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ABSTRACT

Comprehensive evaluation of Multimodal Large Language Models (MLLMs) has
recently garnered widespread attention in the research community. However, we
observe that existing benchmarks present several common barriers that make it
difficult to measure the significant challenges that models face in the real world,
including: 1) small data scale leads to a large performance variance; 2) reliance on
model-based annotations results in restricted data quality; 3) insufficient task dif-
ficulty, especially caused by the limited image resolution. To tackle these issues,
we introduce MME-RealWorld. Specifically, we collect more than 300 K images
from public datasets and the Internet, filtering 13, 366 high-quality images for an-
notation. This involves the efforts of professional 25 annotators and 7 experts
in MLLMs, contributing to 29, 429 question-answer pairs that cover 43 subtasks
across 5 real-world scenarios, extremely challenging even for humans. As far
as we know, MME-RealWorld is the largest manually annotated benchmark
to date, featuring the highest resolution and a targeted focus on real-world
applications. We further conduct a thorough evaluation involving 29 prominent
MLLMs, such as GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet. Our results
show that even the most advanced models struggle with our benchmarks, where
none of them reach 60% accuracy. The challenges of perceiving high-resolution
images and understanding complex real-world scenarios remain urgent issues to
be addressed.

1 INTRODUCTION

In recent years, we have witnessed a significant flourish of Multimodal Large Language Models
(MLLMs) (Dai et al., 2024; Liu et al., 2023b; Zhang et al., 2024). A primary objective behind
designing MLLMs has been to develop general intelligent agents capable of comprehensively per-
ceiving human queries and environmental stituations through the integration of various multimodal
sensory data. Consequently, a plethora of comprehensive evaluation benchmarks have emerged to
rigorously assess model capabilities. However, some common concerns also arise:

• Data Scale. Many existing benchmarks contain fewer than 10K Question-Answer (QA)
pairs, such as MME (Fu et al., 2023a), MMbench (Liu et al., 2023c), MMStar (Chen et al.,
2024), MM-Vet (Yu et al., 2024), TorchStone (Bai et al., 2023b), and BLINK (Fu et al.,
2024b). The limited number of QA can lead to large evaluation fluctuations.

• Annotation Quality. While some benchmarks, such as MMT-Bench (Ying et al., 2024)
and SEED-Bench (Li et al., 2024b), are relatively larger in scale, their annotations are
generated by LLMs or MLLMs. This annotation process is inherently limited by the per-
formance of the used models. In our benchmark, for example, the best-performing model,
InternVL-2, merely achieves 50% accuracy. Consequently, relying on models would in-
evitably introduce significant noise, compromising the quality of the annotations.

• Task Difficulty. To date, the top performance of some benchmarks has reached the accu-
racy of 80%-90% (Mathew et al., 2021; Masry et al., 2022; Singh et al., 2019; Liu et al.,
2023c; Li et al., 2023c), and the performance margin between advanced MLLMs is narrow.
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What is the data of Merchant Black Prices in 2038 in the diagram Real Energy Prices?
(A) 40.00 to 60.00 （B) 20.00 to 40.00 (C) 60.00 to 80.00 (D) 80.00 to 100.00
(E) The image does not feature the data.

What is the phone number of HOP INN?
(A) 02380 667723
(B) 02880 557722
(C) 02025 557753
(D) 02380 557723
(E) The image does not feature the

number.

OCR in the Wild

What's the content of the old man speaking in
the frame on the fourth row in the comic page?
(A) DON'T WAIT FOR US. WE'LL FIND

OUR OWN RABBIT HOLE .
(B) I SEE YOU BROUGHT WILLOW

LIFGOOD WITH YOU.
(C) HER NAME IS MARIAN DREWS!
(D) WE CAN MANAGE.
(E) The image does not feature the content.

What is the color of the excavator
in the middle area of the picture?
(A) Yellow.
(B) Red.
(C) Black.
(D) Green.
(E) The image does not feature the

color.

Remote Sensing

How many aircraft are there in the
picture?
(A) 1
(B) 2
(C) 3
(D) 5
(E) 0

What is the total number of motors
and cars in the image?
(A) 26
(B) 80
(C) 133
(D) 92
(E) The image does not feature the

objects

Video Monitoring

What will the truck do in the
image?
(A) Stopping
(B) Keep moving
(C) Turn left
(D) Turn right
(E) The image does not feature the

object.

This image shows the front
view of the ego car. What is
the future state of the white
suv in the middle?
(A) Turn right.
(B) Turn left.
(C) Stationary.
(D) Keep going straight.
(E) The image does not

feature the object

Autonomous Driving

What is the traffic light on the right?
(A) yellow
(B) red
(C) green
(D) changing/off
(E) The image does not feature the

traffic light

Diagram and Table

What's the percentage of CAPEX when direct costs rise to 35340000 if the outcome is at
6250644?
(A) 12.6% (B) 10.3 (C) 11.9% (D) 11.1 (E) The image does not feature the DATA.

Figure 1: Diagram of MME-RealWorld. Our benchmark contains 5 real-world domains, covering
43 perception and reasoning subtasks. Each QA pair offers 5 options. We highlight and magnify the
image parts relevant to the question in a red box for better visibility.

This makes it challenging to verify the benefits or improvements of advanced models and
to distinguish which one is significantly better.

In light of these concerns, we propose a new benchmark named MME-RealWorld. We first pay
attention to a series of well-motivated families of datasets, considering images from sources such
as autonomous driving, remote sensing, video surveillance, newspapers, street views, and financial
charts. These scenarios are difficult even for humans, where we hope that MLLMs can really help.
Considering these topics, we collect a total of 13, 366 high-resolution images from more than 300K
public and internet sources. These images have an average resolution of 2, 000×1, 500, containing
rich image details. 25 professional annotators and 7 experts in MLLMs are participated to annotate
and check the data quality, and meanwhile ensuring that all questions are challenging for MLLMs.
Note that most questions are even hard for humans, requiring multiple annotators to answer and
double-check the results. As shown in Fig. 2(a), MME-RealWorld finally contains 29, 429 annota-
tions for 43 sub-class tasks, where each one has at least 100 questions. 29 advanced MLLMs are
evaluated on our benchmark, along with detailed analysis. We conclude the main advantages of
MME-RealWorld compared to existing counterparts as follows:

• Data Scale. With the efforts of a total of 32 volunteers, we have manually annotated 29, 429
QA pairs focused on real-world scenarios, making this the largest fully human-annotated
benchmark known to date.

• Data Quality. 1) Resolution: Many image details, such as a scoreboard in a sports
event, carry critical information. These details can only be properly interpreted with high-
resolution images, which are essential for providing meaningful assistance to humans. To
the best of our knowledge, MME-RealWorld features the highest average image resolution

2
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Sonnet

47.0Claude 3.5 Sonnet50.0InternLM-2.5

45.8SliME-8B49.4InternVL-Chat-V1-5

42.0YI-VL-34B45.9Mini-Gemini-34B-HD

39.8CogVLM245.6MiniCPM-V 2.5

38.9SliME-13B45.2GPT-4o

38.8GPT-4o44.6CogVLM2

38.5Mini-Gemini-34B-HD44.1Cambrian-34B

37.2Monkey42.7Cambrian-8B

36.5LLaVA-Next-8B39.6SliME-8B

35.7Cambrian-34B38.2Gemini-1.5-pro

34.9Mini-Gemini-7B-HD36.4GPT-4o-mini

33.9InternLM-2.535.3Monkey

33.6Cambrian-8B32.7mPLUG-DocOwl

30.6LLaVA-Next-72B32.4DeepSeek-VL

28.3mPLUG-DocOwl31.7SliME-13B

28.1Gemini-1.5-pro31.0YI-VL-34B

27.9MiniCPM-V 2.530.3Mini-Gemini-7B-HD

27.6DeepSeek-VL30.2LLaVA-Next-8B

26.4TextMonkey28.7LLaVA-Next-72B

25.9GPT-4o-mini28.0LLaVA1.5-13B

25.9ShareGPT4V-13B 27.8ShareGPT4V-13B

2 InternVL-2 InternVL-22

(b) Leaderboard

Figure 2: Task Categories (left). Our benchmark spans 5 key domains and 43 subtasks highly
related to real-world scenarios, including 13, 366 high-resolution images and 29, 429 annotations.
Model Performance (right). Average accuracies of advanced MLLMs are shown across both the
English and Chinese splits of the dataset.

among existing competitors. 2) Annotation: All annotations are manually completed, with
a professional team cross-checking the results to ensure data quality.

• Task Difficulty and Real-World Utility. The performance of different MLLMs is shown
in Fig. 2(b), in which we can see that even the most advanced models have not surpassed
60% accuracy. Additionally, as illustrated in Fig. 1, many real-world tasks are significantly
more difficult than those in traditional benchmarks. For example, in video monitoring, a
model needs to count the presence of 133 vehicles, or in remote sensing, it must identify
and count small objects on a map with an average resolution exceeding 5000×5000.

• MME-RealWorld-CN. Existing Chinese benchmark (Liu et al., 2023c) is usually trans-
lated from its English version. This has two limitations: 1) Question-image mismatch.
The image may relate to an English scenario, which is not intuitively connected to a Chi-
nese question. 2) Translation mismatch (Tang et al., 2024). The machine translation is not
always precise and perfect enough. We collect additional images that focus on Chinese
scenarios, asking Chinese volunteers for annotation. This results in 5, 917 QA pairs.

2 MME-REALWORLD

In this section, we outline the data collection process, question annotation procedure, and provide
a statistical overview of each domain and subtask in MME-RealWorld and its Chinese version. We
visualize different tasks from the 5 image domains in Fig. 1. Detailed information on data sources,
evaluation tasks, and visualized results can be found in Sec. B.

2.1 INSTRUCTION AND CRITERION

For each question, we manually construct four options, with one being the correct answer and the
other three being the texts appearing in the image or options similar to the correct one. This greatly
enhances the difficulty, forcing the model to deeply understand the details of the image. We also

3
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Table 1: Prompt setting of MME-RealWorld.
[Image] [Question] The choices are listed below:
(A) [Choice A]
(B) [Choice B]
(C) [Choice C]
(D) [Choice D]
(E) [Choice E]
Select the best answer to the above multiple-choice question based on the image. Respond with
only the letter (A, B, C, D, or E) of the correct option.
The best answer is:

provide an additional choice E, which allows the model to reject for answering because there is no
right answer. We try to use the model’s default prompt for multiple-choice questions, but if the
model does not have the default prompt, we use a common prompt as shown in Tab. 1.

Evaluation Metric. We first apply a rule-based filter to the answers generated by MLLM, aligning
them with the given answer options and checking for correctness against the ground truth. Let the
dataset be denoted as D = {Dd = {Tt}Td

t=1}Dd=1, where each domain Dd consists of Td subtasks.
For each subtask, we calculate the accuracy across all annotations. For each domain, we compute
two metrics: 1) Average Accuracy (Avg). the weighted average accuracy across all subtasks, given
by

∑Td

t=1 Avg(Tt)× |Tt|/|Dd|, where | · | is the instance number contained in one set, and 2) Class-
based Average Accuracy (Avg-C). the unweighted average accuracy across subtasks, given by∑Td

t=1 Avg(Tt)/Td. Similarly, for the entire dataset, we report the overall Average Accuracy across
all samples, and the class-based average accuracy across domains.

2.2 DATA COLLECTION AND ANNOTATION

Optical Character Recognition in the Wild (OCR). It is specifically designed to evaluate the
model’s ability to perceive and understand textual information in the real-world. We manually se-
lecte 3, 293 images with complex scenes and recognizable text information from 150, 259 images in
existing high-resolution datasets as our image sources. These images span various categories such
as street scenes, shops, posters, books, and competitions. The volunteers are worked for annotation,
each with at least a foundational understanding of multimodal models, to independently generate
questions and answers. These annotations are subsequently reviewed and further refined by another
volunteers. Based on the image annotations, we categorize these 3, 297 images into 5 perception
tasks, totaling 5, 740 QA pairs: contact information and addresses, identity information, products
and advertisements, signage and other text, as well as natural text recognition in elevation maps and
books. Additionally, there are two reasoning tasks with 500 QA pairs: 1) scene understanding of
the entire image, which requires the model to locate and comprehend important text such as compe-
tition results, and 2) character understanding, focusing on comics or posters where the model needs
to analyze relationships and personalities based on dialogue or presentation.

Remote Sensing (RS). The images have a wide range of applications in real-world scenarios. Some
images possess extremely high quality, with individual image sizes reaching up to 139MB and con-
taining very rich details, which makes it difficult even for humans to perceive specific objects. We
manually select 1, 298 high-resolution images from over 70, 000 public remote sensing images, en-
suring that each image is of high quality, with sufficient resolution and rich detail. One professional
researcher is involved in annotating the data, and another researcher checks and improves the annota-
tions, resulting in 3, 738 QA pairs. There are 3 perception tasks: object counting, color recognition,
and spatial relationship understanding.

Diagram and Table (DT). Although there are already some datasets related to table and chart un-
derstanding, they mostly feature simple scenes. We focus on highly complex chart data, such as
financial reports, which contain extensive numerical information and mathematical content, pre-
senting new challenges for MLLMs. We filter 2, 570 images from the internet, with annotations
performed by two volunteer and reviewed by another one. We categorize these annotations into 4
tasks based on the question format: 1) Diagram and Table Perception (5, 433 QA pairs): involve
locating specific values of elements within the diagrams and tables; 2) Diagram Reasoning (250 QA
pairs): include tasks such as identifying the maximum and minimum values in a chart, performing
simple calculations, and predicting trends; and 3) table Reasoning (250 QA pairs): focus on simple
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calculations related to specific elements, understanding mathematical concepts like maximum and
minimum values, and locating corresponding elements.

Autonomous Driving (AD). It demands extensive general knowledge and embodied understanding
capability. We emphasize challenging driving scenarios that involve distant perceptions and intricate
interactions among dynamic traffic agents. Specifically, we manually select a subset of 2, 715 images
from over 40, 000 front-view images captured by onboard cameras in open-source datasets. These
images cover a diverse range of weather conditions, geographic locations, and traffic scenarios.
Besides, a volunteer carefully annotates each image, and the other one conducts a thorough review,
resulting in 3, 660 QA pairs for perception tasks and 1, 334 QA pairs for reasoning tasks. The
perception tasks include objects identification, object attribute identification, and object counting
for traffic elements such as vehicle, pedestrian, and signals. The latter is categorized into 3 main
tasks: 1) Intention Prediction: focus on predicting driving intention of a designated traffic agent in
the short-term future. 2) Interaction Relation Understanding: involve reasoning about ego vehicle’s
reaction to other traffic elements, and the interactions between these elements. 3) Driver Attention
Understanding: require reasoning about the traffic signal that the driver should pay attention to.

Monitoring (MO). The images are from various application scenarios for public safety, e.g., streets,
shopping malls, and expressway intersections. We focus on complex high-resolution monitoring
images that include many real-world challenges, like scale variations and out-of-view, as possible
which could test whether the model handles them robustly in practice. Specifically, 1, 601 high-
resolution images are manually selected from over 10, 000 public dataset images, which are captured
from a broad range of cameras, viewpoints, scene complexities, and environmental factors across
day and night. In terms of annotations, two volunteers manually annotate each image carefully, and
multi-stage careful inspections and modifications are performed by another one. When these refined
image annotations are completed, 1, 601 images are categorized into 3 main perception tasks, total-
ing 2, 196 QA pairs, including object counting and location, and attribute recognition. Furthermore,
3 reasoning tasks are well-designed with 498 QA pairs: 1) calculate the sum of different objects,
which requires the model to perceive various objects and calculate their total number accurately; 2)
intention reasoning, focusing on reasoning the next route and turn of the specific object; 3) attribute
reasoning, focusing on reasoning the specific materials and functions of the given objects.

Figure. 15 shows the distribution of tasks across various domains.

2.3 MME-REALWORLD-CN

The traditional general VQA approach (Liu et al., 2023c) uses a translation engine to extend QA
pairs from English to Chinese. However, it may face visual-textual misalignment problems (Tang
et al., 2024), failing to address complexities related to nuanced meaning, contextual distortion, lan-
guage bias, and question-type diversity. Additionally, asking questions in Chinese about images
containing only English texts is not intuitive for benchmarking Chinese VQA capabilities. By con-
trast, we follow the steps below to construct a high-quality Chinese benchmark:

• Selection. For video monitoring, autonomous driving, and remote sensing, many images
do not contain English information. Therefore, we select a subset of the aforementioned
question pairs, double-checking to ensure they do not contain any English information.

• Translation. Translate the questions and answers by four professional researchers, all of
whom are familiar with both English and Chinese.

• Collection. For diagrams and tables, since the original images often contain English in-
formation (e.g., legends/captions), we collect additional 300 tables and 301 diagrams from
the Internet, where the contents are in Chinese. This data is further annotated by one vol-
unteer, resulting in 301×4 QA pairs, where the task type is the same as diagram and table
in MME-RealWorld. Similarly, for OCR in the wild, we also collect additional 939 images
for all the subtasks.

In total, MME-RealWorld-CN has 1, 889 additional images and total 5, 917 QA pairs, which is
a smaller version of MME-RealWorld, but it retains similar task types, image quality, and task
difficulty. The examples can be seen in Fig. 12.

5
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2.4 QUALITY CONTROL AND ANALYSIS

Table 2: Comparison of benchmarks. MME-
RealWorld is the largest fully human-annotated
dataset, featuring the highest average resolution
and the most challenging tasks.

Benchmark # QA-Pair Fully Human
Annotation CN Average

Resolution
LLaVA-1.5-7B
Performance

VizWiz 8000 × × 1224×1224 50.0
RealWorldQA 765 × × 1536×863 -
MMStar 1500 × × 512×375 30.3
ScienceQA 21000 × × 378×249 71.6
ChartQA 32719 × × 840×535 -
MM-Vet 218 × × 1200×675 31.1
Seed-Bench 19242 × × 1024×931 66.1
SEED-Bench-2-Plus 2300 × × 1128×846 36.8
MMT-Bench 32325 × × 2365×377 49.5
MathVista 735 × × 539×446 26.1
TouchStone 908 × × 897×803 -
VisIT-Bench 1159 × × 765×1024 -
BLINK 3807 × × 620×1024 37.1
CV-Bench 2638 × × 1024×768 -
TextVQA 5734 ✓ × 985×768 58.2
MME 2374 ✓ × 1161×840 76.0
MMBench 3217 ✓ ✓ 512×270 64.3
MME-RealWorld 29429 ✓ ✓ 2000x1500 24.9

During the annotation process, we impose the
following requirements on annotators: 1. We
ensure that all questions can be answered based
on the image (except for specially constructed
questions where the correct option is “E”),
meaning that humans can always find the an-
swers within the image. This approach prevents
forcing annotators to provide answers based on
low-quality images or images containing vague
information. 2. The area of the object be-
ing questioned in each image must not exceed
1/10 of the total image area. This ensures
that the object is not overly prominent, pre-
venting humans from easily identifying the an-
swer at first glance. 3. Each annotation is
cross-checked by at least two professional mul-
timodal researchers to ensure accuracy and pre-
vent annotation errors caused by human bias.

The comparison of benchmarks is shown in Tab. 2. The maximal resolution of MME-RealWorld is
42, 177, 408 pixels, with dimensions of 5304×7952. The average resolution is 3, 007, 695 pixels,
equivalent to an image size of approximately 2000×1500. This resolution is significantly higher
than that of existing benchmarks. For instance, the highest benchmark, MME, has an average res-
olution of 975, 240 pixels, corresponding to an image size of about 1161×840. The exceptional
image quality and our strict, fully human annotation process make our tasks the most challenging
among all benchmarks. This is evidenced by the baseline model LLaVA-1.5-7B achieving an ac-
curacy of just 24.9%, significantly lower than on other benchmarks. Although some benchmarks
may approach our level of difficulty, this is primarily due to the inherent complexity of their tasks.
For instance, MathVista focuses on pure mathematical problems, and MM-Vet involves multi-step
reasoning—both of which are naturally challenging and result in lower baseline performance. How-
ever, the majority of our tasks are centered on real-world perception problems. This means that,
current MLLMs still struggle to effectively address human-level perceptual challenges.

2.5 ADVANCING DATASET DIVERSITY AND SCALABILITY: CHALLENGES AND
MODEL-ASSISTED STRATEGIES

The creation of a high-resolution, diverse, and scalable dataset is a multifaceted challenge that in-
volves balancing domain-specific requirements, practical constraints, and innovative approaches to
enhance efficiency. In this section, we summarize the key aspects of our work, including the ratio-
nale behind our domain selection, existing limitations in dataset construction, and the potential for
model-assisted strategies to improve scalability (The full discussion is shown in Appendix. C).

1. Rationale for Domain Selection (Appendix. C.1): We prioritized domains such as remote sens-
ing, surveillance, and autonomous driving for their practical value and unique challenges, focusing
on high-resolution imagery with complex scenarios. These domains are better suited for testing
nuanced perception and reasoning compared to simpler datasets like COCO, which lack scene com-
plexity and high resolution.

2. Current Limitations and Plans for Extension (Appendix. C.2): Our dataset faces challenges in
task diversity and scalability. There is a lack of high-resolution natural scene data and underrepresen-
tation of domains like indoor scenes, healthcare, and AR/VR. Additionally, the dataset construction
process, requiring significant human effort, limits scalability. Future plans include capturing natural
images, expanding to more domains, and exploring strategies to reduce manual effort.

3. Exploring Model-Assisted Approaches to Enhance Scalability (Appendix. C.3): We trialed
MLLMs for data filtering and question generation. While models like GPT-4o effectively filtered
images, their performance in generating complex QA pairs was suboptimal, often producing lower
task difficulty and higher error rates compared to manual annotation. This suggests that while model-
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Table 3: Experimental results on the perception tasks. Models are ranked according to their aver-
age performance. Rows corresponding to proprietary models are highlighted in gray for distinction.
“OCR”, “RS”, “DT”, “MO”, and “AD” each indicate a specific task domain: Optical Character
Recognition in the Wild, Remote Sensing, Diagram and Table, Monitoring, and Autonomous Driv-
ing, respectively. “Avg” and “Avg-C” indicate the weighted average accuracy and the unweighted
average accuracy across subtasks in each domain.

Method LLM Perception
Task Split OCR RS DT MO AD Avg Avg-C
# QA pairs 5740 3738 5433 2196 3660 20767 20767

Qwen2-VL Qwen2-7B 81.38 44.81 70.18 37.30 34.62 58.96 53.66
InternVL-2 InternLM2.5-7B-Chat 73.92 39.35 62.80 53.19 35.46 55.82 52.94
Claude 3.5 Sonnet - 72.47 25.74 67.44 32.19 40.77 52.90 47.72
InternLM-XComposer2.5 InternLM2-7B 69.25 36.12 63.92 39.48 33.63 52.47 48.48
InternVL-Chat-V1.5 InternLM2-Chat-20B 71.51 33.55 55.83 51.16 31.42 51.36 48.69
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 69.55 40.40 44.36 39.61 32.70 48.05 45.32
MiniCPM-V 2.5 Llama3-8B 66.79 27.69 52.81 38.70 34.15 47.37 44.03
Cambrian-1-34B Nous-Hermes-2-Yi-34B 66.45 38.63 40.44 45.98 33.61 46.68 45.02
GPT-4o - 77.69 28.92 46.68 33.93 22.43 46.43 41.93
CogVLM2-llama3-Chat Llama3-8B 69.97 28.76 47.51 33.74 30.22 45.84 42.04
Cambrian-1-8B Llama3-8B-Instruct 58.68 40.05 32.73 47.68 38.52 43.82 43.53
SliME-8B Llama3-8B 53.45 42.27 29.34 40.62 33.66 40.29 39.87
Gemini-1.5-pro - 67.62 13.99 39.90 31.11 26.64 39.63 35.85
GPT-4o-mini - 62.51 6.69 44.23 26.50 24.18 37.12 32.82
Monkey Qwen-7B 54.63 24.99 32.51 28.01 29.67 36.30 33.96
mPLUG-DocOwl 1.5 Llama-7B 51.15 23.71 29.34 24.97 28.28 33.71 31.49
DeepSeek-VL DeepSeek-LLM-7b-base 49.55 25.49 23.38 26.97 33.39 33.14 31.76
SliME-13B Vicuna-13B 50.58 25.82 20.93 24.73 27.16 31.50 29.84
Mini-Gemini-7B-HD Vicuna-7B-v1.5 42.02 31.30 22.31 34.15 24.81 31.07 30.92
YI-VL-34B Yi-34B-Chat 44.95 31.62 15.99 34.85 28.31 30.97 31.14
LLaVA-Next Llama3-8B 47.94 25.42 26.63 19.46 18.66 30.14 27.62
LLaVA-Next Qwen-72B 37.07 29.13 27.68 29.37 17.98 29.01 28.25
LLaVA1.5-13B Vicuna-13B 44.10 23.27 20.17 20.45 26.12 28.42 26.82
ShareGPT4V-13B Vicuna-13B 44.55 23.06 20.17 19.26 26.12 28.38 26.63
MiniGPT-v2 Llama 2-7B-Chat 39.02 23.33 20.41 19.26 25.96 26.94 25.60
ShareGPT4V-7B Vicuna-7B 39.39 22.10 20.08 19.13 26.04 26.73 25.35
LLaVA1.5-7B Vicuna-7B 38.69 22.12 20.08 19.13 26.04 26.54 25.21
Qwen-VL-Chat Qwen-7B 32.37 15.14 15.59 22.13 15.08 20.75 20.06
TextMonkey Qwen-7B 37.30 11.69 5.93 16.14 14.26 18.18 17.06

assisted pipelines can reduce workload, further refinement is needed to match the quality of manual
processes.

3 EXPERIMENTS

We evaluate a total of 24 open-source MLLMs, including Qwen-VL-Chat (Bai et al., 2023a),
LLaVA, LLaVA-Next (Li et al., 2024a), TextMonkey (Liu et al., 2024b), mPLUG-DocOwl 1.5 (Hu
et al., 2024a), ShareGPT4V (Chen et al., 2023b), MiniGPT-v2 (Chen et al., 2023a), Monkey (Li
et al., 2023f), OtterHD (Li et al., 2023a), Cambrian-1 (Tong et al., 2024), Mini-Gemini-HD (Li
et al., 2024d), MiniCPM-V 2.5 (Hu et al., 2024b), DeepSeek-VL (Lu et al., 2024a), YI-VL-34B1,
SliME (Zhang et al., 2024), CogVLM22, InternLM-XComposer2.5 (Zhang et al., 2023), InternVL-
Chat V1-5, InternVL-2 (Chen et al., 2023c), and Qwen2-VL3, as well as 4 close-source MLLMs,
including, GPT-4o4, GPT-4o-mini, Gemini 1.5 pro (Team et al., 2023), and Claude 3.5 Sonnet5.
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3.1 RESULTS ON MME-REALWORLD

3.1.1 PERCEPTION

Tab. 3 presents the perception capabilities of different models across 5 domains. Overall, Qwen2-VL
demonstrates the strongest perception abilities, outperforming other closed-source models. How-
ever, the performance varies across different tasks, with some key observations as follows:

• GPT-4o performs well in real-world OCR tasks, achieving 77% accuracy, which is sec-
ond only to Qwen2-VL. However, its performance significantly drops in more challenging
tasks, lagging behind other top-ranked models. This trend is also observed in other closed-
source models, such as Gemini-1.5-Pro and GPT-4o-mini, which perform well in OCR
tasks but struggle significantly in other real-world tasks. There are three possible reasons:
1) Close-source models often have limitations on the maximum image size and resolution
when uploading local images. For example, Claude 3.5 Sonnet has a maximum resolution
limit of 8K and a maximum image quality of 5MB, while GPT-4o and Gemini-pro allow
up to 20MB. This restricts the input of some high-quality images, as we have to compress
the images for upload. 2) Close-source models tend to be more conservative. We observe
that the proportion of responses, where closed-source models output “E” indicating that the
object in question is not present in the image, is high. This suggests that these models may
adopt a conservative response strategy to avoid hallucinations or to provide safer answers.
3) Closed-source models sometimes refuse to answer certain questions. Due to different
input/output filtering strategies, some samples are considered to involve privacy or harmful
content and are therefore not answered.

• Models allowing higher resolution input, such as Mini-Gemini-HD and SliME, demon-
strate a significant advantage over models directly using vision encoders like CLIP, such as
ShareGPT4V and LLaVA1.5. At the same model size, these models consistently improve
across different subtasks. This highlights the critical importance of high-resolution image
processing for addressing complex real-world tasks.

• There are also notable trends across different domains. Remote sensing tasks involve
processing extremely large images, demanding a deeper comprehension of image details.
Models that focus on high-resolution input, such as Cambrian-1, Mini-Gemini-HD, and
SliME, outperform other models in these tasks. Additionally, models trained on large
amounts of chart data exhibit improved perception capabilities for complex charts. For
instance, SliME and LLaVA1.5 have limited and relatively simple chart data in their train-
ing sets, resulting in inferior performance in this category compared to more recent models.

3.1.2 REASONING

Experimental results on the reasoning tasks are shown in Tab. 4. In terms of reasoning ability, Claude
3.5 Sonnet distinguishes itself as the top performer across most domains, particularly outpacing
the second-place Qwen2-VL by 12.6% in chart-related tasks. The closed-source model GPT-4o
also performs well, trailing slightly behind the third-place InternVL-2 but even outperforming it in
several domains. Most open-source models perform poorly, with traditional baseline methods such
as LLaVA1.5 and Qwen-VL-Chat yielding results close to random guessing. Furthermore, reasoning
tasks are more challenging than perception tasks. Even the top-ranked model fails to achieve an
average accuracy above 45%, with class-based accuracy not exceeding 50%. This indicates that
current models still have a significant gap to bridge to reach human-level reasoning capabilities.

3.2 RESULTS ON MME-REALWORLD-CN

Results of perception tasks and reasoning tasks are presented in Tab. 5 and Tab. 13, respectively.
The models show different performances compared to the MME-RealWorld English version.

1https://huggingface.co/01-ai/Yi-VL-34B
2https://github.com/THUDM/CogVLM2
3https://github.com/QwenLM/Qwen2-VL
4https://openai.com/index/hello-gpt-4o/
5https://www.anthropic.com/news/claude-3-5-sonnet
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Table 4: Experimental results on the reasoning tasks. Models are ranked according to their aver-
age performance. Rows corresponding to proprietary models are highlighted in gray for distinction.
“OCR”, “RS”, “DT”, “MO”, and “AD” each indicate a specific task domain: Optical Character
Recognition in the Wild, Remote Sensing, Diagram and Table, Monitoring, and Autonomous Driv-
ing, respectively. “Avg” and “Avg-C” indicate the weighted average accuracy and the unweighted
average accuracy across subtasks in each domain.

Method LLM Reasoning
Task Split OCR DT MO AD Avg Avg-C
# QA pairs 500 500 498 1334 2832 2832

Claude 3.5 Sonnet - 61.90 61.20 41.79 31.92 44.12 49.20
Qwen2-VL Qwen2-7B 63.40 48.60 33.13 31.47 40.39 44.15
InternVL-2 InternLM2.5-7B-Chat 57.40 39.00 43.57 29.84 38.74 42.45
GPT-4o - 61.40 44.80 36.51 26.41 37.61 42.28
CogVLM2-llama3-Chat Llama3-8B 54.00 32.80 41.16 31.18 37.25 39.79
InternVL-Chat-V1-5 InternLM2-Chat-20B 56.80 35.40 37.35 28.94 36.48 39.62
Cambrian-1-8B Llama3-8B-Instruct 53.20 27.40 42.37 30.73 36.16 38.43
SliME-8B Llama3-8B 53.20 29.40 36.14 31.55 35.80 37.57
MiniCPM-V 2.5 Llama3-8B 44.00 31.80 36.95 31.03 34.50 35.95
SliME-13B Vicuna-13B 41.00 39.00 33.13 30.80 34.46 35.98
InternLM-XComposer2.5 InternLM2-7B 53.40 41.00 17.67 29.99 33.90 35.52
GPT-4o-mini - 47.00 39.80 25.81 26.79 32.48 34.85
YI-VL-34B Yi-34B-Chat 42.40 26.00 31.33 31.55 32.45 32.82
LLaVA-Next Llama3-8B 55.20 23.40 21.08 30.73 32.06 32.60
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 59.20 39.20 20.48 22.84 31.73 35.43
Gemini-1.5-pro - 52.70 33.20 28.33 19.20 29.19 33.36
Monkey Qwen-7B 27.20 20.80 27.31 33.04 28.84 27.09
DeepSeek-VL DeepSeek-LLM-7b-base 45.20 23.80 16.67 27.31 27.98 28.25
LLaVA-Next Qwen-72B 17.20 34.20 27.31 29.69 27.86 27.10
Cambrian-1-34B Nous-Hermes-2-Yi-34B 55.00 36.00 19.48 16.07 27.06 31.64
mPLUG-DocOwl 1.5 Llama-7B 42.60 19.80 20.48 26.04 26.88 27.23
Mini-Gemini-7B-HD Vicuna-7B-v1.5 35.40 24.60 25.90 23.29 26.12 27.30
LLaVA1.5-13B Vicuna-13B 30.20 20.80 27.51 24.78 25.51 25.82
ShareGPT4V-13B Vicuna-13B 26.00 20.80 27.31 24.55 24.63 24.67
LLaVA1.5-7B Vicuna-7B 26.00 20.60 25.90 24.18 24.17 24.17
ShareGPT4V-7B Vicuna-7B 24.15 20.60 26.10 24.18 23.88 23.76
MiniGPT-v2 Llama 2-7B-Chat 30.00 20.40 16.87 23.66 23.01 22.73
Qwen-VL-Chat Qwen-7B 28.60 13.60 16.47 24.63 21.95 20.83
TextMonkey Qwen-7B 30.40 2.20 4.42 20.01 15.96 14.26

1) Qwen2-VL and InternVL-2 significantly outperform existing models in both perception and rea-
soning tasks in the Chinese version. The performance of these two models even surpasses their
performance on the English version of MME-RealWorld, indicating that they jave been specifically
optimized for Chinese data.

2) There is a substantial difference in how models handle Chinese and English data, with some
models performing much worse in Chinese scenarios, particularly in reasoning tasks. For instance,
GPT-4o and GPT-4o-mini show a performance drop of nearly 10%. However, some models seem
to excel in Chinese-related tasks. Notably, models based on Llama3-8B generally achieve strong
results in both Chinese perception and reasoning tasks, such as SliME and CogVLM2. This suggests
that Llama3-8B may be an effective LLM backbone for Chinese tasks.

3.3 FINE-GRAINED ANALYSIS AND FINDINGS

Extended Metrics In addition to the multiple-choice option, we also plan to release a performance
evaluation version of the dataset (EM), which retains only the question without providing choices.
The evaluation will be conducted using exact match or GPT-match6 to assess the final result. This
approach prevents models from relying on information from the choices. We selected 50 samples
from each task for testing, using the prompt "Please respond to the question with a single word
or phrase," prompting the model to generate a direct response. The generated response is then

6We prompt GPT-4O with the following to determine consistency between the model output and the correct
answer: "Please determine whether the following two responses are consistent. If they are, output 1; otherwise,
output 0. Answer A: {answer1}; Answer B: {answerB}. The output number (0 or 1) is:"
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Table 5: Experimental results on the perception tasks of MME-RealWorld-CN. Models are
ranked according to their average performance. Rows corresponding to proprietary models are high-
lighted in gray for distinction. “OCR”, “RS”, “DT”, “MO”, and “AD” each indicate a specific task
domain: Optical Character Recognition in the Wild, Remote Sensing, Diagram and Table, Moni-
toring, and Autonomous Driving, respectively. “Avg” and “Avg-C” indicate the weighted average
accuracy and the unweighted average accuracy across subtasks in each domain.

Method LLM Perception
Task Split OCR RS DT MO AD Avg Avg-C
# QA pairs 1908 300 602 500 700 4010 4010

Qwen2-VL Qwen-7B 70.28 38.33 89.20 29.40 36.86 59.80 52.81
InternVL-2 InternLM2.5-7B-Chat 69.92 41.33 71.63 39.3 34.14 57.97 51.26
InternVL-Chat-V1-5 InternLM2-Chat-20B 60.59 32.00 60.12 32.40 32.14 49.90 43.45
Claude 3.5 Sonnet - 54.44 32.67 74.09 25.00 32.43 48.25 43.73
SliME-8B Llama3-8B 53.93 41.33 58.25 29.20 31.29 46.60 42.80
GPT-4o - 55.90 23.67 54.86 25.20 21.14 43.44 36.15
YI-VL-34B Yi-34B-Chat 51.41 34.33 49.52 25.20 27.71 42.45 37.63
SliME-13B Vicuna-13B 50.63 17.33 48.49 17.80 33.23 40.69 33.50
Cambrian-1-34B Nous-Hermes-2-Yi-34B 48.11 33.79 44.34 27.60 26.43 40.13 36.05
CogVLM2-llama3-Chat Llama3-8B 46.12 22.00 39.48 24.80 34.14 38.57 33.31
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 41.82 38.28 40.60 27.80 34.29 38.31 36.56
LLaVA-Next Llama3-8B 40.62 31.67 37.49 35.40 27.29 36.50 34.49
Gemini-1.5-pro - 48.32 12.33 39.78 25.20 17.57 36.10 28.64
Monkey Qwen-7B 40.46 26.55 41.12 19.20 35.86 36.07 32.64
InternLM-XComposer2.5 InternLM2-7B 39.26 38.33 38.88 19.40 33.57 35.66 33.89
Mini-Gemini-7B-HD Vicuna-7B-v1.5 39.66 17.24 39.29 16.80 28.29 33.09 28.26
Cambrian-1-8B Llama3-8B-Instruct 32.71 35.86 30.28 27.60 35.57 32.44 32.40
mPLUG-DocOwl 1.5 LLama-7B 33.33 18.62 31.83 25.60 28.43 30.19 27.56
LLaVA-Next Qwen-72B 32.76 23.67 28.69 34.60 23.14 30.02 28.57
MiniCPM-V 2.5 Llama3-8B 33.23 16.67 31.67 20.40 26.00 28.89 25.59
DeepSeek-VL DeepSeek-LLM-7b-base 27.10 25.44 26.02 21.60 35.71 27.63 27.17
TextMonkey Qwen-7B 31.24 11.38 30.76 19.60 26.71 27.44 23.94
GPT-4o-mini - 29.56 7.33 31.79 22.00 24.00 26.32 22.94
Qwen-VL-Chat Qwen-7B 27.36 15.00 27.89 24.29 27.36 26.13 24.38
ShareGPT4V-13B Vicuna-13B 27.94 17.59 27.57 16.80 28.14 25.75 23.61
LLaVA1.5-13B Vicuna-13B 27.52 17.33 26.25 17.00 28.66 25.45 23.35
MiniGPT-v2 Llama 2-7B-Chat 26.78 19.31 27.05 14.40 29.43 25.18 23.39
ShareGPT4V-7B Vicuna-7B 26.73 17.24 25.75 16.60 28.14 24.86 22.89
LLaVA1.5-7B Vicuna-7B 26.36 16.67 25.75 16.60 28.14 24.64 22.70

compared to the correct answer to check for consistency. The input-output format of EM compared
to naive MCQ is shown in Figure. 16.

In our experiments (Tab. 22), all models showed a noticeable performance drop when choices were
removed (EM vs. MCQ). Additionally, using GPT-4 to align the model’s response with the intended
meaning of both the response and the correct option (line 10 vs. line 9) showed some performance
improvement; however, the results still lagged behind those with choices provided. Consequently,
Machine Match is a key evaluation strategy we plan to prioritize in future assessments. Under this
evaluation strategy, GPT-4 achieves around 30% accuracy, highlighting the increased difficulty level
of our tasks. This suggests that the challenge level of tasks based on our benchmark data could
be further enhanced.

Existing Models Still Lacking in Image Detail Perception. Fig. 3 displays the frequency with
which various models choose “E” as their answer. We compare 4 close-source models with the top-
level open-source model, InternVL-2. During our annotation process, the frequency of “E” answers
does not exceed 5% of the overall data, meaning it represents only a small portion of the total QA
pairs. However, nearly all models show a much higher frequency of “E” outputs than the actual num-
ber of “E” instances present in our benchmark. This indicates that most models’ visual perception
modules fail to identify the objects in the images corresponding to our questions. Additionally, dif-
ferent models exhibit varying frequencies in selecting response "E." In the Appendix F, we conduct
an in-depth analysis of the relationship between the frequency of choosing "E" and model attributes
such as safety and reliability, demonstrating that Preparatory Models tend to offer better AI security.

Limitations of MLLMs in Understanding Dynamic Information. In combination with the in-
tention prediction results from autonomous driving and monitoring tasks (Tab. 6), we observe that
MLLMs exhibit significant deficiencies in understanding, predicting, and reasoning about the dy-
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Figure 3: Frequency of outputting answer “E” for different models across various domains. The
notation in parentheses indicates the task type: P for perception and R for reasoning. The total QA
pairs and those with answer “E” are also presented for comparison.

Table 6: Performance of different models on intention prediction tasks.

Method Eng CN AD-Intention-Eng AD-Intention-CN Avg
Monitoring Monitoring Ego Pedestrian Verhicle Ego Pedestrian Verhicle

GPT-4o 13.27 8.16 17.11 19.42 27.54 26.00 16.00 23.00 18.81
Claude 3.5 Sonnet 18.37 22.45 26.32 32.04 24.64 34.00 20.00 25.00 25.35

InternVL-2 21.43 21.43 24.01 43.69 32.85 25.00 33.00 30.00 28.93
Qwen2-VL 19.39 17.35 19.08 43.69 35.75 25.00 37.00 36.00 29.16

namic information of objects, such as predicting the steering of a car. Although the input to these
models is a single frame image rather than a video, there remains a considerable gap between their
performance and that of humans. Therefore, it seems that these MLLMs are still far from having the
capability to be world models.

Chain-of-Thought Reasoning does not enhance the model’s high-resolution perception capa-
bilities. As shown in Figure. 16, we further evaluate the impact of CoT reasoning on high-resolution
tasks (for both MCQ and the EM mentioned above). Tab. 22 demonstrates that while CoT reason-
ing can assist the model in reasoning tasks, especially in chart-related reasoning tasks, it provides
minimal benefit for perception tasks (line 6 vs. line 7 and line 8 vs. line 11). In fact, for models
like GPT-4o-mini, perception performance even declines. This finding suggests that high-resolution
perception tasks are already highly challenging on their own. If the model cannot effectively receive
and understand visual inputs, then even the strongest reasoning capabilities of an LLM will only lead
to limited improvements. Therefore, enhancing MLLM’s comprehension of visual inputs remains a
critical focus.

What matters for ultra-resolution image perception: LLM capability or visual cognition capa-
bility? It is indeed challenging to completely separate a model’s capability to process input images
from its inherent perceptual ability, as these two aspects are closely coupled. However, in the case of
high-resolution images, the model’s capacity to process inputs seems especially crucial. For exam-
ple, as shown in the Tab. 23, Mini-Gemini-7B-HD and LLaVA1.5-7B use similar LLM architectures
and have comparable training data, yet Mini-Gemini-7B-HD exhibits far superior high-resolution
perception capabilities. This demonstrates the critical importance of handling higher-resolution data
effectively. As a result, most modern MLLMs have incorporated various image-splitting strategies to
accommodate larger maximum resolutions. Nevertheless, simply supporting higher resolution is not
a complete solution to high-resolution perception challenges. For instance, while Intern-VL2 has a
higher input resolution limit than Qwen2-VL, its overall performance is slightly lower. This implies
that the ability to handle larger image resolutions alone is insufficient for robust high-resolution per-
ception. The model’s inherent capabilities (such as information extraction and comprehension) also
play a vital role.
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Computation Efficiency. There is a significant disparity in computation efficiency among different
models when processing high-resolution images. For example, using models similar to LLMs (e.g.,
Vicuna-13B), the computational requirements for handling images exceeding 1024×1024 resolution
are as follows: LLaVA1.5 requires 16.37 TFLOPS, SliME requires 40.82 TFLOPS, while LLaVA-
Next and Mini-Gemini-HD require 78.37 and 87.59 TFLOPS, respectively. LLaVA-Next and SliME
employ dynamic chunking and encoding of images, while Mini-Gemini-HD uses a higher-resolution
vision encoder and significantly increases the number of vision tokens, resulting in a computation
cost approximately 5 times that of LLaVA1.5. Additionally, existing methods have inherent lim-
itations in handling high-resolution images. For example, Mini-Gemini-HD resizes images larger
than 672×672 to this size, causing a loss of more details. Moreover, we observe interesting phe-
nomena in closed-source models regarding image resolution. For instance, GPT-4o-mini uses over
10, 000 tokens for some large images, which is about 10 times more than other closed-source mod-
els, although its performance does not significantly surpass other models. Overall, we currently lack
methods that can efficiently handle higher resolution images with lower computational overhead.

Appendix Overview: Supplementary Analyses and Detailed Results. Due to the space constraints
of this paper, we are unable to include some detailed discussions of several important analyses,
which we summarize here. First, we explore simple tricks to mitigate the challenges posed by high-
resolution images, specifically by segmenting the images into smaller sub-images and querying each
one individually. The responses are then aggregated using a majority vote. While this method seems
intuitive, it leads to a significant decline in performance, mainly due to the loss of positional context
and the risk of splitting fine-grained objects across sub-images. Additionally, we conduct an analysis
of the distribution of incorrect choices across various models, revealing distinct response patterns.
Larger models show a tendency to select safer options, while smaller models often lean towards the
first choice. Finally, we observe that the instruction-following capabilities of some current open-
source models are still insufficient, indicating substantial room for improvement. These analyses,
along with the performance results for each subtask, are presented in the Appendix Sec. D - Sec. F
due to space constraints in the main text.

4 CONCLUSION

In this paper, we have introduced MME-RealWorld, a comprehensive benchmark designed to ad-
dress key limitations in existing evaluations of MLLMs, such as data scale, annotation quality, and
task difficulty. As the largest purely human-annotated dataset with the highest resolution to date,
MME-RealWorld benefits from the participation of 32 annotators, ensuring high data quality and
minimal individual bias. Most QA pairs focus on real-world scenarios, such as autonomous driv-
ing and video surveillance, which have significant applicability. Furthermore, we propose MME-
RealWorld-CN, a benchmark specifically focused on Chinese scenarios, ensuring that all images and
questions are relevant to Chinese contexts. Our evaluation of a wide range of models reveals signifi-
cant performance gaps, highlighting the current models’ shortcomings in complex image perception
and underscoring, and the need for further advancements.
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A RELATED WORK

Multimodal Benchmark. With the development of MLLMs, a number of benchmarks have been
built. For instance, MME (Fu et al., 2023a) constructs a comprehensive evaluation benchmark that
includes a total of 14 perception and cognition tasks. All QA pairs in MME are manually designed
to avoid data leakage, and the binary choice format makes it easy to quantify. MMBench (Liu et al.,
2023c) contains over 3, 000 multiple-choice questions covering 20 different ability dimensions, such
as object localization and social reasoning. It introduces GPT-4-based choice matching to address
the MLLM’s lack of instruction-following capability and a novel circular evaluation strategy to im-
prove the evaluation robustness. Seed-Bench (Li et al., 2023c) is similar to MME and MMBench but
consists of 19, 000 multiple-choice questions. The larger sample size allows it to cover more abil-
ity aspects and achieve more robust results. SEED-Bench-2 (Li et al., 2023b) expands the dataset
size to 24, 371 QA pairs, encompassing 27 evaluation dimensions and further supporting the eval-
uation of image generation. MMT-Bench (Ying et al., 2024) scales up the dataset even further,
including 31, 325 QA pairs from various scenarios such as autonomous driving and embodied AI.
It encompasses evaluations of model capabilities such as visual recognition, localization, reasoning,
and planning. Additionally, other benchmarks focus on real-world usage scenarios (Fu et al., 2024b;
Lu et al., 2024b; Bitton et al., 2023) and reasoning capabilities (Yu et al., 2024; Bai et al., 2023b;
Han et al., 2023). However, there are widespread issues, such as data scale, annotation quality, and
task difficulty, in these benchmarks, making it hard to assess the challenges that MLLMs face in the
real world.

MLLMs. This field has undergone significant evolution (Yin et al., 2023; Fu et al., 2023b), initially
rooted in BERT-based language decoders and later incorporating advancements in LLMs. MLLMs
exhibit enhanced capabilities and performance, particularly through end-to-end training techniques,
by leveraging advanced LLMs such as GPTs (OpenAI., 2023; Brown et al., 2020), LLaMA (Tou-
vron et al., 2023a;b), Alpaca (Taori et al., 2023), PaLM (Chowdhery et al., 2023; Anil et al., 2023),
BLOOM (Muennighoff et al., 2022), Mistral (Jiang et al., 2023), and Vicuna (Chiang et al., 2023).
Recent model developments, including Flamingo (Awadalla et al., 2023), PaLI (Laurençon et al.,
2024), PaLM-E (Driess et al., 2023), BLIP-2 (Li et al., 2023e), InstructBLIP (Dai et al., 2024), Ot-
ter (Li et al., 2023a), MiniGPT-4 (Zhu et al., 2023), mPLUG-Owl (Ye et al., 2023), LLaVA (Liu
et al., 2023b), Qwen-VL (Bai et al., 2023a), and VITA (Fu et al., 2024a), bring unique perspectives
to challenges such as scaling pre-training, enhancing instruction-following capabilities, and over-
coming alignment issues. However, the performance of these models in the face of real scenarios
has often not been revealed.

High-resolution MLLMs. Empirical studies have shown that employing higher resolution is an
effective solution for many tasks (Bai et al., 2023a; Liu et al., 2023a; Li et al., 2023f; McKinzie
et al., 2024). Approaches like LLaVA-Next (Liu et al., 2024a) segment high-resolution images into
multiple patches, encoding each one independently before concatenating all local patch tokens with
the original global image tokens, albeit at an escalated computational cost. Other models, such as
Monkey (Li et al., 2023f) and LLaVA-UHD (Xu et al., 2024), also split images into patches but sub-
sequently compress them to avoid redundant tokens. Mini-Genimi (Li et al., 2024d) comprises twin
encoders, one for high-resolution images and the other for low-resolution visual embedding. They
work in an attention mechanism, where the low-resolution encoder generates visual queries, and
the high-resolution counterpart provides candidate keys and values for reference. Conv-LlaVA (Ge
et al., 2024) employs ConvNeXt instead of ViT as the vision encoder. Cambrian (Tong et al., 2024)
uses a set of learnable latent queries that interact with multiple vision features via cross-attention
layers. Additionally, SliME (Zhang et al., 2024) stresses the importance of global features, com-
pressing the local image patches twice but preserving all the global context. Although many of
these models focus on improving resolution, none have been tested in a rigorous high-resolution
benchmark, often providing only intuitive examples that lack informativeness and convincing re-
sults. Our proposed benchmark offers a rigorous evaluation to test the capabilities in understanding
high-resolution images.
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B DATA COLLECTION AND TASK SPLIT

B.1 OCR IN THE WILD

Data Characteristics. The data is from real-world street scenes and high-resolution images of
product advertisements. Text is dense or difficult to detect and requires careful observation to be
identified.

B.1.1 DATA SOURCES AND ANNOTATION PROCESS

Data Sources. We manually select images with complex scenes and recognizable text information
from existing high-resolution datasets for our test images. The open-source datasets used include
DIV2K and Flickr2K (Agustsson & Timofte, 2017), which offer paired high-resolution RGB images
and their corresponding downscaled low-resolution RGB images by a factor of two. In our approach,
we exclusively utilize high-resolution images, selecting and preserving images with complex scenes
and contexts. Additionally, we include the LIU4K (Liu et al., 2019) dataset, which contains 2, 000
images with resolutions of at least 3K, most ranging from 4K to 6K. This dataset provides abundant
materials for testing and evaluating performance on 4K/8K display devices, featuring diverse and
complex low-level signal distributions and backgrounds. We also incorporate two large-scale Ultra-
High-Definition datasets, UHD4K and UHD8K (Zhang et al., 2021), which collectively contain
23, 000 images. These datasets cater to various low-level image enhancement tasks, including image
super-resolution (SR), image deraining (Derain), low-light image enhancement (LLIE), and image
reflection removal (IRR). Finally, we use HQ-50K (Yang et al., 2023a), a large-scale, high-quality
image restoration dataset containing 50, 000 high-quality images. HQ-50K stands out for its large
scale, high resolution, varying compression rates, rich texture details, and semantic diversity.

Annotation. 20 volunteers annotate the question and answer pairs. 3 experts are tasked with check-
ing and correcting the annotations to ensure quality.

B.1.2 EVALUATION DIMENSIONS AND BENCHMARK STATISTICS

The evaluation of models in real-world complex scenes involves their ability to recognize and un-
derstand text, enabling us to ascertain their capacity to comprehend and process textual information
within visual content, thereby enhancing the overall practicality and reliability of intelligent systems.
Specifically, Optical Character Recognition (OCR) in complex contexts comprises five perception
tasks and two reasoning tasks. For perception tasks,

1. Contact information and addresses (Fig. 4(a)). Recognizing telephone numbers, names of
countries/cities/streets, and buildings (469 images and 577 QA pairs).

2. Product and Advertisement Perception (Fig. 4(b)). Identifying product names/prices or adver-
tisements of shops or brands (803 images and 1, 588 QA pairs).

3. Identity Information Perception (Fig. 4(c)). Recognizing license numbers or ID cards of
cars/humans (852 QA pairs).

4. Other kind of Small Text on Signals or Indicators Perception (Fig. 4(d)). Recognizing small
text on indicators, signals, and similar objects (626 images and 1, 198 QA pairs).

5. Book, Map and Poster Perception (Fig. 4(e)). Recognizing dialogues/information on posters
and specific locations involving a country/region on maps (785 images and 1, 555 QA pairs).

Additionally, our two reasoning tasks include:

1. Scene Recognition (Fig. 5(a)). Understanding the meaning of scenes in images, such as predict-
ing the outcome of a game based on the scoreboard or what might happen in the future based on the
scene, inferring the time by looking at a clock, or calculating object prices (250 images and 250 QA
pairs).

2. Characters Understanding (Fig. 5(b)). Understanding the pertinent characteristics of characters
in a poster or comic, including their relationships, emotions, intentions, or quantities (250 images
and 250 QA pairs).
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What is the phone number of HOP INN?
(A) 02380 667723
(B) 02880 557722
(C) 02025 557753
(D) 02380 557723
(E) The image does not feature the number.

(a) Phone and Address Perception.

What is the content of the sign on the top of the tall building 
with the blue windows in the distance?
(A) VALES
(B) TIRANO INTERNATIONAL HOTEL
(C) LIBRARI
(D) TIRANA INTERNATIONAL HOTEL
(E) The image does not feature the content.

(b) Product and Advertisement.

What is the license plate number of 
the green sedan on the left?
(A) HZK-777
(B) HZK-789
(C) BB-9189
(D) 989 NP5
(E) The image does not feature the 

license.

(c) Human/Car License.

From left to right, what's the text in the 
first big blue sign above the road?
(A) Dresden Cottbus 13
(B) Berlin-Zentrum Bin.-Schonefeld 113
(C) Dresden Collbus 13
(D) BerLin-Zentrum Bin.-Schonefeld 113
(E) The image does not feature the text.

(d) Other kind of small Text on Signals or Indicators.

What's the content of the old man speaking in the frame 
on the fourth row in the comic page?
(A) DON'T WAIT FOR US. WE'LL FIND OUR 

OWN RABBIT HOLE.
(B) I SEE YOU BROUGHT WILLOW LIFGOOD 

WITH YOU.
(C) HER NAME IS MARIAN DREWS!
(D) WE CAN MANAGE.
(E) The image does not feature the content.

(e) Book, Map and Poster.

Figure 4: Data Examples for Perception Tasks in OCR in the Wild

What time is it now?
(A) 4:00
(B) 3:00
(C) 5:00
(D) 3:30
(E) The image does not feature the time.

(a) Scene Recognition.

What might be the emotions of these characters?
(A) Happy.
(B) Angry.
(C) Sad.
(D) Excited
(E) The image does not feature the emotion.

(b) Characters Understanding.

Figure 5: Data Examples for Reasoning Tasks in OCR in the Wild

Note that although we have 3, 293 unique images, some tasks use overlapping image sets, so the
total number of images listed in all the tasks is not exactly 3, 293.
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B.2 DIAGRAM AND TABLE

Data Characteristics. Diagrams and tables with rich content present significant challenges for rapid
localization and analysis, even for human researchers. These tasks demand a high level of perceptual
capability.

B.2.1 DATA SOURCES AND ANNOTATION PROCESS

Although there are existing datasets for evaluating diagrams and tables, such as ChartQA (Masry
et al., 2022) and some open-source scientific chart data like Arxiv QA (Li et al., 2024c), we observe
that these datasets often have relatively low image resolutions and limited content richness. Con-
sequently, they are relatively easy for humans to interpret quickly, which does not align with the
design goals of our benchmark. To address this, we source complex diagram data from the internet,
such as detailed financial reports with large charts. Analyzing these large charts poses significant
perceptual challenges, even for humans, and thus better aligns with the objectives of our benchmark.

Annotation. 20 volunteers are involved to generate question and answer pairs for the perception
task. Additionally, one expert researcher is responsible for generating reasoning annotations. To
ensure high-quality annotations, three experts are assigned to review and correct the annotations.

B.2.2 EVALUATION DIMENSIONS AND BENCHMARK STATISTICS

The ability of multimodal models to perceive and understand diagram and table data has long been a
focus of research. In our Diagram and Table domain, we have elevated the difficulty level to a point
where even humans find it challenging to solve easily. We have collected 2, 570 images and 5, 933
annotations, categorizing the annotations into the following four types:

1. Table Perception (Fig. 6(a)). Identifying specific elements within a table by using the given
table name, horizontal axis coordinates, and related location information to determine the value of
elements in specific positions (4, 018 QA pairs).

2. Diagram Perception (Fig. 6(b)). Identifying specific elements within a diagram by using the
provided legend or title, along with specific location information, to determine the value of elements
or the intervals they belong to (1, 415 QA pairs).

Additionally, our two reasoning tasks include:

1. Table Reasoning (Fig. 6(c)). This involves tasks that go beyond simple perception, such as
comparing the values of two elements in specific positions within a table, filtering the table based
on given conditions, or determining the maximum and minimum values (174 QA pairs).

2. Diagram Reasoning (Fig. 6(d)). Similar to table reasoning, but reasoning with diagrams involves
distinguishing specific colors in the legend and assessing the height of curves or bars (326 QA pairs).

B.3 REMOTE SENSING

Data Characteristics. From real remote sensing data, some images have extremely high quality,
with individual image sizes reaching up to 139MB and containing rich details.

B.3.1 DATA SOURCES AND ANNOTATION PROCESS

We select high-resolution images from public remote sensing datasets with rich information. For
example, the FAIR1M dataset (Sun et al., 2021) focuses on fine-grained object recognition and
detection using high-resolution (0.3 − 0.8m) RGB images from Gaogen (GF) satellites extracted
via Google Earth. It contains 15, 000 images annotated with rotated bounding boxes across 5 main
categories (ships, vehicles, airplanes, courts, and roads), further divided into 37 sub-categories.
The Potsdam dataset7 dataset includes 38 patches of true orthophotos (TOP) extracted from larger
mosaics. VGoogle (Hou et al., 2019), VBing (Hou et al., 2019), and VArcGIS (Hou et al., 2019)
datasets, derived from Google Earth, Bing World Imagery, and ArcGIS World Imagery respectively,

7https://paperswithcode.com/dataset/isprs-potsdam
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What's the percentage of CAPEX when direct costs rise to
35340000 if the outcome is at 6250644?
(A) 12.6%
(B) 10.3%
(C) 11.9%
(D) 11.1%
(E) The image does not feature the data.

(a) Table Perception.

What is the data of Merchant Black Prices in 2038 in the
diagram Real Energy Prices?
(A) 40.00 to 60.00
(B) 20.00 to 40.00
(C) 60.00 to 80.00
(D) 80.00 to 100.00
(E) The image does not feature the data.

(b) Diagram Perception.

In which year does the value of
'Gross Profit' first exceed 300,000,
according to the 'Income
Statement' table?
(A) 2030
(B) 2031
(C) 2032
(D) 2033
(E) The image does not feature

the number.

(c) Table Reasoning.

Which year displays the lowest value of 'EBITDA Margin
%', according to the 'Income Statement' chart?
(A) 2025
(B) 2026
(C) 2027
(D) 2028
(E) The image does not feature the number.

(d) Diagram Reasoing

Figure 6: Data Examples for Diagram and Table Tasks

each feature 38 classes with a total of approximately 59, 000 images per dataset. Each class contains
at least 1, 500 images, with spatial resolutions ranging from 0.07 to 38.22 meters.

Annotation. For all the questions in this subsection, 20 volunteers manually create the questions and
answers, while another expert reviews the quality of the questions to ensure they meet the required
standards.

B.3.2 EVALUATION DIMENSIONS AND BENCHMARK STATISTICS

Remote sensing images have a wide range of applications in real-world scenarios. During the con-
struction of our dataset, we observe that many tasks are challenging for humans. For example,
counting the number of airplanes in Fig. 7(a) requires careful observation and counting by human
annotators. Automating this process with multimodal large models would be highly valuable for re-
mote sensing applications. We select a total of 1, 298 high-quality images and design three specific
tasks tailored for remote sensing images:

1. Object Counting (Fig. 7(a)). Task involves counting specific objects such as airplanes, ships, or
buildings within a given image (1, 255 QA pairs).

2. Color Recognition (Fig. 7(b)). Task involves identifying and describing the colors of specific
objects in the image (1, 226 QA pairs).

3.Spatial Relationship Understanding (Fig. 7(c)). Understanding both the absolute spatial rela-
tionships and relative spatial relationships between objects in the images (1, 257 QA pairs).

B.4 AUTONOMOUS DRIVING

Data Characteristics. The front-view driving datas are recorded using onboard cameras with var-
ious sensor configurations. The images encompass diverse weather conditions (e.g., sunny, night,
rainy, etc.), geographic locations (e.g., US, SG, CN), and complex traffic scenarios (e.g., urban,
highway, etc.).
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How many
aircraft are 
there in the
picture?
(A) 1
(B) 2
(C) 3
(D) 5
(E) 0

(a) Object Counting.

What is the color of 
the excavator in the 
middle area of the 
picture?
(A) Yellow.
(B) Red.
(C) Black.
(D) Green.
(E) The image does 

not feature the 
color.

(b) Color Recognition.

Where is the Y-fork cross 
in the picture?
(A) In the upper left 

area of the picture.
(B) In the upper right 

area of the picture.
(C) In the lower right 

area of the picture.
(D) In the left-center 

area of the picture.
(E) The image does not 

feature the position.

(c) Spatial Relationship Understanding.

Figure 7: Data Examples for Perception Tasks in Remote Sensing

B.4.1 DATA SOURCES AND ANNOTATION PROCESS

Data Sources. We select high-quality images from large open-source driving datasets, each with
distinct advantages. The Rank2Tell dataset (Sachdeva et al., 2024) ranks the importance level of sur-
rounding objects for driving safety. Additionally, it provides dense annotations of semantic, spatial,
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and relational attributes with bounding boxes for approximately 2, 600 frames captured at intersec-
tions, and it stitches images from three cameras to deliver a wide field of view (FOV). To enhance
the reliability of autonomous driving systems, the CODA dataset (Li et al., 2022) collects 1, 500
driving scenes, each containing object-level corner cases, and labels more than 30 novel categories
(e.g., garbage bag, concrete block, etc.). It focuses on evaluating performance of perception systems
in detecting out-of-distribution (OOD) objects compared to common traffic elements. The nuScenes
dataset (Caesar et al., 2020), one of the most popular real-world autonomous driving datasets, pro-
vides abundant 3D perception annotations with a semantic map and CAN bus expansion (Li et al.,
2023d). Based on nuScenes (Caesar et al., 2020), DriveLM-nuScenes (Sima et al., 2023) links ap-
proximately 4, 800 key frames with driving behaviors and motions by formulating 3P reasoning
(perception, prediction, planning) as a series of rich question-answer pairs in a directed graph.

Annotation. For all the questions in this subsection, a professional researcher manually generates
the questions and answers based on the source datasets’ labels, achieving their non-ambiguity, chal-
lenge and complexity. Another expert reviews the quality of the questions to ensure they meet the
required standards.

B.4.2 EVALUATION DIMENSIONS AND BENCHMARK STATISTICS

Vision-centric autonomous driving is one of the most significant applications of artificial intelli-
gence. However, unresolved issues remain, including both object-level and task-level corner cases,
as well as safe-critical and human-like planning (Yang et al., 2023b). MLLMs with general knowl-
edge and the ability of driving scenarios embodied understanding (Gao et al., 2024; Zhou et al.,
2024) are seen as a promising solution to achieve Level 4 autonomous driving. Specifically, we have
designed three main perception tasks and three main reasoning tasks, which are further subdivided
into a total of fifteen sub-tasks. It is worth noting that, as traditional detection tasks in autonomous
driving have largely been addressed by modern perception models, our focus is shifting towards
perception challenges involving small or distant objects, specifically those that occupy less than
1/100 of the total image area. Meanwhile, LLMs must possess extensive driving expertise and even
a deep understanding of 3D spatial concepts in order to effectively address the complex reasoning
challenges. For perception tasks:

1. Object Identification (Fig. 8(a)). Describing the main traffic elements in front of the ego car
including their categories and corresponding quantities (1, 101 images and 1, 101 QA pairs).

2. Object Attribute Identification. Task involves identifying the attribute of a specific object
according to its appearance and location (a total of 454 images and 523 QA pairs), and describing
the attributes of all objects within a specific category (a total of 1, 167 images and 1, 315 QA pairs)
in traffic scenarios. In terms of sub-tasks, the former includes the visual attribute of a traffic signal
(Fig. 8(e), 157 images and 201 QA pairs) and the motion attribute of a pedestrian (Fig. 8(f), 152
images and 164 QA pairs) or a vehicle (145 images and 158 QA pairs), and the latter includes
the motion attributes of multiple pedestrians (Fig. 8(c), 493 images and 492 QA pairs) or vehicles
(Fig. 8(d), 674 images and 823 QA pairs).

3. Object Counting (Fig. 8(b)). Counting special traffic elements in the given image, such as
cars, trucks, traffic signals, etc., especially some novel objects compared to traditional autonomous
driving tasks such as garbage bags, dogs, concrete blocks, etc. (647 images and 720 QA pairs).

Furthermore, reasoning tasks are as follows:

1. Intention Prediction. Task involves predicting the intention of a designated traffic agent in the
given image (a total of 582 images and 614 QA pairs). In terms of sub-tasks, it contains fine-grained
behavior prediction of the ego vehicle (Fig. 9(a), 304 images and 304 QA pairs) and future intention
of a pedestrian (95 images and 103 QA pairs) or a vehicle (Fig. 9(b), 183 images and 207 QA pairs).

2. Interaction Relation Understanding. Task involves reasoning the interaction relation between
two specific traffic elements (a total of 444 images and 513 QA pairs). In terms of sub-tasks, it
contains the ego vehicle’s reaction to a specific object (Fig. 9(e)), which is further categorized into
three categories: pedestrian (102 images and 106 QA pairs), vehicle (95 images and 101 QA pairs),
and traffic signal (81 images and 105 QA pairs). Additionally, another sub-task is predicting the
interactions between the aforementioned objects, excluding the ego vehicle (Fig. 9(d), 166 images
and 201 QA pairs).
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This image shows the front 
view of the ego car. What 
are objects to the front of 
the ego car?
(A) There is one bus, 

many cars, and one 
pedestrian.

(B) There are two 
traffic cones and 
one construction 
vehicle.

(C) There are many 
cars and one 
barrier.

(D) There are two 
barriers, many 
traffic cones, many 
cars, and one bus.

(E) All the above 
answers are wrong.

(a) Object Identification.

How many dogs are 
there on the road or 
around the road?
(A) 1
(B) 2
(C) 3
(D) 4
(E) The image does 

not feature the 
object

(b) Object Counting.

This image shows the front 
view of the ego car. What 
is the status of the 
pedestrians that are to the 
front of the ego car?
(A) Three of the 

pedestrians are 
standing, and three 
are moving.

(B) Two of the 
pedestrians are 
standing while two 
are moving.

(C) Many pedestrians 
are moving, and 
three are standing.

(D) Many pedestrians 
are moving.

(E)  The image does not 
feature the object.

(c) Motion Attribute Identification of Multiple Pedestri-
ans.

This image shows the front 
view of the ego car. What 
is the status of the cars 
that are to the front of the 
ego car?
(A) Two of the cars are 

moving, and many 
are parked.

(B) Three of the cars 
are moving, and two 
are parked.

(C) Three of the cars 
are moving, and two 
are parked.

(D)  Three of the cars 
are parked, and 
three are moving.

(E)  The image does not 
feature the object.

(d) Motion Attribute Identification of Multiple Vehicles.

What type of the traffic signal 
(excluding traffic lights) is on the left?
(A) speed limit sign
(B) construction work
(C) stop sign
(D) no parking
(E) The image does not feature 

the object

(e) Visual Attribute Identification of a Specific Traffic Signal

What is motion of the pedestrian 
wearing black top on the right?
(A) walking on the sidewalk
(B) jaywalking (illegally crossing 

not at pedestrian crossing)
(C) standing
(D) waiting to cross
(E) The image does not feature 

the object

(f) Motion Attribute Identification of a Specific Pedestrian

Figure 8: Data Examples for Perception Tasks in Autonomous Driving

3. Driver Attention Understanding (Fig. 9(c)). Reasoning the traffic signal that the driver should
pay attention to in the given front view image, such as yellow light, speed limit sign, no parking
sign, etc. (217 images and 217 QA pairs).

B.5 MONITORING

B.5.1 DATA SOURCES AND ANNOTATION PROCESS

Data Characteristics. Monitoring images are captured from different cameras (e.g., drone-
equipped cameras, fixed surveillance cameras, infrared cameras), viewpoints (arbitrary and fixed
viewpoints), scene complexities (e,g., streets, shopping malls, intersections, campus, etc.), and en-
vironmental factors (day and night).
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Predict the behavior of the 
ego vehicle.?
(A) The ego vehicle is 

going straight. The ego 
vehicle is driving with 
normal speed.

(B) The ego vehicle is 
steering to the right. 
The ego vehicle is 
driving slowly.

(C) The ego vehicle is 
slightly steering to the 
left. The ego vehicle is 
driving fast.

(D) The ego vehicle is 
slightly steering to the 
right. The ego vehicle 
is driving very fast.

(E) All the above answers 
are wrong.

(a) Intention Prediction of Ego Vehicle.

This image shows the 
front view of the ego 
car. What is the future 
state of the white suv 
in the middle?
(A) Turn right.
(B) Turn left.
(C) Stationary.
(D) Keep going 

straight.
(E) The image does 

not feature the 
object

(b) Intention Prediction of a Specific Vehicle.

This image shows the 
front view of the ego 
car. What is the traffic 
signal that the ego 
vehicle should pay 
attention to?
(A) Slow down.
(B) Speed limit 40.
(C) No parking.
(D) Red light.
(E) The image does 

not feature the 
object.

(c) Driver Attention Understanding

Based on the observations of the 
white truck in the middle, what are 
possible actions to be taken by the 
pedestrian crossing the road in the 
middle? What is the reason?
(A) The action is to remain 

stationary, the reason is 
that there is no safety issue.

(B) The action is to accelerate and 
go ahead, the reason is to 
avoid a collision.

(C) The action is to remain 
stationary, and the reason 
is to follow traffic rules.

(D) The action is to take none, 
the reason is to follow the 
traffic rules.

(E) The image does not feature 
the object.

(d) Interaction Relation between Traffic Elements

What should the ego vehicle do when 
encountering the black sedan on the 
left??
(A) accelerating/speeding up
(B) yielding
(C)  stopping
(D) following
(E) The image does not feature 

the object

(e) Interaction Relation between Ego Vehicle and Traffic Elements

Figure 9: Data Examples for Reasoning Tasks in Autonomous Driving

We select high-resolution images from public monitoring image datasets with many real-world chal-
lenges. For example, the VisDrone dataset (Zhu et al., 2021) brings several challenges, e.g., view-
point variations, scale variations, and out-of-view, etc. Additionally, its dataset contains 263 video
clips with 179, 264 frames and 10, 209 static images, which are captured via various drone-equipped
cameras across various categories (e.g., pedestrian, people, bicycle, car, van, truck, tricycle, awning-
tricycle, bus, and motor), density (e.g., sparse and crowded scenes) and environments (e.g., urban
and rural regions). Additionally, The second dataset 8, is collected in diverse environments (e.g.,
street, mall, elevator, etc.) for crowd density prediction task, features 3, 000 images with only per-
son category, captured by fixed surveillance cameras. This dataset is highly diverse from the camera
viewpoints (low altitude, high altitude, fisheye, etc.), scale size, and scene complexities. The LLVIP
dataset (Jia et al., 2021), which is a visible-infrared paired dataset for low-light vision, contains
30, 976 images taken in binocular cameras, and contains a large number of pedestrians. We only
select manually infrared images from it to test the model’s robustness on different modals.

Annotation. For all the questions in this subsection, two professional researchers manually create
the questions and answers, and another expert reviews the quality of the questions to ensure they
meet the required standards.

8This dataset is publicly accessible through the AI Studio website at
https://aistudio.baidu.com/datasetdetail/28831.
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B.5.2 EVALUATION DIMENSIONS AND BENCHMARK STATISTICS

Monitoring images are widely applied in real-world scenarios to increase public safety. Analyzing
the monitoring images accurately with MLLMs would be highly valuable for public safety and
crowd management. Specifically, we have designed three main tasks for monitoring images:

1. Object Counting (Fig. 10(a)). Task involves counting specific objects such as pedestrians, cars,
or trucks in the given monitoring images (a total of 1, 600 images and 1, 600 QA pairs). Noted that,
when the count of a specific object is equal to zero, this object counting task can be transformed
well into the object existence task (Fig. 10(b), for judging whether a specific object exists in the
given images. Thus, the object existence task can be regarded as a special case of the counting task.
Additionally, we categorize this task into two sub-tasks for vehicle counting (608 images and 608
QA pairs) and person counting (992 images and 992 QA pairs), respectively.

2. Object Location (Fig. 10(c)). Task involves judging the location of the specific vehicles, like
cars, or trucks in the given monitoring images (a total of 136 images and 136 QA pairs).

3. Attribute Recognition. Task involves identifying and describing the attributes of specific objects,
e.g., color recognition (Fig. 10(d)) and orientation perception (Fig. 10(e)), in the monitoring images
(a total of 460 images and 460 QA pairs). Additionally, we categorize this task into two sub-tasks
for the vehicle (352 images and 352 QA pairs) and person attribute recognition tasks (108 images
and 108 QA pairs), respectively.

In addition, there are three seasoning tasks described as follows.

1. Calculate the Sum of Different Objects (Fig. 11(a)). Counting various objects and calculating
their total number accurately (300 images and 300 QA pairs).

2. Intention Reasoning (Fig. 11(b)). Reasoning the next route and turn of the specific object (98
images and 98 QA pairs).

3. Attribute Reasoning (Fig. 11(c)). Reasoning the specific materials and functions of the given
objects, such as inferring the function of the dustbin via its appearance (100 images and 100 QA
pairs).

C DISCUSSION ON DATA DIVERSITY, SCALABILITY, AND LIMITATIONS

The creation of a diverse and scalable dataset poses significant challenges, particularly in the con-
text of high-resolution, real-world scenarios. This section discusses our rationale for domain se-
lection, identifies current limitations in dataset diversity and scalability, and explores the potential
for leveraging models to enhance scalability. By addressing these key aspects, we aim to provide
a comprehensive overview of our approach and outline possible avenues for improvement in the
future.

C.1 WHY WE SELECT DOMAINS SUCH AS REMOTE SENSING AND AUTONOMOUS DRIVING
INSTEAD OF OTHERS LIKE EMBODIED AI OR NATURAL IMAGES IN COCO

Practical Value: Instead of opting for data sources like COCO, our primary objective is to enable
the understanding of high-resolution, real-world scenarios that are closely tied to domains such as
autonomous driving and surveillance. Recent studies have demonstrated a growing application of
MLLMs in these realistic fields, which pose unique challenges to their perception and reasoning
abilities. The selected domains specifically demand high image resolution, enabling MLLMs to
showcase progress in these settings. As a result, we prioritize areas where MLLMs are currently
poised to make a significant impact.

Benchmark Objective: Our benchmark is not limited to autonomous driving or surveillance appli-
cations. The core goal is to evaluate MLLMs’ fundamental perception and reasoning capabilities
within these domains. The tasks we design include various scenarios that researchers have identified
as appropriate for assessment through multiple-choice QA formats. We deliberately avoid more spe-
cific or complex tasks, such as robotic arm trajectory prediction, to maintain a focus on fundamental
capabilities.
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Task Difficulty: We aim to emphasize high-resolution imagery and focus on challenging and subtle
objects. In contrast, embodied AI scenarios often feature large, static objects, which pose relatively
limited challenges to perception tasks. Similarly, while COCO indeed provides a large number of
samples, its images are relatively small in resolution, with insufficient complexity in the scenes. For
instance, many COCO images feature only a single object, making it difficult to create sufficiently
challenging questions.

This limitation is one of the primary reasons we did not select COCO as a major data source. Cover-
ing all the scenes and categories in COCO would require capturing images ourselves using cameras
in complex environments to generate sufficiently challenging, high-resolution perception tasks. This
approach would undoubtedly be resource-intensive and difficult to scale, making it less feasible for
our benchmark objectives.

C.2 EXISTING LIMITATIONS AND PLANS FOR EXTENSION

At present, the main limitations of our work are concentrated in the diversity of tasks and the scala-
bility of the dataset.

1. Perception of Natural Scenes: Although we discussed in Section C.1 some data sources that
were excluded during the dataset construction process, such as COCO, which were deemed too
simple for high-resolution perception tasks, there remain challenges in finding sufficiently complex,
high-resolution natural images containing small objects on the internet. This limitation has resulted
in a lack of natural scene data in our dataset, which may hinder the evaluation of models’ question-
answering capabilities related to natural landscapes. To address this issue, we plan to collect natural
scene data through self-captured images or generate complex high-resolution images using genera-
tive models in future work, thereby compensating for this shortcoming.

2. Extension to Other Domains: Beyond domains like remote sensing, surveillance, and au-
tonomous driving, which have high-resolution requirements and demand understanding of complex
scenes, there are other practical applications such as indoor scene understanding, commerce, health-
care, robotics, and AR/VR that also share similar needs. Due to cost constraints, our current work
does not encompass all these domains, leading to potential bias in the dataset. For example, surveil-
lance and autonomous driving data are primarily human-centric, which might lack evaluations of
other critical factors. In future work, we aim to further explore these mentioned domains, identify
suitable images, and annotate them to enhance the diversity of our dataset.

3. Weak Scalability: Our dataset construction involves two key stages requiring human involve-
ment.

- Stage 1: Image Selection and Filtering: During this stage, we ensure: - The images contain
challenging or valuable small objects. - The images are of high quality, free from glare or noise.
- The scenes are clear enough to minimize ambiguity in QA tasks (e.g., if a question asks about a
person in a blue shirt in the upper right corner, there should be only one such person).

By ensuring high-quality and challenging images, we provide annotators with images more likely to
yield usable QA pairs, enhancing annotation efficiency.

- Stage 2: Human Annotation: This involves crafting questions and answers for the complex
images. The human cost throughout this process is relatively high, which makes it challenging to
scale to other languages or data scenarios. To mitigate this issue, we have discussed in Section C.3
some promising alternative strategies, such as leveraging MLLMs to reduce the reliance on human
labor.

C.3 EXPLORING MODEL-ASSISTED APPROACHES TO ENHANCE DATASET SCALABILITY

To explore whether models can assist in improving the scalability of our dataset construction process,
we conducted a small-scale trial using the following approach:

1. Data Filtering: We implemented a model-based strategy to streamline the data filtering process.
A minimum resolution threshold of 1024×1024 was set to ensure the images were sufficiently large.
We employed a MLLM to remove images that were noisy or unclear. The MLLM was prompted
with the following instruction:
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"We provide an image; please score the scene from two aspects on a scale of [1,
2, ..., 10] and provide Objects with Observational Challenges:
1. Complexity: Assess whether the image contains a large number of elements,
such as various objects. If the scene features only one prominent object and the
foreground/background is relatively simple, the score should be 0. Conversely, if
the image includes a multitude of elements and the scene is complex, the score
should be higher.
2. Object Salience: Evaluate whether the image contains small objects that are
difficult to observe clearly, specifically objects occupying less than 1/20 of the
total pixel area. If all objects in the image can be observed very clearly or are
relatively large, the score should be 0.
3. Objects with Observational Challenges: If there are objects in the image
that are difficult to observe or smaller targets, please list these objects and their
locations."

Using this scoring strategy, annotators could easily reference the model’s assessments of image com-
plexity and the presence of small objects. Currently, we are utilizing GPT-4o as the scoring model.
In the future, a voting mechanism involving multiple models could be employed for improved qual-
ity assurance. This approach has successfully reduced the workload for annotators, enabling us to
quickly filter out simple images.

2. Manual Annotation: We explored using GPT-4o for question generation and answer construc-
tion. However, the results were suboptimal for high-resolution scenarios, especially in reasoning
tasks. The generated samples were either too easy or contained errors, rendering them unusable.

To address this, we tested multiple models—Qwen2-vl-72b, Llava-ov-72b, Claude3.5-sonnect, and
GPT-4o. Each model independently generated three questions and answers for a single image, fol-
lowing the construction standards outlined in our article. Predefined prompts were provided to
ensure consistency. Human experts then reviewed and retained the most challenging and reasonable
questions from the model outputs.

While this method allowed us to obtain some high-quality QA pairs, our small-scale experiments
revealed that: - The task difficulty generated by models was generally lower than that of purely
manual annotation. - The error rate in model-generated samples was significantly higher. - Manually
reviewing multiple model outputs did not substantially reduce the time required compared to direct
manual annotation.

Observations and Future Directions: Our findings suggest that, for ultra-high-resolution percep-
tion tasks, existing model-assisted pipelines are not yet optimal. The limitations include reduced
task complexity and higher error rates compared to purely manual processes. Additionally, the time
efficiency of manual review was not significantly improved. We believe this represents a valuable
direction for future research.

D EXPERIMENTAL RESULTS ON ALL TASK SPLITS

OCR in The Wild Performance. Tab. 7 displays the performance of various models on real-world
OCR tasks. Generally speaking, when image resolution is high, the more advanced models still
demonstrate commendable OCR capabilities. However, this does not imply that our task is of low
difficulty. The average accuracy rates of Qwen-VL and the basic LLaVA model on perception tasks
are only slightly better than random guessing. In this task, the gap between open-source and closed-
source models is not significant. GPT-4o ranks first in overall performance, while Claude 3.5 Sonnet
leads in reasoning tasks.

Diagram and Table. Tab. 8 presents the results for the diagram domain, where some of the more
advanced models perform relatively well, with four models achieving an average accuracy of over
60%. Reasoning tasks, however, have proved to be more challenging. Only Claude 3.5 Sonnet
manage to exceed 60% accuracy, standing out significantly, with the second-ranked Qwen2-VL
trailing by 10%. Additionally, models like LLaVA-Next, which have performed well on existing
benchmarks like chartQA, show noticeably weaker performance on our dataset, underscoring the
higher difficulty of the our benchmark.
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Table 7: Experimental results on the OCR in the Wild tasks are categorized as follows:
“Product” represents products and advertisements; “B & M & P” represents books, maps, and
posters; “Contact” denotes contact information and addresses; “Identity” pertains to identity infor-
mation; and “Signage” refers to signage and other text. Models are ranked according to their average
performance on perception tasks, from highest to lowest. Rows corresponding to proprietary models
are highlighted in gray for distinction.

Method LLM Perception Reasoning
Product B & M & P Contact Identity Signage Avg Avg-C Scene Character Avg Avg-C

Qwen2-VL Qwen2-7B 81.32 82.64 84.40 84.51 76.13 81.38 81.80 63.20 63.60 63.40 63.40
GPT-4o - 79.65 79.23 74.88 73.66 77.38 77.69 76.96 64.80 58.00 61.40 61.40
InternVL-2 InternLM2.5-7b-Chat 72.21 80.58 72.10 73.47 68.70 73.92 73.41 56.00 58.80 57.40 57.40
Claude 3.5 Sonnet - 71.89 83.67 61.15 64.64 69.70 72.47 70.21 62.60 61.20 61.90 61.90
InternVL-Chat-V1-5 InternLM2-Chat-20B 69.83 75.56 71.75 73.36 67.03 71.51 71.51 57.60 56.00 56.80 56.80
CogVLm2-llama3-Chat LLama3-8B 70.35 66.82 74.00 76.41 67.03 69.97 70.92 58.80 49.20 54.00 54.00
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 72.14 79.04 64.30 55.16 66.61 69.55 67.45 60.80 57.60 59.20 59.20
InternLM-XComposer2.5 InternLM2-7B 65.34 71.83 66.90 78.29 65.69 69.25 69.61 50.40 56.40 53.40 53.40
Gemini-1.5-pro - 65.92 66.37 74.41 70.19 66.36 67.62 68.65 56.60 48.80 52.70 52.70
MiniCPM-V 2.5 LLama3-8B 64.69 69.52 71.58 68.90 62.19 66.79 67.38 48.80 39.20 44.00 44.00
Cambrian-1-34B Nous-Hermes-2-Yi-34B 67.65 77.30 62.22 50.47 64.19 66.45 64.37 54.00 56.00 55.00 55.00
GPT-4o-mini - 62.32 68.87 54.11 62.56 58.51 62.51 61.27 52.80 41.20 47.00 47.00
Cambrian-1-8B LLama3-8B-Instruct 59.18 67.27 55.98 52.93 52.25 58.68 57.52 52.80 53.60 53.20 53.20
Monkey Qwen-7B 55.58 54.47 53.38 59.98 50.42 54.63 54.77 32.40 22.00 27.20 27.20
SliME-8B LLama3-8B 55.97 57.30 41.25 55.05 49.92 53.45 51.90 55.60 50.80 53.20 53.20
mPLUG-DocOwl 1.5 LLaMA-7B 54.62 52.22 59.10 63.03 32.99 51.15 52.39 46.80 38.40 42.60 42.60
SliME-13B Vicuna-13B 52.25 46.50 46.97 53.76 53.17 50.58 50.53 45.60 36.40 41.00 41.00
DeepSeek-VL DeepSeek-LLM-7b-base 53.72 55.06 31.72 44.13 49.42 49.55 46.81 48.80 41.60 45.20 45.20
LLaVA-Next LLama3-8B 50.77 49.45 38.30 38.73 53.51 47.94 46.15 58.00 52.40 55.20 55.20
YI-VL-34B Yi-34B-Chat 48.33 50.55 33.97 37.91 43.57 44.95 42.87 46.80 38.00 42.40 42.40
ShareGPT4V-13B Vicuna-13B 46.92 40.51 40.38 46.01 47.66 44.55 44.30 31.20 20.80 26.00 26.00
LLaVA1.5-13B Vicuna-13B 45.51 40.39 39.69 47.54 46.74 44.10 43.97 36.80 23.60 30.20 30.20
Mini-Gemini-7B-HD Vicuna-7B-v1.5 40.05 44.44 42.98 44.37 39.32 42.02 42.23 38.00 32.80 35.40 35.40
ShareGPT4V-7B Vicuna-7B 40.50 35.43 37.61 42.14 41.99 39.39 39.53 25.60 22.70 24.15 24.15
MiniGPT-v2 Llama 2-7B-Chat 40.05 34.73 38.99 41.08 41.82 39.02 39.33 36.40 23.60 30.00 30.00
LLaVA1.5-7B Vicuna-7B 39.67 34.92 37.26 40.26 41.90 38.69 38.80 30.80 21.20 26.00 26.00
TextMonkey Qwen-7B 38.12 31.96 44.89 45.19 33.89 37.30 38.81 36.00 24.80 30.40 30.40
LLaVA-Next Qwen-72B 43.58 45.72 20.28 14.91 41.24 37.07 33.15 17.60 16.80 17.20 17.20
Qwen-VL-Chat Qwen-7B 32.73 37.62 27.38 33.22 26.88 32.37 31.57 36.40 20.80 28.60 28.60

Table 8: Experimental results on the Diagram and Table tasks. Models are ranked accord-
ing to their average performance on perception tasks. Rows corresponding to proprietary models are
highlighted in gray for distinction.

Method LLM Perception Reasoning
Diagram Table Avg Avg-C Diagram Table Avg Avg-C

Qwen2-VL Qwen2-7B 74.70 68.59 70.18 71.65 47.13 49.39 48.60 48.37
Claude 3.5 Sonnet - 71.31 66.08 67.44 68.70 60.92 61.35 61.20 61.14
InternLM-XComposer2.5 InternLM2-7B 69.05 62.12 63.92 65.59 43.10 39.88 41.00 41.49
InternVL-2 InternLM2.5-7B-Chat 68.83 60.68 62.80 64.76 42.53 37.12 39.00 39.83
InternVL-Chat-V1-5 InternLM2-Chat-20B 61.55 53.81 55.83 57.68 37.36 34.36 35.40 35.86
MiniCPM-V 2.5 LLama3-8B 57.81 51.05 52.81 54.43 26.44 34.66 31.80 30.55
CogVLm2-llama3-Chat LLama3-8B 51.52 46.09 47.51 48.81 31.61 33.44 32.80 32.53
GPT-4o - 47.35 46.44 46.68 46.90 44.25 45.09 44.80 44.67
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 47.63 43.21 44.36 45.42 38.51 39.57 39.20 39.04
GPT-4o-mini - 46.22 43.54 44.23 44.88 38.51 40.49 39.80 39.50
Cambrian-1-34B Nous-Hermes-2-Yi-34B 43.67 39.30 40.44 41.49 37.93 34.97 36.00 36.45
Gemini-1.5-pro - 41.41 39.37 39.90 40.39 35.63 31.90 33.20 33.77
Cambrian-1-8B LLama3-8B-Instruct 36.25 31.48 32.73 33.87 27.59 27.30 27.40 27.45
Monkey Qwen-7B 34.98 31.63 32.51 33.31 18.39 22.09 20.80 20.24
mPLUG-DocOwl 1.5 LLama-7B 30.74 28.85 29.34 29.80 18.39 20.55 19.80 19.47
SliME-8B LLama3-8B 29.75 29.19 29.34 29.47 29.89 29.14 29.40 29.52
LLaVA-Next Qwen-72B 27.77 27.65 27.68 27.71 36.78 32.82 34.20 34.80
LLaVA-Next LLama3-8B 26.64 26.63 26.63 26.64 22.99 23.62 23.40 23.31
DeepSeek-VL DeepSeek-LLM-7b-base 23.67 23.27 23.38 23.47 22.99 24.23 23.80 23.61
Mini-Gemini-7B-HD Vicuna-7B-v1.5 21.20 22.70 22.31 21.95 27.01 23.31 24.60 25.16
SliME-13B Vicuna-13B 19.28 21.40 20.93 20.34 38.51 39.26 39.00 38.89
MiniGPT-v2 Llama 2-7B-Chat 18.59 21.06 20.41 19.83 20.69 20.25 20.40 20.47
LLaVA1.5-13B Vicuna-13B 18.30 20.83 20.17 19.57 22.41 19.94 20.80 21.18
ShareGPT4V-13B Vicuna-13B 18.37 20.81 20.17 19.59 21.84 20.25 20.80 21.05
LLaVA1.5-7B Vicuna-7B 18.30 20.71 20.08 19.51 21.84 19.94 20.60 20.89
ShareGPT4V-7B Vicuna-7B 18.30 20.71 20.08 19.51 21.84 19.94 20.60 20.89
YI-VL-34B Yi-34B-Chat 15.90 16.03 15.99 15.97 23.56 27.30 26.00 25.43
Qwen-VL-Chat Qwen-7B 18.42 14.56 15.59 16.49 14.94 12.88 13.60 13.91
TextMonkey Qwen-7B 6.71 5.65 5.93 6.18 3.45 1.53 2.20 2.49
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What is the number of 
cars in the image?
(A) 84
(B) 77
(C) 11
(D) 59
(E) The image does not 

feature the cars.

(a) Object Counting in Monitoring Images.

What is the number of awning-
tricycles in the image?
(A) 44
(B) 98
(C) 49
(D) 72
(E) The image does not feature 

the awning-tricycles.

(b) Object Existence in Monitoring Images.

Where is the bicycle in the image?
(A) The upper left corner
(B) The lower left corner
(C) The upper right corner
(D) The lower right corner
(E) The image does not feature the 

bicycle.

(c) Object Location in Monitoring Images.

What color is the van in the image?
(A) Blue
(B) Red
(C) Silver
(D) Black
(E) The image does not feature the 

van.

(d) Color Recognition in Monitoring Images.

What is the orientation of the 
tricycle in the image?
(A) The right of the image
(B) The bottom of the image
(C) The left of the image
(D) The top of the image
(E) The image does not feature the 

tricycle.

(e) Orientation Perception in Monitoring Images.

Figure 10: Data Examples for Perception Tasks in Monitoring Images

Remote Sensing. Tab. 9 presents the performance of various models on remote sensing tasks. It
is evident that models performing well on remote sensing data typically either employ special han-
dling for high-resolution images (e.g., Mini-Gemini-HD, SliME, Cambrian) or have vision encoders
designed to support high-resolution inputs (e.g., InternVL). Among these, SliME achieves the high-
est performance due to its support for the largest resolution. However, even the top-performing
model, SliME-8B, shows poor performance on counting tasks with extremely large images, with
only 30% accuracy. Some closed-source models perform even worse, with GPT-4o-mini achieving
only 2% accuracy. This highlights the high demands of remote sensing data on resolution and detail
perception.

Autonomous Driving. Tab. 10 and Tab. 11 show the perception and reasoning performance of
various models in autonomous driving scenarios. As a critical application area, autonomous driving
remains a challenge for MLLMs, with no model currently capable of reliably addressing tasks such
as intent prediction, traffic light recognition, and object counting solely through text. Only Claude
3.5 Sonnet achieve an average perception accuracy exceeding 40%. Reasoning tasks are even more
difficult, with even the most advanced models achieving only around 30% accuracy. Autonomous
driving is inherently a high-risk domain that demands very high accuracy for practical deployment.
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What is the total number of motors 
and cars in the image?
(A) 26
(B) 80
(C) 133
(D) 92
(E) The image does not feature the 

objects.

(a) Reasoning Task of Calculating the Sum of Different Objects in Monitoring Im-
ages.

What will the truck do in the image?
(A) Stopping
(B) Keep moving
(C) Turn left
(D) Turn right
(E) The image does not feature the 

object.

(b) Reasoning task of Intention of the Special Object in Monitoring Images.

What's the yellow truck for in the 
image?
(A) Express delivery
(B) Water supply
(C) Food supply
(D) Wood supply
(E) The image does not feature the 

object.

(c) Reasoning task of Attribute of the Special Object in Monitoring Images.

Figure 11: Data Examples for Reasoning Tasks in Monitoring Images

This indicates that more powerful multimodal models with 3D spatial prediction and understanding
ability, or specialized fine-tuning on domain-specific datasets for driving expertise, are necessary
before MLLMs can be effectively applied in this field.

Monitoring Performance. Tab. 12 presents the performance of various models under monitoring
scenarios. As can be observed, the monitoring task poses a high degree of difficulty. Traditional
models like Qwen-VL and LLaVA have an accuracy rate of around 20%, which is nearly equiva-
lent to random guessing. Open-source models significantly outperform closed-source models. For

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

合并资产负债表中
2024年3月31日货币
资金是多少?
(A) 175893714.34
(B) 175893714
(C) 175893714.35
(D) 175893714.33
(E) 表中没有指出

货币资金.

股东人数中2023年
Q2是多少?
(A) 6263
(B) 48
(C) 50
(D) 36
(E) 表中没有指出

该值.

Figure 12: Data Examples for Perception Tasks in MME-RealWorld-CN

Table 9: Experimental results on the Remote Sensing tasks. Models are ranked according to
their average performance. Rows corresponding to proprietary models are highlighted in gray for
distinction.

Method LLM Color Count Position Avg Avg-C
Qwen2-VL Qwen2-7B 50.92 21.21 61.73 44.81 44.62
SliME-8B LLama3-8B 45.66 28.63 52.19 42.27 42.16
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 41.12 21.29 58.31 40.40 40.24
Cambrian-1-8B LLama3-8B-Instruct 38.01 20.55 61.10 40.05 39.89
InternVL-2 InternLM2.5-7B-Chat 47.41 25.69 44.63 39.35 39.24
Cambrian-1-34B Nous-Hermes-2-Yi-34B 37.05 22.76 55.69 38.63 38.50
InternLM-XComposer2.5 InternLM2-7B 45.34 17.62 44.95 36.12 35.97
InternVL-Chat-V1-5 InternLM2-Chat-20B 34.10 17.86 48.29 33.55 33.42
YI-VL-34B Yi-34B-Chat 34.02 19.00 41.53 31.62 31.52
Mini-Gemini-7B-HD Vicuna-7B-v1.5 37.29 22.43 33.97 31.30 31.23
LLaVA-Next Qwen-72B 33.86 23.08 30.31 29.13 29.08
GPT-4o - 34.18 15.17 37.07 28.92 28.81
CogVLm2-llama3-Chat LLama3-8B 37.69 18.35 29.99 28.76 28.68
MiniCPM-V 2.5 LLama3-8B 37.69 11.50 33.49 27.69 27.56
SliME-13B Vicuna-13B 30.04 18.43 28.80 25.82 25.76
Claude 3.5 Sonnet - 31.87 18.11 27.95 25.74 25.98
DeepSeek-VL DeepSeek-LLM-7b-base 29.40 7.34 39.30 25.49 25.35
LLaVA-Next LLama3-8B 30.04 20.55 25.74 25.42 25.44
Monkey Qwen-7B 22.07 16.97 35.72 24.99 24.92
mPLUG-DocOwl 1.5 LLaMA-7B 27.81 16.39 26.81 23.71 23.67
MiniGPT-v2 Llama 2-7B-Chat 23.35 20.15 26.41 23.33 23.30
LLaVA1.5-13B Vicuna-13B 26.22 16.88 26.57 23.27 23.22
ShareGPT4V-13B Vicuna-13B 25.58 16.97 26.49 23.06 23.01
LLaVA1.5-7B Vicuna-7B 23.11 16.88 26.25 22.12 22.08
ShareGPT4V-7B Vicuna-7B 23.03 16.88 26.25 22.10 22.05
Qwen-VL-Chat Qwen-7B 16.97 11.50 16.87 15.14 15.11
Gemini-1.5-pro - 13.39 8.32 20.13 13.99 13.95
TextMonkey Qwen-7B 6.93 2.04 25.86 11.69 11.61
GPT-4o-mini - 5.82 2.61 11.54 6.69 6.66
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Table 10: Experimental results on the Autonomous Driving perception tasks. Models are
ranked according to their average performance. Rows corresponding to proprietary models are high-
lighted in gray for distinction.

Motion
Method LLM Identity Vehicle Multi-vehicle Pedestrain Multi-pedestrain Traffic Signal Object Count Avg Avg-C

Claude 3.5 Sonnet - 58.66 18.45 35.48 32.32 31.64 37.31 33.19 40.77 49.72
Cambrian-1-8B LLama3-8B-Instruct 56.77 50.00 33.29 32.32 14.00 35.82 33.06 38.52 47.65
InternVL-2 InternLM2.5-7B-Chat 46.68 39.24 30.98 34.76 17.24 37.81 34.58 35.46 41.07
Qwen2-VL Qwen2-7B 43.69 39.87 31.96 28.05 14.40 53.73 32.64 34.62 39.16
MiniCPM-V 2.5 LLama3-8B 44.96 41.77 30.86 31.71 19.88 37.31 29.17 34.15 39.56
SliME-8B LLama3-8B 44.50 51.90 28.68 29.27 15.21 29.35 33.61 33.66 39.08
InternLM-XComposer2.5 InternLM2-7B 46.23 48.10 26.61 32.93 11.76 40.30 32.50 33.63 39.93
Cambrian-1-34B Nous-Hermes-2-Yi-34B 43.96 38.61 31.96 32.93 12.37 27.36 33.89 33.39 38.68
DeepSeek-VL DeepSeek-LLM-7b-base 44.05 63.29 25.88 36.59 18.05 39.30 27.22 33.39 38.72
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 39.78 42.41 36.09 31.10 16.63 17.41 31.53 32.70 36.24
InternVL-Chat-V1-5 InternLM2-Chat-20B 40.42 39.87 26.97 27.44 18.66 32.34 30.14 31.42 35.92
CogVLm2-llama3-Chat LLama3-8B 33.15 36.71 29.77 31.71 19.27 43.78 28.19 30.22 31.69
Monkey Qwen-7B 35.97 60.76 24.30 37.20 18.26 32.34 24.72 29.67 32.82
YI-VL-34B Yi-34B-Chat 36.24 41.77 29.60 31.71 20.89 16.92 19.17 28.31 32.28
mPLUG-DocOwl 1.5 LLama-7B 26.74 60.76 24.79 31.10 22.72 43.28 26.53 28.28 27.51
SliME-13B Vicuna-13B 26.61 46.84 24.54 32.32 17.65 43.28 27.50 27.16 26.89
Gemini-1.5-pro - 32.61 10.13 30.23 8.54 16.02 10.45 31.31 26.64 29.63
LLaVA1.5-13B Vicuna-13B 23.25 31.65 24.91 31.10 25.96 36.32 26.80 26.12 24.69
ShareGPT4V-13B Vicuna-13B 23.25 31.01 24.91 31.10 25.96 36.82 26.81 26.12 24.69
LLaVA1.5-7B Vicuna-7B 23.25 31.01 24.91 31.10 25.96 35.32 26.81 26.04 24.65
ShareGPT4V-7B Vicuna-7B 23.25 31.01 24.91 31.10 25.96 35.32 26.81 26.04 24.65
MiniGPT-v2 Llama 2-7B-Chat 23.71 53.16 22.36 28.66 20.49 35.32 28.06 25.96 24.84
Mini-Gemini-7B-HD Vicuna-7B-v1.5 27.25 60.76 23.57 26.83 14.81 36.32 17.78 24.81 26.03
GPT-4o-mini - 19.07 45.57 24.67 23.78 11.36 40.30 31.11 24.18 21.63
GPT-4o - 15.26 23.42 25.39 26.22 9.94 41.29 32.22 22.43 18.85
LLaVA-Next LLama3-8B 21.44 41.77 22.36 29.88 9.23 22.39 8.06 18.66 20.05
LLaVA-Next Qwen-72B 19.26 26.58 26.37 29.88 12.58 16.42 5.97 17.98 18.62
Qwen-VL-Chat Qwen 9.26 35.44 15.43 23.17 8.32 34.83 16.39 15.08 12.17
TextMonkey Qwen-7B 8.54 37.34 22.72 15.85 16.23 14.93 6.39 14.26 11.40

Table 11: Experimental results on the Autonomous Driving reasoning tasks. Models are
ranked according to their average performance, from highest to lowest. Rows corresponding to
proprietary models are highlighted in gray for distinction.

Method LLM Intention Relation Attention Avg Avg-C
Ego Pedestrian Verhicle Ego2P Ego2T Ego2V O2O Signal

Monkey Qwen-7B 28.62 56.31 30.43 27.36 22.86 32.67 11.94 58.06 33.04 33.48
Claude 3.5 Sonnet - 26.32 32.04 24.64 23.58 25.71 20.79 24.38 65.90 31.92 30.59
YI-VL-34B Yi-34B-Chat 28.26 46.60 33.33 21.70 24.76 31.68 15.42 49.77 31.55 31.45
SliME-8B LLama3-8B 28.29 39.81 33.33 24.53 19.05 22.77 10.45 63.59 31.55 30.37
Qwen2-VL Qwen2-7B 19.08 43.69 35.75 13.21 29.52 22.77 18.41 64.98 31.47 30.99
CogVLm2-llama3-Chat LLama3-8B 30.26 25.24 25.60 35.85 20.95 28.71 18.41 56.22 31.18 30.27
MiniCPM-V 2.5 LLama3-8B 24.01 37.86 31.88 20.75 30.48 15.84 26.87 53.00 31.03 30.19
SliME-13B Vicuna-13B 25.00 41.75 28.99 28.30 21.90 24.75 25.87 48.39 30.80 30.64
LLaVA-Next LLama3-8B 32.89 49.51 33.82 28.30 25.71 24.75 7.96 43.32 30.73 30.78
Cambrian-1-8B LLama3-8B-Instruct 25.00 41.75 35.27 23.58 23.81 16.83 11.44 60.37 30.73 29.86
InternVL-2 InternLM2.5-7B-Chat 24.01 43.69 32.85 22.64 28.57 21.78 21.89 43.78 29.84 29.89
LLaVA-Next Qwen-72B 30.59 52.43 35.27 23.58 27.62 29.70 8.96 35.48 29.69 30.37
InternVL-Chat-V1-5 InternLM2-Chat-20B 25.99 32.04 31.88 16.98 22.86 25.74 9.45 57.14 28.94 27.89
DeepSeek-VL DeepSeek-LLM-7b-base 30.26 17.48 27.05 22.64 25.71 24.75 6.97 51.15 27.31 25.92
GPT-4o-mini - 11.51 19.42 24.64 22.64 28.57 17.82 31.34 54.84 26.79 26.40
GPT-4o - 17.11 19.42 27.54 15.09 20.00 22.77 16.92 60.83 26.41 25.12
mPLUG-DocOwl 1.5 LLama-7B 20.72 26.21 30.43 19.81 31.43 25.74 12.94 41.94 26.04 26.14
LLaVA1.5-13B Vicuna-13B 23.36 18.45 24.15 26.42 23.81 22.77 25.37 30.41 24.78 24.39
Qwen-VL-Chat Qwen 20.39 21.36 20.77 16.04 23.81 17.82 16.92 50.69 24.63 23.60
ShareGPT4V-13B Vicuna-13B 23.36 17.48 26.09 25.47 27.63 22.77 25.37 26.27 24.55 24.33
Cambrian-1-34B Nous-Hermes-2-Yi-34B 14.14 24.27 22.71 24.53 30.48 31.68 10.95 46.54 24.40 25.52
LLaVA1.5-7B Vicuna-7B 23.36 17.48 26.09 25.47 27.62 22.77 25.37 23.96 24.18 24.03
ShareGPT4V-7B Vicuna-7B 23.36 17.48 26.09 25.47 27.62 22.77 25.37 23.96 24.18 24.03
InternLM-XComposer2.5 InternLM2-7B 25.33 36.89 34.30 17.92 26.67 25.74 23.88 44.24 24.03 28.78
MiniGPT-v2 Llama 2-7B-Chat 23.68 25.24 28.02 28.30 22.86 21.78 2.49 37.33 23.66 23.71
Mini-Gemini-7B-HD Vicuna-7B-v1.5 21.05 6.80 14.49 19.81 15.24 25.74 15.42 54.38 23.29 21.80
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 14.14 22.33 21.74 23.58 31.43 30.69 10.45 47.00 22.84 24.91
TextMonkey Qwen-7B 9.54 24.27 23.67 24.53 17.14 20.79 11.44 35.94 20.01 20.81
Gemini-1.5-pro - 13.49 18.45 28.02 6.60 6.67 6.93 23.88 32.72 19.20 17.33
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Table 12: Experimental results on the Monitoring tasks. Models are ranked according to their
average performance on perception tasks. Rows corresponding to proprietary models are highlighted
in gray for distinction.

Method LLM
Perception Reasoning

Vehicle Pedestrain Avg Avg-C Calculate Intention Property Avg Avg-C
Counting Location Attribute Counting Attribute

InternVL-2 InternLM2.5-7B-Chat 70.07 25.74 28.98 59.68 12.04 53.19 41.62 51.67 21.43 41.00 43.57 38.03
InternVL-Chat-V1-5 InternLM2-Chat-20B 72.53 23.53 27.27 55.24 7.41 51.16 39.52 39.33 26.53 42.00 37.35 35.95
Cambrian-1-8B LLama3-8B-Instruct 62.01 29.41 20.45 55.44 7.41 47.68 37.07 46.00 29.59 44.00 42.37 39.86
Cambrian-1-34B Nous-Hermes-2-Yi-34B 51.32 33.09 26.14 55.14 12.96 45.98 37.44 11.33 18.37 45.00 19.48 24.90
SliME-8B LLama3-8B 60.53 33.82 28.98 34.48 31.48 40.62 38.32 32.33 40.82 43.00 36.14 38.72
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 53.95 17.65 22.73 43.45 7.41 39.61 30.80 11.67 17.35 50.00 20.48 26.34
InternLM-XComposer2.5 InternLM2-7B 52.63 13.24 17.61 46.98 0.93 39.48 28.48 13.67 13.27 34.00 17.67 20.31
MiniCPM-V 2.5 LLama3-8B 62.66 16.91 22.73 36.49 4.63 38.70 30.35 36.00 35.71 41.00 36.95 37.57
Qwen2-VL Qwen2-7B 55.59 19.85 25.00 35.69 11.11 37.30 29.45 30.33 19.39 55.00 33.13 34.91
YI-VL-34B Yi-34B-Chat 56.25 8.09 23.86 32.47 5.56 34.85 26.85 28.00 28.57 44.00 31.33 33.52
Mini-Gemini-7B-HD Vicuna-7B-v1.5 47.86 13.97 25.00 34.07 13.89 34.15 28.16 21.00 24.49 42.00 25.90 29.16
GPT-4o - 50.66 15.44 19.89 34.17 6.48 33.93 26.76 4.00 13.27 41.00 19.42 19.42
CogVLm2-llama3-Chat LLama3-8B 48.19 26.47 22.16 32.36 12.04 33.74 29.16 40.00 40.82 45.00 41.16 41.94
Claude 3.5 Sonnet - 50.99 33.77 11.93 33.37 8.33 32.19 28.43 34.37 18.37 44.00 32.25 32.25
Gemini-1.5-pro - 52.63 9.56 10.80 31.05 10.08 31.11 24.21 11.67 13.27 27.00 17.31 17.31
LLaVA-Next Qwen-72B 57.89 10.39 27.27 15.32 28.70 29.37 28.16 23.33 38.78 28.00 27.31 30.04
Monkey Qwen-7B 42.76 40.44 21.02 21.77 9.26 28.01 27.21 25.33 21.43 39.00 27.31 28.59
DeepSeek-VL DeepSeek-LLM-7b-base 43.91 7.35 17.33 24.70 9.26 26.97 21.59 5.33 19.39 48.00 16.67 24.24
GPT-4o-mini - 44.57 8.82 8.52 26.71 3.70 26.50 19.80 7.33 8.16 19.00 11.50 11.50
mPLUG-DocOwl 1.5 LLaMA-7B 34.87 19.12 26.42 21.27 6.48 24.97 22.19 10.00 33.67 39.00 20.48 27.56
SliME-13B Vicuna-13B 20.56 22.79 23.30 29.33 12.96 24.73 22.28 33.00 26.53 40.00 33.13 33.18
Qwen-VL-Chat Qwen-7B 37.66 16.18 21.88 14.62 12.04 22.13 20.75 14.67 17.35 21.00 16.47 17.67
LLaVA1.5-13B Vicuna-13B 14.47 22.06 21.59 24.29 12.96 20.45 19.30 27.67 23.47 31.00 27.51 27.38
LLaVA-Next LLama3-8B 46.71 0.00 22.16 4.13 23.15 19.46 19.27 13.67 46.94 18.00 21.08 26.20
ShareGPT4V-13B Vicuna-13B 14.31 22.06 15.62 23.99 12.04 19.26 17.88 27.33 24.49 30.00 27.31 27.27
MiniGPT-v2 Llama 2-7B-Chat 13.98 22.06 15.34 24.40 11.11 19.26 17.69 13.67 19.39 24.00 16.87 19.02
LLaVA1.5-7B Vicuna-7B 14.31 22.06 15.62 23.79 11.11 19.13 17.67 27.33 23.47 24.00 25.90 24.93
ShareGPT4V-7B Vicuna-7B 14.31 22.06 15.62 23.79 11.11 19.13 17.67 27.33 23.47 25.00 26.10 25.27
TextMonkey Qwen-7B 39.47 6.62 7.10 8.17 0.00 16.14 12.92 0.67 4.08 16.00 4.42 6.92

instance, InternVL-2 has an average accuracy rate of 53.19 on perception tasks, greatly surpassing
GPT-4o’s 33.93. We notice that closed-source models such as GPT-4o have a high frequency of
answering “E”, with over 35% of responses choosing “E”. This suggests that closed-source models
may be more inclined to refrain from responding when the answer is uncertain. Furthermore, we
find that while most models perform reasonably well on counting tasks, they struggle with tasks
related to spatial relationship judgment and attribute recognition. Moreover, related reasoning tasks
also pose a high level of difficulty, with no model achieving an accuracy rate over 40% to date. In
combination with the results from autonomous driving tasks, we observe that MLLMs exhibit sig-
nificant deficiencies in understanding, predicting, and reasoning about the dynamic information of
objects in 2D or 3D space. Although the input to these models is a single frame image rather than
a temporal sequence of video frames, there remains a considerable gap between their performance
and that of humans. For humans, who possess rich experiential knowledge of dynamics, it is not dif-
ficult to infer the future states of objects from a single image in unambiguous situations. Therefore,
modern MLLMs are still far from having the capability to function as world models.

E EXPERIMENTAL RESULTS ON ALL TASK SPLITS OF
MME-REALWORLD-CN

The detailed results on MME-RealWorld-CN can be found in Tab. 14, Tab. 16, Tab. 15, Tab. 17,
Tab. 18, and Tab. 19.

F OTHER ANALYSIS

Simple Tricks Cannot Solve the Problem of Large Image Perception Effectively. A straight-
forward strategy was attempted to alleviate the visual perception challenges posed by large images.
Intuitively, when humans observe high-resolution remote sensing images, they often zoom in for a
closer look. Additionally, questions and answers often include directional cues, such as "the up-
per right corner of the image," "above the image," or "below the image." Hence, it would be more
reasonable to segment the corresponding image before processing.

To implement this, each image is uniformly divided into 9 sub-images, and questions are posed for
each sub-image, obtaining a corresponding answer. Each image has a multiple-choice result; if any
choice result is non-E, the image is assigned a result based on the majority vote. Otherwise, the result
is E. The results are shown in Tab. 20, indicating a noticeable decline in perception performance
across various datasets. There could be several reasons for this decline:
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Table 13: Experimental results on the reasoning tasks of MME-RealWorld-CN. Models are
ranked according to their average performance. Rows corresponding to proprietary models are high-
lighted in gray for distinction. “OCR”, “DT”, “MO”, and “AD” each indicate a specific task domain:
Optical Character Recognition in the Wild, Diagram and Table, Monitoring and Autonomous Driv-
ing, respectively. “Avg” and “Avg-C” indicate the weighted average accuracy and the unweighted
average accuracy across subtasks in each domain.

Method LLM Reasoning
Task Split OCR DT MO AD Avg Avg-C
# QA pairs 207 602 298 800 1907 1907

InternVL-2 InternLM2.5-7B-Chat 44.93 74.92 38.14 29.00 46.65 46.75
Qwen2-VL Qwen2-7B 38.16 72.92 57.00 33.37 46.46 50.36
Claude 3.5 Sonnet - 74.44 65.79 31.54 25.12 44.31 49.22
SliME-8B LLama3-8B 44.44 70.93 30.54 29.13 44.21 43.76
InternVL-Chat-V1-5 InternLM2-Chat-20B 48.79 67.11 30.20 29.88 43.74 44.00
CogVLM2-llama3-Chat LLama3-8B 33.81 65.24 37.25 29.00 42.25 41.33
YI-VL-34B Yi-34B-Chat 37.68 61.46 33.22 29.75 41.16 40.53
Monkey Qwen-7B 43.96 56.81 32.55 28.38 39.70 40.43
Mini-Gemini-7B-HD Vicuna-7B-v1.5 28.50 68.61 25.50 24.00 38.80 36.65
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 29.95 60.47 25.50 29.63 38.75 36.39
LLaVA-Next LLama3-8B 14.93 58.14 29.53 28.25 36.44 32.71
Cambrian-1-8B LLama3-8B-Instruct 27.54 47.51 31.21 31.25 35.97 34.38
SliME-13B Vicuna-13B 44.93 49.17 30.54 23.87 35.18 37.13
LLaVA-Next Qwen-72B 24.64 40.87 27.52 28.12 31.67 30.29
InternLM-XComposer2.5 InternLM2-7B 18.36 40.70 16.78 30.00 30.05 26.46
GPT-4o - 33.81 39.87 20.81 22.75 29.05 29.31
DeepSeek-VL DeepSeek-LLM-7b-base 36.23 23.59 25.50 29.25 27.63 28.64
Cambrian-1-34B Hermes2-Yi-34B 21.74 31.40 23.49 25.12 26.48 25.44
LLaVA1.5-13B Vicuna-13B 36.23 27.08 25.84 23.25 26.27 28.10
ShareGPT4V-13B Vicuna-13B 35.75 27.91 24.83 22.88 26.17 27.84
MiniCPM-V 2.5 LLama3-8B 36.23 29.90 16.44 23.87 25.95 26.61
LLaVA1.5-7B Vicuna-7B 33.33 25.91 25.17 23.25 25.48 26.92
ShareGPT4V-7B Vicuna-7B 33.33 25.91 24.83 23.25 25.43 26.83
Qwen-VL-Chat Qwen-7B 30.92 36.41 13.42 19.88 25.29 25.16
GPT-4o-mini - 27.88 27.08 14.77 26.87 25.16 24.15
MiniGPT-v2 Llama 2-7B-Chat 34.30 28.57 19.80 22.13 25.12 26.20
mPLUG-DocOwl 1.5 LLama-7B 37.68 24.42 19.80 22.38 24.28 26.07
TextMonkey Qwen-7B 27.53 31.07 12.08 22.50 24.12 23.29
Gemini-1.5-pro - 5.30 5.32 14.77 15.67 11.14 10.26

1. The images are very large, and the queried objects are very fine-grained. After segmenting
these images, the task remains highly challenging.

2. Positional words in the questions lose their original meaning when the image is segmented
without further processing, leading to misleading interpretations.

3. Image segmentation cannot guarantee that the queried objects are not split into different
sub-images, resulting in the loss of correct answers.

Thus, simple image segmentation tricks are unlikely to significantly improve the perception of com-
plex images. Instead, the inherent capabilities of the models themselves should be relied upon and
improved.

Analyzing Incorrect Choices. We investigate the distribution of incorrect choices across a range
of models, as shown in Fig. 13. We can see that MLLMs show different response strategies when
dealing with questions imbued with uncertainty. Larger models generally adopt a more conserva-
tive approach, often opting for the safer response “E”, as illustrated from Fig. 13(a) to 13(c). In
contrast, smaller MLLMs often lean towards the first option—usually option “A”—in similar sit-
uations, as shown in Fig. 13(d) and 13(e). Notably, InternVL-2 presents a unique distribution of
incorrect choices that is remarkably uniform, which may account for its exceptional performance in
our evaluation.

Instruction Following Abilities. As described in Sec. 2.1, our prompts specify that the model
should directly select and output a single answer. In this regard, closed-source models generally
perform better, with outputs being more concise and directly aligned with the instructions. However,
we have observed that some open-source models do not strictly adhere to our queries and generate a
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Table 14: Experimental results on the OCR in the Wild tasks of MME-RealWorld-CN are
categorized as follows: “Product” represents products and advertisements; “B & M & P” represents
books, maps, and posters; “Contact” denotes contact information and addresses; “Identity” pertains
to identity information; and “Signage” refers to signage and other text. Models are ranked according
to their average performance on perception tasks, from highest to lowest. Rows corresponding to
proprietary models are highlighted in gray for distinction.

Method LLM Perception Reasoning
Product B & M & P Contact Identity Signage Avg Avg-C Scene Character Avg Avg-C

Qwen2-VL Qwen2-7B 70.68 66.43 78.43 59.04 68.26 70.28 68.57 48.00 28.97 38.16 38.49
InternVL-2 InternLM2.5-7B-Chat 69.51 69.76 74.51 69.92 50.60 69.92 66.86 43.93 46.00 44.93 44.97
InternVL-Chat-V1-5 InternLM2-Chat-20B 62.91 63.81 59.56 57.68 51.81 60.59 59.15 47.66 50.00 48.79 48.83
GPT-4o - 60.00 61.90 58.58 47.63 34.94 55.90 52.61 35.51 32.00 33.81 33.76
Claude 3.5 Sonnet - 49.25 65.48 53.43 53.73 39.76 54.44 52.33 84.39 63.79 74.44 74.09
SliME-8B LLama3-8B 57.09 43.57 62.25 55.19 38.55 53.93 51.33 37.38 52.00 44.44 44.69
YI-VL-34B Yi-34B-Chat 45.63 39.29 59.80 63.90 34.94 51.41 48.71 29.91 46.00 37.68 37.96
SliME-13B Vicuna-13B 57.48 45.24 48.77 50.00 48.19 50.63 49.94 47.66 42.00 44.93 44.83
Gemini-1.5-pro - 47.57 30.24 65.69 53.32 30.12 48.32 45.39 4.98 5.65 5.30 5.32
Cambrian-1-34B Hermes2-Yi-34B 40.78 46.19 52.21 60.37 12.05 48.11 42.32 20.56 23.00 21.74 21.78
CogVLm2-llama3-Chat LLama3-8B 44.47 41.43 53.92 48.34 28.92 46.12 43.42 35.51 32.00 33.81 33.76
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 39.03 38.81 47.79 44.19 31.33 41.82 40.23 17.76 43.00 29.95 30.38
LLaVA-Next LLama3-8B 36.50 32.86 52.45 45.02 21.69 40.62 37.70 17.66 12.00 14.93 14.83
Monkey Qwen-7B 44.85 32.86 43.14 40.46 38.55 40.46 39.97 43.93 44.00 43.96 43.97
Mini-Gemini-7B-HD Vicuna-7B-v1.5 37.91 33.97 43.57 43.11 40.00 39.66 39.71 19.63 38.00 28.50 28.82
InternLM-XComposer2.5 InternLM2-7B 33.98 54.76 33.82 38.80 22.89 39.26 36.85 9.35 28.00 18.36 18.68
mPLUG-DocOwl 1.5 LLama-7B 29.32 31.19 39.71 32.99 39.76 33.33 34.59 42.06 33.00 37.68 37.53
MiniCPM-V 2.5 LLama3-8B 28.54 31.90 33.58 39.83 28.92 33.23 32.55 38.32 34.00 36.23 36.16
LLaVA-Next Qwen-72B 25.24 27.86 33.82 49.38 2.41 32.76 27.74 29.91 19.00 24.64 24.46
Cambrian-1-8B LLama3-8B-Instruct 27.77 40.95 33.58 33.82 10.84 32.71 29.39 28.97 26.00 27.54 27.49
TextMonkey Qwen-7B 32.82 27.86 34.31 32.37 16.87 31.24 28.85 33.64 21.00 27.53 27.32
GPT-4o-mini - 30.29 41.90 22.55 26.56 14.46 29.56 27.15 22.27 33.89 27.88 28.08
ShareGPT4V-13B Vicuna-13B 28.16 27.62 27.94 28.63 24.10 27.94 27.29 37.38 34.00 35.75 35.69
LLaVA1.5-13B Vicuna-13B 27.77 27.62 27.94 27.39 24.10 27.52 26.96 38.32 34.00 36.23 36.16
Qwen-VL-Chat Qwen 32.04 26.19 28.92 24.90 10.84 27.36 24.58 27.10 35.00 30.92 31.05
DeepSeek-VL DeepSeek-LLM-7b-base 24.08 28.10 28.92 28.63 22.89 27.10 26.52 37.38 35.00 36.23 36.19
MiniGPT-v2 Llama 2-7B-Chat 26.21 27.86 27.94 26.14 22.89 26.78 26.21 36.45 32.00 34.30 34.23
ShareGPT4V-7B Vicuna-7B 25.44 26.90 27.94 27.39 24.10 26.73 26.35 37.38 29.00 33.33 33.19
LLaVA1.5-7B Vicuna-7B 25.44 26.90 27.94 26.14 22.89 26.36 25.86 37.38 29.00 33.33 33.19

Table 15: Experimental results on the Diagram and Table tasks of MME-RealWorld-CN.
Models are ranked according to their average performance on perception tasks. Rows corresponding
to proprietary models are highlighted in gray for distinction.

Method LLM Perception Reasoning
Diagram Table Avg Avg-C Diagram Table Avg Avg-C

Qwen2-VL Qwen2-7B 86.38 92.03 89.20 89.21 74.42 71.43 72.92 72.93
Claude 3.5 Sonnet - 84.39 63.79 74.09 74.09 68.11 63.46 65.79 65.79
InternVL-2 InternLM2.5-7B-Chat 92.36 61.79 71.63 77.08 77.08 72.76 74.92 74.92
InternVL-Chat-V1-5 InternLM2-Chat-20B 68.11 49.17 60.12 58.64 65.45 68.77 67.11 67.11
SliME-8B LLama3-8B 88.70 55.15 58.25 71.93 64.45 77.41 70.93 70.93
GPT-4o - 41.86 29.24 54.86 35.55 56.48 23.26 39.87 39.87
YI-VL-34B Yi-34B-Chat 47.51 39.52 49.52 43.52 59.80 63.12 61.46 61.46
SliME-13B Vicuna-13B 47.84 35.55 48.49 41.70 43.85 54.49 49.17 49.17
Cambrian-1-34B Hermes2-Yi-34B 29.57 35.22 44.34 32.40 9.30 53.49 31.40 31.40
Monkey Qwen-7B 44.85 41.53 41.12 43.19 54.15 59.47 56.81 56.81
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 30.90 42.52 40.60 36.71 50.50 70.43 60.47 60.47
Gemini-1.5-pro - 13.29 7.97 39.78 10.63 6.98 5.65 6.32 6.32
CogVLm2-llama3-Chat LLama3-8B 8.64 28.24 39.48 18.44 67.11 63.37 65.24 65.24
Mini-Gemini-7B-HD Vicuna-7B-v1.5 37.54 30.56 39.29 34.05 60.13 77.08 68.61 68.61
InternLM-XComposer2.5 InternLM2-7B 45.18 30.23 38.88 37.71 33.89 47.51 40.70 40.70
LLaVA-Next LLama3-8B 12.61 39.53 37.49 26.07 51.50 64.78 58.14 58.14
mPLUG-DocOwl 1.5 LLama-7B 22.26 31.89 31.83 27.08 14.62 34.22 24.42 24.42
GPT-4o-mini - 45.41 32.23 31.79 38.82 20.27 33.89 27.08 27.08
MiniCPM-V 2.5 LLama3-8B 25.25 28.24 31.67 26.75 29.57 30.23 29.90 29.90
TextMonkey Qwen-7B 41.86 31.61 30.76 36.74 36.88 25.25 31.07 31.07
Cambrian-1-8B LLama3-8B-Instruct 24.58 20.60 30.28 22.59 40.53 54.49 47.51 47.51
LLaVA-Next Qwen-72B 2.66 28.90 28.69 15.78 19.27 62.46 40.87 40.87
Qwen-VL-Chat Qwen-7B 21.26 37.87 27.89 29.57 30.90 41.91 36.41 36.41
ShareGPT4V-13B Vicuna-13B 25.58 27.24 27.57 26.41 24.92 30.90 27.91 27.91
MiniGPT-v2 Llama 2-7B-Chat 29.24 26.58 27.05 27.91 26.91 30.23 28.57 28.57
LLaVA1.5-13B Vicuna-13B 25.25 27.24 26.25 26.25 25.25 28.90 27.08 27.08
DeepSeek-VL DeepSeek-LLM-7b-base 20.93 24.25 26.02 22.59 28.24 18.94 23.59 23.59
LLaVA1.5-7B Vicuna-7B 24.25 27.24 25.75 25.75 24.58 27.24 25.91 25.91
ShareGPT4V-7B Vicuna-7B 24.25 27.24 25.75 25.75 24.58 27.24 25.91 25.91
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Table 16: Experimental results on the Remote Sensing tasks of MME-RealWorld-CN. Mod-
els are ranked according to their average performance. Rows corresponding to proprietary models
are highlighted in gray for distinction.

Method LLM Color Count Position Avg Avg-C
SliME-8B LLama3-8B 45.00 21.00 58.00 41.33 41.33
InternVL-2 InternLM2.5-7B-Chat 52.00 23.00 49.00 41.33 41.33
Qwen2-VL Qwen2-7B 44.00 18.00 53.00 38.33 41.33
InternLM-XComposer2.5 InternLM2-7B 48.00 17.00 50.00 38.33 38.33
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 50.00 7.00 60.00 38.28 38.82
Cambrian-1-8B LLama3-8B-Instruct 40.00 7.00 63.33 35.86 36.55
YI-VL-34B Yi-34B-Chat 35.00 17.00 51.00 34.33 34.33
Cambrian-1-34B Hermes2-Yi-34B 31.00 11.00 62.22 33.79 34.50
Claude 3.5 Sonnet - 38.00 19.00 41.00 32.67 32.67
InternVL-Chat-V1-5 InternLM2-Chat-20B 33.00 10.00 53.00 32.00 32.00
LLaVA-Next LLama3-8B 45.00 16.00 34.00 31.67 31.67
Monkey Qwen-7B 33.00 21.00 25.56 26.55 26.53
DeepSeek-VL DeepSeek-LLM-7b-base 34.00 8.00 34.00 25.44 25.36
LLaVA-Next Qwen-72B 21.00 11.00 39.00 23.67 23.67
GPT-4o - 19.00 11.00 41.00 23.67 23.67
CogVLm2-llama3-Chat LLama3-8B 34.00 15.00 17.00 22.00 22.00
MiniGPT-v2 Llama 2-7B-Chat 25.00 20.00 12.22 19.31 19.13
mPLUG-DocOwl 1.5 LLama-7B 21.00 16.00 18.89 18.62 18.63
ShareGPT4V-13B Vicuna-13B 25.00 15.00 12.22 17.59 17.45
LLaVA1.5-13B Vicuna-13B 26.00 15.00 11.00 17.33 17.33
SliME-13B Vicuna-13B 27.00 11.00 14.00 17.33 17.33
ShareGPT4V-7B Vicuna-7B 24.00 15.00 12.22 17.24 17.12
Mini-Gemini-7B-HD Vicuna-7B-v1.5 24.00 15.00 12.22 17.24 17.12
LLaVA1.5-7B Vicuna-7B 24.00 15.00 11.00 16.67 16.67
MiniCPM-V 2.5 LLama3-8B 11.00 6.00 33.00 16.67 16.67
Qwen-VL-Chat Qwen-7B 21.00 9.00 15.00 15.00 15.00
Gemini-1.5-pro - 9.00 8.00 20.00 12.33 12.33
TextMonkey Qwen-7B 11.00 1.00 23.33 11.38 11.68
GPT-4o-mini - 3.00 5.00 14.00 7.33 7.33

Table 17: Experimental results on the Autonomous Driving perception tasks of MME-
RealWorld-CN. Models are ranked according to their average performance. Rows corresponding
to proprietary models are highlighted in gray for distinction.

Motion
Method LLM Identity Vehicle Multi-vehicle Pedestrain Multi-pedestrain Traffic Signal Object Count Avg Avg-C

Qwen2-VL Qwen2-7B 40.00 47.00 38.00 27.00 17.00 60.00 29.00 36.86 36.86
Monkey Qwen-7B 35.00 59.00 22.00 26.00 41.00 50.00 18.00 35.86 35.86
DeepSeek-VL DeepSeek-LLM-7b-base 30.00 61.00 32.00 39.00 16.00 46.00 26.00 35.71 35.71
Cambrian-1-8B LLama3-8B-Instruct 51.00 54.00 44.00 25.00 10.00 37.00 28.00 35.57 35.57
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 49.00 42.00 43.00 32.00 21.00 28.00 25.00 34.29 34.29
CogVLm2-llama3-Chat LLama3-8B 29.00 47.00 37.00 39.00 24.00 43.00 21.00 34.14 34.29
InternVL-2 InternLM2.5-7B-Chat 39.00 43.00 29.00 37.00 13.00 48.00 30.00 34.14 34.14
InternLM-XComposer2.5 InternLM2-7B 35.00 43.00 34.00 36.00 15.00 43.00 29.00 33.57 33.57
SliME-13B Vicuna-13B 26.00 45.00 20.00 33.00 27.00 38.00 24.00 33.23 30.43
Claude 3.5 Sonnet 50.00 16.00 38.00 31.00 31.00 28.00 31.00 32.43 32.14
InternVL-Chat-V1-5 InternLM2-Chat-20B 41.00 52.00 32.00 34.00 15.00 21.00 30.00 32.14 32.14
SliME-8B LLama3-8B 44.00 28.00 34.00 31.00 15.00 30.00 37.00 31.29 31.29
MiniGPT-v2 Llama 2-7B-Chat 23.00 42.00 20.00 30.00 34.00 36.00 21.00 29.43 29.43
LLaVA1.5-13B Vicuna-13B 23.00 38.00 20.00 33.00 27.00 39.00 22.00 28.66 28.86
mPLUG-DocOwl 1.5 LLama-7B 22.00 60.00 27.00 33.00 28.00 17.00 12.00 28.43 28.43
Mini-Gemini-7B-HD Vicuna-7B-v1.5 23.00 37.00 20.00 33.00 27.00 35.00 23.00 28.29 28.29
LLaVA1.5-7B Vicuna-7B 23.00 26.00 20.00 33.00 27.00 36.00 22.00 28.14 26.71
ShareGPT4V-7B Vicuna-7B 23.00 36.00 20.00 33.00 27.00 36.00 22.00 28.14 28.14
ShareGPT4V-13B Vicuna-13B 23.00 36.00 20.00 33.00 27.00 36.00 22.00 28.14 28.14
YI-VL-34B Yi-34B-Chat 35.00 42.00 36.00 22.00 25.00 15.00 19.00 27.71 27.71
Qwen-VL-Chat Qwen 28.00 40.00 29.00 16.00 19.00 28.00 10.00 27.36 24.29
LLaVA-Next LLama3-8B 27.00 49.00 30.00 27.00 21.00 29.00 8.00 27.29 27.29
TextMonkey Qwen-7B 32.00 36.00 18.00 31.00 29.00 32.00 9.00 26.71 26.71
Cambrian-1-34B Hermes2-Yi-34B 30.00 39.00 35.00 31.00 5.00 11.00 34.00 26.43 26.43
MiniCPM-V 2.5 LLama3-8B 40.00 29.00 39.00 25.00 17.00 39.00 18.00 26.00 29.57
GPT-4o-mini 15.00 44.00 21.00 14.00 9.00 33.00 32.00 24.00 24.00
LLaVA-Next Qwen-72B 20.00 41.00 35.00 27.00 15.00 15.00 9.00 23.14 23.14
GPT-4o 16.00 20.00 28.00 24.00 12.00 20.00 28.00 21.14 21.14
Gemini-1.5-pro 32.00 12.00 29.00 8.00 11.00 14.00 19.00 17.57 17.86
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Table 18: Experimental results on the Autonomous Driving reasoning tasks of MME-
RealWorld-CN. Models are ranked according to their average performance, from highest to lowest.
Rows corresponding to proprietary models are highlighted in gray for distinction.

Method LLM Intention Relation Attention Avg Avg-C
Ego Pedestrian Verhicle Ego2P Ego2T Ego2V O2O Signal

Qwen2-VL Qwen2-7B 25.00 37.00 36.00 23.00 33.00 24.00 16.00 73.00 33.37 33.38
Cambrian-1-8B LLama3-8B-Instruct 21.00 54.00 31.00 17.00 33.00 21.00 17.00 56.00 31.25 31.25
InternLM-XComposer2.5 InternLM2-7B 19.00 28.00 33.00 22.00 37.00 27.00 18.00 56.00 30.00 30.00
InternVL-Chat-V1-5 InternLM2-Chat-20B 30.00 25.00 35.00 26.00 26.00 24.00 9.00 64.00 29.88 29.88
YI-VL-34B Yi-34B-Chat 30.00 37.00 32.00 24.00 28.00 30.00 15.00 42.00 29.75 29.75
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 22.00 13.00 26.00 26.00 35.00 36.00 16.00 63.00 29.63 29.63
DeepSeek-VL DeepSeek-LLM-7b-base 30.00 37.00 34.00 23.00 29.00 20.00 10.00 51.00 29.25 29.25
SliME-8B LLama3-8B 33.00 43.00 31.00 23.00 19.00 23.00 9.00 52.00 29.13 29.13
CogVLm2-llama3-Chat LLama3-8B 24.00 32.00 29.00 29.00 21.00 27.00 19.00 51.00 29.00 29.00
InternVL-2 InternLM2.5-7B-Chat 25.00 33.00 30.00 26.00 33.00 26.00 11.00 48.00 29.00 29.00
Monkey Qwen-7B 22.00 46.00 31.00 21.00 23.00 21.00 9.00 54.00 28.38 28.38
LLaVA-Next LLama3-8B 27.00 43.00 34.00 26.00 24.00 23.00 11.00 38.00 28.25 28.25
LLaVA-Next Qwen-72B 30.00 49.00 37.00 20.00 29.00 23.00 8.00 29.00 28.12 28.13
GPT-4o-mini 11.00 11.00 24.00 26.00 39.00 27.00 20.00 57.00 26.87 26.88
Cambrian-1-34B Hermes2-Yi-34B 11.00 10.00 24.00 22.00 38.00 29.00 10.00 57.00 25.12 25.13
Claude 3.5 Sonnet 34.00 20.00 25.00 16.00 14.00 12.00 15.00 65.00 25.12 25.13
Mini-Gemini-7B-HD Vicuna-7B-v1.5 19.00 21.00 22.00 27.00 27.00 22.00 25.00 29.00 24.00 24.00
MiniCPM-V 2.5 LLama3-8B 22.00 28.00 28.00 20.00 28.00 17.00 12.00 36.00 23.87 23.88
SliME-13B Vicuna-13B 21.00 21.00 24.00 31.00 20.00 15.00 25.00 34.00 23.87 23.88
LLaVA1.5-7B Vicuna-7B 19.00 21.00 22.00 26.00 27.00 22.00 25.00 24.00 23.25 23.25
LLaVA1.5-13B Vicuna-13B 19.00 21.00 22.00 28.00 26.00 21.00 25.00 24.00 23.25 23.25
ShareGPT4V-7B Vicuna-7B 19.00 21.00 22.00 26.00 27.00 22.00 25.00 24.00 23.25 23.25
ShareGPT4V-13B Vicuna-13B 19.00 21.00 22.00 25.00 27.00 20.00 25.00 24.00 22.88 22.88
GPT-4o 26.00 16.00 23.00 19.00 20.00 14.00 10.00 54.00 22.75 22.75
TextMonkey Qwen-7B 21.00 24.00 26.00 20.00 20.00 21.00 9.00 39.00 22.50 22.50
mPLUG-DocOwl 1.5 LLama-7B 17.00 22.00 20.00 20.00 33.00 21.00 10.00 36.00 22.38 22.38
MiniGPT-v2 Llama 2-7B-Chat 21.00 23.00 22.00 22.00 31.00 16.00 10.00 32.00 22.13 22.13
Qwen-VL-Chat Qwen 18.00 13.00 8.00 22.00 27.00 22.00 14.00 35.00 19.88 19.88
Gemini-1.5-pro 17.00 12.00 27.00 5.00 8.00 10.00 14.00 32.00 15.67 15.63

Table 19: Experimental results on the Monitoring tasks of MME-RealWorld-CN. Models
are ranked according to their average performance on perception tasks. Rows corresponding to
proprietary models are highlighted in gray for distinction.

Method LLM
Perception Reasoning

Vehicle Pedestrain Avg Avg-C Calculate Intention Property Avg Avg-C
Counting Location Attribute Counting Attribute

InternVL-2 InternLM2.5-7B-Chat 70.07 25.74 28.98 59.68 12.04 39.30 39.30 51.67 21.43 41.00 38.14 38.03
LLaVA-Next LLama3-8B 62.00 14.00 33.00 38.00 30.00 35.40 35.40 13.00 45.92 30.00 29.53 29.64
LLaVA-Next Qwen-72B 72.00 11.00 26.00 35.00 29.00 34.60 34.60 24.00 13.27 45.00 27.52 27.42
InternVL-Chat-V1-5 InternLM2-Chat-20B 62.00 22.00 20.00 47.00 11.00 32.40 32.40 25.00 11.00 54.00 30.13 30.00
Qwen2-VL Qwen2-7B 63.00 18.00 15.00 43.00 8.00 29.40 29.40 27.00 17.35 57.00 33.89 33.78
SliME-8B LLama3-8B 55.00 18.00 17.00 40.00 16.00 29.20 29.20 24.00 31.63 36.00 30.54 30.54
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 62.00 18.00 12.00 37.00 10.00 27.80 27.80 12.00 14.29 50.00 25.50 25.43
Cambrian-1-8B LLama3-8B-Instruct 61.00 22.00 13.00 36.00 6.00 27.60 27.60 30.00 21.43 42.00 31.21 31.14
Cambrian-1-34B Hermes2-Yi-34B 62.00 23.00 7.00 39.00 7.00 27.60 27.60 11.00 15.31 33.00 19.80 19.77
mPLUG-DocOwl 1.5 LLama-7B 56.00 19.00 29.00 24.00 0.00 25.60 25.60 4.00 17.35 38.00 19.80 19.78
YI-VL-34B Yi-34B-Chat 57.00 7.00 18.00 31.00 11.00 25.20 24.80 24.00 26.50 49.00 33.21 33.17
GPT-4o - 61.00 13.00 8.00 37.00 7.00 25.20 25.20 10.00 8.16 44.00 20.80 20.72
Gemini-1.5-pro - 63.00 13.00 9.00 38.00 3.00 25.20 25.20 9.00 10.20 25.00 14.76 14.73
Claude 3.5 Sonnet - 62.00 10.00 10.00 34.00 9.00 25.00 25.00 23.00 22.45 49.00 31.54 31.48
CogVLm2-llama3-Chat LLama3-8B 32.00 26.00 22.00 33.00 11.00 24.80 24.80 27.00 37.76 47.00 37.25 37.25
GPT-4o-mini - 60.00 6.00 8.00 35.00 1.00 22.00 22.00 8.00 14.29 22.00 14.77 14.76
DeepSeek-VL DeepSeek-LLM-7b-base 62.00 6.00 11.00 24.00 5.00 21.60 21.60 9.00 15.31 52.00 25.50 25.44
MiniCPM-V 2.5 LLama3-8B 55.00 15.00 11.00 17.00 4.00 20.40 20.40 11.00 11.22 27.00 16.44 16.41
Qwen-VL-Chat Qwen-7B 58.00 11.00 8.00 0.00 24.00 20.20 20.20 7.00 12.00 21.00 13.34 13.33
TextMonkey Qwen-7B 57.00 4.00 13.00 24.00 0.00 19.60 19.60 1.00 12.24 23.00 12.08 12.08
InternLM-XComposer2.5 InternLM2-7B 60.00 5.00 8.00 24.00 0.00 19.40 19.40 0.00 9.18 41.00 16.78 16.73
Monkey Qwen-7B 12.00 40.00 22.00 20.00 2.00 19.20 19.20 23.00 24.49 50.00 32.55 32.50
SliME-13B Vicuna-13B 17.00 21.00 16.00 23.00 12.00 17.80 17.80 26.00 27.55 38.00 30.54 30.52
LLaVA1.5-13B Vicuna-13B 16.00 21.00 17.00 20.00 11.00 17.00 17.00 26.00 23.47 28.00 25.84 25.82
ShareGPT4V-13B Vicuna-13B 15.00 21.00 17.00 20.00 11.00 16.80 16.80 26.00 23.47 25.00 24.83 24.82
Mini-Gemini-7B-HD Vicuna-7B-v1.5 15.00 21.00 17.00 20.00 11.00 16.80 16.80 26.00 23.47 27.00 25.50 25.49
LLaVA1.5-7B Vicuna-7B 15.00 21.00 16.00 20.00 11.00 16.60 16.60 26.00 23.47 26.00 25.17 25.16
ShareGPT4V-7B Vicuna-7B 15.00 21.00 16.00 20.00 11.00 16.60 16.60 26.00 23.47 25.00 24.83 24.82
MiniGPT-v2 Llama 2-7B-Chat 9.00 13.00 16.00 23.00 11.00 14.40 14.40 16.00 18.37 25.00 19.80 19.79

Table 20: Exploring the Limitations of Simple Image Segmentation for Large Image Percep-
tion. The results are evaluated on the perception tasks of MME-RealWorld.

Method LLM Perception
OCR RS DT MO AT Avg Avg-C

SliME-8B LLama3-8B 53.45 42.27 29.34 40.62 33.66 40.29 39.87
Split Img LLama3-8B 53.66 35.26 31.11 39.07 30.57 38.84 37.93

Qwen2-VL Qwen2-7B 81.38 44.81 70.18 37.3 34.62 58.96 53.66
Split Img Qwen2-7B 67.8 36.3 49.33 34.97 34.21 47.91 44.52

InternVL-2 InternLM2.5-7B-Chat 73.92 39.35 62.80 53.19 35.46 55.82 52.94
Split Img InternLM2.5-7B-Chat 61.43 33.09 44.19 34.88 31.58 43.75 41.03
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Figure 13: Distribution of incorrec choices. The matrix reveals distinct response behaviors among
different MLLMs. Larger models tend to select the safer option “E”, while smaller models exhibit a
bias toward the first option “A”. InternVL-2, however, shows a unique uniform error distribution.

significant amount of additional analysis. Sometimes, they even produce outputs that are excessively
verbose, continuing until the token count reaches the predefined maximum limit. This indicates that
the open-source models have a lot of room for optimization in the ability of instruction following.

Preparatory Models have better AI security. We designed three metrics to assess the frequency
and performance of models when predicting "E" (indicating refusal to answer):

• Correct E (%): This metric measures the percentage of times a model correctly predicts
"E" when the ground truth is "E," helping evaluate whether the model can recognize ques-
tions that genuinely require a refusal to respond.

• E Ratio in Wrong Predictions (%): This indicates the proportion of wrong answers la-
beled as "E" among all incorrect predictions, offering insights into the model’s tendency to
choose "E" when uncertain.

• # Predicted E: This counts the total number of times a model predicts "E" within the
current split, providing a straightforward view of "E" predictions overall.

Finally, Error Ratio (%) reflects the model’s perceptual accuracy within the domain. Below are the
summarized results from Table. 21, from which we draw several key insights:

(a) Less capable models, such as SliME-8B, rarely opt for "E" and instead tend to select an-
swers they consider correct, leading to low rates of both correct "E" predictions and "E"
frequency across domains.

(b) More advanced open-source models, like InternVL, show "E" frequencies comparable to
closed-source models on simpler tasks, such as OCR or Diagram and Table interpretation.
In these easier tasks, most models are confident in their answers, so the frequency of se-
lecting "E" remains low.

(c) On more challenging tasks, such as Remote Sensing and Monitoring, all models have
higher error rates. Notably, proprietary models like GPT-4o and Claude35 exhibit both
higher accuracy in predicting "E" and a greater frequency of selecting "E" compared to
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Table 21: In-depth comparison of metrics associated with different models’ tendencies to select
response ’E’.

Remote sensing
Model Correct E (%) E Ratio in Wrong Prediction (%) # Predicted E Error Ratio (%)
GPT-4o 50.00% 56.19% 1500 71.08%

Claude35 71.43% 63.00% 1759 74.26%
SliME 7.14% 9.13% 198 57.73%

InternVL 21.43% 18.31% 418 60.65%
Monitoring

Model Correct E (%) E Ratio in Wrong Prediction (%) # Predicted E Error Ratio (%)
GPT-4o 94.18% 47.39% 1138 67.50%

Claude35 97.26% 48.96% 1206 69.89%
SliME 85.96% 18.23% 571 65.11%

InternVL 91.44% 31.71% 800 62.39%

OCR
Model Correct E (%) E Ratio in Wrong Prediction (%) # Predicted E Error Ratio (%)
GPT-4o 15.07% 18.57% 284 23.56%

Claude35 13.70% 38.02% 686 28.49%
SliME 0.00% 3.86% 51 50.32%

InternVL 21.92% 28.19% 498 27.40%

Diagram and Table
Model Correct E (%) E Ratio in Wrong Prediction (%) # Predicted E Error Ratio (%)
GPT-4o 11.76% 24.84% 763 53.65%

Claude35 5.88% 4.10% 78 32.92%
SliME 0.00% 9.30% 39 70.65%

InternVL 23.53% 29.58% 692 39.15%

Table 22: Performance of different models under various evaluation metrics, with input-output
formats for each metric shown in Figure 16. Removing choices (EM) significantly reduces model
performance; while using GPT-4o for matching model responses helps somewhat, overall accuracy
remains low. CoT reasoning benefits reasoning tasks but has minimal impact on perception tasks.

Line Metric Method Perception Reasoning
OCR RS DT MO AD Avg OCR DT MO AD Avg

1 MCQ SliME 58 36 51 29 33 37.7 51 27 41 34 36.4
2 EM Exact Match 10 13 2 15 11 11.3 2 3 8 0 2.3

3 MCQ LLaVA-OV 82 51 64 34 45 52.8 71 43 45 35 42.7
4 EM Exact Match 34 15 25 13 13 18.8 4 20 13 0 5.8

5 MCQ GPT-4o-mini 70 23 62 19 34 38.8 57 39 19 35 35.2
6 EM Exact Match 39 11 30 6 14 11.3 21 33 4 7 11.9
7 CoT CoT-MCQ 67 22 57 21 31 36.7 60 51 34 33 39.1

8 MCQ GPT-4o 81 45 65 34 37 49.1 72 50 42 33 42.1
9 EM Exact Match 43 20 29 9 20 22.8 28 40 5 9 15.1

10 EM Machine match 53 31 46 16 32 33.1 61 45 22 27 33.0
11 CoT CoT-MCQ 83 53 63 39 40 49.3 75 66 41 41 49.3
12 CoT-EM Machine match 55 30 45 25 29 35.0 67 52 28 29 36.8

InternVL, which maintains a relatively low "E" frequency (10%-35%) even on difficult
tasks.

In summary, for simpler multimodal tasks, the safety profiles of advanced MLLMs and proprietary
models are comparable. However, on more complex tasks, proprietary models demonstrate a signif-
icantly higher level of safety by opting for "E" when uncertain, aligning better with human values by
avoiding misleading answers. Given that open-source models currently undergo limited alignment
with human preferences, this presents an important direction for future research and development.
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Figure 14: Diverse data sources encompassing over 15 basic image categories, including text-
dense scenes, autonomous driving, video surveillance, natural environments, and more, highlighting
a wide range of scene diversity.
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Figure 15: Detailed information on task distributions across different domains.

In which year does the revenue first exceed 10,000, according to the 'BRAKEVEN DEALS'
diagram? The choices are listed below:
"(A) 2021", "(B) 2022", "(C) 2023", "(D) 2024", "(E) The image does not feature the number.
Select the best answer to the above multiple-choice question based on the image. Respond with
only the letter (A, B, C, D, or E) of the correct option.

AMulti-Choice
QA (MCQ)

In which year does the revenue first exceed 10,000, according to the 'BRAKEVEN DEALS'
diagram? Answer the question with single word or phase.

2023Exact/Machine
Match (EM)

In which year does the revenue first exceed 10,000, according to the
'BRAKEVEN DEALS' diagram? The choices are listed below:
"(A) 2021", "(B) 2022", "(C) 2023", "(D) 2024", "(E) The image does
not feature the number.
Please think step by step and finally select the best answer to the above
multiple-choice question based on the image.

To find the year when the revenue first exceeds 10,000, we need to examine
the graph in the \"BREAK EVEN DEALS\" section.\n\n1. **2020**: Revenue
is 212.\n2. **2021**: Revenue is 1,378.\n3. **2022**: Revenue is 4,060.\n4.
**2023**: Revenue is 8,170.\n5. **2024**: Revenue is 13,848.\n\nThe
revenue first exceeds 10,000 in **2024**.\n\nTherefore, the best answer
is:\n\n(D) 2024

Chain of
Though MCQ

In which year does the revenue first exceed 10,000, according to
the 'BRAKEVEN DEALS' diagram? The choices are listed below:
"(A) 2021", "(B) 2022", "(C) 2023", "(D) 2024", "(E) The image
does not feature the number.
Please think step by step and finally answer the question directly.

To determine the year when revenue first exceeds 10,000 according to the
'BRAKEVEN DEALS' diagram:\n\n1. Look at the blue bars representing revenue for
each year.\n2. Check the labels at the top of each bar to find the revenue values.\n3.
Identify the year where the value first exceeds 10,000.\n\nIn this diagram:\n\n- 2020:
212\n- 2021: 1,378\n- 2022: 4,060\n- 2023: 8,170\n- 2024: 13,848\n\nRevenue first
exceeds 10,000 in the year 2024.\nThe best answer is: 2024.

Chain of
Though EM

Figure 16: Illustration of input-output formats for various experimental setups. MCQ represents
the default multiple-choice question format in the dataset. EM removes the choices to prevent the
model from relying on choice information, instead directly matching the final answer. CoT (Chain
of Thought) prompts the model to first perform reasoning before providing the final answer.
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Table 23: Maximum Acceptable Resolution of Different MLLMs.
Model LLM Max Resolution

Qwen-VL-Chat Qwen 448
LLaVA1.5-7B Vicuna-7B 336
LLaVA1.5-13B Vicuna-13B 336
LLaVA-Next LLama3-8B 672
LLaVA-Next Qwen-72B 672

mPLUG-DocOwl 1.5 LLama-7B 448
ShareGPT4V-7B Vicuna-7B 336
ShareGPT4V-13B Vicuna-13B 336

MiniGPT-v2 Llama 2-7B-Chat 448
Monkey Qwen-7B 896*1334

Cambrian-1-8B LLama3-8B-Instruct 1024
Cambrian-1-34B Hermes2-Yi-34B 1024

DeepSeek-VL DeepSeek-LLM-7b-base 1024
YI-VL-34B Yi-34B-Chat 448

MiniCPM-V 2.5 LLama3-8B 1344
InternLM-XComposer2.5 InternLM2-7B 4096
CogVLm2-llama3-Chat LLama3-8B 1344

Mini-Gemini-7B-HD Vicuna-7B-v1.5 672
Mini-Gemini-34B-HD Nous-Hermes-2-Yi-34B 672

SliME-13B Vicuna-13B 2016
SliME-8B LLama3-8B 2016

InternVL-Chat-V1-5 InternLM2-Chat-20B 4096
InternVL-2 InternLM2.5-7B-Chat 4096
Qwen2-VL Qwen2-7B 3584

GPT-4o - Private
GPT-4o-mini - Private

Gemini-1.5-pro - Private
Claude 3.5 Sonnet - Private
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