing user
flexibility and utility.

columns from the original EHR database tables. Instead, they rely on a subset of features deemed
important by the researchers, and heavily preprocess (e.g., numerical binning, aggregation) the
original EHR data to train the generative model.

2.2 Text-based approaches for tabular data generation

With the rapid progress of NLP, studies have emerged that convert tabular data into textual form
for generation purposes [23, 24]. This text-based approach offers several advantages: it minimizes
complex preprocessing, preserves original values without information loss, and leverages the pre-
trained knowledge of language models. Such benefits are particularly evident for datasets like EHRs,
which often follow varying database schemas and require substantial preprocessing. Nevertheless,
most existing research on tabular data synthesis focuses on single-table settings [23, 24], with
comparatively few studies addressing relational database [25] and no studies synthesizing time-series
relational database. Moreover, converting tabular data into text increases the length of each row due
to subword tokenization, potentially inflating training and inference costs. To mitigate this, RawMed
builds on text-based representations but compresses textualized data, enabling efficient autoregressive
modeling in a latent space. This approach reduces computational cost while preserving the fidelity of
raw, multi-table time-series EHRs across diverse database schemas.

3 Method

RawMed is a framework for synthesizing multi-table time-series EHRs, capturing complex patient
trajectories with minimal lossy preprocessing. Its architecture supports heterogeneous data type
and varying event counts using text-based event representation, with two modules: (1) event-level
compression for compact event encoding and (2) temporal inter-event modeling for dynamic temporal
relationships. This design enables precise synthesis of large-scale raw EHR datasets.

3.1 Data representation and notation

When admitted to a hospital, patients typically undergo a series of clinical events, such as laboratory
tests and medication administrations, which are recorded as individual rows in relational tables (e.g.,
lab, medication). Each table includes columns such as timestamp indicating when the event occurred,
item identifying a specific clinical measurement (e.g., glucose) or a drug name (e.g., propofol), and
value (e.g., 95) and uom (unit of measure, e.g., mg/dL) for event details. By ordering these events
chronologically, a patient’s clinical trajectory is represented as a time-ordered sequence.

3



Formally, for a patient p ∈ P , the event sequence is Sp = [ep1, e
p
2, . . . , e

p
np ], where np is the number of

events. Each event epi consists of a timestamp tpi , representing time elapsed since hospital admission,
an event type ϵpi (e.g., lab), and a set of column-value pairs api = {(cj , vj) | j = 1, . . . ,mϵpi }, where
cj is the column name, vj its textualized value, and mϵpi the number of columns for event type ϵpi .
Although the timestamp is a column in the relational table, we isolate tpi from api to highlight its role
in temporal ordering.

To create a textual representation, we serialize each event by concatenating the table name ϵpi , followed
by column names and their values, excluding null-valued columns. For example, an event from
the lab table with api = {(item, “Glucose”), (value, “95”), (uom, “mg/dL”)} is serialized as “lab
item Glucose value 95 uom mg/dL”. Thus, an event is denoted as epi = (tpi , x

p
i ), where xp

i is the
serialized text string. Then xp

i is tokenized, padded or truncated to a fixed length L (typically 128),
and embedded to xp

i ∈ RL×F . Given the high dimensionality of these embeddings, compression
is essential to model the entire patient sequence Sp, a challenge also addressed in the context of
text-based EHR embeddings [26].

3.2 Compressing event representations

To address this, RawMed compress the event text embedding xp
i ∈ RL×F , where L is the number

of tokens and F is the embedding dimension, into a discrete latent representation zpi ∈ RLz×Fz ,
where Lz is the latent sequence length and Fz is the latent embedding dimension. We adopt neural
network-based compression methods, Vector Quantized Variational AutoEncoders (VQ-VAE) [27]
and Residual Quantization (RQ) [16], implemented with 1D convolutional neural networks (CNNs).

Encoder and quantization The encoder Enc transforms xp
i into ẑpi = Enc(xp

i ) ∈ RLz×Fz ,
consisting of Lz latent vectors. Each latent vector, denoted ẑ ∈ RFz for simplicity, is quantized to
z ∈ RFz by assigning it to the nearest entry in the codebook C = {(k, lut(k)) | k = 1, . . . ,K},
where lut(k) ∈ RFz is the embedding for index k.2 The quantization is defined as:

VQ(ẑ;C) = argmin
k∈[K]

∥ẑ− lut(k)∥22, z = lut
(
VQ(ẑ;C)

)
.

Thus, the quantized latent representation zpi ∈ RLz×Fz comprises Lz number of z vectors. To
enhance the expressiveness of the representation, Residual Quantization (RQ) decomposes each latent
vector ẑ ∈ RFz from ẑpi into multiple quantized components. Specifically, RQ represents ẑ as a tuple
of indices and composes it as:

RQ(ẑ;C,D) = (k1, . . . , kD) ∈ [K]D, z =

D∑
d=1

lut(kd),

where D is the quantization depth (i.e., D=1 for VQ). The RQ process initializes the residual vector as
r0 = ẑ. For each depth d = 1, . . . , D, it quantizes the residual to obtain an index kd = VQ(rd−1;C)

and computes the next residual as rd = rd−1 − lut(kd). Partial sums z(d) =
∑d

m=1 lut(km) yield
increasingly refined approximations, with z = z(D).

Decoder and loss function The decoder Dec reconstructs the original embedding as x̂p
i = Dec(zpi ).

The model is trained by minimizing a combination of the reconstruction loss ∥xp
i − x̂p

i ∥22 and the
commitment loss. The loss of commitment encourages Enc(x) to remain close to z used during
quantization. Details on architecture and training are provided in Appendices D.1 and E.

3.3 Temporal modeling between events

To model temporal relationships between events epi , we transform the patient’s trajectory Sp by
replacing each event’s text embedding xp

i with its compressed representation zpi . Each zpi is mapped
to a sequence of Lz ·D discrete indices kpi ∈ [K]

Lz×D, forming the compressed trajectory Sp
quantized =

[(tpi , k
p
i ) | i = 1, . . . , np], where tpi is the timestamp of the i-th event.

2The function lut refers to a look-up table that maps indices to their corresponding embeddings.
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Time tokenization Each timestamp tpi is tokenized into a fixed-length sequence of Lt digits,
denoted τpi ∈ {0, 1, . . . , 9}Lt . With a 10-minute resolution, tpi is divided by 10 and decomposed into
its tens, hundreds, and (if needed) thousands digits (e.g., 720 minutes becomes [7, 2]). This provides
explicit temporal context alongside event content.

Sequence representation and autoregressive modeling Each event (τpi , k
p
i ) is represented as a

block of tokens, combining the Lt time tokens from τpi with the Lz ·D flattened indices from kpi .
Concatenating these blocks yields a unified sequence:

Sp
quantized = [τp1 , k

p
1 , τ

p
2 , k

p
2 , . . . , τ

p
np , k

p
np ],

with a total length of np × (Lt + Lz · D). This sequence integrates temporal and event-based
information, enabling modeling temporal dependencies effectively. We use a Transformer-based
model, TempoTransformer, to autoregressively predict each token based on its predecessors. The
training objective minimizes the negative log-likelihood:

LAR = −
∑
p∈P

|Sp
quantized|∑
i=1

logP (spi | s
p
1, . . . , s

p
i−1),

where spi denotes the i-th token in Sp
quantized, and P (spi | ·) is the probability of predicting token spi

given all preceding tokens.

3.4 Data sampling and postprocessing

Synthetic patient trajectories are generated by autoregressively sampling token sequences using the
trained TempoTransformer with Top-k sampling. Each synthetic sequence S̃p interleaves time
tokens τpi and event tokens kpi . Sampling is constrained to ensure structural integrity: the first Lt

tokens per block, representing time, are sampled from the time token vocabulary [0, 9], while the
subsequent Lz ·D event tokens are sampled from the event token vocabulary [K], with invalid token
probabilities masked. Next, the event tokens are mapped to latent representations z̃pi via codebook C,
decoded by Dec into text embeddings x̃p

i , and converted to text (e.g., lab item Glucose value 95 uom
mg/dL). Time tokens are detokenized into timestamps (e.g., [7, 2]→ 720 minutes). These text-based
events and timestamps are then converted to relational tables.

Although the generated data typically reflect the original table and column names, we observed rare
but noticeable issues such as misspelled table or column names or extraneous characters in numeric
fields. We hypothesize these errors result from both the quantization step and the autoregressive token
prediction step. To ensure accurate table construction, we apply the following postprocessing steps:
(1) Event-level verification: Each event epi is validated to ensure that it begins with a valid table name
and adheres to the column-value pair format. Misspelled column names are corrected by matching
to the closest valid name using Levenshtein distance, and extraneous characters are removed from
numeric fields. Only events that pass all checks after corrections are retained for further processing.
(2) Patient-level validation: Subsequently, any sequence Sp containing any invalid events epi are
discarded. Retained sequences are checked for temporal consistency, removing events starting from
any timestamps that do not follow chronological order or fall outside the observation window. Valid
sequences are then converted into relational tables, followed by further postprocessing to enforce
column-specific constraints (e.g., numeric ranges). These steps collectively ensure that the final tables
are structurally and semantically consistent with the expected format. Further details are provided in
Appendix D.2, and the postprocessing algorithm is outlined in Algorithm 1.

4 Experiments

4.1 Setup

Dataset In this study, we used two publicly available EHR datasets, MIMIC-IV [28] and eICU
[29]. Adhering to the GenHPF [15] framework, which utilizes all EHR features for diverse prediction
tasks, we focused on patients aged 18 years or older who had been admitted to the ICU for more
than 12 hours. Based on this framework, we integrated three time-series tables (laboratory tests,
prescriptions, and input events) from both datasets. To assess the generalizability of our approach
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across diverse clinical settings, we conducted additional experiments on the MIMIC-IV-ED [30]
emergency department dataset, with results reported in Appendix F.3. After preprocessing, the
datasets comprised 62,704 patients (about 7 million rows) from MIMIC-IV and 143,812 (about 7
million rows) from eICU, with summary statistics detailed in Table 7. The dataset was split into a 9:1
ratio, allocating 90% for training and 10% for testing. The generative model was trained exclusively
with the training data. We aimed to generate data across all columns to preserve the original dataset
as comprehensively as possible; however, we excluded columns offering no analytical value (e.g.,
subject_id, orderid). Details on exclusions are provided in Appendix B.3.

Baseline This study is the first to synthesize raw EHR data, and therefore does not share an identical
problem formulation with prior EHR synthesis research, making direct comparisons challenging.
Because existing methods rely on predetermined feature selection and complex preprocessing steps,
it is infeasible to extend them to the broader generative scope pursued in this work (i.e., all elements
in the original database structure). To provide a baseline, we adapt RealTabFormer [25], designed
for text-based relational databases rather than time-series relational databases. Built on GPT-2,
RealTabFormer is constrained by limited context length, restricting the amount of data it can process.
To address this, we concatenate time-series data in chronological order and apply QLoRA [31] to
Llama 3.1[32], rather than GPT-2 [33], allowing for longer sequences. Moreover, RealTabFormer
does not compress data but instead models it directly, effectively serving as a no-compression baseline.

Additionally, we include baselines using SDV [34] (Gaussian Copula-based), RC-TGAN [35] (GAN-
based), and ClavaDDPM [36] (diffusion-based) for multi-table generation. These methods, while
not designed for time-series multi-table data, can generate synthetic data by modeling timestamps
as standard columns within each table, as is typical in EHR database structures. However, these
approaches might struggle to capture the temporal dynamics due to their lack of explicit temporal
modeling. Appendix E.1 details the implementation and technical specifications.

4.2 Evaluation framework for synthetic multi-table time-Series EHRs

4.2.1 Existing evaluation frameworks

Evaluation of synthetic multi-table time-series data, particularly for raw EHRs, remains underex-
plored. Existing frameworks, such as SDMetrics3 and Synthcity [37], primarily focus on single-table
evaluation. In multi-table scenarios, these frameworks typically average metrics across individual
tables or merge tables into a single one, obscuring inter-table relationships and temporal dynamics
critical to EHR data. To our knowledge, no framework evaluates all components of raw multi-table
EHR data while preserving its time-series structure. To address this, we propose an evaluation
framework for RawMed that integrates standard metrics (e.g., CDE), adapts metrics to handle the
heterogeneity of raw EHRs (e.g., I-CDE), and introduces novel temporal fidelity metrics (e.g., Time
Gap and Next Event Prediction). Detailed metric formulations are provided in the Appendix C.

4.2.2 Single-table evaluation

Single-table evaluation assesses the fidelity of synthetic data within individual tables, treating each
row as an instance. To capture distributional similarities, we employ both low-order statistics and
high-order metrics.

Column-wise Density Estimation (CDE) evaluates the similarity of marginal distributions for each
column. For numeric columns, we use the Kolmogorov-Smirnov (KS) statistic (range: [0,1]), and for
categorical columns, we use the Jensen-Shannon (JS) distance (range: [0,1]), both with lower values
indicating higher similarity. In EHR data, a single column (e.g., amount column) often contains
measurements for diverse items (e.g., about 2,000 drugs), identified by the item column (e.g., itemid
or drug). To address this, Item-specific Column-wise Density Estimation (I-CDE) filters data
for specific items (e.g., creatinine), computes CDE per item, and averages the results across items
to ensure the synthetic data preserves the unique characteristics of each clinical entity for precise
item-level fidelity.

Pairwise Column Correlation (PCC) and Item-specific Pairwise Column Correlation (I-PCC)
assess inter-column dependencies in synthetic data by comparing correlation matrices of real and

3https://docs.sdv.dev/sdmetrics
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Table 2: Results of single-table evaluation on MIMIC-IV and eICU datasets. Metrics are averaged
across columns and tables for each dataset. Lower values are better, with best in bold.

MIMIC-IV eICU

Column-wise ↓ Pair-wise ↓ High-order ↓ Column-wise ↓ Pair-wise ↓ High-order ↓
Model CDE I-CDE PCC I-PCC ER SMAPE CDE I-CDE PCC I-PCC ER SMAPE

Real - - - - 15.35 60.85 - - - - 44.05 43.42
SDV 0.11 0.54 0.26 0.26 49.32 103.85 0.13 0.61 0.19 0.19 76.34 101.97
RC-TGAN 0.26 0.54 0.18 0.28 38.21 97.26 0.34 0.59 0.18 0.21 69.08 111.25
ClavaDDPM 0.06 0.22 0.08 0.27 27.91 80.02 0.06 0.26 0.07 0.19 60.36 67.83
RawMed 0.04 0.05 0.04 0.10 19.69 57.31 0.05 0.08 0.06 0.10 45.58 48.42

synthetic tables. For PCC, matrices are computed using Pearson’s correlation coefficient (range:
[−1, 1]) for numeric-numeric pairs, Theil’s U statistic (range: [0, 1]) for categorical-categorical pairs,
and correlation ratio (range: [0, 1]) for categorical-numeric pairs. The mean absolute difference (µabs)
quantifies dependency fidelity by averaging element-wise matrix differences. I-PCC extends this by
filtering data for each item, computing µabs per item’s correlation matrix, and averaging across items
for precise item-level fidelity.

For high-order dependencies, Predictive Similarity evaluates the ability of synthetic data to model
complex, non-linear dependencies in single-table data through predictive performance. An XGBoost
model is trained with each column as the target and remaining columns as inputs, with performance
evaluated on real test data. For numeric targets, we use Symmetric Mean Absolute Percentage Error
(SMAPE; range: [0,200]); for categorical targets, we use classification error rate (ER; range: [0,100]).
A smaller performance gap between models trained on synthetic data compared to those trained on
real data indicates effective capture of high-order dependencies.

4.2.3 Time-series multi-table evaluation

EHR data are typically stored across multiple tables, each containing time-series events for individual
patients. To address the complex interactions among these tables, we preserve both the original
structure and time-series aspects. Each patient identified by a primary key (e.g., stay_id), is treated as
an instance.

We evaluate the Clinical Utility of synthetic data for downstream predictive tasks in a multi-table EHR
setting. Unlike single-table data, multi-table EHR data exhibit significant variability in event types
and lengths per patient, necessitating comprehensive representations. To address this variability, we
employ two methods: GenHPF [15], which lists all events sequentially as a single textual sequence,
and MEDS-TAB [38], which aggregates events into fixed time intervals (see Appendix E.2.1 for
details). For evaluation, we define 11 clinical prediction tasks (see Table 10), and report the Area
Under the Receiver Operating Characteristic Curve (AUROC) for models trained on synthetic data
compared to those trained on real data, using real test data.

We also perform Membership Inference Attacks (MIA) [39] to evaluate privacy leakage in syn-
thetic data by measuring distances between synthetic samples and the training/test dataset to infer
membership, where successful identification indicates inadequate privacy protection.

To evaluate the temporal fidelity, we introduce two metrics: Time Gap and Event Count. Time Gap
quantifies the similarity of distributions of time gaps between consecutive events for each patient,
employing the KS statistic (range: [0,1]) on timestamps. Event Count assesses the distribution of
event counts per patient, also using the KS statistic, to evaluate whether synthetic data accurately
reflects the frequency of clinical events.

Finally, Next Event Prediction evaluates temporal sequence dynamics using an LSTM [40]-based
model to predict the next event’s item or drug name, formulated as a multi-label classification task
for concurrent events. The model is trained separately on synthetic and real data, with performance
evaluated on real test data using the F1 score, quantifying the synthetic data’s ability to capture event
sequence patterns.

5 Results
In single-table evaluations, as presented in Table 2, RawMed demonstrates superior performance across
CDE and PCC metrics. Notably, ClavaDDPM exhibits performance closer to RawMed compared to
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Table 3: Clinical utility evaluation on MIMIC-IV and eICU datasets for downstream clinical tasks.
Performance is measured by micro-averaged AUROC across 11 clinical prediction tasks (see Table 13
for individual task performance) under MEDS-TAB and GenHPF representations.

MIMIC-IV eICU

Model MEDS-TAB GenHPF MEDS-TAB GenHPF

Real 0.90±0.06 0.82±0.09 0.87±0.08 0.80±0.09

SDV 0.46±0.13 0.47±0.13 0.46±0.10 0.48±0.08

RC-TGAN 0.51±0.14 0.51±0.13 0.47±0.13 0.48±0.11

ClavaDDPM 0.68±0.19 0.64±0.17 0.66±0.14 0.63±0.12

RawMed 0.87±0.08 0.80±0.09 0.83±0.10 0.78±0.10

Table 4: Temporal fidelity and privacy evaluation on MIMIC-IV and eICU datasets. Next Event
Prediction F1 scores are averaged over three random seed runs with std. The best results are in bold.

Next Event Predict (F1) ↑ Time Gap ↓ Event Count ↓ MIA (Accuracy)

Model MIMIC-IV eICU MIMIC-IV eICU MIMIC-IV eICU MIMIC-IV eICU

Real 0.18±0.06 0.30±0.00 - - - - - -

SDV 0.05±0.01 0.13±0.00 0.76 0.50 0.46 0.36 0.499 0.502
RC-TGAN 0.02±0.00 0.07±0.01 0.43 0.39 0.04 0.03 0.500 0.500
ClavaDDPM 0.06±0.00 0.12±0.00 0.48 0.41 0.11 0.05 0.500 0.499
RawMed 0.16±0.00 0.25±0.03 0.01 0.03 0.02 0.05 0.498 0.497

SDV and RC-TGAN. However, in item-specific metrics, I-CDE and I-PCC, RawMed significantly
outperforms ClavaDDPM. This underscores RawMed’s capability to accurately preserve the character-
istics of individual clinical items. Additionally, in Predictive Similarity, RawMed achieves the lowest
SMAPE and ER among baselines, closely matching real data, demonstrating semantic consistency
with the original dataset alongside robust I-CDE and I-PCC performance. For a detailed results on
table-wise and column-wise fidelity, refer to Table 11 and 12.

In multi-table time-series evaluations, the performance disparity between RawMed and baseline
methods becomes more pronounced. For Clinical Utility, Table 3 shows RawMed’s AUROC scores
closely match real data in downstream prediction tasks, surpassing ClavaDDPM, SDV, and RC-
TGAN in both representations. Regarding temporal metrics, as shown in Table 4, RawMed excels in
replicating inter-event interval distributions (Time Gap), achieving outstanding scores of 0.01–0.03
against baselines’ 0.41–0.76. For Event Count, RawMed records competitive scores of 0.02 (MIMIC-
IV) and 0.05 (eICU), though RC-TGAN outperforms it in eICU (0.03). RawMed also excels in Next
Event Prediction, capturing event sequence patterns more effectively than other methods. Additionally,
RawMed exhibits minimal vulnerability to membership inference attacks (MIA), performing near
random guessing levels, thus ensuring robust privacy preservation.

Collectively, these results highlight RawMed’s efficacy in generating multi-table time-series EHRs data
that closely mirrors real data in terms of temporal precision, clinical utility, and privacy preservation.
In contrast, baselines such as SDV, RC-TGAN, and ClavaDDPM underperform due to their lack of
explicit temporal modeling and limited capability to model complex, large-scale EHR data.

Compressed vs. Non-compressed approaches We compared RealTabFormer (RTF, non-
compressed) and RawMed (compressed) to evaluate the effect of sequence compression on synthetic
data quality.4 RTF models data in the text space, handling maximum sequence lengths of 11.2k for
MIMIC-IV and 3.1k for eICU. In contrast, RawMed operates in the latent space, reducing these
to 1.8k (84% reduction) and 0.8k (74% reduction), respectively. As reported in Table 5, RawMed
outperformed RTF in most metrics, including time gap metrics of 0.05 (MIMIC-IV) and 0.01 (eICU)
compared to RTF’s 0.17 and 0.13, respectively. Thus, RawMed demonstrates superior data fidelity
and temporal accuracy while significantly reducing sequence length.

4Experiments typically used a 12-hour observation window for training and synthesis, but both RTF and
RawMed used a 6-hour window in this experiment due to RTF’s context-size limits. We synthesized about 20k
samples to match RTF-generated sample counts, as generating the original dataset size was infeasible for RTF.
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Table 5: Results on MIMIC-IV and eICU
datasets with a 6-hour observation window,
comparing RealTabFormer (RTF) and RawMed.
Lower is better, best in bold.

MIMIC-IV eICU

Metric RTF RawMed RTF RawMed

CDE ↓ 0.11 0.04 0.21 0.06
PCC ↓ 0.08 0.03 0.19 0.09
Time Gap ↓ 0.17 0.05 0.13 0.01
# Events ↓ 0.20 0.07 0.07 0.08

Table 6: Ablation study on MIMIC-IV dataset.
Variants exclude RQ (Residual Quantization),
Time Tok. (Time Tokenization), and Time Sep.
(Time Separation). Lower values are better, best
in bold.
Variants CDE PCC Time Gap # Events

Full Method 0.04 0.04 0.01 0.02
w/o RQ 0.05 0.04 0.05 0.13
w/o Time Tok. 0.04 0.04 0.04 0.12
w/o Time Sep. 0.07 0.07 0.51 0.40
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Figure 2: Comparison of VQ-VAE and RQ-VAE for the patientweight column in MIMIC-IV. Sub-
figures: (a) real data, (b) VQ reconstruction, (c) VQ with less compression, (d) VQ with doubled
codebook, (e) RQ reconstruction, (f) RQ synthetic data. Shared x-axes with proportional y-axes.

6 Ablation Studies

RQ vs. VQ: Why RQ is more suitable Although Vector Quantization (VQ) offers robust compres-
sion within the RawMed framework, it does not consistently achieve high-fidelity representation across
all data types. In text-based EHR data, columns with low correlation and independent distributions
(e.g., patientweight) are challenging to encode with VQ’s limited codebook, resulting in significant
distortion of the original distribution upon reconstruction, as shown in Figure 2(b). Halving the
compression ratio (Figure 2(c)) or doubling the codebook size (Figure 2(d))—note that these data
are reconstructed, not generated—fails to fully resolve distortion in these numerical columns. In
contrast, RawMed employs Residual Quantization (RQ) for multi-stage quantization, effectively pre-
serving independent column distributions (Figure 2(e)–(f)). Table 14 shows that for patientweight in
MIMIC-IV, VQ’s KS statistic (0.28) far exceeds RQ’s (0.09), confirming VQ’s greater distortion.

Ablation study of RawMed components Table 6 evaluates RawMed variants with components
removed, with lower metric values indicating better performance. The full method achieves optimal
results across all metrics. Removing RQ (i.e., using VQ) degrades performance, increasing CDE to
0.05, Time Gap to 0.05, and Event Count to 0.13. Excluding Time Tokenization, which decomposes
timestamps into digits with a 0–9 vocabulary, impairs time pattern recognition, raising Time Gap
to 0.04 and Event Count to 0.12. Omitting Time Separation, which isolates timestamps for explicit
temporal modeling, causes the largest performance drop, elevating CDE to 0.07, Time Gap to 0.51,
and Event Count to 0.40. These results highlight the critical role of each component in RawMed’s
temporal modeling efficacy.

Scalability In this study, we conducted experiments primarily with a 12-hour observation window,
also testing 6-hour and 24-hour windows to evaluate RawMed’s scalability. As shown in Table 15,
most metrics remained stable across windows, though the KS statistics for the event count increased
slightly for the 24-hour window. This demonstrates RawMed’s potential to generalize across different
time scales.

7 Discussion

This study introduces RawMed, a framework for synthesizing multi-table time-series EHR data while
retaining all columns and original values. By enabling hospitals to generate high-fidelity synthetic
EHRs with minimal preprocessing and providing users with realistic data for flexible downstream
tasks, RawMed can accelerate medical AI research while safeguarding patient privacy. However,
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several limitations remain with respect to fully encompassing the complexity of real-world medical
settings. First, this work focuses on three primary tables, which leaves the question whether it can
handle a significantly higher number (e.g., dozens) of tables. In addition, extended time-series data
might require advanced compression or sampling methods. While the framework could potentially
incorporate conditional generation (including static attributes such as gender or birth year), this study,
as an initial approach, focuses on unconditional generation, leaving these specialized applications for
future research. In subsequent work, we plan to expand the range of tables, implement conditional
generation, and more fully integrate static features into the model design, thereby providing more
realistic synthetic EHR data for a broader array of medical AI tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately state RawMed’s contributions, includ-
ing multi-table EHR generation and a novel evaluation framework.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 7 discusses limitations and future work to address these constraints.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper focuses on empirical results without theoretical theorems or proofs.
Methodological details are provided in Section 3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 provides details on datasets, baselines, and evaluation metrics, with
further implementation details in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Supplementary material includes source code, utilizing the open-source
MIMIC-IV and eICU datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix E and Section 4 provide comprehensive details on data splits,
hyperparameters, and training procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 4, 11, 12 and 13 provide mean and standard deviation across multiple
runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix E specifies GPU types and training times for experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We thoroughly reviewed the NeurIPS Code of Ethics and ensured full compli-
ance with its guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 7 discusses the broader impacts of our research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper uses public datasets (MIMIC-IV, eICU) and generates synthetic
EHR data with privacy protections evaluated via Membership Inference Attacks (MIA, Table
4).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites MIMIC-IV and eICU datasets with their respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The evaluation framework and synthetic data generation code are documented
with public access details.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper uses de-identified publicly available datasets, requiring no IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper uses Meta-LLaMA-3.1-8B for RealTabFormer, described in Ap-
pendix E as a baseline method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


A Feature definitions in EHR data

A.1 Feature definition

In electronic health record (EHR) data, tables (e.g., lab, medication, infusion) contain columns, some
of which are item columns (e.g., itemid, drug, labname) that identify clinical events, such as which
lab tests or medication administration. A feature is a processed representation of data derived from
one or more columns, typically created by selecting, combining, or transforming column data, as
described in the Introduction.1

To define a feature from EHR data, the following steps are typically applied:

• Select a specific item: A specific item is selected to represent a clinical event. For example,
in a laboratory table, selecting itemid = 12345 might isolate all instances of a “blood glucose”
test.

• Incorporate relevant categorical columns: Related categorical columns (e.g., uom,
dose_unit, or route) further refine the feature definition. For instance, two rows with
the same itemid but different uom values, such as “mg/dL” vs. “mmol/L”, would represent
distinct features.

• Include numerical columns: Numerical columns (e.g., valuenum, amount, or rate) provide
the actual measurement or dosage values for the item. Typically, a feature can be defined by
combining an item, a categorical column (e.g., uom), and a numerical column’s values. Each
numerical column may also represent a distinct feature when it captures a unique aspect of a
clinical event, such as a dosage rate versus a total amount.

For example, “blood glucose level” is defined by valuenum where itemid = 12345 and uom = “mg/dL”.
While feature engineering is commonly used, this section focuses on the core structure of features,
excluding feature engineering techniques (e.g., aggregation or transformation).

A.2 Feature count calculation

To calculate the number of features in EHR data, we define two approaches: the theoretical maximum
(Possible Feature Count) and the practical estimate (Actual Feature Count). The data consists
of a set of tables E , such as medication, laboratory, or infusion tables. Each table ϵ ∈ E includes
categorical columns Cϵ,cat and numerical columns Cϵ,num.

The following definitions are essential for calculating feature counts:

• Distinct Items (Iϵ): The set of unique items in table ϵ, representing distinct clinical event
identifiers in an item column. For example, in a medication table, each item i ∈ Iϵ
corresponds to a drug name (e.g., paracetamol, aspirin).

• Number of Unique Values in a Categorical Column (|Vi,c|): The count of unique values
in categorical column c ∈ Cϵ,cat (e.g., administration route) for item i. For instance, if
paracetamol has administration routes “intravenous” and “oral,” then |Vi,route| = 2.

• Number of Unique Categorical Value Combinations (|Cunique
ϵ,cat (i)|): The number of ob-

served combinations of all categorical columns values for item i. For example, if paracetamol
has three combinations of route and dose unit, then |Cunique

ϵ,cat (i)| = 3.

• Number of Numerical Columns (|Cϵ,num|): The count of numerical columns (e.g., amount,
rate) associated with each item-category combination.

Possible Feature Count The Possible Feature Count assumes all possible combinations of categor-
ical values exist for each item, providing a theoretical upper bound. It is calculated as:

Possible Feature Count =
∑
ϵ∈E

(∑
i∈Iϵ

( ∏
c∈Cϵ,cat

|Vi,c|
)
× (|Cϵ,num|+ 1)

)
,

where
∏

c∈Cϵ,cat
|Vi,c| represents the number of possible categorical combinations, and |Cϵ,num|+ 1

accounts for the numerical columns plus a indicator feature representing the presence or absence of
the categorical combination.
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Actual Feature Count The Actual Feature Count considers only the categorical combinations
observed in the data, reflecting dependencies or sparsity that reduce the number of combinations. It is
calculated as:

Actual Feature Count =
∑
ϵ∈E

(∑
i∈Iϵ

∣∣∣Cunique
ϵ,cat (i)

∣∣∣× (|Cϵ,num|+ 1)

)
,

where
∣∣∣Cunique

ϵ,cat (i)
∣∣∣ is the number of actual combinations, and |Cϵ,num| + 1 accounts for numerical

columns and the presence/absence feature.

For example, consider a medication table with 100 unique medications (drug), two categorical
columns (dose_unit with 5 unique values and route with 3 unique values), and two numerical columns
(amount and rate). If all 5× 3 = 15 combinations of dose_unit and route are valid, the features per
medication are calculated as 15× (2 + 1) = 45, resulting in a total of 100× 45 = 4, 500 features.
However, if only 10 combinations of dose_unit and route are present, the features per medication
decrease to 10× (2 + 1) = 30, and the total feature count reduces to 100× 30 = 3, 000.

In summary, the Possible Feature Count provides a theoretical maximum, while the Actual Feature
Count reflects the data’s sparsity and structure for a realistic estimate. This study used the Actual
Feature Count to calculate the number of generated features (Table 1).

B Dataset statistics

B.1 Dataset selection criteria

To synthesize time-series electronic health records (EHR), we selected ICU patient datasets, specifi-
cally MIMIC-IV and eICU, for their high temporal resolution and continuous monitoring. MIMIC-IV,
collected from Beth Israel Deaconess Medical Center, includes 94,458 ICU stays across 364,627
patients, while eICU, a multi-center dataset, comprises 200,859 ICU stays from 139,367 patients
across U.S. hospitals. These datasets provide large cohorts and diverse clinical variables, making
them established benchmarks for validating most prior EHR synthesis studies. We focused on
time-series tables, labevents, prescriptions, and inputevents from MIMIC-IV, and lab, medication,
and infusiondrug from eICU. These tables capture critical temporal changes in physiological states,
treatment interventions, and drug administration, enabling the synthesis of complex clinical patterns.
In contrast, emergency department (ED) and outpatient datasets, with irregular intervals and lower
resolution, are typically less suitable for synthesizing the continuous temporal dynamics of patient
trajectory.

However, to evaluate the model’s generalizability, we additionally utilized the MIMIC-IV-ED
dataset to validate its ability to synthesize data in a distinct clinical setting. From MIMIC-IV-ED, we
synthesized the vitalsign (time-series data such as heart rate and blood pressure), medrecon (static
data on medications at admission), and pyxis (event-based data on medication dispensing via the
Pyxis system) tables. By simultaneously generating time-series (vitalsign, pyxis) and non-time-series
(medrecon) data, the model effectively synthesized complex patterns in ED data, demonstrating
robustness across diverse clinical scenarios.

B.2 Data statistics

This study utilized the publicly available MIMIC-IV and eICU datasets, focusing on patients aged
18 years or older with ICU stays exceeding 12 hours. Key metrics, including patient counts, event
frequencies, and row counts for the tables, are summarized in Table 7 Additionally, ablation studies
exploring 6- and 24-hour observation windows for MIMIC-IV and eICU, and a 6-hour window for
the MIMIC-IV-ED dataset in ED settings, are detailed in Table 8.

B.3 Criteria for excluded columns

In this study, we aimed to utilize as many columns as possible but excluded specific columns for the
following reasons and generated all others. First, we removed patient or prescription identifiers and
unique hospital-specific codes (e.g., subject_id, orderid, pharmacy_id) that were not directly relevant
to the clinical information used by the model.
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Table 7: Summary statistics for preprocessed MIMIC-IV and eICU datasets with a 12-hour ob-
servation window, including patient counts, event frequencies, and row and column counts for lab
(labevents or lab), medication (prescriptions or medication), and input (inputevents or infusiondrug)
data. Note: M denotes million.

Metric MIMIC-IV eICU

Number of Patients 62,704 143,812
Max. Events per Patient 243 114
Avg. Events per Patient 108.8 47.2
Total Rows 6.8M 6.8M
Rows: Lab 3.8M 4.6M
Rows: Medication 1.7M 1.6M
Rows: Input 1.4M 0.6M
Columns: Lab 9 6
Columns: Medication 9 6
Columns: Input 15 6

Table 8: Summary statistics for preprocessed MIMIC-IV-ED (6-hour observation window), MIMIC-
IV, and eICU (6- and 24-hour observation windows) datasets. Note: M denotes million.
Metric MIMIC-IV-ED MIMIC-IV (6h) MIMIC-IV (24h) eICU (6h) eICU (24h)

Observation Window (hrs) 6 6 24 6 24
Number of Patients 144,790 63,903 51,357 132,202 119,641
Max. Events per Patient 34 165 366 79 179
Avg. Events per Patient 16.5 71.6 170.2 32.0 74.1
Total Rows 2.4M 4.6M 8.7M 4.2M 8.9M

Second, we excluded columns that contained multiple timestamps or offset columns conveying similar
time information (e.g., charttime, starttime). While each timestamp could potentially have clinical
value, we consolidated them into a single representative time field to reduce analytical complexity.

Finally, we excluded columns that potentially contained future information beyond the event time to
avoid overestimating model performance by training on data not available at the actual prediction
point. All remaining columns were included in the modeling process. Table 9 summarizes all
excluded columns and indicates the primary reason for each exclusion.

C Evaluation framework details

To rigorously evaluate the quality of synthetic multi-EHR data generated by RawMed, we define a
comprehensive set of metrics that assess both single-table fidelity and multi-table temporal dynamics.
Each metric is carefully selected to capture specific aspects of data quality, such as distributional
similarity, inter-column dependencies, temporal fidelity, clinical utility, and privacy. Below, we
provide detailed definitions, mathematical formulations, and justifications for each metric, supported
by visualizations where applicable. Our evaluation pipeline is designed to be robust and tailored to
the unique challenges of raw multi-table time-series EHR data, providing a thorough assessment of
synthetic data quality.

C.1 Single-table evaluation

Single-table evaluation focuses on the fidelity of synthetic data within individual tables, treating each
row as an independent instance. We combine low-order and high-order metrics to capture marginal
distributions and complex inter-column dependencies. Below, we detail each metric, its formulation,
and its relevance to EHR data evaluation.

• Column-wise Density Estimation (CDE): CDE measures the similarity of distributions
between real and synthetic data for each column. For numeric columns, we use the
Kolmogorov-Smirnov (KS) statistic, defined as:

KS = sup
x
|Fr(x)− Fs(x)|,
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Table 9: Columns excluded from each dataset table, categorized by the reason for exclusion: identifiers
or codes, time-related columns, or columns containing potential future information.

Dataset Table Excluded Columns

Reason: Identifiers or Codes

MIMIC-IV labevents labevent_id, subject_id, specimen_id, order_provider_id
MIMIC-IV inputevents subject_id, caregiver_id
MIMIC-IV prescriptions subject_id, pharmacy_id, poe_id, poe_seq, order_provider_id,

orderid, linkorderid
eICU lab labid
eICU infusiondrug infusiondrugid
eICU medication medicationid, drughiclseqno, gtc

Reason: Time Columns

MIMIC-IV labevents storetime
MIMIC-IV inputevents endtime, storetime
MIMIC-IV prescriptions stoptime
eICU lab labresultrevisedoffset
eICU medication drugorderoffset, drugstopoffset

Reason: Future Information Leakage

MIMIC-IV prescriptions statusdescription
eICU medication drugordercancelled

where Fr(x) and Fs(x) are the cumulative distribution functions (CDFs) of the real and
synthetic data, respectively. The KS statistic ranges from [0, 1], with lower values indicating
higher similarity. For categorical columns, we use the Jensen-Shannon (JS) divergence,
defined as:

JS(Pr∥Ps) =
1

2
KL(Pr∥M) +

1

2
KL(Ps∥M),

where Pr and Ps are the probability distributions of the real and synthetic data, M =
1
2 (Pr + Ps), and KL is the Kullback-Leibler divergence. JS ranges from [0, 1], with lower
values indicating greater similarity.

– Justification: CDE is a fundamental metric for comparing distributional similarity
across tabular data. It effectively captures the distributional properties of numerical
columns (e.g., laboratory values) and categorical columns (e.g., prescribed drug names)
in EHR data. This ensures robust evaluation across diverse column types, critical for
synthetic data validity.

• Item-specific Column-wise Density Estimation (I-CDE): I-CDE extends CDE by evaluat-
ing distributional fidelity for specific clinical items (e.g., creatinine, glucose) within columns
that aggregate multiple item types (e.g., a value column linked to an itemid). For each item,
we filter the data and apply the same KS or JS metrics as in CDE. To ensure robustness, we
exclude items with fewer than 0.1% of total records (e.g., lab tests occurring 1–2 times in
3.8 million events) to avoid skewed results due to extremely rare events.

– Justification: I-CDE addresses the heterogeneity of EHR data, where a single column
may represent diverse clinical entities (e.g., 2,000 drugs). By ensuring synthetic data
preserves item-specific distributions, I-CDE enhances clinical validity.

• Pairwise Column Correlation (PCC): PCC assesses the fidelity of inter-column depen-
dencies by comparing correlation matrices of real and synthetic data. For numeric-numeric
pairs, we use Pearson’s correlation coefficient (ρ ∈ [−1, 1]). For categorical-categorical
pairs, we use Theil’s U statistic (U ∈ [0, 1]), which measures conditional entropy. For
categorical-numeric pairs, we use the correlation ratio (η ∈ [0, 1]), which quantifies the
variance explained by the categorical variable. The mean absolute difference (µabs) between
real and synthetic correlation matrices is computed as:

µabs =
1

N

∑
i,j

|Corrr(i, j)− Corrs(i, j)|,
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where Corrr and Corrs are the correlation matrices for real and synthetic data, and N is the
number of matrix elements.

– Justification: PCC captures dependencies between clinical variables (e.g., heart rate
and blood pressure), essential for realistic synthetic EHR data. The use of multiple
correlation measures ensures applicability to mixed data types in EHRs.

• Item-specific Pairwise Column Correlation (I-PCC): I-PCC extends PCC by computing
correlation matrices for each item-specific subset of the data (e.g., all records for a specific
itemid). The µabs is calculated for each item’s matrix and averaged across items. Items with
fewer than 100 records are excluded.

– Justification: I-PCC evaluates item-specific inter-column dependencies, ensuring that
synthetic data captures relationships within subsets of EHR data (e.g., correlations
between dosage and frequency for a specific drug). This is critical for maintaining
clinical relevance.

• Predictive Similarity: Predictive Similarity evaluates the ability of synthetic data to capture
high-order, non-linear dependencies by training an XGBoost model to predict each column
using the remaining columns as features. Models are trained on synthetic data and evaluated
on real test data. For numeric targets, we use Symmetric Mean Absolute Percentage Error
(SMAPE), defined as:

SMAPE =
100

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

,

where yi and ŷi are the real and predicted values, and SMAPE ranges from [0,200]. For
categorical targets, we use the classification error rate (ER), defined as:

ER =
1

n

n∑
i=1

I(yi ̸= ŷi)× 100,

where ER ranges from [0,100]. A smaller performance gap between models trained on
synthetic versus real data indicates better capture of dependencies.

– Justification: Predictive similarity captures complex relationships that low-order
metrics may not detect, indirectly assessing semantic consistency. While Mean Squared
Error (MSE) and Mean Absolute Error (MAE) are commonly used regression metrics,
their scale-dependency led to the adoption of SMAPE, which is bounded between 0
and 200 for consistent evaluation across varying ranges.

C.2 Time-series multi-table evaluation

Multi-table EHR data involve time-series events across multiple tables, linked by a primary key (e.g.,
stay_id). Our evaluation metrics preserve this structure and assess temporal fidelity, clinical utility,
and privacy. Below, we detail each metric and its rationale.

• Clinical Utility: To assess clinical utility, we evaluate the performance of synthetic data
on downstream predictive tasks. We defined 11 clinical prediction tasks (e.g., predicting
creatinine and hemoglobin levels), following the task definitions from [15]. Details are
provided in Table 10. To address variability in the number and types of events across patients,
we employ two representation methods, GenHPF and MEDS-TAB, as detailed in E.2.1.
For each task, the synthetic data is split into two segments over an observation window
of length T (e.g., T = 12 hours. The first half (e.g., the first 6 hours) serves as input for
the predictive model, with predictions made at the midpoint (T/2). For multi-class tasks,
the label is the last value of the lab measurement in the second half (e.g., the subsequent
6 hours). For binary tasks, the label indicates whether a medication event occurs in the
second half. Models are trained on synthetic data and tested on real data, with performance
measured using the Area Under the Receiver Operating Characteristic Curve (AUROC).
Higher AUROC scores indicate better utility for clinical applications.

– Justification: Clinical utility reflects the practical value of synthetic data for real-world
EHR applications. Using two representation methods ensures robustness across diverse
modeling approaches.
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• Membership Inference Attacks (MIA): MIA assesses privacy leakage by attempting
to infer whether a sample was part of the training dataset. We compute distances (e.g.,
Hamming distance) between synthetic samples and the real training set, using a threshold-
based classifier to predict membership. The attack’s success rate (accuracy) indicates privacy
risk, with lower values reflecting better privacy protection. This is conducted using the
GenHPF representation.

– Justification: MIA is a standard metric for evaluating privacy in synthetic EHR data,
as it measures the risk of re-identifying individuals from the training set, a critical
concern given EHRs’ sensitive patient information.

• Time Gap: Time Gap evaluates the similarity of time interval distributions between consec-
utive patient events, using the KS statistic. In EHR data, simultaneous events (zero intervals)
are common due to concurrent clinical recordings in clinical workflows or temporal resolu-
tion constraints of EHR systems. To address this, we compute KS statistics both including
and excluding zero intervals, with results excluding zero intervals reported in Table 4. CDFs
for both cases are visualized in Figure 4: panels (a)–(b) show distributions including si-
multaneous events, and panels (c)–(d) show distributions excluding them. Additionally,
absolute event time distributions (from admission to event occurrence) are presented in
Figure 4(e)–(f).

– Justification: Time Gap ensures synthetic data accurately captures the timing of
clinical events, essential for realistic patient trajectories in time-sensitive settings like
ICUs. By evaluating both zero and non-zero intervals, it accounts for EHR-specific
recording patterns, while the KS statistic provides a robust, non-parametric measure of
temporal fidelity.

• Event Count: Event Count evaluates the similarity in the distribution of the number of
clinical events per patient between synthetic and real EHR data, employing the (KS statistic
to compare these distributions. The CDFs of event counts for both synthetic and real data
are visualized in Figure 4(g)–(h).

– Justification: Event Count verifies that synthetic data replicates the frequency of
clinical events per patient, a key characteristic of patient trajectories.

• Next Event Prediction: Next Event Prediction evaluates the synthetic data’s ability to
capture temporal sequence dynamics. An LSTM-based model [40] predicts the next event’s
item or drug name, formulated as a multi-label classification task to handle concurrent
events. The model is trained on synthetic data and evaluated on real test data using the F1
score, which balances precision and recall for multi-label predictions. Higher F1 scores
indicate better sequence modeling.

– Justification: This metric captures the sequential patterns of clinical events, essential
for modeling patient trajectories. The LSTM’s ability to model long-term dependencies
suits the complex temporal structure of EHRs.

C.3 Visualizations and results

To provide a comprehensive view of synthetic data quality, we include the following figures and
tables:

• Figure 3: Correlation matrix heatmap showing differences in Pairwise Column Correlation
(PCC) between real and synthetic data.

• Figure 4: Cumulative Distribution Function (CDF) plots for Time Gap (including and
excluding zero intervals), absolute event time, and event count distributions.

• Table 2: Overall single-table evaluation results, averaged across tables and columns for each
dataset.

• Tables 11, 12: Column-wise evaluation results, including CDE, I-CDE, SMAPE, ER gaps
for predictive similarity, and null ratio of real and synthetic data.

• Table 3: AUROC comparisons for clinical utility tasks across datasets.

• Table 10: AUROC results for clinical utility tasks, detailing performance for each task.
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• Table 4: Accuracy for Membership Inference Attacks (MIA), F1 scores for Next Event
Prediction, and KS statistics for Time Gap and Event Count.

By combining rigorous metric definitions, mathematical formulations, and extensive visualizations,
our evaluation pipeline offers a thorough and principled approach to assessing synthetic multi-
table EHR data. This comprehensive framework not only addresses existing gaps in evaluation
methodologies but also sets a new standard for evaluating time-series data in healthcare applications.

D RawMed framework details

D.1 Architecture details

This section details the architectural components of the RawMed framework, consisting of two distinct
modules: event compression and inter-event temporal modeling, providing specifics beyond the main
text.

The event compression module transforms serialized clinical event text into compact latent repre-
sentations, leveraging a Vector Quantized Variational AutoEncoder (VQ-VAE) [27] or Residual
Quantization (RQ) framework [16], both implemented using 1D convolutional neural networks
(CNNs). The processing pipeline begins with the construction of input embeddings, followed by
encoding, quantization, and decoding stages.

The input embedding, denoted xp
i ∈ RL×F , integrates three components adapted from an established

text-based EHR prediction framework, GenHPF, to ensure robust representation of clinical data. The
textual embedding (xp

text,i) employs framework-derived embeddings for serialized event text, such
as “lab item Glucose value 95 uom mg/dL”, tokenized using a Bio+Clinical BERT tokenizer [41].
The type embedding (xp

type,i) assigns categorical labels to tokens, distinguishing table names, column
names, and values to capture the relational structure of the data. The digit-place embedding (xp

dpe,i)
enhances numeric tokens by tokenizing digits with spaces (e.g., “123.45” as “1 2 3 . 4 5”) and
assigning position-specific types for integer and decimal places. These components are combined as
xp
i = xp

text,i + xp
type,i + xp

dpe,i. The main text adopts the notation xp
i = xp

text,i for simplicity, though
the full embedding incorporates type and digit-place embeddings to enhance structural and numeric
fidelity.

The encoder (Enc) processes the input embedding through five CNN layers, each with a kernel
size of 5, stride of 2, and padding of 2, followed by batch normalization and ReLU activation.
This configuration ensures a receptive field sufficient to encompass the entire event sequence of
length L = 128, capturing contextual dependencies. The encoder outputs a latent representation,
ẑpi ∈ RLz×Fz , which is subsequently quantized.

The decoder (Dec) reconstructs the text, type, and digit-position embeddings (x̂p
text,i, x̂

p
type,i, x̂

p
dpe,i)

using transposed CNN layers. The training objective minimizes reconstruction losses for all three
embedding components, ensuring faithful recovery of text, type, and digit-position information.

The temporal modeling module, implemented as TempoTransformer, is a Transformer-based ar-
chitecture for autoregressive prediction of quantized event sequences interleaved with tokenized
timestamps. The model employs causal attention to ensure predictions depend only on prior tokens.
Positional encodings provide sequence order information, and the model is trained from scratch, as
the autoregressive target is the quantized codebook, obviating the need for fine-tuning from pretrained
weights.

D.2 Postprocessing

This appendix elaborates on the two-stage postprocessing pipeline applied to convert synthetic patient
trajectories into relational tables, aligning with the structural and semantic consistency of real data.
The first stage, converting text to tabular format, involves the core steps of event-level verification
and patient-level validation (Algorithm 1). The second stage, enhancing data quality, applies
additional column-specific constraints to refine the synthetic tables’ statistical fidelity, as referenced
in Section 3.4.
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Column-Specific Constraint Enforcement After validated sequences are converted into relational
tables, further postprocessing ensures compliance with column-specific constraints, addressing
potential errors from the generative process (e.g., quantization or autoregressive sampling). The
following steps are applied:

• Numeric Columns: Values are filtered to lie within the minimum and maximum ranges
observed in the real data, applied at both the column and item levels. Non-compliant events
(e.g., a glucose value outside the real data’s range) are removed.

• Categorical Columns: Invalid values not present in the permissible values for each column
are replaced with the closest valid value, determined using Levenshtein distance similarity. A
distance threshold ensures that only sufficiently similar replacements are accepted; otherwise,
the value is flagged as invalid.

• Patient-Level Filtering: If any events contains a numeric value outside the valid range or a
categorical value exceeding the Levenshtein distance threshold, the entire patient sample
associated with that row is removed to maintain data integrity.

These steps ensure that the final relational tables adhere to the structural and statistical characteristics
of the real data, removing outliers and ensuring both numerical and categorical validity.

Modification and Rejection Rate Analysis To quantify the impact of our validation protocols,
we analyzed the modification and rejection rates across both postprocessing stages for the eICU and
MIMIC-IV datasets.

During the initial stage, converting text to tabular format, 0.42% of events were modified and
0.07% were rejected in eICU. For MIMIC-IV, these rates were 0.73% and 0.17%, respectively. At
the patient level, however, rejection rates were notably higher, reaching 2.71% for eICU and 18.23%
for MIMIC-IV.

In the subsequent stage, enhancing data quality, stricter column-specific constraints were enforced.
This led to event-level rates of 1.39% modified and 0.49% rejected for eICU, and 1.07% modified
and 0.79% rejected for MIMIC-IV. These stringent checks led to a substantial increase in patient-level
rejection rates, which rose to 16.90% in eICU and 54.53% in MIMIC-IV.

The pronounced disparity between patient-level and event-level rejection rates is a direct consequence
of our stringent data integrity policy. A single erroneous event necessitates the rejection of the entire
patient trajectory. This effect is particularly notable for datasets with long sequences, (e.g., with
hundreds of events), all of which must be accurate for the trajectory to be retained. We emphasize
that this full post-processing is crucial for RawMed’s data integrity. We do not recommend partial
post-processing, as it fundamentally compromises the quality of the synthetic data.

E Training details and hyperparameters

E.1 Generative models

• RawMed The framework employs a two-stage training process: the event compression
module is trained first to generate quantized representations, followed by the inter-event
temporal modeling module to predict sequences autoregressively.

– Event-level compression: The event compression module uses the AdamW optimizer
(learning rate: 5e-4, weight decay: 0.01), processing batches of 4096 events for up to
200 epochs, with early stopping after 10 epochs of stagnant validation accuracy. The
loss function combines reconstruction losses for text, type, and digit-place embeddings
with a commitment loss (commitment cost: 1.0). An EMA decay factor of 0.8 is
applied for codebook updates in VQ-VAE training. A dropout rate of 0.2 is used for
regularization. The input embedding has sequence length L = 128 and embedding
dimension F = 256, compressed to a latent representation with Lz = 4 and Fz = 256.
The codebook contains K = 1024 entries, with residual quantization (RQ) using a
depth of D = 2, yielding a 4×2 code representation. Training is performed on a single
NVIDIA A6000 GPU, completing in under 24 hours.
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– Temporal modeling between events: The temporal modeling module uses the AdamW
optimizer (learning rate: 3e-4, weight decay: 0.01), with batches of 32 sequences for
up to 200 epochs, with early stopping after 10 epochs without improvement. The
TempoTransformer consists of 12 layers, each with 8 attention heads, a hidden
dimension of 512, and a feed-forward dimension of 2048. The input sequence includes
time tokens (τpi ∈ {0, . . . , 9}2, length 2), event tokens (kpi ∈ [1024]4×2, codebook size
1024), and special tokens (<SOS>, <EOS>, <PAD>), resulting in a vocabulary size of
1037. Training was conducted on three NVIDIA A6000 GPUs for MIMIC and on a
single NVIDIA A6000 GPU for eICU, both completing in under 48 hours.

– Generation: Data generation uses top-k sampling with k = 250 for MIMIC-IV and
k = 150 for eICU.

• RealTabFormer [25]: Text-based autoregressive model for generating relational database.
This model involves fine-tuning the Meta-LLaMA-3.1-8B model and a generation step using
top-p sampling.

– Fine-tuning: The Meta-LLaMA-3.1-8B model [32] was fine-tuned using QLoRA [31]
(rank r=128, LoRA scaling factor α=128, LoRA dropout=0.05) and Flash Attention-2
for memory optimization. Training used a maximum sequence length of 11,240 tokens,
matching the input data. The Adafactor optimizer was applied with a learning rate of
2e-4, weight decay of 0.001, a batch size of 1, gradient accumulation (step size=4), and
gradient checkpointing. Training ran for 2 epochs on a single RTX 3090 GPU, taking
approximately 10 days for MIMIC-IV and 20 days for eICU.

– Generation: Used the fine-tuned Meta-LLaMA-3.1-8B model with top-p sampling,
setting the temperature to 1 and a threshold of 0.7.

• SDV [34]: The Synthetic Data Vault (SDV) uses the Hierarchical ML Algorithm (HMA)
Synthesizer to generate synthetic relational data, modeling individual tables with Gaus-
sian Copulas while preserving parent-child relationships.The SDV framework’s default
hyperparameters are applied for training.

• RC-TGAN: [35] A GAN-based model designed to generate synthetic relational databases
by modeling parent-child relationships.

– Training and generation: Uses default hyperparameters from the official repository,
with batch size set to 500,000, the maximum feasible value for the NVIDIA RTX
3090 GPU (default: 500). Other hyperparameters include embedding dimension: 128,
generator dimensions: (256, 256), discriminator dimensions: (256, 256), epochs: 300,
discriminator steps: 1, generator learning rate: 2e-4, and discriminator learning rate:
2e-4. Hyperparameter search tested discriminator steps ([1, 3]), generator learning rate
([1e-4, 2e-4, 4e-4]), and discriminator learning rate ([1e-4, 2e-4, 4e-4]), but defaults
performed best. Training took less than 10 hours on a single NVIDIA RTX 3090 GPU
without early stopping.

• ClavaDDPM: [36] A diffusion-based model for multi-table data generation, Cluster Latent
Variable guided Denoising Diffusion Probabilistic Models (ClavaDDPM) leverage Denoising
Diffusion Probabilistic Models (DDPMs) to model complex tabular data distributions. By
using clustering labels as intermediaries, ClavaDDPM captures long-range dependencies
across interconnected tables, particularly through foreign key constraints.

– Training and generation: We adopted the default hyperparameters from the official
ClavaDDPM GitHub, featuring a diffusion model with six MLP layers ([512, 1024,
1024, 1024, 1024, 512]), a learning rate of 6e-4, and a batch size of 4096 for 100,000
iterations with a cosine scheduler. The model employs 2000 timesteps with MSE loss
and uses 50 clusters for clustering. Training was completed in under 3 hours on a single
NVIDIA A6000 GPU.
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Algorithm 1: Postprocessing for Relational Table Construction
Input: Set of patients P , Text-based events E, timestamps T , valid column names C, valid table

names E , observation window Tmax
Output: Relational tablesR
InitializeR ← dict of τ → list (a dictionary mapping table names to lists of event records)
Initialize Pvalid ← ∅
for each patient p ∈ P do

InitializeR′ ← dict of τ → list (temporary tables for patient p)
Initialize valid_event_count← 0
for each event epi ∈ Ep with timestamp tpi ∈ T p do

Parse epi into table name τ and column-value pairs {(cpi,j , v
p
i,j)}

if τ /∈ E then
Continue

end
if epi does not conform to column-value pair format then

Continue
end
for each (cpi,j , vi,jp) in {(cpi,j , v

p
i,j)} do

if cpi,j /∈ C then
cpi,j ← argminc∈C Levenshtein(cpi,j , c)

end
if cpi,j is numeric column and vpi,j contains non-numeric characters then

vpi,j ← RemoveNonNumeric(vpi,j)
if vpi,j is not numeric then

Continue
end

end
end
Add (tpi , {(c

p
i,j , v

p
i,j)}) toR′[τ ]

valid_event_count← valid_event_count + 1
end
if valid_event_count == len(Ep) then

Add p to Pvalid
AddR′[τ ] toR[τ ]

end
end
SortR by timestamp in ascending order
for each patient p in Pvalid do

for each event (tpi , {(c
p
i,j , v

p
i,j)}) inR do

if i > 1 and tpi < tpi−1 or tpi > Tmax then
Discard (tpi , {(c

p
i,j , v

p
i,j)}) and all events (tpk, {(c

p
k,j , v

p
k,j)}) for k ≥ i fromR

Break
end

end
end
returnR

E.2 Predictive models for evaluation

We use the following predictive models to assess the quality of synthetic data:

E.2.1 Clinical utility

• GenHPF [15]: GenHPF addresses the heterogeneity of multi-table EHR data by transform-
ing all patient events into a single hierarchical textual sequence. This method sequentially
lists events such as medications, infusions, and lab results in chronological order, requiring
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Table 10: Summary of 11 ICU prediction tasks using synthetic EHR data. Multi-class tasks predict
binned lab values, while binary tasks classify whether specific medications are prescribed. Predictions
are made at the midpoint (T/2) of an observation window of length T (e.g., T = 12 hours) to forecast
the last lab value or medication event occurrence in the second half.

Task Name Source Task Type

Creatinine (Cr) Lab Multi-class
Platelets (Plt) Lab Multi-class
White Blood Cells (WBC) Lab Multi-class
Hemoglobin (Hb) Lab Multi-class
Bicarbonate (HCO3) Lab Multi-class
Sodium (Na) Lab Multi-class
Magnesium Sulfate (MgSO4) Medication Binary
Heparin (Hep) Medication Binary
Potassium Chloride (KCl) Medication Binary
Norepinephrine (NE) Input Binary
Propofol (Prop) Input Binary

minimal preprocessing. GenHPF enables predictive models to capture the full complexity
of patient records, making it suitable for multi-task learning without extensive domain-
specific feature engineering. Its flexibility supports applications across diverse EHR systems,
enhancing model generalizability for downstream predictive tasks.

– Training: GenHPF was trained with an embedding dimension of 128, 4 attention
heads, and 2 transformer layers. It uses a batch size of 64, a dropout rate of 0.1, and
a learning rate of 5e-5 for 50 epochs. Training occurred on a single NVIDIA A6000
GPU, targeting multi-task prediction for EHR lab tests and medications, with early
stopping after 10 epochs of no improvement.

• MEDS-TAB [38]: MEDS-TAB is an automated tabularization tool that converts Medical
Event Data Standard (MEDS)-formatted EHR data into standardized tabular representations
by aggregating events into fixed time intervals. It processes irregularly sampled time-series
data, supporting various aggregation functions (e.g., sum, count, mean) and window sizes
to handle diverse data types, including static codes, numerical values, and time-series
events. With high scalability and efficiency—demonstrated by processing 500 patients from
MIMIC-IV in 16 seconds with 1,410MB memory usage—MEDS-TAB simplifies predictive
modeling by providing structured inputs compatible with machine learning algorithms like
XGBoost, achieving competitive performance in clinical tasks.

– Training: MEDS-TAB was trained using the default hyperparameters from the official
MEDS-TAB GitHub repository, employing XGBoost for predictive modeling. In
contrast to GenHPF, it trains on individual tasks rather than multi-task learning.

E.2.2 Predictive similarity

For predictive similarity evaluation, the XGBoost model was configured with 100 estimators, a
subsample ratio of 0.9, and a maximum bin size of 256. Depending on the task, objectives were set to
binary:logistic for binary classification, multi:softmax for multiclass classification, or reg:squarederror
for regression, with evaluation metrics logloss, mlogloss, or rmse, respectively.

E.2.3 Next event prediction

For the Next Event Prediction task, we employ a single-layer LSTM with 128 hidden units, with input
and output sizes equal to the number of classes. A sigmoid activation function is used for multi-label
classification. The model is trained with the Adam optimizer at a learning rate of 0.001, employing a
weighted binary cross-entropy loss (with inverse log-frequency weights normalized to a mean of 1), a
batch size of 256, and 50 epochs. A classification threshold of 0.1 is applied to enhance recall for
imbalanced classes.
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Table 11: Column-wise fidelity for MIMIC-IV. Columns are prefixed with “L” (laboratory measure-
ments), “I” (infusions), or “M” (medications). Types “C” and “N” denote categorical and numerical
columns, respectively. TRTR (Train-on-Real-Test-on-Real) and TSTR (Train-on-Synthetic-Test-
on-Real) denote error rates for categorical columns and SMAPE for numerical columns, reported
as mean ± standard deviation (std) across three random seeds, assessing predictive similarity task
performance.

Col. Name Type CDE ↓ I-CDE ↓ Real Null (%) Syn Null (%) TRTR TSTR

L/itemid C 0.06 - 0.00 0.00 66.08 ±24.72 78.87 ±23.05

L/value C 0.07 0.14 5.78 4.51 0.00 ±0.00 0.77 ±0.02

L/valueuom C 0.04 0.03 13.78 12.49 0.07 ±0.00 2.50 ±0.02

L/flag C 0.00 0.00 62.27 64.18 - -
L/priority C 0.03 0.04 27.34 29.48 44.16 ±0.08 44.32 ±0.19

L/comments C 0.11 0.22 83.41 86.15 57.34 ±0.61 63.52 ±2.04

L/valuenum N 0.01 0.06 11.13 9.46 116.64 ±0.76 86.37 ±1.99

L/ref_range_lower N 0.02 0.01 19.04 17.15 60.86 ±0.21 63.10 ±0.20

L/ref_range_upper N 0.01 0.01 19.04 17.15 30.45 ±0.66 30.01 ±0.36

I/itemid C 0.09 - 0.00 0.00 28.17 ±3.03 29.19 ±0.13

I/amountuom C 0.02 0.02 0.00 0.00 0.07 ±0.00 0.13 ±0.00

I/rateuom C 0.05 0.05 37.49 39.54 0.02 ±0.00 0.07 ±0.00

I/ordercategoryname C 0.03 0.03 0.00 0.00 0.16 ±0.00 0.19 ±0.00

I/secondaryordercategoryname C 0.02 0.01 25.82 26.57 0.00 ±0.00 0.00 ±0.00

I/ordercomponenttypedescription C 0.01 0.01 0.00 0.00 0.00 ±0.00 0.01 ±0.00

I/ordercategorydescription C 0.02 0.03 0.00 0.00 0.00 ±0.00 0.00 ±0.00

I/totalamountuom C 0.00 0.00 12.35 13.59 - -
I/isopenbag C 0.01 0.01 0.00 0.00 0.00 ±0.00 0.00 ±0.00

I/amount N 0.03 0.08 0.00 0.05 88.26 ±0.87 87.75 ±2.87

I/rate N 0.04 0.13 37.49 39.54 36.47 ±1.69 62.34 ±1.11

I/patientweight N 0.09 - 0.00 0.00 21.23 ±0.01 21.78 ±0.02

I/totalamount N 0.02 0.07 12.38 13.63 6.77 ±0.08 8.81 ±0.02

I/originalamount N 0.03 0.12 0.17 0.10 28.00 ±1.23 30.78 ±0.34

I/originalrate N 0.03 0.09 5.83 4.46 41.72 ±3.88 48.13 ±2.02

M/drug C 0.08 - 0.00 0.00 31.00 ±0.38 40.53 ±1.01

M/drug_type C 0.00 0.00 0.00 0.00 0.82 ±0.07 1.41 ±0.04

M/prod_strength C 0.08 0.05 0.09 0.04 17.69 ±0.63 37.79 ±0.43

M/dose_unit_rx C 0.03 0.02 0.09 0.04 5.93 ±0.11 13.06 ±0.28

M/form_unit_disp C 0.03 0.04 0.09 0.05 8.16 ±0.21 21.07 ±0.45

M/route C 0.04 0.04 0.09 0.04 31.99 ±0.49 40.59 ±0.30

M/doses_per_24_hrs N 0.02 0.06 59.97 61.97 60.30 ±0.11 60.36 ±0.12

M/dose_val_rx N 0.02 0.04 6.13 6.38 109.53 ±0.20 105.76 ±0.57

M/form_val_disp N 0.02 0.03 5.59 5.99 129.93 ±13.27 82.49 ±4.43

F Additional experimental results

F.1 Column-wise fidelity metrics

We report column-wise fidelity metrics for RawMed-generated data on the MIMIC-IV and eICU
datasets, evaluating distributional similarity and predictive performance across categorical and
numerical columns. Notably, RawMed-generated null ratios closely align with real data, as detailed in
Tables 11 and 12.

F.2 Task-specific predictive performance

We report task-wise predictive performance for clinical tasks using RawMed-generated data on
the MIMIC-IV and eICU datasets, comparing Train-on-Real-Test-on-Real (TRTR) and Train-on-
Synthetic-Test-on-Real (TSTR) metrics, as detailed in Table 13.

F.3 ED dataset generalizability

To assess the generalizability of RawMed across diverse clinical environments, we evaluated its
performance on the Emergency Department (ED) dataset from MIMIC-IV-ED, applying the same
methodology and evaluation framework as used for the ICU dataset.
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Table 12: Column-wise fidelity for eICU. Columns are prefixed with “L” (laboratory measurements),
“I” (infusions), or “M” (medications). Types “C” and “N” denote categorical and numerical columns,
respectively. TRTR (Train-on-Real-Test-on-Real) and TSTR (Train-on-Synthetic-Test-on-Real)
denote error rates for categorical columns and SMAPE for numerical columns, reported as mean ±
standard deviation (std) across three random seeds, assessing predictive similarity task performance.

Col. Name Type CDE ↓ I-CDE ↓ Real Null (%) Syn Null (%) TRTR TSTR

L/labname C 0.04 - 0.00 0.00 52.57 ±3.92 53.10 ±12.26

L/labmeasurenamesystem C 0.03 0.07 5.24 4.82 0.07 ±0.02 0.59 ±0.07

L/labmeasurenameinterface C 0.04 0.14 6.37 5.59 54.97 ±6.30 49.94 ±0.49

L/labtypeid C 0.03 0.06 0.00 0.00 0.00 ±0.00 0.28 ±0.04

L/labresult N 0.01 0.11 0.93 0.64 14.68 ±0.55 24.54 ±0.65

L/labresulttext N 0.01 0.12 0.75 0.54 19.72 ±0.46 23.40 ±0.35

I/drugname C 0.16 - 0.00 0.00 57.38 ±0.32 60.48 ±0.20

I/infusionrate N 0.03 0.43 55.54 63.14 77.70 ±0.27 77.95 ±1.08

I/drugamount N 0.06 0.32 67.48 74.43 71.46 ±1.57 69.29 ±0.18

I/volumeoffluid N 0.03 0.23 67.47 74.37 14.80 ±0.47 18.11 ±0.18

I/patientweight N 0.03 - 90.91 95.91 12.49 ±0.20 33.41 ±0.44

I/drugrate N 0.03 0.36 0.46 0.55 93.12 ±0.66 92.25 ±0.25

M/drugname C 0.10 - 32.53 29.65 73.75 ±0.17 81.10 ±0.47

M/drugivadmixture C 0.02 0.03 0.00 0.00 14.49 ±0.07 16.36 ±0.01

M/dosage C 0.07 0.15 11.13 11.38 80.19 ±0.08 81.74 ±0.17

M/routeadmin C 0.07 0.11 0.00 0.01 55.23 ±0.15 57.59 ±0.09

M/frequency C 0.08 0.22 12.60 11.31 85.52 ±0.19 88.22 ±0.10

M/prn C 0.00 0.06 0.01 0.08 10.40 ±0.12 11.97 ±0.10

Table 13: Clinical task utility evaluation. Train-on-Synthetic-Test-on-Real (TSTR) performance for
MIMIC-IV and eICU datasets, reported as mean ± standard deviation (std) across three random seeds.
TRTR denotes Train-on-Real-Test-on-Real, and TSTR denotes Train-on-Synthetic-Test-on-Real.
GenHPF and MEDS-TAB are synthetic data generation methods. Tasks include laboratory value
predictions (Creatinine: Cr, Platelets: Plt, White Blood Cells: WBC, Hemoglobin: Hb, Bicarbonate:
HCO3, Sodium: Na) and medication/input predictions (Magnesium Sulfate: MgSO4, Heparin: Hep,
Potassium Chloride: KCl, Norepinephrine: NE, Propofol: Prop).

MIMIC-IV eICU

GenHPF MEDS-TAB GenHPF MEDS-TAB

Task TRTR TSTR TRTR TSTR TRTR TSTR TRTR TSTR

Cr 0.89 ±0.00 0.88 ±0.00 0.97 ±0.00 0.95 ±0.00 0.86 ±0.00 0.83 ±0.00 0.94 ±0.00 0.89 ±0.00

Plt 0.88 ±0.01 0.87 ±0.00 0.96 ±0.00 0.95 ±0.00 0.84 ±0.00 0.83 ±0.00 0.94 ±0.00 0.91 ±0.00

WBC 0.78 ±0.01 0.73 ±0.03 0.91 ±0.00 0.86 ±0.00 0.73 ±0.01 0.70 ±0.02 0.87 ±0.00 0.80 ±0.00

HB 0.75 ±0.01 0.74 ±0.01 0.85 ±0.00 0.82 ±0.00 0.74 ±0.00 0.72 ±0.01 0.81 ±0.00 0.78 ±0.00

HCO3 0.79 ±0.01 0.79 ±0.01 0.90 ±0.00 0.90 ±0.00 0.78 ±0.01 0.76 ±0.00 0.88 ±0.00 0.86 ±0.00

Na 0.80 ±0.01 0.78 ±0.01 0.93 ±0.00 0.92 ±0.00 0.80 ±0.01 0.79 ±0.01 0.91 ±0.00 0.90 ±0.00

MgSO4 0.81 ±0.02 0.81 ±0.01 0.86 ±0.00 0.83 ±0.00 0.73 ±0.01 0.72 ±0.01 0.81 ±0.01 0.75 ±0.00

Hep 0.68 ±0.01 0.65 ±0.00 0.80 ±0.00 0.74 ±0.00 0.65 ±0.00 0.63 ±0.01 0.72 ±0.00 0.66 ±0.00

KCl 0.73 ±0.01 0.70 ±0.00 0.80 ±0.00 0.73 ±0.00 0.74 ±0.01 0.66 ±0.00 0.77 ±0.00 0.68 ±0.00

NE 0.96 ±0.00 0.96 ±0.00 0.96 ±0.00 0.96 ±0.00 0.96 ±0.00 0.95 ±0.00 0.95 ±0.00 0.94 ±0.00

Prop 0.94 ±0.00 0.94 ±0.00 0.95 ±0.00 0.94 ±0.00 0.96 ±0.00 0.95 ±0.00 0.96 ±0.00 0.94 ±0.00

Avg 0.82 ±0.09 0.80 ±0.09 0.90 ±0.06 0.87 ±0.08 0.80 ±0.09 0.78 ±0.10 0.87 ±0.08 0.83 ±0.10

Predictive task definition Due to differences in clinical context, the ICU task definitions were not
directly applicable to the ED dataset. Instead, we designed a binary classification task to evaluate
the utility of synthetic data, based on four clinically relevant features: heart rate, respiratory rate,
morphine administration, and ondansetron administration. The observation window was set to T = 6
hours, split into two 3-hour segments. The first 3 hours serve as input for the predictive model, with
predictions made at the midpoint (T/2 = 3 hours). Binary labels were defined as follows, using the
maximum value within the second 3-hour period for heart rate and respiratory rate, and occurrence
for medication administration:
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Table 14: Comparison of VQ-VAE and RQ-VAE on MIMIC-IV and eICU, reporting Column-wise
Density Estimation (CDE), Pairwise Column Correlation (PCC), Time Gap, and Event Count metrics.

MIMIC-IV eICU

Metric VQ RQ VQ RQ

CDE ↓ 0.05 0.04 0.04 0.05
- Categorical 0.05 0.04 0.05 0.06
- Numerical 0.05 0.03 0.03 0.03
- Patientweight 0.28 0.09 0.05 0.03

PCC ↓ 0.04 0.04 0.07 0.06
Time Gap ↓ 0.05 0.01 0.03 0.03
# Events ↓ 0.13 0.02 0.03 0.05

Table 15: Scalability results on MIMIC-IV and eICU for 6-hour and 24-hour observation windows,
reporting Column-wise Density Estimation (CDE), Pairwise Column Correlation (PCC), Time Gap,
and Event Count metrics.

MIMIC-IV eICU

Obs. size 6h 24h 6h 24h

CDE ↓ 0.04 0.05 0.06 0.06
PCC ↓ 0.03 0.02 0.09 0.07
Time Gap ↓ 0.05 0.07 0.01 0.02
# Events ↓ 0.07 0.11 0.08 0.01

• Heart rate (beats per minute, bpm): 1 if the maximum value is ≥ 120 bpm (indicating
tachycardia, above the normal adult range of 60–100 bpm), 0 otherwise.

• Respiratory rate (respirations per minute, rpm): 1 if the maximum value is > 24 rpm
(indicating tachypnea, beyond the normal adult range of 12–20 rpm), 0 otherwise.

• Morphine administration: 1 if administered, 0 if not.

• Ondansetron administration: 1 if administered, 0 if not.

These thresholds were selected based on established clinical criteria to identify critical conditions in
the ED setting.

Results The evaluation demonstrated that RawMed generalizes effectively to the ED dataset, achiev-
ing robust performance across predictive tasks. Table 16 compares RawMed with baseline models
(i.e., SDV, RC-TGAN, ClavaDDPM), reporting fidelity metrics (Column-wise Density Estimation,
CDE; Pairwise Column Correlation, PCC; Time Gap; Number of Events) and clinical utility. RawMed
surpasses baselines in most metrics, with a CDE of 0.08, PCC of 0.02, Time Gap of 0.02, Number
of Events error of 0.02, and a Utility score of 0.79, nearing the real data’s Utility of 0.83. Despite
differing clinical environments, RawMed’s performance closely matches real data utility and surpasses
baselines, indicating potential for generalization to other datasets.

F.4 Conditional generation

We conducted experiments on conditional generation by incorporating static features into the Temporal
Modeling framework (Section 3.3). Specifically, we integrated age, gender, and admission diagnosis
(or type) as static features. During training, these features were prepended to the sequences, enabling
the model to learn the combined sequence auto-regressively. For generation, the model utilized real
static features as conditions to produce the complete sequence. To further investigate conditional
generation, we explored the inclusion of initial medical context, providing the model with real static
features and approximately one-fourth of the initial real-data events from the sequence, tasking it
with generating the remaining three-fourths.
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Table 16: Model Performance Comparison on MIMIC-IV-ED, reporting Column-wise Density
Estimation (CDE), Pairwise Column Correlation (PCC), Time Gap, Event Count, and Clinical Utility
(AUROC) metrics. The best results are in bold.

Model CDE ↓ PCC ↓ Time Gap ↓ # Events ↓ Utility ↑
Real – – – – 0.83±0.00

SDV 0.05 0.21 0.46 0.07 0.63±0.09

RC-TGAN 0.55 0.20 0.34 0.06 0.57±0.06

ClavaDDPM 0.16 0.11 0.35 0.06 0.64±0.06

RawMed 0.08 0.02 0.02 0.02 0.79±0.05

To assess whether the generated sequences effectively captured the relationships with static features,
we trained three classifiers to predict each age, gender, admission diagnosis or type from the generated
sequences, excluding the static feature portion itself. For this classification, age was binned, and
for the admission diagnosis, only four specific categories from the ’Non-operative Organ Systems’
hierarchy (which account for the majority of diagnoses) were selected, namely cardiovascular,
neurologic, respiratory, and gastrointestinal.

Results The performance of our conditional generation approach on the MIMIC-IV and eICU
datasets is presented in Table 17. For the MIMIC-IV dataset, the synthetic data demonstrates perfor-
mance comparable to real data, indicating that our model effectively captures the relationship between
static features and sequential data. Notably, conditioning on initial events enhances performance,
with the AUROC for age prediction increasing from 0.75 to 0.77. For gender prediction, both real
and synthetic data achieved an AUROC of 1.00. This is attributable to the inclusion of all columns
from the labevents table in our synthetic data generation, which unintentionally incorporates gender-
specific reference ranges in lab values (e.g., creatinine, hemoglobin) within the ref_range_lower and
ref_range_upper columns, serving as direct gender indicators.

On the eICU dataset, similar trends were observed, with synthetic data approaching the performance
of real data, particularly when leveraging initial medical context. The AUROC values improved
when conditioning on initial events, rising from 0.65 to 0.69 for age, 0.52 to 0.59 for gender, and
0.86 to 0.88 for admission diagnosis, compared to static features alone. These results underscore the
flexibility of our framework in supporting conditional generation with richer feature sets, enhancing
synthetic data quality. Although gender prediction on eICU exhibited a slight performance drop
compared to real data, we anticipate improvements through further methodological refinements and
hyperparameter optimization. The results from both datasets validates the flexibility and potential of
our approach for conditional generation.

Table 17: Performance (AUROC) of conditional generation models on MIMIC-IV and eICU datasets.
Adm. Type refers to Admission Type, and Adm. Diag. refers to Admission Diagnosis.

MIMIC-IV eICU

Model Age Gender Adm. Type Age Gender Adm. Diag.

Real 0.80 1.00 0.92 0.72 0.67 0.89
RawMed (static only) 0.75 1.00 0.89 0.65 0.52 0.86
RawMed (static+1/4 initial events) 0.77 1.00 0.89 0.69 0.59 0.88
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Figure 3: Table-specific visualizations of absolute differences in Pairwise Column Correlation (PCC)
matrices between real and synthetic data for MIMIC-IV and eICU tables.
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Figure 4: Cumulative Distribution Functions (CDFs) of real and synthetic data for MIMIC-IV and
eICU datasets, showing Time Gap (with and without simultaneous events), Absolute Time from
admission, and Event Counts per patient.
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