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Abstract

Actor Critic methods have found immense appli-
cations on a wide range of Reinforcement Learn-
ing tasks especially when the state-action space is
large. In this paper, we consider actor critic and
natural actor critic algorithms with function ap-
proximation for constrained Markov decision pro-
cesses (C-MDP) involving inequality constraints
and carry out a non-asymptotic analysis for both of
these algorithms in a non-i.i.d (Markovian) setting.
We consider the long-run average cost criterion
where both the objective and the constraint func-
tions are suitable policy-dependent long-run aver-
ages of certain prescribed cost functions. We han-
dle the inequality constraints using the Lagrange
multiplier method. We prove that these algorithms
are guaranteed to find a first-order stationary point
(i.e., ∥∇L(θ, γ)∥22 ≤ ϵ) of the performance (La-
grange) function L(θ, γ), with a sample complex-
ity of Õ(ϵ−2.5) in the case of both Constrained
Actor Critic (C-AC) and Constrained Natural Ac-
tor Critic (C-NAC) algorithms. We also show the
results of experiments on three different Safety-
Gym environments.

1 INTRODUCTION

In recent times, there has been significant research activ-
ity on constrained reinforcement learning algorithms, moti-
vated largely from applications in safe reinforcement learn-
ing (Safe-RL). Each state transition here not just receives
a single-stage cost indicating the desirability of the action
and the resulting next state but also receives additional con-
straint (single-stage) costs that may account for safety of
the chosen action and the resulting next state. The goal then
is to minimize a ‘long-term cost’ criterion while ensuring
at the same time that the ‘long-term constraint costs’ stay

within certain prescribed thresholds. The problem setting
could generally involve more than one constraint cost. Prob-
lems of Safe-RL can in general be formulated in the setting
of constrained Markov decision processes (C-MDP), see
HasanzadeZonuzy et al. [2021], Jayant and Bhatnagar
[2022], Wachi and Sui [2020]. Altman [2021] provides
a textbook treatment on C-MDP. As an example, one may
consider the problem of navigation of an autonomous vehi-
cle such as a drone or a self-driving car where the goal is
to reach the destination in as short a time as possible while
ensuring there are no collisions with obstacles or accidents
on the way. Such problems can be well formulated in the
setting of C-MDPs. Constrained MDPs find several applica-
tions in various diverse domains. Some of these applications
include finding optimal bandwidth allocation in resource
constrained communication networks, determining strate-
gic building and maintenance policies, safe navigation for
self-driving cars, drones and robots, optimal energy sharing
strategies in energy harvesting networks etc.

In situations where the system model is unavailable, but
one has access to data in the form of tuples of states, ac-
tions, rewards, penalties, as well as next states, one may
formulate and present constrained reinforcement learning
(C-RL) algorithms for finding the optimal policies. An im-
portant algorithm in this category is the constrained actor
critic (C-AC) algorithm originally presented by Borkar
[2005] for the long-run average cost setting but for look-
up table representations. In Bhatnagar [2010], Bhatnagar
and Lakshmanan [2012], C-AC algorithms with function
approximation have been presented and analysed for the
infinite horizon discounted cost and the long-run average
cost objectives respectively. In Bhatnagar and Lakshmanan
[2012], an application of the presented algorithm is also
studied empirically on a constrained multi-stage routing
problem.

The key idea in the aforementioned algorithms has been
to relax the constraints into the objective by forming a La-
grangian and then perform a gradient ascent step in the pol-
icy parameter while simultaneously performing a descent in

mailto:<prashansap@iisc.ac.in>
mailto:<shalabh@iisc.ac.in>


the Lagrange parameter. Note that usual actor-critic (Konda
and Tsitsiklis [2003]) or natural actor critic algorithms
(Bhatnagar et al., [2009]) ordinarily require two timescale
recursions. This is because these algorithms try and mimic
the policy iteration procedure whereby the actor or policy
parameter update proceeds on the slower timescale while
the critic or value function parameter is updated on the faster
timescale. In constrained actor critic and constrained natural
actor critic algorithms, one needs to introduce an additional
(the slowest) timescale over which the Lagrange multiplier
is updated.

In this paper, we carry out a finite-time (non-asymptotic)
convergence analysis of three-timescale constrained actor-
critic and constrained natural actor-critic algorithms to find
the sample complexity of these algorithms (in the con-
strained setting). We assume that the system model via
the transition probabilities is not known and linear func-
tion approximation is used for the critic recursion. A non-
asymptotic analysis helps provide an estimate of the number
of samples needed for the algorithm to converge as well as
helps provide appropriate learning rates for the algorithm.
In the case of the C-NAC algorithm, the natural gradient is
estimated by linearly transforming the regular gradient by
making use of the inverse Fisher information matrix of the
policy which is clearly positive definite, see Kakade [2001].
It is generally observed that using natural gradients speeds
up the performance of these algorithms. To the best of our
knowledge, a non-asymptotic convergence analysis of three-
timescale constrained actor-critic and constrained natural
actor-critic algorithms using linear function approximation
has not been carried out in the past.

We summarise our principal contributions below:
(a) We carry out the first finite-time analyses for the Con-
strained Actor-Critic and the Constrained Natural Actor-
Critic algorithms with linear function approximation in the
long-run average cost setting.
(b) We conduct the aforementioned analyses under the gen-
eral assumption of Markovian sampling using TD(0) for the
critic recursion and obtain a sample complexity of Õ(ϵ−2.5)
for both algorithms to find an ϵ-optimal stationary point of
the performance function.
(c) It is important to note here that the sample complex-
ity of both our constrained algorithms matches exactly the
one obtained by Wu et al., [2020] which is also Õ(ϵ−2.5)
even though the latter has been obtained for the case of two-
timescale (unconstrained) regular actor-critic algorithms.
Further, our setting is more general as we consider random
single-stage costs and also constraint costs having distri-
butions that are dependent on the current state, action and
next state. This is unlike Wu et al., [2020] where the single-
stage reward is assumed fixed for the given current state
and action. Our result thus shows that under a random cost
structure, with inequality constraints in the formulation,
and having three-timescale algorithms as a result (instead

of two-timescale algorithms) has no impact on the sample
complexity which we believe is a significant outcome of our
study.
(d) We show the results of experiments on three different
Safety-Gym environments, namely SafetyPointGoal1-v0,
SafetyCarGoal1-v0 and SafetyPointPush1-v0, respectively,
where we compare the performance of C-AC and C-NAC
with Constrained DQN (C-DQN). For the latter, we incor-
porate the Lagrange based procedure and update the La-
grange multipliers in the same way as the C-AC and C-NAC
procedures for a fair comparison. We observe that C-NAC
shows the best results on all three settings while C-AC is the
second-best performer on two of the three settings. Further,
all algorithms satisfy the specified average cost constraint.

Notation: For two sequences {cn} and {dn}, we can write
cn = O(dn) if there exists a constant P > 0 such that
|cn|
|dn|

≤ P , ∀n. To further hide logarithm factors,we use the

notation Õ(·). Without any other specification, ∥ · ∥ denotes
the ℓ2-norm of Euclidean vectors. Further, dTV (M,N)
denotes the total variation norm between two probabil-
ity measures M and N , and is defined as dTV (M,N) =
1/2

∫
X |M(dx)−N(dx)|.

2 RELATED WORK

The Actor-Critic Algorithm was first analyzed theoretically
for its asymptotic convergence by Konda and Borkar [1999].
This was however for the case of lookup table representa-
tions. In the case when function approximation is used,
Konda and Tsitsiklis [2003] analyzed the actor critic al-
gorithm for its asymptotic convergence. Kakade [2001]
proposed the natural gradient based algorithm. Under var-
ious settings, the asymptotic convergence of actor critic
algorithms has also been studied in (Kakade [2001], Castro
and Meir [2010], Zhang et al., [2020]). In Bhatnagar et al.,
[2009], natural actor critic algorithms that bootstrap in both
the actor and the critic have been proposed and analyzed for
their asymptotic convergence.

In recent times, there have been many works focusing pri-
marily on performing finite time analyses of reinforcement
learning algorithms. Such analyses are important as they
provide sample complexity estimates and non-asymptotic
convergence bounds for these algorithms. More recently,
such analyses for actor critic algorithms have also been car-
ried out though in the unconstrained (regular MDP) setting.
Ding et al. [2020] obtain finite time bounds for a natural
policy gradient algorithm for discounted cost MDP with con-
straints. Wu et al., [2020] show a non-asymptotic analysis
of a two time-scale actor-critic algorithm assuming non-i.i.d
samples and obtain a sample complexity of Õ(ϵ−2.5) for
convergence to an ϵ-approximate stationary point of the
performance function. Hairi et al., [2021] consider a fully
decentralized multi-agent reinforcement learning (MARL)



Table 1: Comparison of Finite-Time Analysis of Various Actor-Critic Algorithms.

Reference Algorithm Sample Com-
plexity

Function
Approxi-
mation

Timescales Critic estima-
tion

Wu et al., [2020] Actor-Critic Õ(ϵ−2.5) ✓ two-timescale TD(0)
Chen and Zhao [2022] Actor-Critic Õ(ϵ−2) ✓ single timescale TD(0)
Zeng et al., [2022] Constrained NAC O(ϵ−6) × two time-scale TD(0)
Suttle et al,. [2023] Actor-Critic Õ(τ2mixϵ

−2) ✓ two-timescale Monte-Carlo
Our work Constrained AC Õ(ϵ−2.5) ✓ three-timescale TD(0)
Our work Constrained NAC Õ(ϵ−2.5) ✓ three-timescale TD(0)

setting and show a finite-time convergence analysis for the
actor-critic algorithm in the average reward MDP scenario.
Chen and Zhao [2022] carried out finite time analysis of sin-
gle time-scale actor critic algorithm and obtained a sample
complexity of Õ(ϵ−2) for convergence to an ϵ-approximate
stationary point of the performance function. Suttle et al,.
[2023] studied the non-asymptotic convergence properties
of Multi-level Monte Carlo Actor-Critic (MAC) algorithm.
Mondal and Aggarwal [2024] proposed and studied the con-
vergence properties of Accelerated Natural Policy Gradient
(ANPG) algorithm. There have also been other recent works
that have analysed Natural Actor-Critic Algorithms for their
non-asymptotic convergence, see for instance, Cayci et al.,
[2022], Xu et al., [2020], Khodadadian et al., [2023], Kho-
dadadian et al., [2021], Chen et al., [2022]. Table 1 sum-
marises a comparison of our work with a few related works
in terms of sample complexity.

In early work, Borkar [2005] proposed the first actor-critic
algorithm for constrained Markov decision processes in
the long-run average cost setting and proved its asymptotic
convergence in the lookup table setting. Bhatnagar [2010]
presented the first actor-critic algorithm with function ap-
proximation for the infinite horizon discounted cost problem
under multiple inequality constraints and proved its asymp-
totic convergence. Bhatnagar and Lakshmanan [2012] pre-
sented an actor-critic algorithm in the constrained long-run
average cost MDP setting with function approximation un-
der policy gradient actor and temporal difference critic and
also analysed its asymptotic convergence.

Zeng et al., [2022] recently showed a finite-time analysis for
the non-asymptotic convergence of the natural actor-critic
algorithm to the global optimum of a CMDP problem in the
case of lookup table representations and the infinite hori-
zon discounted cost setting. In this paper, we consider the
long-run average cost problem with function approximation
that has been analysed for its asymptotic convergence in
(Bhatnagar and Lakshmanan [2012]). We use TD(0) for the
critic recursion and use projection for the critic. Further, we
present the C-NAC algorithm, where we use natural gra-
dients in the actor recursion along with a TD(0) critic. As
mentioned earlier, there are no prior finite time analyses for

average cost/reward constrained actor critic algorithms with
function approximation, so our work plugs in an important
gap that previously existed in this direction.

3 PRELIMINARIES

In this section, we present the C-MDP framework and algo-
rithms that we analyze.

3.1 CONSTRAINED MARKOV DECISION
PROCESSES

We consider a discrete-time Markov Decision Process with
finite state and action spaces. We first explain below the
notations used.

• S represents the state space and A the action space. Fur-
ther, we let A(j) ⊂ A denote the set of feasible actions in
state j ∈ S.

• Let p(s, s′, a) denote the probability of transition from
state s to s′ under action a.

• We shall consider only randomized policies π in this
work. Further, policies are assumed parameterized via a
parameter θ ∈ Rd. Thus, given θ, πθ(a|s) is the probability
of selecting an action a ∈ A(s) in state s.

• The stationary distribution (over states) induced by the
policy πθ is denoted µπθ

or simply µθ (by an abuse of
notation) and is assumed unique for any θ.

Let q(n), h1(n), ..., hN (n), n ≥ 0, denote a set of costs
obtained upon transitioning from state sn to state sn+1 un-
der action an ∈ A(sn). At any time instant n, the single-
stage costs q(n), hk(n), k = 1, ..., N , do not depend on
prior states and actions sm, am,m < n given the cur-
rent state-action pair (sn, an). For any i ∈ S, a ∈ A(i),
let d(i, a), hk(i, a) be defined as d(i, a) = E[q(n)|sn =
i, an = a], hk(i, a) = E[hk(n)|sn = i, an = a], k =
1, ..., N , respectively. Note the abuse of notation here. We
assume that the single-stage costs are real-valued, non-
negative and mutually independent. Further, we assume



that all the single-stage costs q(n), h1(n), . . . , hN (n) are
absolutely bounded by a constant Uc > 0.

3.2 THE OBJECTIVE AND LAGRANGE
RELAXATION

Our aim here is to minimize J(π) where

J(π) = lim
n→∞

1

n
E
[ n−1∑
m=0

q(m)|π
]

=
∑
s∈S

µπ(s)
∑

a∈A(s)

π(s, a)d(s, a), (1)

subject to the constraints

Gk(π) = lim
n→∞

1

n
E
[ n−1∑
m=0

hk(m)|π
]

=
∑
s∈S

µπ(s)
∑

a∈A(s)

π(s, a)hk(s, a) ≤ αk, (2)

k = 1, . . . , N , where α1, . . . , αN are certain prescribed
(positive) constant thresholds. We consider here that the
Markov process {sn} under any given policy is ergodic.
Hence, the limits in (1)-(2) are well-defined.

Consider a vector γ = (γ1, . . . , γN )T representing a set
of Lagrange multipliers with γ1, . . . , γN ∈ R+ ∪ {0}. We
define the Lagrangian L(π, γ) according to

L(π, γ)

= J(π) +

N∑
k=1

γk(Gk(π)− αk)

=
∑
s∈S

µπ(s)
∑

a∈A(s)

π(s, a)(d(s, a) +

N∑
k=1

γk(hk(s, a)− αk)).

We now have the unconstrained MDP problem with single-

stage cost being q(t) +
N∑

k=1

γk(hk(t) − αk) at instant t.

The differential action value function in the relaxed control
setting is defined as follows:

Mπ,γ(s, a)

=

∞∑
t=1

E
[
q(t) +

N∑
i=1

γi(hi(t)− αi)

−
(
J(θ) +

N∑
i=1

γi(Gi(θ)− αi)

)
|s0 = s, a0 = a, π

]

=

∞∑
t=1

E
[
q(t) +

N∑
i=1

γihi(t)

−
(
J(θ) +

N∑
i=1

γiGi(θ)

)
|s0 = s, a0 = a, π

]
.

As mentioned by Bhatnagar and Lakshmanan [2012], in the
constraint scenario, the policy gradient of the Lagrangian
would correspond to

∇θL(θ, γ) =
∑
s∈S

µπ(s)
∑

a∈A(s)

∇π(a|s)Aπ,γ(s, a), (3)

where Aπ,γ(s, a) = Mπ,γ(s, a)− V π,γ(s) is the advantage
function for the relaxed setting. Here V π,γ(s) is the dif-
ferential cost for a given policy π and a set of Lagrange
parameters γ. We use linear function approximation for
Mπ,γ(s, a). Thus, the same is approximated as follows:

M̂π,γ
w (s, a) ≈ wπ,γT

Ψsa,

where wπ,γ ∈ Rd are suitable parameters and Ψsa ∈ Rd

are compatible features for the tuples (s, a). Thus, Ψsa =
∇ log π(a|s), ∀s ∈ S, a ∈ A(s).

We also use linear function approximation for the differen-
tial value function V π,γ(s) as follows: We let

V̂ π,γ
v (s) ≈ vπ,γ

T

fs,

where fs is a d1-dimensional feature vector fs =
(fs(1), fs(2), ....., fs(d1))

T associated with state s and
vπ,γ = (vπ,γ(1), vπ,γ(2), ...., vπ,γ(d1))

T is the correspond-
ing weight vector.

3.3 THE CONSTRAINED ACTOR-CRITIC (C-AC)
AND CONSTRAINED NATURAL
ACTOR-CRITIC (C-NAC) ALGORITHMS

Algorithm 1 The Three-Timescale Actor-Critic Algorithm
for Constrained MDP

1: Input θ0, v0, L0, Uk(0) for 1 ≤ k ≤ N , γk(0) for
1 ≤ k ≤ N , step-size a(n) for critic and average cost
estimate, b(n) for actor and c(n) for Lagrange parame-
ter.

2: Draw s0 from some initial distribution
3: for n > 0 and k = 1, 2, . . . , N do
4: Sample an ∼ πθn(·|sn), sn+1 ∼ p(sn, ·, an)
5: Observe the costs q(n), h1(n), h2(n), . . . , hN (n)

6: Ln+1 = Ln + a(n)(q(n) +
∑N

k=1 γk(n)(hk(n) −
αk)− Ln)

7: δn = q(n) +
∑N

k=1 γk(n)(hk(n) − αk) − Ln +
vTn (fsn+1

− fsn)
8: vn+1 = Γ(vn + a(n)δnfsn)
9: θn+1 = θn + b(n)δnΨsnan

10: Uk(n+ 1) = Uk(n) + a(n)(hk(n)− Uk(n))
11: γk(n+ 1) = Γ̂(γk(n) + c(n)(Uk(n)− αk))
12: end for

We present here the two algorithms that we analyze in our
work for their non-asymptotic convergence – the constrained



actor-critic algorithm (Algorithm 1) and the constrained nat-
ural actor-critic algorithm (Algorithm 2), respectively. At
time instant t, we have θt as the actor parameter, vt as the
critic parameter, Lt as the average cost estimate, Uk(t) as
the average constraint cost estimate for k = 1, 2, . . . , N ,
γ(t) = (γ1(t), γ2(t), . . . , γN (t))T as the vector of La-
grange multiplier estimates and G(t) as the estimate of
the Fisher information matrix respectively.

Let Γ : Rd1 → C project any point in Rd1 to the closest
point within the set C which is assumed compact and convex.
For any point h contained in the set C, ∥h∥ ≤ Uv where
Uv > 0 is a constant. Further, Γ̂ : R → [0,M ] indicates
the operation Γ̂(y) = max(0,min(y,M)) for any y ∈ R
where M < ∞ represents a large positive constant. This
projection operator guarantees the Lagrange multiplier to
stay both non-negative and bounded.

For the natural actor-critic algorithm, we take G(0) = pI ,
where I is a d× d-identity matrix and p > 0 is a constant.
It can be concluded that G(n), n ≥ 1 are positive definite
and symmetric matrices as from the update rule, we can
see that these result from addition of (1 − a(n))G(n − 1)
and a(n)Ψsnan

ΨT
snan

. Hence, G(n)−1, n ≥ 1 are positive
definite and symmetric matrices as well. Let the smallest
eigenvalue of G(i)−1 be λi > 0, where i ≥ 1. Let λ be the
minimum of all such eigenvalues, i.e., λ = min

i
λi > 0.

Algorithm 2 The Three-Timescale Natural Actor-Critic
Algorithm for Constrained MDP

1: Input θ0, v0, L0, Uk(0) for 1 ≤ k ≤ N , γk(0) for
1 ≤ k ≤ N , G(0), step-size a(n) for critic and average
cost estimate, b(n) for actor and c(n) for Lagrange
parameter.

2: Draw s0 from some initial distribution
3: for n > 0 and k = 1, 2, . . . , N do
4: Sample an ∼ πθn(·|sn), sn+1 ∼ p(sn, ·, an)
5: Observe the costs q(n), h1(n), h2(n), . . . , hN (n)

6: Ln+1 = Ln + a(n)(q(n) +
∑N

k=1 γk(n)(hk(n) −
αk)− Ln)

7: δn = q(n) +
∑N

k=1 γk(n)(hk(n) − αk) − Ln +
vTn (fsn+1

− fsn)
8: vn+1 = Γ(vn + a(n)δnfsn)
9: θn+1 = θn + b(n)δnG(n)−1Ψsnan

10: Uk(n+ 1) = Uk(n) + a(n)(hk(n)− Uk(n))
11: γk(n+ 1) = Γ̂(γk(n) + c(n)(Uk(n)− αk))
12: G(n+ 1) = (1− a(n))G(n) + a(n)Ψsnan

ΨT
snan

13: end for

4 FINITE-TIME CONVERGENCE
RESULTS

We provide in this section the main theoretical results for
non-asymptotic convergence as well as provide the conver-
gence rate and sample complexity for the two algorithms.

Due to lack of space, we provide the detailed proofs of these
results in the appendix. We emphasize here that asymptotic
convergence analysis of these algorithms has not been anal-
ysed here since for the case of Constrained Actor-Critic, it
has been analysed in Bhatnagar and Lakshmanan [2012].
Further, the same for Constrained Natural Actor-Critic, it
will carry through in a similar manner using the results of
Bhatnagar et al., [2009].

4.1 ASSUMPTIONS AND BASIC RESULTS

We consider TD(0) with function approximation for the
critic recursion that estimates the state-value function. Let
v∗(θ, γ) be the convergence point of the critic under the
behavior policy πθ (for given actor and Lagrange parameters
θ and γ respectively), and define A and b as follows:

A := Esn,an,sn+1

[
fsn
(
fsn+1

− fsn
)⊤]

,

b := Esn,an,sn+1
[(C(sn, an, γ)− L(θ, γ))fsn ],

where sn ∼ µθ(·), an ∼ πθ(·|s), sn+1 ∼ p(sn, ·, an) and

C(sn, an, γ) = d(sn, an) +
N∑

k=1

γk(hk(sn, an) − αk) cor-

responds to the single-stage cost for the relaxed problem.
Analogous to the unconstrained setting, it can be seen that
(see Bhatnagar and Lakshmanan [2012])

Av∗(θ, γ) + b = 0.

Assumption 1 The norm of each state feature is bounded
by 1, i.e., ∥fi∥ ≤ 1.

The following assumption is required for the existence and
uniqueness of v∗(θ, γ) .

Assumption 2 The matrix A (defined above) is negative
definite with maximum eigenvalue as −λe < 0 for all values
of θ.

The approximation error for the feature mapping can vary
depending on its complexity. We define the approximation
error that arises due to linear function approximation as
follows.

ϵapp(θ,γ) :=

√
Es∼µθ

(
f⊤
s v∗(θ,γ)− V πθ,γ(s)

)2
.

Assumption 3

∀θ,∀γ, ϵapp(θ,γ) ≤ ϵapp,

where ϵapp ≥ 0 is some constant.

Assumption 3 is useful in finding upper bounds of some of
the error terms.



Assumption 4 (Uniform ergodicity) For a given θ, we
consider the policy πθ(·|s) and the transition probability
measure p(s, ·, a) that induce a stationary distribution µθ(·).
There exists b > 0 and k ∈ (0, 1) for the Markov chain
where at ∼ πθ(·|st), st+1 ∼ p(st, ·, at) such that

dTV

(
pτ (x, y, ·), µθ(y)

)
≤ bkτ ,∀τ ≥ 0,∀x, y ∈ S.

Assumption 4 is needed to tackle the issue of Markov sam-
pling in TD learning. It has been used in analyses of TD
learning, for instance, in Bhandari et al., [2018]. Refer to
Meyn and Tweedie [2009] for various results related to
uniform ergodicity as well as other notions of ergodicity of
Markov chains.

Assumption 5 There exist constants L,D, Mm such that
∀θ1,θ2,θ ∈ Rd, we have

(a)
∥∥∇ log πθ(a|i)

∥∥ ≤ D, ∀i,∀a,

(b)
∥∥∇ log πθ1

(a|i)−∇ log πθ2
(a|i)

∥∥ ≤ Mm∥θ1 − θ2∥,
∀i,∀a,

(c) There exist scalars Ǩ, K̂ > 0 such that for any x ̸= 0
and all sn, an,

Ǩ∥x∥2 ≤ xTΨsnan
ΨT

snan
x ≤ K̂∥x∥2.

Remark 1 As a consequence of Assumption 5(a), it follows
that

∣∣πθ1
(a|i)− πθ2

(a|i)
∣∣ ≤ L∥θ1 − θ2∥, ∀i,∀a. In other

words, the policy for any given (i, a) tuple is Lipschitz con-
tinuous in θ.

Assumption 5 provides smoothness of the parameterized
policies and can be seen to be verified by many policies.
This assumption is useful for finding upper bounds for some
of the error terms while proving the convergence of actor
and critic recursions.

Proposition 1 The updates G(t) satisfy sup
t

∥G(t)∥ < ∞

and sup
t

∥G(t)−1∥ < ∞, respectively.

Proof: Since a(n) → 0 as n → ∞, ∃N0 ≥ 1 such that for
all n ≥ N0, G(n + 1) is a convex combination of G(n)
and Ψsnan

ΨT
snan

, with G0 = pI , p > 0, see step 12 of
Algorithm 2. Without loss of generality, assume that a(n) ≤
1, ∀n. Thus, observe that for n = 0,

(1− a(0))p∥x∥2 + a(0)Ǩ∥x∥2 ≤ xTG(1)xT

≤ (1− a(0))p∥x∥2 + a(0)K̂∥x∥2.
Letting M̌ = min(p, Ǩ) and M̂ = max(p, K̂), it can be
verified from induction that

M̌∥x∥2 ≤ xTG(n)x ≤ M̂∥x∥2,

uniformly over n ≥ 0. The claim now follows from argu-
ments on page 35 of Bertsekas [1999].

Proposition 2 There exists a constant L1 > 0 such that
∀γ ∈ RN with γ = (γ1, . . . ,γN )T and 0 ≤ γj ≤ M for
j = 1, 2, . . . , N ,∥∥v∗(θ1,γ)− v∗(θ2,γ)

∥∥ ≤ L1∥θ1 − θ2∥,∀θ1,θ2 ∈ Rd.

Proof Sketch

Let

Aθ := Esn,an,sn+1

[
fsn
(
fsn+1

− fsn
)⊤]

,

bθ,γ := Esn,an,sn+1
[(C(sn, an, γ)− L(θ, γ))fsn ],

where sn ∼ µθ(·), an ∼ πθ(·|s), sn+1 ∼ p(sn, ·, an) .

We have,

Aθv
∗(θ, γ) + bθ,γ = 0.

Thus,∥∥v∗(θ1,γ)− v∗(θ2,γ)
∥∥

=∥A−1
θ1

bθ1,γ −A−1
θ2

bθ2,γ∥
≤∥A−1

θ1
bθ1,γ −A−1

θ2
bθ1,γ∥+ ∥A−1

θ2
bθ1,γ −A−1

θ2
bθ2,γ∥

≤∥A−1
θ1

−A−1
θ2

∥∥bθ1,γ∥+ ∥A−1
θ2

∥∥bθ1,γ − bθ2,γ∥.

It can be shown that

∥bθ1,γ∥ ≤ 2Ur,

∥A−1
θ2

∥ ≤ λ−1
e ,

A−1
θ1

−A−1
θ2

= A−1
θ1

(Aθ2 −Aθ1)A
−1
θ2

.

We have from section B.2 of Wu et al., [2020] the following:

∥Aθ1 −Aθ2∥ ≤ 4|A|L
(
1 + ⌈logk b−1⌉+ 1

1− k

)
∥θ1 − θ2∥,

∥bθ1,γ − bθ2,γ∥ ≤ 6|A|UrL

(
1 + ⌈logk b−1⌉+ 1

1− k

)
∥θ1 − θ2∥.

After combining all the terms, we have∥∥v∗(θ1,γ)− v∗(θ2,γ)
∥∥ ≤ L1∥θ1 − θ2∥,∀θ1,θ2 ∈ Rd,

where L1 = (8λ−2
e + 6λ−1

e )Ur|A|L
(
1 + ⌈logk b−1⌉ +

1
1−k

)
.

Proposition 3 Let γ1 = (γ1
1 , . . . ,γ

1
N )T and γ2 =

(γ2
1 , . . . ,γ

2
N )T be any two vectors in RN with 0 ≤ γi

j ≤ M
for i = 1, 2 and j = 1, 2, . . . , N . There exists a constant
L2 > 0 such that∥∥v∗(θ,γ1)− v∗(θ,γ2)

∥∥ ≤ L2|γ1
p − γ2

p |,∀θ ∈ Rd,

where |γ1
p − γ2

p | = max
i=1,2,...,N

|γ1
i − γ2

i |.



Proof Sketch

We have,∥∥v∗(θ,γ1)− v∗(θ,γ2)
∥∥ = ∥A−1

θ bθ,γ1 −A−1
θ bθ,γ2∥

≤ ∥A−1
θ ∥ ∥bθ,γ1 − bθ,γ2∥︸ ︷︷ ︸

I1

.

Now for the term I1, note that

∥bθ,γ1 − bθ,γ2∥
= ∥E{sn∼µθ(·),an∼πθ(·|s),sn+1∼p(sn,·,an)}[(C(sn, an,γ

1)

− C(sn, an,γ
2) + L(θ,γ2)− L(θ,γ1))fsn ]∥

≤ 2N(Uc + Uα)|γ1
p − γ2

p |,

where, |γ1
p − γ2

p | = max
i=1,2,...,N

|γ1
i − γ2

i |. Hence,

∥∥v∗(θ,γ1)− v∗(θ,γ2)
∥∥ ≤ L2|γ1

p − γ2
p |,∀γ1,γ2 ∈ RN ,

where, L2 = (2N(Uc + Uα))/λe.

Let τt denote the mixing time of our ergodic Markov chain.
So we have

τt := min
{
m ≥ 0|bkm−1 ≤ min{a(t), b(t), c(t)}

}
, (4)

where b, k are defined as in Assumption 4.

We now present the result of non-asymptotic analysis of
constrained actor-critic methods. We consider a(t) = ca(1+
t)−ω, b(t) = cb(1 + t)−σ and c(t) = cc(1 + t)−β , where
0 < ω < σ < β ≤ 1, with ca, cb and cc being positive
constants.

4.2 FINITE-TIME CONVERGENCE RESULTS FOR
ALGORITHM 1

We provide here the non-asymptotic convergence results for
both the actor and the critic recursions in Algorithm 1. We
also present the convergence rate and sample complexity of
the algorithm.

4.2.1 Convergence of the actor recursion for
Algorithm 1

We have the following result after carrying out the non-
asymptotic analysis of the actor.

Theorem 1 At the t-th iteration we have,

min
0≤m≤t

E
∥∥∇θL(θm,γ(m))

∥∥2 = O(ϵapp) +O
(
tσ−β

)

+O
(
log2 t

tσ

)
+O

(∑t
k=τt

E∥Ak∥2

1 + t− τt

)

+O
(∑t

k=τt
E∥Bk∥2

1 + t− τt

)
,

where

Ak = Lk − L(θk,γ(k)), (5)
Bk = vk − v∗(θk, γ(k)). (6)

4.2.2 Convergence of the critic recursion for
Algorithm 1

For the critic recursion, we obtain the following result for
the average estimation error.

Theorem 2 We have
1

1+t−τt

∑t
k=τt

E∥vk − v∗(θk, γ(k))∥2

= O
(

1
t1−ω

)
+O

(
log t
tω

)
+O

(
1

t2(σ−ω)

)
, (7)

1
1+t−τt

∑t
k=τt

E
(
Lk − L(θk,γ(k))

)2
= O

(
1

t1−ω

)
+O

(
log t
tω

)
+O

(
1

t2(σ−ω)

)
. (8)

4.2.3 Convergence rate and sample complexity for
Algorithm 1

We finally provide the convergence rate of the algorithm and
characterize the sample complexity of the same in Corollary
1.

Corollary 1 We have,

min
0≤k≤t

E∥∇θL(θk,γ(k))∥2 = O(ϵapp) +O
(

1

tβ−σ

)

+O
(
log2 t

tω

)
+O

(
1

t2(σ−ω)

)
.

If we set ω = 0.4, σ = 0.6, β = 1, Algorithm 1 needs
T = Õ(ϵ−2.5) steps to obtain the following:

min
0≤k≤T

E
∥∥∇θL(θk, γ(k))

∥∥2 ≤ O(ϵapp) + ϵ.

Remark 2 In Corollary 1, the results of Theorems 1 and
2 are combined which results in the convergence rate of
Algorithm 1 as Õ(t−0.4). The sample complexity of the con-
strained actor-critic algorithm is Õ(ϵ−2.5) as we have ex-
actly one sample per iteration.

4.3 FINITE-TIME CONVERGENCE RESULTS FOR
ALGORITHM 2

As with Algorithm 1, we provide here the non-asymptotic
convergence results for both the actor and the critic recur-
sions in Algorithm 2. Further, we present the convergence
rate and sample complexity of the algorithm.



Figure 1: Comparison of C-AC , C-NAC and C-DQN: Plots in the top row are for the average reward performance while
those in the bottom row are for the constraint costs for the three environments. These are plotted as functions of the number
of iterations.

4.3.1 Convergence of the Actor for Algorithm 2

We have the following result after carrying out non-
asymptotic analysis of the actor.

Theorem 3 At the tth iteration, we have,

min
0≤m≤t

E
∥∥∇θL(θm,γ(m))

∥∥2
= O(ϵapp) +O

(
tσ−β

)
+O

(
log2 t

tω

)
+O

(∑t
k=τt

E∥Ak∥2

1 + t− τt

)
+O

(∑t
k=τt

E∥Bk∥2

1 + t− τt

)
,

where

Ak = Lk − L(θk,γ(k)), (9)
Bk = vk − v∗(θk,γ(k)). (10)

4.3.2 Convergence of the Critic for Algorithm 2

We now provide a result analysing the average estimation
error for the critic.

Theorem 4 We have the following:

1

1 + t− τt

t∑
k=τt

E∥vk − v∗(θk,γ(k))∥2

= O
(

1

t1−ω

)
+O

(
log t

tω

)
+O

(
1

t2(σ−ω)

)
, (11)

1

1 + t− τt

t∑
k=τt

E
(
Lk − L(θk,γ(k))

)2
= O

(
1

t1−ω

)
+O

(
log t

tω

)
+O

(
1

t2(σ−ω)

)
. (12)

4.3.3 Convergence rate and sample complexity for
Algorithm 2

We finally provide the convergence rate of the algorithm and
characterize the sample complexity of the same in Corollary
2.

Corollary 2 We have

min
0≤k≤t

E∥∇θL(θk,γ(k))∥2 = O(ϵapp) +O
(

1

tβ−σ

)

+O
(
log2 t

tω

)
+O

(
1

t2(σ−ω)

)
.

If we set ω = 0.4, σ = 0.6, β = 1, Algorithm 2 needs
T = Õ(ϵ−2.5) steps to obtain the following,

min
0≤k≤T

E
∥∥∇θL(θk, γ(k))

∥∥2 ≤ O(ϵapp) + ϵ,



Table 2: Comparision of C-AC , C-NAC and C-DQN in terms of average reward ± standard error upon convergence.

Algorithm SafetyPointGoal1-v0 SafetyCarGoal1-v0 SafetyPointPush1-v0
C-AC −0.0015± 0.0035 −0.01± 0.0117 −0.0012± 0.0011

C-NAC −0.00012± 0.0006 −0.009± 0.0127 −0.0008± 0.0005
C-DQN −0.0003± 0.0007 −0.014± 0.005 −0.0008± 0.0007

Remark 3 Analogous to Remark 2, in Corollary 2, the re-
sults of Theorems 3 and 4 are combined which gives the
convergence rate of (natural actor critic) Algorithm 2 as
Õ(t−0.4) and a sample complexity of Õ(ϵ−2.5) as we have
one per-iteration sample in this algorithm as well. It is
important to also mention that for the results of both al-
gorithms, O(·) hides the terms that do not depend on the
iteration number.

4.4 PROOF SKETCH FOR THEOREMS 1 AND 3

We provide here an overview of the manner in which the
proofs of Theorems 1 and 3 proceed. This also helps us to de-
scribe the connection between the various results mentioned
above. The detailed arguments are nonetheless provided in
the appendix. The proofs of Theorems 1 and 3 rely crucially
on Lemma 1 below.

Lemma 1 For all γ ∈ RN with 0 ≤ γi ≤ M where i ∈
{1, 2, . . . , N}, there exists a constant ML greater than 0
such that for all θ1, θ2 ∈ Rd,

∥∇θL(θ1,γ)−∇θL(θ2,γ)∥ ≤ ML∥θ1 − θ2∥.

As a result of this lemma, we have the following inequality
(see Wu et al., [2020], Lemma C.1) ∀t > 0, that we use in
the proof of Theorem 1.

L(θt+1,γ(t)) ≥ L(θt,γ(t))

+b(t)⟨∇θL(θt,γ(t)), δt∇ log πθt(at|st)⟩

−ML

2
b(t)2∥δt∇ log πθt(at|st)∥2. (13)

The key idea in the proof (see Appendix for details) is to
split the middle term in the RHS of (13) into a few terms,
one of which is b(t)∥∇L(θt,γ(t))∥2. We obtain an upper
bound for ∥∇L(θt,γ(t))∥2. After summing the expectation
of terms on both sides, we analyse each term in the bound
to get the desired result for Theorem 1. Note also that the
result for Theorem 1 depends on the convergence of the
critic parameter and the average cost estimator. So we find
a bound on the averaged estimation errors by the critic and
average cost estimator in Theorem 2. We then obtain an
inequality similar to (13) for Theorem 3 (see Appendix) and
carry out an analysis along similar lines for Theorems 3 and
4.

4.5 PROOF SKETCH FOR THEOREMS 2 AND 4

We provide here an overview of the manner in which the
proofs of Theorems 2 and 4 proceed.

Proof Sketch for Average Reward estimate Error
For proving the convergence of average reward estimate
in theorems 2 and 4, we start off with expanding y2t+1 =
(Lt+1 − L∗

t+1)
2 which gives us the following inequality.

y2t+1 ≤ (1− 2a(t))y2t + 2a(t)yt(Ct − L∗
t )

+2yt(L
∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2,

where Ct = q(t) +
∑N

k=1 γk(t)(hk(t) − αk). After rear-
ranging and summing the expectation of both sides from τt
to t we have,

t∑
k=τt

E[y2k] ≤
t∑

k=τt

1

2a(k)
E(y2k − y2k+1)︸ ︷︷ ︸
I1

+

t∑
k=τt

E[Ξ̂(Lk, θk, γ(k), q(k), h(k))]︸ ︷︷ ︸
I2

+

t∑
k=τt

1

a(k)
E[yk(L

∗
k − L∗

k+1)]︸ ︷︷ ︸
I3

+

t∑
k=τt

1

a(k)
E[(L∗

k − L∗
k+1)

2]︸ ︷︷ ︸
I4

+

t∑
k=τt

a(k)E[(Ck − Lk)
2]︸ ︷︷ ︸

I5

.

Upon bounding I1 − I5 and simplifying, we get the desired
result. For the definition of the notations involved, please
refer Section B.2.

Proof Sketch for Critic Convergence
For proving the convergence of critic in Theorems 2 and
4, we start off with the equation ∥mt+1∥2 = ∥Γ(vt +
a(t)δtfst)− v∗(t+ 1)∥2 and after expanding the RHS, we



get the following inequality:

∥mt+1∥2 ≤ ∥mt∥2 + 2a(t)⟨mt, g(vt, θt, γ(t))⟩
+ 2a(t)Λ(Ot, vt, θt, γ(t), q(t), h(t))

+ 2a(t)⟨mt,∆g(Ot, Lt, θt, γ(t))⟩
+ 2⟨mt, v

∗(t)− v∗(t+ 1)⟩
+ 8a(t)2(Ur + Uv)

2 + 2∥v∗(t)− v∗(t+ 1)∥2.

After rearranging and summing the expectation on both
sides from τt to t we obtain (see Appendix),

2λe

t∑
k=τt

E∥mk∥2

≤
t∑

k=τt

1

a(k)

(
E∥mk∥2 − E∥mk+1∥2

)
︸ ︷︷ ︸

I1

+ 2

t∑
k=τt

EΛ(Ok, vk, θk, γ(k), q(k), h(k))︸ ︷︷ ︸
I2

+ 2

t∑
k=τt

√
E∥mk∥2

√
E[y2k]︸ ︷︷ ︸

I3

+Bq

t∑
k=τt

b(k)

a(k)
)
√
E∥mk∥2︸ ︷︷ ︸

I4

+Cq

t∑
k=τt

a(k)︸ ︷︷ ︸
I5

.

After analysing terms I1 − I5, we get the desired result. For
definition of the notations involved, please refer section B.3.

Remark 4 As mentioned previously, the asymptotic stabil-
ity and almost sure convergence of the three-timescale C-AC
algorithm has been shown in Bhatnagar and Lakshmanan
[2012]. A similar analysis combining the results of Bhat-
nagar et al., [2009] would also provide similar stability
and asymptotic convergence results for the three-timescale
C-NAC algorithm. Note that while the non-asymptotic con-
vergence results that we have shown are to the stationary
points of the Lagrangian, it is shown in Bhatnagar and
Lakshmanan [2012] that for C-AC, stationary-point conver-
gence indeed results in a locally optimal policy, that gives
the set of local minima of the objective in the constraint
set, see Proposition 4.3 and Remarks 4.3-4.5 there. This
is because stationary points that are not local minima are
unstable attractors of the underlying ODE. The same is also
true of the C-NAC algorithm. Some works such as Zeng et
al., [2022] provide bounds on the optimality gap but they
primarily consider the look-up table setting and not function
approximation. Defining optimality gap precisely in our set-
ting is hard due to the presence of multiple local minima in

the constraint set and so obtaining such bounds is not easy
unless one has a setting of convex objectives and constraints
(unlike us). From results in stochastic approximation theory
(Kushner and Clark [1978]), if the stochastic recursion en-
ters a compact neighbourhood of a local minimum infinitely
often, it will converge to it w.p.1. The compact neighbour-
hood of which of the minima the recursion enters in will
depend on the initial condition and noise.

5 EXPERIMENTAL RESULTS

In this section, we present the results of our experi-
ments on three different OpenAI Safety-Gym environments:
(a) SafetyPointGoal1-v0, (b) SafetyCarGoal1-v0 and (c)
SafetyPointPush1-v0, respectively. The performance com-
parisons on these environments can be seen in Figure 1 and
Tables 2 and 3, respectively. The two tables summarize the
performance obtained upon convergence of the algorithms.
Note that Table 3 has been placed in the appendix for lack
of space. We also explain, in the appendix, the Constrained
DQN algorithm that we implemented in addition.

All the plots of our experiments are obtained after averaging
over 10 different initial seeds. The performance of the al-
gorithms is compared by plotting the average reward along
with standard errors. The dotted flat red-line in each of the
plots in the lower row of plots in Figure 1 corresponds to the
constraint cost threshold. All algorithms are seen to asymp-
totically satisfy the constraint threshold while optimizing
on the average reward performance.

It can be observed that our C-NAC algorithm performs
better than the other two algorithms on all three settings
and C-AC shows the second best results on two of the three
environments. Moreover, the cost threshold is met by all the
three algorithms1.

6 CONCLUSIONS

We presented the first (non-asymptotic) finite time conver-
gence analysis of three-timescale constrained actor-critic
and constrained natural actor-critic algorithms using linear
function approximation and obtained a sample complexity
of Õ(ϵ−2.5) for both algorithms. Our sample complexity
result is significant as for both our algorithms it matches the
sample complexity of regular (unconstrained) actor-critic
(two-timescale) algorithms analysed in Wu et al., [2020].
We also showed the results of experiments on three different
Safety-Gym environments, where we observed that the C-
NAC algorithm is better than both the C-AC and the C-DQN
algorithms in the average reward performance and the C-AC
algorithm is the second best performer on two of these three
settings. Further, the average cost constraint is met by all
the three algorithms on each of the settings.

1The code for all of our experiments is available at
https://github.com/prashu1306/Constrained-Actor-Critic
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A PRELIMINARIES

For our problem, we have considered random single-stage costs and also constraint costs having distributions that are
dependent on the current state, action and next state. For a given tuple Ot = (st, at, st+1), we consider

q(t) ∼ p̄(.|st, at, st+1), hi(t) ∼ pi(.|st, at, st+1),

for i = 1, 2, 3, .., N . For a given γ = (γ1, γ2, ..., γN )T with 0 ≤ γi ≤ M and for i = 1, 2, .., N , we define c(t) =

q(t) +
N∑

k=1

γk(hk(t)− αk) such that

c(t) ∼ p̂(.|st, at, st+1).

Since the single stage costs are mutually independent for any state-action-next state tuple, we have

p̂(c(t)|st, at, st+1) = p̄(q(t)|st, at, st+1)

N∏
i=1

pi(hi(t)|st, at, st+1).

Let ∥∇L(θ, γ)∥ < UL,∀θ, γ where UL > 0 is a positive constant. Also, sup
t

∥G(t)−1∥ ≤ UG where UG is a positive

constant.Recall that the single stage costs q(n), h1(n), . . . , hN (n) are non-negative and absolutely bounded by a constant
Uc > 0.We define Ur = Uc + NM(Uc + Uα) where Uα = max

k
|αk|. We assume 0 ≤ L0 ≤ Ur. This implies

|Lt| ≤ Ur,∀t > 0. We also assume 0 ≤ Uk(0) ≤ Uc,∀k ∈ 1, 2, .., N , which implies |Uk(t)| ≤ Uc,∀t > 0. Moreover, we
assume that the projection set C to which the recursion vt is projected is a compact and convex set.

Given time indices t and τ such that t ≥ τ > 0, we consider the following auxiliary Markov chain starting from st−τ to
deal with Markov noise in the iterates.

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1. (14)

The original Markov chain has the following transitions:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ at−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2 · · ·

P−→ st
θt−→ at

P−→ st+1. (15)

In (14), for any time instant k > t− τ , ãk denotes the action taken in the auxiliary Markov chain. Similarly, for any time
instant l > t− τ + 1, s̃l denotes the state in the auxiliary Markov chain. In the following, without any other specification,
E[.] will denote the expectation w.r.t the joint distribution of all the random variables involved. Finally, we mention that for
our analysis we interchangeably use π(a|s) and π(s, a) to mean the action chosen in state s according to the policy π. Thus,
both these notations are one and the same.
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B PROOF OF THEOREMS

B.1 PROOF OF THEOREM 1

We first define several notations to clarify the dependence in the various quantities involved. Let

Ot : = (st, at, st+1),

L∗ : = L(θ, γ) = Es∼µθ,a∼πθ
[d(s, a) +

N∑
k=1

γ(k)(hk(s, a)− αk)],

v(k)∗ : = v∗(θk, γ(k)),

∆H(O,L, v, θ, γ) : = (L(θ, γ)− L+ (fs′
T − fT

s )(v − v∗(θ, γ)))∇ log πθ(a|s),

H(O, θ, γ, q, h) : = (q − L(θ, γ) +

N∑
k=1

γ(k)(hk − αk) + (fs′
T − fT

s )v∗(θ, γ))∇ log πθ(a|s),

∆H
′
(O, θ, γ) : = (fs′

T v∗(θ, γ)− V θ,γ(s
′
)− (fs

T v∗(θ, γ)− V θ,γ(s)))∇ log πθ(a|s),

Γ̌(O, θ, γ, q, h) : = ⟨∇L(θ, γ), H(O, θ, γ, q, h)− EO′ ,q,h[H(O
′
, θ, γ, q, h)]⟩.

(16)

In the above, O = (s, a, s
′
), h = (h1, h2, h3, ..., hN ).O

′
= (s, a, s

′
) denotes the independent sample s ∼ µθ, a ∼ πθ,

s
′ ∼ p(s, ., a) .Hence EO′ ,q,h[·] denotes expectation w.r.t. the joint distribution of s ∼ µθ, a ∼ πθ, s

′ ∼ p(s, ., a),
q ∼ p̄(.|s, a, s′

), hi ∼ pi(.|s, a, s
′
), i = 1, . . . , N . We now have,

EO′ ,q,h[(H(O
′
, θ, γ, q, h)−∆H

′
(O

′
, θ, γ)]

= EO′ ,q,h[q +

N∑
k=1

γ(k)(hk − αk)− L(θ, γ) + V θ,γ(s
′
)− V θ,γ(s))∇ log πθ(a|s)]

= ∇L(θ, γ),

Next, observe that

EO′∥∆H
′
(O, θ, γ)∥2 = EO′∥(fs′

T v∗(θ, γ)− V θ,γ(s
′
)− (fs

T v∗(θ, γ)− V θ,γ(s)))∇ log πθ(a|s)∥2

≤ EO′ [D2(fs′
T v∗(θ, γ)− V θ,γ(s

′
)− (fs

T v∗(θ, γ)− V θ,γ(s)))2]

≤ EO′ [2D2((fs′
T v∗(θ, γ)− V θ,γ(s

′
))2 + (fs

T v∗(θ, γ)− V θ,γ(s))2)]

≤ 4D2ϵ2app.

Before we proceed further, we first state and prove Lemmas 1–4 below that will be used in the proof of Theorem 1. Moreover,
the proof of Lemma 4 shall rely on Lemmas 4.1 – 4.4 that we also state and prove in the following. Finally, collecting all
these results together, we shall obtain the claim for Theorem 1.

Lemma 1 For all γ ∈ RN , with 0 ≤ γi ≤ M , where i ∈ {1, 2, ..., N}, there exists a constant ML greater than 0 such that
for all θ1, θ2 ∈ Rd,

∥∇L(θ1,γ)−∇L(θ2,γ)∥ ≤ ML∥θ1 − θ2∥,

which implies

L(θ2, γ) > L(θ1, γ) + ⟨∇L(θ1, γ), θ2 − θ1⟩ −
ML

2
∥θ1 − θ2∥2.

Proof Note that

L(θ, γ) = J(θ) +

N∑
k=1

γ(k)(Gk(θ)− αk).

⇒ ∇θL(θ, γ) = ∇θJ(θ) +

N∑
k=1

γ(k)∇θGk(θ).



From Lemma C.1 of Wu et al., [2020], we have ∀θ1, θ2 ∈ Rd, there exist positive constants LJ , LG1 , LG2 , ..., LGN
such

that

∥∇θJ(θ1)−∇θJ(θ2)∥ ≤ LJ∥θ1 − θ2∥,
∥∇θGi(θ1)−∇θGi(θ2)∥ ≤ LGi

∥θ1 − θ2∥,∀i ∈ 1, 2, .., N.

Hence,

∥∇θL(θ1, γ)−∇θL(θ2, γ)∥ = ∥∇θJ(θ1)−∇θJ(θ2) +

N∑
k=1

γk(∇θGk(θ1)−∇θGk(θ2))∥

≤ ∥∇θJ(θ1)−∇θJ(θ2)∥+
N∑

k=1

γk∥∇θGk(θ1)−∇θGk(θ2)∥

≤ LJ∥θ1 − θ2∥+
N∑

k=1

γkLGk
∥θ1 − θ2∥

= (LJ +

N∑
k=1

γkLGk
)∥θ1 − θ2∥

≤ ML∥θ1 − θ2∥.

So we have,

∥∇θL(θ1, γ)−∇θL(θ2, γ)∥ ≤ ML∥θ1 − θ2∥,∀θ1, θ2 ∈ Rd,

where ML = LJ +M
N∑

k=1

LGk
. The claim follows.

Lemma 2 For all γ1,γ2 ∈ RN with 0 ≤ γj
i ≤ M , where i ∈ {1, 2, ..., N}, j = 1, 2, there exists a constant C greater

than 0 such that for all θ ∈ Rd,

∥∇L(θ,γ1)−∇L(θ,γ2)∥ ≤ C|γ1
m − γ2

m|,

where |γ1
m − γ2

m| = max
i=1,2,..,N

|γ1
i − γ2

i |.

Proof We have,

∥∇L(θ,γ1)−∇L(θ,γ2)∥ =

∥∥∥∥∑
s∈S

µθ(s)
∑

a∈A(s)

πθ(a|s)(Mπθ,γ
1

(s, a)−Mπθ,γ
2

(s, a))∇ log πθ(a|s)
∥∥∥∥

≤
∑
s∈S

µθ(s)
∑

a∈A(s)

πθ(a|s)
∥∥(Mπθ,γ

1

(s, a)−Mπθ,γ
2

(s, a))∇ log πθ(a|s)
∥∥

≤ D
∑
s∈S

µθ(s)
∑

a∈A(s)

πθ(a|s)
∣∣Mπθ,γ

1

(s, a)−Mπθ,γ
2

(s, a)
∣∣,

where the last inequality follows from Assumption 4. Now,

∣∣Mπθ,γ
1

(s, a)−Mπθ,γ
2

(s, a))
∣∣ = ∣∣ ∞∑

t=1

E

[ N∑
i=1

(γ1
i − γ2

i )(hi(t)−Gi(θ))|s0 = s, a0 = a, πθ

]∣∣
=

∣∣∣∣ N∑
i=1

(γ1
i − γ2

i )

∞∑
t=1

E

[
(hi(t)−Gi(θ))|s0 = s, a0 = a, πθ

]∣∣∣∣
≤

N∑
i=1

|(γ1
i − γ2

i )|
∣∣∣∣ ∞∑
t=1

E

[
(hi(t)−Gi(θ))|s0 = s, a0 = a, πθ

]∣∣∣∣
≤ NQ̄|γ1

m − γ2
m|,



where,

Q̄ = sup
i,θ,s,a

|Qθ
i (s, a)|,

|γ1
m − γ2

m| = max
i=1,2,..,N

|γ1
i − γ2

i |,

and where Qθ
i (s, a) is the expected differential cost for the state action pair (s, a) with single-stage cost as hi(t) at time

instant t when actions are picked according to policy πθ. Hence,

∥∇L(θ,γ1)−∇L(θ,γ2)∥ ≤ NDQ̄|γ1
m − γ2

m|.

The claim follows by letting C = NDQ̄.

Lemma 3 For any t > 0,

∥∆H(Ot, Lt, vt, θt, γ(t))∥2 ≤ D2(2(Lt − L(θt, γ(t)))
2 + 8∥vt − v(t)∗∥2).

Proof Applying the definition of ∆H(·) immediately yields the result.

Lemma 4 For any t ≥ 0,

E[Γ̌(Ot, θt, γ(t), q(t), h(t))] ≥ −(D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2bk
τ−1 + T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)|),

where D1, D2 and T1 are positive constants and t ≥ τ ≥ 0.

Proof We have

E[Γ̌(Ot, θt, γ(t), q(t), h(t))]

= Est∼p,at∼πθt ,st+1∼p[E[⟨∇L(θt, γ(t)), H(Ot, θt, γ(t), q(t), h(t))− EO′ ,q,h[H(O
′
, θt, γ(t), q, h)]⟩|st, at, st+1]]

= E[⟨∇L(θt, γ(t)), H̄(Ot, θt, γ(t))− EO′ ,q,h[H(O
′
, θt, γ(t), q, h)]⟩]

= E[⟨∇L(θt, γ(t)), H̄(Ot, θt, γ(t))− EO′ [Eq,h[H(O
′
, θt, γ(t), q, h)|s, a, s

′
]]⟩]

= E[⟨∇L(θt, γ(t)), H̄(Ot, θt, γ(t))− EO′ [H̄(O
′
, θt, γ(t))]⟩]

= E[Q(Ot, θt, γ(t))],

where,

H̄(O, θ, γ) = (c(s, a, s
′
, γ)− L(θ, γ) + (fs′

T − fs
T )v∗(θ, γ))∇ log πθ(a|s)

c(s, a, s
′
, γ) =

∑
q

(q · p̄(q|s, a, s
′
)) +

k=N∑
k=1

γk(
∑
h

(h · pk(h|s, a, s
′
))− αk).

The second equality is satisfied because θt and γ(t) do not depend on q(t) and h(t). The remaining proof of Lemma 4 in
turn requires Lemmas 4.1 – 4.4 below that we now state and prove.

lemma 4.1 For any t ≥ 0,

|Q(Ot, θt, γ(t))−Q(Ot, θt, γ(t− τ))| ≤ T1|γm(t)− γm(t− τ)|,

where T1 > 0 is a constant.



Proof Denoting O = (s, a, s
′
), we have for any θ, γ1, γ2, that

Q(O, θ, γ1)−Q(O, θ, γ2)

= ⟨∇L(θ, γ1), H̄(O, θ, γ1)− EO′ [H̄(O
′
, θ, γ1)]⟩ − ⟨∇L(θ, γ2), H̄(O, θ, γ2)− EO′ [H̄(O

′
, θ, γ2)]⟩

= ⟨∇L(θ, γ1), H̄(O, θ, γ1)− EO′ [H̄(O
′
, θ, γ1)]⟩ − ⟨∇L(θ, γ1), H̄(O, θ, γ2)− EO′ [H̄(O

′
, θ, γ2)]⟩

+ ⟨∇L(θ, γ1), H̄(O, θ, γ2)− EO′ [H̄(O
′
, θ, γ2)]⟩ − ⟨∇L(θ, γ2), H̄(O, θ, γ2)− EO′ [H̄(O

′
, θ, γ2)]⟩

= ⟨∇L(θ, γ1), H̄(O, θ, γ1)− H̄(O, θ, γ2)− EO′ [H̄(O
′
, θ, γ1)] + EO′ [H̄(O

′
, θ, γ2)]⟩︸ ︷︷ ︸

I1

+ ⟨∇L(θ, γ1)−∇L(θ, γ2), H̄(O, θ, γ2)− EO′ [H̄(O
′
, θ, γ2)]⟩︸ ︷︷ ︸

I2

.

Now,

∥H̄(O, θ, γ1)− H̄(O, θ, γ2)∥

= ∥(c(s, a, s
′
, γ1)− c(s, a, s

′
, γ2)− L(θ, γ1) + L(θ, γ2) + (fs′

T − fs
T )(v∗(θ, γ1)− v∗(θ, γ2)))∇ log πθ(a|s)∥

≤ D(|c(s, a, s
′
, γ1)− c(s, a, s

′
, γ2)|+ |L(θ, γ1)− L(θ, γ2)|+ 2∥v∗(θ, γ1)− v∗(θ, γ2)∥)

≤ D(2N(Uc + Uα)|γ1
m − γ2

m|+ 2L2|γ1
m − γ2

m|),

where |γ1
m − γ2

m| = max
i=1,2,3....,N

|γ1
i − γ2

i |. In the above, Uc and Uα are as before, see Section A. Further, from Assumption

1, |fs| ≤ 1 and hence |fs′ − fs| ≤ 2. Thus, for term I1, note that

I1 ≤ 4D(N(Uc + Uα) + L2)∥∇L(θ, γ1)∥|γ1
m − γ2

m|.

Further, for term I2, we have

I2 ≤ ∥∇L(θ, γ1)−∇L(θ, γ2)∥∥H̄(O, θ, γ2)− EO′ [H̄(O
′
, θ, γ2)]∥

≤ 4D(Ur + Uv)∥∇L(θ, γ1)−∇L(θ, γ2)∥
≤ 4DC(Ur + Uv)|γ1

m − γ2
m|.

The last inequality above is because of Lemma 2. After collecting the two parts, we now have,

|Q(O, θ, γ1)−Q(O, θ, γ2)| ≤ T1|γ1
m − γ2

m|,

where T1 = 4D(N(Uc + Uα) + L2)UL + 4DC(Ur + Uv).

lemma 4.2 For any t ≥ 0,θ1, θ2 ∈ Rd,γ = (γ1, γ2, ..., γN )T with 0 ≤ γi ≤ M where i ∈ {1, 2, .., N}

|Q(O, θ1, γ)−Q(O, θ2, γ)| ≤ T2∥θ1 − θ2∥,

for some T2 > 0.

Proof Recall that Ot = (st, at, st+1), hence for any θ1, θ2, γ,

Q(O, θ1, γ)−Q(O, θ2, γ)

= ⟨∇L(θ1, γ), H̄(O, θ1, γ)− EO′ [H̄(O
′
, θ1, γ)]⟩ − ⟨∇L(θ2, γ), H̄(O, θ2, γ)− EO′ [H̄(O

′
, θ2, γ)]⟩

= ⟨∇L(θ1, γ), H̄(O, θ1, γ)− EO′ [H̄(O
′
, θ1, γ)]⟩ − ⟨∇L(θ1, γ), H̄(O, θ2, γ)− EO′ [H̄(O

′
, θ2, γ)]⟩

+ ⟨∇L(θ1, γ), H̄(O, θ2, γ)− EO′ [H̄(O
′
, θ2, γ)]⟩ − ⟨∇L(θ2, γ), H̄(O, θ2, γ)− EO′ [H̄(O

′
, θ2, γ)]⟩

= ⟨∇L(θ1, γ), H̄(O, θ1, γ)− H̄(O, θ2, γ)− EO′ [H̄(O
′
, θ1, γ)] + EO′ [H̄(O

′
, θ2, γ)]⟩︸ ︷︷ ︸

I1

+ ⟨∇L(θ1, γ)−∇L(θ2, γ), H̄(O, θ2, γ)− EO′ [H̄(O
′
, θ2, γ)]⟩︸ ︷︷ ︸

I2

.



Now,

∥H̄(O, θ1, γ)− H̄(O, θ2, γ)∥

= ∥(c(s, a, s
′
, γ)− L(θ1, γ) + (fs′

T − fs
T )v∗(θ1, γ))∇ log πθ1(a|s)

− (c(s, a, s
′
, γ)− L(θ2, γ) + (fs′

T − fs
T )v∗(θ2, γ))∇ log πθ2(a|s)∥

≤ ∥(c(s, a, s
′
, γ)− L(θ1, γ) + (fs′

T − fs
T )v∗(θ1, γ))(∇ log πθ1(a|s)−∇ log πθ2(a|s))∥

+ ∥(L(θ2, γ)− L(θ1, γ) + (fs′
T − fs

T )(v∗(θ1, γ)− v∗(θ1, γ)))∇ log πθ2(a|s)∥
≤ 2(Ur + Uv)Mm∥θ1 − θ2∥+D(|L(θ2, γ)− L(θ1, γ)|+ 2L1∥θ1 − θ2∥)

Clearly,

|L(θ1, γ)− L(θ2, γ)|

= |
∑
s∈S

µθ1(s)
∑

a∈A(s)

πθ1(s, a)(d(s, a) +

N∑
k=1

γ(k)(hk(s, a)− αk))−
∑
s∈S

µθ2(s)
∑

a∈A(s)

πθ2(s, a)(d(s, a) +

N∑
k=1

γ(k)(hk(s, a)− αk))|

≤ 2UrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ 2Ur|A|L
(
1 + ⌈logk b−1⌉+ 1/(1− k)

)
∥θ1 − θ2∥

= CL∥θ1 − θ2∥.

The second inequality is from lemma B.1 of Wu et al., [2020]. Hence,

∥H̄(O, θ1, γ)− H̄(O, θ2, γ)∥ ≤ 2(Ur + Uv)Mm∥θ1 − θ2∥+DCL∥θ1 − θ2∥+ 2L1D∥θ1 − θ2∥
= A1∥θ1 − θ2∥

Now,

∥EO′ [H̄(O
′
, θ1, γ)]− EO′ [H̄(O

′
, θ2, γ)]∥

= ∥Eθ1 [H̄(O
′
, θ1, γ)]− Eθ2 [H̄(O

′
, θ2, γ)]∥

≤ ∥Eθ1 [H̄(O
′
, θ1, γ)]− Eθ1 [H̄(O

′
, θ2, γ)]∥+ ∥Eθ1 [H̄(O

′
, θ2, γ)]− Eθ2 [H̄(O

′
, θ2, γ)]∥

≤ Eθ1∥H̄(O
′
, θ1, γ)− H̄(O

′
, θ2, γ)∥+ 4D(Ur + Uv)dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤
[
2(Ur + Uv)Mm +DCL + 2L1D + 4D(Ur + Uv)|A|UrL

(
1 + ⌈logk b−1⌉+ 1

1− k

)]
∥θ1 − θ2∥

= A2∥θ1 − θ2∥

Thus, we have,

I1 ≤ UL(A1 +A2)∥θ1 − θ2∥

For term I2, we have,

I2 ≤ ∥∇L(θ1, γ)−∇L(θ2, γ)∥∥H̄(O, θ2, γ)− EO′ [H̄(O
′
, θ2, γ)]∥

≤ 4D(Ur + Uv)ML∥θ1 − θ2∥.

The last inequality follows from Lemma 1. Thus,

Q(O, θ1, γ)−Q(O, θ2, γ) ≤ T2∥θ1 − θ2∥,

where

T2 = (A1 +A2)UL + 4D(Ur + Uv)ML

A1 = 2(Ur + Uv)Mm +DCL + 2L1D

A2 = 2(Ur + Uv)Mm +DCL + 2L1D + 4D(Ur + Uv)|A|UrL

(
1 + ⌈logk b−1⌉+ 1

1− k

)
Here Eθ denotes that O

′
= (s, a, s

′
) has been sampled as s ∼ µθ, a ∼ πθ, s

′ ∼ p(s, ., a).



lemma 4.3 For any t ≥ 0,we have

|E[(Q(Ot, θt−τ , γ(t− τ))−Q(Õt, θt−τ , γ(t− τ)))|θt−τ , γ(t− τ), st−τ+1]| ≤ 2D(Ur + Uv)UL|A|L
t∑

i=t−τ

E∥θi − θt−τ∥.

Proof From the definition of Q(O, θ, γ), we have that

E[(Q(Ot, θt−τ , γ(t− τ))−Q(Õt, θt−τ , γ(t− τ))|θt−τ , γ(t− τ), st−τ+1]

= E[⟨∇L(θt−τ , γ(t− τ)), H̄(Ot, θt−τ , γ(t− τ)− H̄(Õt, θt−τ , γ(t− τ)⟩|θt−τ , γ(t− τ), st−τ+1]

= E[(⟨∇L(θt−τ , γ(t− τ)), H̄(Ot, θt−τ , γ(t− τ)⟩ − ⟨∇L(θt−τ , γ(t− τ)), H̄(Õt, θt−τ , γ(t− τ))⟩)|θt−τ , γ(t− τ), st−τ+1]

≤ 4D(Ur + Uv)ULdTV (P (Ot = .|st−τ+1, θt−τ ), (P (Õt = .|st−τ+1, θt−τ )).

Now,

dTV (P (Ot = .|st−τ+1, θt−τ ), P (Õt = .|st−τ+1, θt−τ )) ≤
1

2
|A|L

t∑
i=t−τ

E∥θi − θt−τ∥.

The inequality above is similar to the one shown in the proof of Lemma D.2 of Wu et al., [2020]. Hence,

E[Q(Ot, θt−τ , γ(t− τ))−Q(Õt, θt−τ , γ(t− τ))] ≤ 2D(Ur + Uv)UL|A|L
t∑

i=t−τ

E∥θi − θt−τ∥.

lemma 4.4 For any t ≥ 0, we have

|E[Q(Õt, θt−τ , γ(t− τ))−Q(O
′

t, θt−τ , γ(t− τ))|θt−τ , γ(t− τ), st−τ+1]| ≤ 4D(Ur + Uv)ULbk
τ−1.

Proof Note that

E[Q(Õt, θt−τ , γ(t− τ))−Q(O
′

t, θt−τ , γ(t− τ))|θt−τ , γ(t− τ), st−τ+1]

= E[⟨∇L(θt−τ , γ(t− τ)), H̄(Õt, θt−τ , γ(t− τ))− H̄(O
′

t, θt−τ , γ(t− τ))⟩|θt−τ , γ(t− τ), st−τ+1]

= E[(⟨∇L(θt−τ , γ(t− τ)), H̄(Õt, θt−τ , γ(t− τ))⟩ − ⟨∇L(θt−τ , γ(t− τ)), H̄(O
′

t, θt−τ , γ(t− τ))⟩)|θt−τ , γ(t− τ), st−τ+1]

≤ 4D(Ur + Uv)ULdTV (P (Õt = .|st−τ+1, θt−τ ), µθt−τ ⊗ πθt−τ ⊗ P )

≤ 4D(Ur + Uv)ULbk
τ−1

The last inequality comes from the proof of Lemma D.3 of Wu et al., [2020].

We now continue with the remaining proof of Lemma 4.

Proof of Lemma 4 (Contd.)

We decompose E[Q(Ot, θt, γ(t))] as follows:

E[Q(Ot, θt, γ(t))] = E[Q(Ot, θt, γ(t))−Q(Ot, θt, γ(t− τ))] + E[Q(Ot, θt, γ(t− τ))−Q(Ot, θt−τ , γ(t− τ))]

+ E[Q(Ot, θt−τ , γ(t− τ))−Q(Õt, θt−τ , γ(t− τ))] + E[Q(Õt, θt−τ , γ(t− τ))−Q(O
′

t, θt−τ , γ(t− τ))]

+ E[Q(O
′

t, θt−τ , γ(t− τ))]

where Õt = (s̃t, ãt, s̃t+1) is from the auxiliary Markov chain and O
′

t = (st, at, st+1) is from the stationary distribution
with st ∼ µθt−τ

, at ∼ πθt−τ
, st+1 ∼ p(st, ., at) which actually satisfies E[Q(O

′

t, θt−τ , γ(t− τ))] = 0. By collecting the



corresponding bounds from Lemmas 4.1–4.4, we have

E[Q(Ot, θt, γ(t))] ≥ −T1E|γm(t)− γm(t− τ)| − T2E∥θt − θt−τ∥ − 2D(Ur + Uv)UL|A|L
t∑

i=t−τ

E∥θi − θt−τ∥

− 4D(Ur + Uv)ULbk
τ−1

≥ −T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)| − T2

t∑
i=t−τ+1

E∥θi − θi−1∥

− 2D(Ur + Uv)UL|A|L
t∑

i=t−τ+1

i∑
j=t−τ+1

E∥θj − θj−1∥ − 4D(Ur + Uv)ULbk
τ−1

≥ −T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)| − T2

t∑
i=t−τ+1

E∥θi − θi−1∥

− 2D(Ur + Uv)UL|A|Lτ
t∑

j=t−τ+1

E∥θj − θj−1∥ − 4D(Ur + Uv)ULbk
τ−1

≥ −(D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2bk
τ−1 + T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)|),

where D1 := max{T2, 2D(Ur + Uv)UL|A|L} and D2 := 4D(Ur + Uv)UL. This completes the proof.

Proof of Theorem 1

Under the update rule of Algorithm 1 for the actor recursion, we have:

θt+1 = θt + b(t)δtΨstat
.

So, using lemma 1, we have

L(θt+1, γ(t)) ≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)), δt∇ log πθt(at|st)⟩ −MLb(t)
2∥δt∇ log πθt(at|st)∥2.

Now

δt∇ log πθt(at|st)

= (q(t) +

N∑
k=1

γk(t)(hk(t)− αk)− Lt + vTt (f(st+1)− f(st))∇ log πθt(at|st)

= (q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− L(θt, γ(t)) + L(θt, γ(t))− Lt + (f(st+1)
T − f(st)

T )(vt − v∗t )

+ (f(st+1)
T − f(st)

T )v∗t )∇ log πθt(at|st)
= ∆H(Ot, Lt, vt, θt, γ(t)) +H(Ot, θt, γ(t), q(t), h(t)),

where h(t) = (h1(t), h2(t), h3(t), ....., hN (t)). Hence,

L(θt+1, γ(t)) ≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)),∆H(Ot, Lt, vt, θt, γ(t)) +H(Ot, θt, γ(t), q(t), h(t))⟩
−MLb(t)

2∥δt∇ log πθt(at|st)∥2

≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)),∆H(Ot, Lt, vt, θt, γ(t))⟩

+ b(t)⟨∇L(θt, γ(t)), H(Ot, θt, γ(t), q(t), h(t))− EO′ ,q(t),h(t)[H(O
′
, θt, γ(t), q(t), h(t))]⟩

+ b(t)⟨∇L(θt, γ(t)), EO′ ,q(t),h(t)[H(O
′
, θt, γ(t), q(t), h(t))]⟩ −MLb(t)

2∥δt∇ log πθt(at|st)∥2

≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)),∆H(Ot, Lt, vt, θt, γ(t))⟩

+ b(t)Γ̌(Ot, θt, γ(t), q(t), h(t)) + b(t)∥∇L(θt, γ(t))∥2 + b(t)⟨∇L(θt, γ(t)), EO′ [∆H
′
(O

′
, θt, γ(t))]⟩

−MLb(t)
2∥δt∇ log πθt(at|st)∥2.



In the first inequality, we discard the 1/2 in front of the square norm term. After rearranging the terms, we obtain

∥∇L(θt, γ(t))∥2 ≤ 1

b(t)
(L(θt+1, γ(t))− L(θt, γ(t)))− ⟨∇L(θt, γ(t)),∆H(Ot, Lt, vt, θt, γ(t))⟩

− Γ̌(Ot, θt, γ(t), q(t), h(t))− ⟨∇L(θt, γ(t)), EO′ [∆H
′
(O

′
, θt, γ(t)]⟩

+MLb(t)∥δt∇ log πθt(at|st)∥2.

After taking expectations we have,

E[∥∇L(θt, γ(t))∥2] ≤
1

b(t)
E[(L(θt+1, γ(t))− L(θt, γ(t)))]− E[⟨∇L(θt, γ(t)),∆H(Ot, Lt, vt, θt, γ(t))⟩]

− E[Γ̌(Ot, θt, γ(t), q(t), h(t))]− E[⟨∇L(θt, γ(t)), EO′ [∆H
′
(O

′
, θt, γ(t))]⟩]

+MLb(t)E[||δt∇ log πθt(at|st)||2].
(17)

Now, observe that

E[⟨∇L(θt, γ(t)),∆H(Ot, Lt, vt, θt, γ(t))⟩] ≥ −D
√

E∥∇L(θt, γ(t))∥2
√
2E∥At∥2 + 8E∥Bt∥2,

where

At = Lt − L(θt, γ(t)),

Bt = vt − v∗(θt, γ(t)),

and the inequality follows from the Cauchy inequality and Lemma 3.

Next, we have that

E[Γ̌(Ot, θt, γ(t), q(t), h(t))] ≥− (D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2bk
τ−1 + T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)|)

≥ −(2D1D(τ + 1)(Ur + Uv)

t−1∑
k=t−τ+1

b(k) +D2bk
τ−1

+ T1(Uα + Uc)

t−1∑
k=t−τ+1

c(k))

Also, note that

⟨∇L(θt, γ(t)), EO′ [∆H
′
(O

′
, θt, γ(t))]⟩ ≥ −UL

√
∥EO′ [∆H ′(O′ , θt, γ(t))]∥2

≥ −UL

√
EO′∥∆H ′(O′ , θt, γ(t))∥2

≥ −2DULϵapp

Now we return to the inequality in (17) and plug the above terms back in it to obtain

E[∥∇L(θt, γ(t))∥2] ≤
1

b(t)
E[(L(θt+1, γ(t))− L(θt, γ(t)))] +D

√
E∥∇L(θt, γ(t))∥2

√
2E∥At∥2 + 8E∥Bt∥2

+ 2D1D(τ + 1)(Ur + Uv)

t−1∑
k=t−τ

b(k) +D2bk
τ−1

+ T1(Uα + Uc)

t−1∑
k=t−τ

c(k) + 2DULϵapp

+MLb(t)E[∥δt∇ log πθt(at|st)∥2].



By setting τ = τt, we have,

E[∥∇L(θt, γ(t))∥2] ≤
1

b(t)
E[(L(θt+1, γ(t))− L(θt, γ(t)))] +D

√
E∥∇L(θt, γ(t))∥2

√
2E∥At∥2 + 8E∥Bt∥2

+ 2D1D(τt + 1)2(Ur + Uv)b(t− τt) +D2b(t) + 4MLD
2(Ur + Uv)

2b(t)

+ T1(Uα + Uc)(τt + 1)c(t− τt) + 2DULϵapp

≤ 1

b(t)
E[(L(θt+1, γ(t))− L(θt, γ(t)))] +D

√
E∥∇L(θt, γ(t))∥2

√
2E∥At∥2 + 8E∥Bt∥2

+M1(τt + 1)2b(t− τt) +M2b(t) +M3(τt + 1)c(t− τt) + 2DULϵapp.

Summing the expectation from τt to t we have,

t∑
k=τt

E[∥∇L(θk, γ(k))∥2] ≤
t∑

k=τt

1

b(k)
E[(L(θk+1, γ(k))− L(θk, γ(k)))]︸ ︷︷ ︸

I1

+

t∑
k=τt

D
√
E∥∇L(θk, γ(k))∥2

√
2E∥Ak∥2 + 8E∥Bk∥2

+

t∑
k=τt

(M1(τt + 1)2b(k − τt) +M2b(k) +M3(τt + 1)c(k − τt))︸ ︷︷ ︸
I2

+ 2DULϵapp(t− τt + 1)

For the term I1 above,

t∑
k=τt

1

b(k)
E[(L(θk+1, γ(k))− L(θk, γ(k)))]

=

t∑
k=τt

1

b(k)
E[(L(θk+1, γ(k))− L(θk+1, γ(k + 1))) + (L(θk+1, γ(k + 1))− L(θk, γ(k)))]

≤
t∑

k=τt

1

b(k)
(Uc + Uα)E[

N∑
m=1

|γm(k)− γm(k + 1)|]

+

t∑
k=τt

( 1

b(k − 1)
− 1

b(k)

)
E[L(θk, γ(k))]−

1

b(τt − 1)
E[L(θτt , γ(τt))] +

1

b(t)
E[L(θt+1.γ(t+ 1))]

≤ N(Uc + Uα)
2

t∑
k=τt

c(k)

b(k)
+

t∑
k=τt

( 1

b(k − 1)
− 1

b(k)

)
Ur +

1

b(τt − 1)
Ur +

1

b(t)
Ur

= N(Uc + Uα)
2

t∑
k=τt

c(k)

b(k)
+ Ur

[ t∑
k=τt

( 1

b(k − 1)
− 1

b(k)

)
+

1

b(τt − 1)
+

1

b(t)

]
= N(Uc + Uα)

2 cc
cb

t∑
k=τt

(1 + k)σ−β + 2Urb(t)
−1

≤ N(Uc + Uα)
2cc

cb(1 + β − σ)
(t− τt + 1)1−β+σ + 2

Ur

cb
(1 + t)σ

= B1(t− τt + 1)1−β+σ +B2(1 + t)σ.



The first inequality above holds because

L(θk+1, γ(k))− L(θk+1, γ(k + 1)) =
∑
s∈S

µθk+1
(s)

∑
a∈A(s)

πθk+1
(a|s)(

N∑
m=1

(γm(k)− γm(k + 1))(hk(s, a)− αk))

≤ (Uc + Uα)

N∑
m=1

|γm(k)− γm(k + 1)|.

Now, for the term I2,

t∑
k=τt

(M1(τt + 1)2b(k − τt) +M2b(k) +M3(τt + 1)c(k − τt))

≤ (M1(τt + 1)2 +M2)

t−τt∑
k=0

b(k) +M3(τt + 1)

t−τt∑
k=0

c(k)

= (M1(τt + 1)2 +M2)cb

t−τt∑
k=0

(1 + k)−σ +M3(τt + 1)cc

t−τt∑
k=0

(1 + k)−β

≤ (M1(τt + 1)2 +M2)cb
1− σ

(t− τt + 1)1−σ +
M3(τt + 1)cc

1− β
(t− τt + 1)1−β

≤
( (M1(τt + 1)2 +M2)cb

1− σ
+

M3(τt + 1)2cc
1− β

)
(t− τt + 1)1−σ

= B3(τt + 1)2(t− τt + 1)1−σ.

The second inequality holds because

t−τt∑
k=0

(1 + k)−σ ≤
∫ t−τt+1

0

x−σdx =
(t− τt + 1)1−σ

(1− σ)
.

After combining all the terms, we have

t∑
k=τt

E[∥∇L(θk, γ(k))∥2] ≤ B1(t− τt + 1)1−β+σ +B2(1 + t)σ +B3(τt + 1)2(t− τt + 1)1−σ

+D

√√√√ t∑
k=τt

E∥∇L(θk, γ(k))∥2

√√√√2

t∑
k=τt

E∥Ak∥2 + 8

t∑
k=τt

E∥Bk∥2

+ 2DULϵapp(t− τt + 1).

Dividing (1 + t− τt) on both sides and assuming t ≥ 2τt − 1, we can express the result as

1/(1 + t− τt)

t∑
k=τt

E[∥∇L(θk, γ(k))∥2] ≤ B1(t− τt + 1)σ−β + 2B2(1 + t)σ−1 +B3(τt + 1)2(t− τt + 1)−σ

+D

√√√√ 1

1 + t− τt

t∑
k=τt

E∥∇L(θk, γ(k))∥2
√
Z(t) + 2DULϵapp,

where,

Z(t) = (2

t∑
k=τt

E∥Ak∥2 + 8

t∑
k=τt

E∥Bk∥2)/(1 + t− τt).



Let

F (t) = 1/(1 + t− τt)

t∑
k=τt

E[∥∇L(θk, γ(k))∥2].

So, we have

F (t) ≤ O(tσ−β) +O((log t)2t−σ) +O(ϵapp) + 2D
√
F (t)

√
Z(t),

because τt = O(log t), which gives

(
√
F (t)−D

√
Z(t))2 ≤ O(tσ−β) +O((log t)2t−σ) +O(ϵapp) +D2Z(t).

Let

A(t) = O(tσ−β) +O((log t)2t−σ) +O(ϵapp).

Thus, we have

(
√
F (t)−D

√
Z(t))2 ≤ A(t) +D2Z(t)

⇒
√
F (t)−D

√
Z(t) ≤

√
A(t) +D

√
Z(t)

⇒
√
F (t) ≤

√
A(t) + 2D

√
Z(t)

⇒ F (t) ≤ 2A(t) + 8D2Z(t).

The first and third implications hold because for a function M(t) ≤ Q(t) +R(t)(with each positive), we have,√
M(t) ≤

√
Q(t) +

√
R(t)

M(t)2 ≤ 2Q(t)2 + 2R(t)2

So finally we have the following:

min
0≤k≤t

E[∥∇L(θk, γ(k))∥2] ≤ 1/(1 + t− τt)

t∑
k=τt

E[∥∇L(θk, γ(k))∥2]

= O(tσ−β)) +O((log t)2t−σ) +O(ϵapp) +O(Z(t)).

B.2 PROOF OF THEOREM 2: ESTIMATING THE AVERAGE REWARD FOR CONSTRAINED ACTOR
CRITIC

We define several notations to clarify the probabilistic dependency below.

Ot := (st, at, st+1),

O := (s, a, s
′
),

L∗
t := L(θt, γ(t)),

yt := Lt − L∗
t ,

Ξ̂(Lt, θt, γ(t), q(t), h(t)) := yt

(
q(t) +

N∑
k=1

γk(t)(hk(t)− αk)− L∗
t

)
.

Before we proceed further, we first state and prove Lemmas 5 and 6 below that will be used in the proof of Theorem 2
. Moreover, the proof of Lemma 6 shall rely on Lemmas 6.1–6.5 that we also state and prove in the following. Finally,
collecting all these results together, we shall obtain the claim for Theorem 2.



Lemma 5 For any θ1, θ2, γ
1 = (γ1

1 , γ
1
2 , ...., γ

1
N )T , γ2 = (γ2

1 , γ
2
2 , ...., γ

2
N )T with 0 ≤ γi

j ≤ M , we have

|L(θ1, γ1)− L(θ2, γ2)| ≤ C1∥θ1 − θ2∥+ C2|γp
1 − γp

2 |,

where C1 = N(Uc + Uα), C2 = 2Ur|A|L(1 + ⌈logk b−1⌉+ 1
1−k ) and |γ1

p − γ2
p | = max

i=1,2,...,N
|γ1

i − γ2
i |.

Proof Note that

|L(θ1, γ1)− L(θ2, γ
2)| ≤ |L(θ1, γ1)− L(θ1, γ

2)|+ |L(θ1, γ2)− L(θ2, γ
2)|

≤
∑
s∈S

µθ1(s)
∑

a∈A(s)

πθ1(s, a)

N∑
k=1

|γ(k)1 − γ(k)2||(gk(s, a)− αk)|

+ |
∑
s∈S

µθ1(s)
∑

a∈A(s)

πθ1(s, a)(d(s, a) +

N∑
k=1

γ(k)2(hk(s, a)− αk))

−
∑
s∈S

µθ2(s)
∑

a∈A(s)

πθ2(s, a)(d(s, a) +

N∑
k=1

γ(k)2(hk(s, a)− αk))|

≤ N(Uc + Uα)|γ1
p − γ2

p |+ 2Ur|A|L(1 + ⌈logk b−1⌉+ 1

1− k
)∥θ1 − θ2∥

≤ C1|γ1
p − γ2

p |+ C2∥θ1 − θ2∥,

where C1 = N(Uc + Uα), C2 = 2Ur|A|L(1 + ⌈logk b−1⌉+ 1
1−k ) and |γ1

p − γ2
p | = max

i=1,2,...,N
|γ1

i − γ2
i |.

The third inequality is because of Lemma B.1 of Wu et al., [2020].

Lemma 6 Given the definition of Ξ̂(Lt, θt, γ(t), q(t), h(t)), for any t > 0, we have

E[Ξ̂(Lt, θt, γ(t), q(t), h(t))] ≤ 6UrN(Uc + Uα)E|γp(t)− γp(t− τ)|+ 8UrCE∥θt − θt−τ∥+ 2UrE|Lt − Lt−τ |

+ 2U2
r |A|L

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
r bk

τ−1,

where

|γp(t)− γp(t− τ)| = max
i=1,2,...,N

|γi(t)− γi(t− τ)|,

C = Ur|A|L(1 + ⌈logk b−1⌉+ 1

1− k
),

t ≥ τ ≥ 0.

Proof We have

E[Ξ̂(Lt, θt, γ(t), q(t), h(t))] = Est∼p,at∼πθt ,st+1∼p[E[yt(q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− L∗
t )|st, at, st+1]]

= E[yt(c(st, at, st+1, γ(t))− L∗
t )]

= E[Ξ(Ot, Lt, θt, γ(t))]

where

c(s, a, s
′
, γ) =

∑
q

(q · p̄(q|s, a, s
′
)) +

k=N∑
k=1

γk(
∑
h

(h · pk(h|s, a, s
′
))− αk).

The proof will be built on supporting lemmas 6.1–6.5 that we first state and prove below.



lemma 6.1 For any θ, L, γ1 = (γ1
1 , γ

1
2 , ...., γ

1
N )T , γ2 = (γ2

1 , γ
2
2 , ...., γ

2
N )T , O = (s, a, s

′
) with 0 ≤ γi

j ≤ M for i ∈ {1, 2}
and j ∈ {1, 2, ..., N}, we have

|Ξ(O,L, θ, γ1)− Ξ(O,L, θ, γ2)| ≤ 6UrN(Uc + Uα)|γ1
p − γ2

p |,

where

|γ1
p − γ2

p | = max
i=1,2,..,N

|γ1
i − γ2

i |.

Proof We have,

|Ξ(O,L, θ, γ1)− Ξ(O,L, θ, γ2)| = |(L− L(θ, γ1))(c(s, a, s
′
, γ1)− L(θ, γ1))− (L− L(θ, γ2))(c(s, a, s

′
, γ2)− L(θ, γ2))|

≤ |(L− L(θ, γ1))(c(s, a, s
′
, γ1)− c(s, a, s

′
, γ2) + L(θ, γ2)− L(θ, γ1))|

+ |(L(θ, γ2)− L(θ, γ1))(c(s, a, s
′
, γ2)− L(θ, γ2))|

≤ 2Ur(|c(s, a, s
′
, γ1)− c(s, a, s

′
, γ2)|+ 2|L(θ, γ2)− L(θ, γ1)|)

≤ 6UrN(Uc + Uα)|γ1
p − γ2

p |,

where

|γ1
p − γ2

p | = max
i=1,2,...,N

|γ1
i − γ2

i |.

lemma 6.2 For any L,θ1, θ2, O = (s, a, s
′
),γ = (γ1, γ2, ..., γN )T with 0 ≤ γi ≤ M for i ∈ 1, 2, .., N , we have

|Ξ(O,L, θ1, γ)− Ξ(O,L, θ2, γ)| ≤ 8UrC∥θ1 − θ2∥,

where

C = Ur|A|L(1 + ⌈logk b−1⌉+ 1

1− k
).

Proof By definition of Ξ(O,L, θ, γ), we have

|Ξ(O,L, θ1, γ)− Ξ(O,L, θ2, γ)| = |(L− L(θ1, γ))(C(s, a, s
′
, γ)− L(θ1, γ))− (L− L(θ2, γ))(C(s, a, s

′
, γ)− L(θ2, γ))|

≤ |(L− L(θ1, γ))(C(s, a, s
′
, γ)− L(θ1, γ))− (L− L(θ1, γ))(C(s, a, s

′
, γ)− L(θ2, γ))|

+ |(L− L(θ1, γ))(C(s, a, s
′
, γ)− L(θ2, γ))− (L− L(θ2, γ))(C(s, a, s

′
, γ)− L(θ2, γ))|

≤ 4Ur|L(θ1, γ)− L(θ2, γ)|
≤ 8UrC∥θ1 − θ2∥,

where C = Ur|A|L(1 + ⌈logk b−1⌉+ 1
1−k ).

lemma 6.3 For any L1, L2, θ, O = (s, a, s
′
), γ = (γ1, γ2, ..., γN )T with 0 ≤ γi ≤ M for i ∈ 1, 2, .., N , we have

|Ξ(O,L1, θ, γ)− Ξ(O,L2, θ, γ)| ≤ 2Ur|L1 − L2|.

Proof By definition,

|Ξ(O,L1, θ, γ)− Ξ(O,L2, θ,γ)| = |(L1 − L(θ, γ))(C(s, a, s
′
, γ)− L(θ, γ))− (L2 − L(θ, γ))(C(s, a, s

′
, γ)− L(θ, γ))|

≤ 2Ur|L1 − L2|.

The claim follows.



lemma 6.4 Consider the tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1) of the original and auxiliary Markov chains
respectively. Then the following holds:

|E[(Ξ(Ot, Lt−τ , θt−τ , γ(t− τ))− Ξ(Õt, Lt−τ , θt−τ , γ(t− τ)))|Lt−τ , θt−τ , γ(t− τ), st−τ+1]|

≤ 2U2
r |A|L

t∑
i=t−τ

E∥θi − θt−τ∥

Proof By the Cauchy-Schwartz inequality and the definition of the total variation norm, we have

E[(Ξ(Ot, Lt−τ , θt−τ , γ(t− τ))− Ξ(Õt, Lt−τ , θt−τ , γ(t− τ)))|Lt−τ , θt−τ , γ(t− τ), st−τ+1]

= (Lt−τ − L∗
t−τ )E[(C(st, at, st+1γ(t− τ))− C(s̃t, ãt, s̃t+1, γ(t− τ)))|Lt−τ , θt−τ , γ(t− τ), st−τ+1].

Now,

E[(C(st, at, st+1γ(t− τ))− C(s̃t, ãt, s̃t+1, γ(t− τ)))|Lt−τ , θt−τ , γ(t− τ), st−τ+1]

≤ 2UrdTV (P (Ot = ·|st−τ+1, θt−τ ), (P (Õt = ·|st−τ+1, θt−τ )).

The following bound on the total variation norm has been shown in the proof of lemma D.2 of Wu et al., [2020]:

dTV (P (Ot = ·|st−τ+1, θt−τ ), (P (Õt = ·|st−τ+1, θt−τ )) ≤
1

2
|A|L

t∑
i=t−τ

E∥θi − θt−τ∥.

Plugging this bound above we have,

|E[(Ξ(Ot, Lt−τ , θt−τ , γ(t− τ))− Ξ(Õt, Lt−τ , θt−τ , γ(t− τ)))|Lt−τ , θt−τ , γ(t− τ), st−τ+1]| ≤ 2U2
r |A|L

t∑
i=t−τ

E∥θi − θt−τ∥.

The claim follows.

lemma 6.5 Conditioned on st−τ+1, θt−τ , Lt−τ , γ(t− τ), we have

E[Ξ(Õt, Lt−τ , θt−τ , γ(t− τ))|Lt−τ , θt−τ , γ(t− τ), st−τ+1] ≤ 4U2
r bk

τ−1

Proof The proof follows in a similar manner as Lemma D.7 of Wu et al., [2020].

After collecting the corresponding results from lemmas 6.1–6.5, we have

E[Ξ̂(Lt, θt, γ(t), q(t), h(t))] ≤ 6UrN(Uc + Uα)E|γp(t)− γp(t− τ)|+ 8UrCE∥θt − θt−τ∥+ 2UrE|Lt − Lt−τ |

+ 2U2
r |A|L

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
r bk

τ−1.

Proof of Theorem 2: Estimating the Average Reward for Constrained Actor critic

We have the following update rule in the algorithm that we now analyze:

Lt+1 = Lt + a(t)(q(t) +

N∑
k=1

γk(t)(hk(t)− αk))− Lt).



Unrolling the above, we obtain

y2t+1 = (Lt+1 − L∗
t+1)

2

=

(
Lt + a(t)

(
q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− Lt

)
− L∗

t+1

)2

=

(
yt + L∗

t − L∗
t+1 + a(t)

(
q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− Lt

))2

= y2t + 2a(t)yt(Ct − Lt) + 2yt(L
∗
t − L∗

t+1) + (L∗
t − L∗

t+1 + a(t)(Ct − Lt))
2

≤ y2t + 2a(t)yt(Ct − Lt) + 2yt(L
∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2

= y2t − 2a(t)y2t + 2a(t)y2t + 2a(t)yt(Ct − Lt) + 2yt(L
∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2

= y2t − 2a(t)y2t + 2a(t)yt(Ct − Lt + yt) + 2yt(L
∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2

= (1− 2a(t))y2t + 2a(t)yt(Ct − L∗
t ) + 2yt(L

∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2,

where Ct = q(t)+
∑N

k=1 γk(t)(hk(t)−αk).The first inequality is due to (x+y)2 ≤ 2x2+2y2. Rearranging and summing
from τt to t, we have

t∑
k=τt

E[y2k] ≤
t∑

k=τt

1

2a(k)
E(y2k − y2k+1)︸ ︷︷ ︸
I1

+

t∑
k=τt

E[Ξ̂(Lk, θk, γ(k), q(k), h(k))]︸ ︷︷ ︸
I2

+

t∑
k=τt

1

a(k)
E[yk(L

∗
k − L∗

k+1)]︸ ︷︷ ︸
I3

+

t∑
k=τt

1

a(k)
E[(L∗

k − L∗
k+1)

2]︸ ︷︷ ︸
I4

+

t∑
k=τt

a(k)E[(Ck − Lk)
2]︸ ︷︷ ︸

I5

.

We now consider I1, . . . , I5 term by term. For I1, we have

I1 =
t∑

k=τt

1

2a(k)
E(y2k − y2k+1)

=

t∑
k=τt

(
1

2a(k)
− 1

2a(k − 1)
)E[y2k] +

1

2a(τt − 1)
E[y2τt ]−

1

2a(t)
E[y2t+1]

≤ 2U2
r

a(t)
.

For I2, from Lemma 6, we have

E[Ξ̂(Lt, θt, γ(t), q(t), h(t))] ≤ 6UrN(Uc + Uα)E|γp(t)− γp(t− τ)|+ 8UrCE∥θt − θt−τ∥+ 2UrE|Lt − Lt−τ |

+ 2U2
r |A|L

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
r bk

τ−1

≤ 16UrCD(Ur + Uv)τb(t− τ) + 6UrN(Uc + Uα)τ(Uc + Uα)c(t− τ) + 4U2
r τa(t− τ)

+ 4DU2
r (Ur + Uv)|A|Lτ(τ + 1)b(t− τ) + 4U2

r bk
τ−1

≤ B1τ
2b(t− τ) +B2τa(t− τ) +B3bk

τ−1 +B4τc(t− τ).



By the choice of τt, we then have

I2 =

t∑
k=τt

E[Ξ̂(Lt, θt, γ(t), q(t), h(t))]

≤ (B1τ
2
t +B3)

t∑
k=τt

b(k − τt) +B2τt

t∑
k=τt

a(t− τt) +B4τt

t∑
k=τt

c(t− τt).

For I3, we have

I3 ≤

(
t∑

k=τt

E[y2k]

)1/2( t∑
k=τt

E

[
(L∗

k − L∗
k+1)

2

a(k)2

])1/2

≤

(
t∑

k=τt

E[y2k]

)1/2( t∑
k=τt

E

[
(C1∥θk − θk+1∥+ C2∥γ(k)p − γ(k + 1)p∥)2

a(k)2

])1/2

≤

(
t∑

k=τt

E[y2k]

)1/2( t∑
k=τt

E

[
(2C1D(Ur + Uv)b(k) + C2(Uc + Uα)c(k))

2

a(k)2

])1/2

≤

(
t∑

k=τt

E[y2k]

)1/2(
K

2
t∑

k=τt

b(k)2

a(k)2

)1/2

,

where K = ((2C1D(Ur + Uv) + (Uc + Uα)).

For I4, we have

I4 =

t∑
k=τt

1

a(k)
E[(L∗

k − L∗
k+1)

2]

=

t∑
k=τt

1

a(k)
E[(L(θk, γ(k))− L(θk+1, γ(k + 1)))2]

≤
t∑

k=τt

K
2
b(k)2

a(k)

= O

(
t∑

k=τt

b(k)2

a(k)

)
.

For I5, we have

I5 =

t∑
k=τt

a(k)E[(Ck − Lk)
2]

≤
t∑

k=τt

4U2
r a(k)

= O

(
t∑

k=τt

a(k)

)
.

Next, after combining I1, . . . , I5, using the uniform ergodicity requirement (Assumption 3), the definition of τt and the
relation between step-size and mixing time in Equation (4) of the main paper, we obtain the following:



t∑
k=τt

E[y2k] ≤
2U2

r

ca
(1 + t)ω + (B1τ

2
t +B3)cb

t∑
k=τt

(1 + k − τt)
−σ +B2caτt

t∑
k=τt

(1 + k − τt)
−ω

+B4τtcc

t∑
k=τt

(1 + k − τt)
−β +K

cb
ca

(

t∑
k=τt

E[y2k])
1/2(

t∑
k=τt

(1 + k)−2(σ−ω))1/2

+K
c2b
ca

t∑
k=τt

(1 + k)ω−2σ + 4U2
r ca

t∑
k=τt

(1 + k)−ω

≤ 2U2
r

ca
(1 + t)ω + ((B1τ

2
t +B3)cb +B2caτt +Kc2b + 4U2

r ca +B4τtcc)

t∑
k=τt

(1 + k − τt)
−ω

+K
cb
ca

(

t∑
k=τt

E[y2k])
1/2(

t∑
k=τt

(1 + k)−2(σ−ω))1/2

≤ 2U2
r

ca
(1 + t)ω + ((B1τ

2
t +B3)cb +B2caτt +Kc2b + 4U2

r ca +B4τtcc)

t−τt∑
k=0

(1 + k)−ω

+K
cb
ca

(

t∑
k=τt

E[y2k])
1/2(

t∑
k=τt

(1 + k)−2(σ−ω))1/2

≤ 2U2
r

ca
(1 + t)ω + ((B1τ

2
t +B3)cb +B2caτt +Kc2b + 4U2

r ca +B4τtcc)
(t− τt + 1)1−ω

1− ω

+K
cb
ca

(

t∑
k=τt

E[y2k])
1/2(

(1 + t− τt)
1−2(σ−ω)

1− 2(σ − ω)
)1/2

Note also that we have used above the precise form of the step-sizes as mentioned towards the end of Section 4.1 (main
paper). After applying the squaring technique (as in proof of Theorem B.1), we have:

t∑
k=τt

E[y2k] ≤
4U2

r

ca
(1 + t)ω + 2((B1τ

2
t +B3)cb +B2caτt +Kc2b + 4U2

r ca +B4τtcc)
(t− τt + 1)1−ω

1− ω

+ 8K
2 c2b
c2a

(1 + t− τt)
1−2(σ−ω)

1− 2(σ − ω)

= O(tω) +O(log2 t · t1−ω) +O(t1−2(σ−ω)).

Dividing by (1 + t− τt) and assuming t ≥ 2τt − 1, we have

t∑
k=τt

E[y2k]/(1 + t− τt) = O(tω−1) +O(log2 t · t−ω) +O(t−2(σ−ω)).



B.3 PROOF OF THEOREM 2: ESTIMATING THE CONVERGENCE POINT OF CRITIC FOR
CONSTRAINED ACTOR CRITIC

We first describe the notations used here.

Ot := (st, at, st+1),

O := (s, a, s
′
),

v∗(t) := v∗(θt, γ(t)),

L∗
t := L(θt, γ(t)),

mt := vt − v∗(t),

yt := Lt − L∗
t ,

g(O, v, θ, γ, q, h) := (q +

k=N∑
k=1

γ(k)(hk − αk)− L(θ, γ) + vT (f
′

s − fs))fs,

c(s, a, s
′
, γ) :=

∑
q

(q · p̄(q|s, a, s
′
)) +

k=N∑
k=1

γ(k)(
∑
h

(h · pk(h|s, a, s
′
))− αk),

g(v, θ, γ) := Es∼µθ,a∼πθ,s
′∼p[(c(s, a, s

′
, γ)− L(θ, γ) + (fs′ − fs)

T v)fs],

Λ(O, v, θ, γ, q, h) := ⟨v − v∗(θ, γ), g(O, v, θ, γ, q, h)− g(v, θ, γ)⟩,
∆g(O,L, θ, γ) := (L(θ, γ)− L)fs.

(18)

In the above, h = (h1, h2, h3, ..., hN ).

Before we proceed further, we first state and prove Lemma 7 below that will be used in the proof of Theorem 2(estimating
the convergence point of critic) .

Lemma 7 From the definition of Λ(Ot, vt, θt, γ(t), q(t), h(t)), for any 0 ≤ τ ≤ t, we have

E[Λ(Ot, vt, θt, γ(t), q(t), h(t))] ≤ C1(τ + 1)E∥θt − θt−τ∥+ C2bk
τ−1 + C3E∥vt − v(t− τ)∥

+ C4E|γm(t)− γm(t− τ)|,

where C1, C2, C3, C4 are positive constants and |γm(t)− γm(t− τ)| = max
i=1,2,...,N

|γi(t)− γi(t− τ)|.

Proof We have,

E[Λ(Ot, vt, θt, γ(t), q(t), h(t))] = E[⟨vt − v∗(θt, γ(t)), g(Ot, vt, θt, γ(t), q(t), h(t))− g(vt, θt, γ(t))⟩].

Note now that vt, θt, γ(t) do not depend on q(t) and h(t). Hence we can write,

E[⟨vt − v∗(θt, γ(t)), g(Ot, vt, θt, γ(t), q(t), h(t))− g(vt, θt, γ(t))⟩]
= Est∼p,at∼πθt ,st+1∼p[E[⟨vt − v∗(θt, γ(t)), g(Ot, vt, θt, γ(t), q(t), h(t))− g(vt, θt, γ(t))⟩|st, at, st+1]]

= E[⟨vt − v∗(θt, γ(t)), ǧ(Ot, vt, θt, γ(t))− g(vt, θt, γ(t))⟩],

where,

ǧ(Ot, vt, θt, γ(t)) = (c(st, at, st+1, γ(t))− L(θ, γ) + vT (f
′

s − fs))fs,

c(st, at, st+1, γ(t)) =
∑
q

(q · p̄(q|st, at, st+1)) +

k=N∑
k=1

γk(t)(
∑
h

(h · pk(h|st, at, st+1))− αk).

Let ⟨vt − v∗(θt, γ(t)), ǧ(Ot, vt, θt, γ(t)) − g(vt, θt, γ(t))⟩ = Λ̄(Ot, vt, θt, γ(t)). Note that we can decompose



E[Λ̄(Ot, vt, θt, γ(t))] as follows:

E[Λ̄(Ot, vt, θt, γ(t))] = E[Λ̄(Ot, vt, θt, γ(t))− Λ̄(Ot, vt, θt, γ(t− τ))]︸ ︷︷ ︸
I1

+E[Λ̄(Ot, vt, θt, γ(t− τ))− Λ̄(Ot, vt, θt−τ , γ(t− τ))]︸ ︷︷ ︸
I2

+ E[Λ̄(Ot, vt, θt−τ , γ(t− τ))− Λ̄(Ot, vt−τ , θt−τ , γ(t− τ))]︸ ︷︷ ︸
I3

+ E[Λ̄(Ot, vt−τ , θt−τ , γ(t− τ))− Λ̄(Õt, vt−τ , θt−τ , γ(t− τ))]︸ ︷︷ ︸
I4

+ E[Λ̄(Õt, vt−τ , θt−τ , γ(t− τ))]︸ ︷︷ ︸
I5

.

For term I1,

Λ̄(Ot, vt, θt, γ(t))− Λ̄(Ot, vt, θt, γ(t− τ))

= ⟨vt − v∗(θt, γ(t)), ǧ(Ot, vt, θt, γ(t))− g(vt, θt, γ(t))⟩
− ⟨vt − v∗(θt, γ(t− τ)), ǧ(Ot, vt, θt, γ(t− τ))− g(vt, θt, γ(t− τ))⟩

= ⟨vt − v∗(θt, γ(t)), ǧ(Ot, vt, θt, γ(t))− ǧ(Ot, vt, θt, γ(t− τ)) + g(vt, θt, γ(t− τ))− g(vt, θt, γ(t))⟩
+ ⟨v∗(θt, γ(t− τ))− v∗(θt, γ(t)), ǧ(Ot, vt, θt, γ(t− τ))− g(vt, θt, γ(t− τ))⟩

≤ 8UvN(Uc + Uα)|γm(t)− γm(t− τ)|+ 4L2(Ur + Uv)|γm(t)− γm(t− τ)|,

where |γm(t)− γm(t− τ)| = max
i=1,2,...,N

|γi(t)− γi(t− τ)|.

For the remaining terms I2 −−I5, exactly similar analysis as Lemmas D.8–D.11 of Wu et al., [2020] can be carried out
to obtain similar claims. For terms I4 and I5 we bound the expectation conditioned on θt−τ , γ(t − τ), vt−τ and st−τ+1.
Hence, after combining all the terms we get

E[Λ(Ot, vt, θt, γ(t), q(t), h(t))] ≤ C1(τ + 1)E∥θt − θt−τ∥+ C2bk
τ−1 + C3E∥vt − v(t− τ)∥

+ C4E|γm(t)− γm(t− τ)|,

where C1, C2, C3, C4 are positive constants.

Proof of Theorem 2: Estimating the convergence point of Critic for Constrained Actor Critic

We use here the update rule of vt with projection. We shall assume here that the projection set C is large enough so that
v∗(t+ 1) lies within the set C. If this is not the case, then the algorithm will practically converge to a point that is closest in
C to v∗(t+ 1). We avoid such a case by assuming that v∗(t+ 1) lies within C itself. Recall also that the set C is compact
and convex which ensures that the point in C to which the update with increment is projected to is the closest to it and is



also unique. Thus, we obtain using the definition of mt described at the beginning of this section that

∥mt+1∥2 = ∥Γ(vt + a(t)δtfst)− v∗(t+ 1)∥2

≤ ∥vt + a(t)δtfst − v∗(t+ 1)∥2

= ∥mt + a(t)δtfst + v∗(t)− v∗(t+ 1)∥2

= ∥mt + a(t)(q(t) +

N∑
k=1

γk(t)(hk(t)− αk)− Lt + vTt (fst+1 − fst))fst + v∗(t)− v∗(t+ 1)∥2

= ∥mt + a(t)(g(Ot, vt, θt, γ(t), q(t), h(t)) + ∆g(Ot, Lt, θt, γ(t))) + v∗(t)− v∗(t+ 1)∥2

= ∥mt∥2 + 2a(t)⟨mt, (g(Ot, vt, θt, γ(t), q(t), h(t))⟩+ 2a(t)⟨mt,∆g(Ot, Lt, θt, γ(t))⟩
+ 2⟨mt, v

∗(t)− v∗(t+ 1)⟩
+ ∥a(t)(g(Ot, vt, θt, γ(t), q(t), h(t)) + ∆g(Ot, Lt, θt, γ(t))) + v∗(t)− v∗(t+ 1)∥2

≤ ∥mt∥2 + 2a(t)⟨mt, (g(Ot, vt, θt, γ(t), q(t), h(t))⟩+ 2a(t)⟨mt,∆g(Ot, Lt, θt, γ(t))⟩
+ 2⟨mt, v

∗(t)− v∗(t+ 1)⟩
+ 2a(t)2∥(g(Ot, vt, θt, γ(t), q(t), h(t)) + ∆g(Ot, Lt, θt, γ(t)))∥2 + 2∥v∗(t)− v∗(t+ 1)∥2

= ∥mt∥2 + 2a(t)⟨mt, g(vt, θt, γ(t))⟩+ 2a(t)Λ(Ot, vt, θt, γ(t), q(t), h(t))

+ 2a(t)⟨mt,∆g(Ot, Lt, θt, γ(t))⟩+ 2⟨mt, v
∗(t)− v∗(t+ 1)⟩

+ 2a(t)2∥(g(Ot, vt, θt, γ(t), q(t), h(t)) + ∆g(Ot, Lt, θt, γ(t)))∥2 + 2∥v∗(t)− v∗(t+ 1)∥2

≤ ∥mt∥2 + 2a(t)⟨mt, g(vt, θt, γ(t))⟩+ 2a(t)Λ(Ot, vt, θt, γ(t), q(t), h(t))

+ 2a(t)⟨mt,∆g(Ot, Lt, θt, γ(t))⟩+ 2⟨mt, v
∗(t)− v∗(t+ 1)⟩

+ 8a(t)2(Ur + Uv)
2 + 2∥v∗(t)− v∗(t+ 1)∥2,

where the second inequality is due to ∥x+y∥2 ≤ 2∥x∥2+2∥y∥2 and the third one is due to ∥(g(Ot, vt, θt, γ(t), q(t), h(t))+
∆g(Ot, Lt, θt, γ(t)))∥ ≤ 2(Ur + Uv). Now, as a consequence of Assumption 2, we have

⟨mt, g(vt, θt, γ(t))⟩ = ⟨mt, g(vt, θt, γ(t))− g(v∗(t), θt, γ(t))⟩
= ⟨mt, E[(fs′ − fs)

T (vt − v∗(t))fs]⟩
= mT

t E[fs(fs′ − fs)
T ]mt

= mT
t Amt

≤ −λe∥mt∥2,



where the first equation is because of the equation in Section 4.1 of the main paper. Taking expectations up to st+1, we have

E∥mt+1∥2 ≤ E∥mt∥2 + 2a(t)E⟨mt, g(vt, θt, γ(t), )⟩+ 2a(t)EΛ(Ot, vt, θt, γ(t), q(t), h(t))

+ 2a(t)E⟨mt,∆g(Ot, Lt, θt, γ(t))⟩+ 2E⟨mt, v
∗(t)− v∗(t+ 1)⟩

+ 8a(t)2(Ur + Uv)
2 + 2E∥v∗(t)− v∗(t+ 1)∥2

≤ (1− 2λea(t))E∥mt∥2

+ 2a(t)EΛ(Ot, vt, θt, γ(t), q(t), h(t)) + 2a(t)E⟨mt,∆g(Ot, Lt, θt, γ(t))⟩
+ 2E⟨mt, v

∗(t)− v∗(t+ 1)⟩
+ 8a(t)2(Ur + Uv)

2 + 2E∥v∗(t)− v∗(t+ 1)∥2

≤ (1− 2λea(t))E∥mt∥2

+ 2a(t)EΛ(Ot, vt, θt, γ(t), q(t), h(t)) + 2a(t)E∥mt∥|yt|
+ 2E∥mt∥(∥v∗(θt, γ(t))− v∗(θt, γ(t+ 1))∥+ ∥v∗(θt, γ(t+ 1))− v∗(θt+1, γ(t+ 1))∥)
+ 8a(t)2(Ur + Uv)

2

+ 4E[∥v∗(θt, γ(t))− v∗(θt, γ(t+ 1))∥2 + ∥v∗(θt, γ(t+ 1))− v∗(θt+1, γ(t+ 1))∥2]
≤ (1− 2λea(t))E∥mt∥2

+ 2a(t)EΛ(Ot, vt, θt, γ(t), q(t), h(t)) + 2a(t)E∥mt∥|yt|
+ 2E∥mt∥(L2∥γm(t)− γm(t+ 1)∥+ L1∥θt − θt+1∥)
+ 8a(t)2(Ur + Uv)

2 + 4E[L2
2∥γm(t)− γm(t+ 1)∥2 + L2

1∥θt − θt+1∥2]
≤ (1− 2λea(t))E∥mt∥2

+ 2a(t)EΛ(Ot, vt, θt, γ(t), q(t), h(t)) + 2a(t)E∥mt∥|yt|
+ 2E∥mt∥(L2(Uc + Uα)c(t) + 2DL1(Ur + Uv)b(t))

+ 8a(t)2(Ur + Uv)
2 + 4E[L2

2(Uc + Uα)
2c(t)2 + 4L2

1D
2(Ur + Uv)

2b(t)2]

≤ (1− 2λea(t))E∥mt∥2

+ 2a(t)E[Λ(Ot, vt, θt, γ(t), q(t), h(t))] + 2a(t)E∥mt∥|yt|
+ 2((L2(Uc + Uα) + 2DL1(Ur + Uv))b(t))E∥mt∥
+ 8a(t)2((Ur + Uv)

2 + 4L2
2(Uc + Uα)

2 + 16L2
1D

2(Ur + Uv)
2)).

Rearranging now the terms in the inequality results in the following:

2λeE∥mt∥2 ≤ 1

a(t)

(
E∥mt∥2 − E∥mt+1∥2

)
+ 2EΛ(Ot, vt, θt, γ(t), q(t), h(t))

+ 2E∥mt∥|yt|+Bq
b(t)

a(t)
)E∥mt∥+ Cqa(t)

≤ 1

a(t)

(
E∥mt∥2 − E∥mt+1∥2

)
+ 2EΛ(Ot, vt, θt, γ(t), q(t), h(t))

+ 2
√
E∥mt∥2

√
Ey2t +Bq

b(t)

a(t)

√
E∥mt∥2 + Cqa(t),

where

Bq = 2((L2(Uc + Uα) + 2DL1(Ur + Uv)),

Cq = 8((Ur + Uv)
2 + 4L2

2(Uc + Uα)
2 + 16L2

1D
2(Ur + Uv)

2)).



Now,

2λe

t∑
k=τt

E∥mk∥2 ≤
t∑

k=τt

1

a(k)

(
E∥mk∥2 − E∥mk+1∥2

)
︸ ︷︷ ︸

I1

+ 2

t∑
k=τt

EΛ(Ok, vk, θk, γ(k), q(k), h(k))︸ ︷︷ ︸
I2

+2

t∑
k=τt

√
E∥mk∥2

√
E[y2k]︸ ︷︷ ︸

I3

+Bq

t∑
k=τt

b(k)

a(k)
)
√
E∥mk∥2︸ ︷︷ ︸

I4

+Cq

t∑
k=τt

a(k)︸ ︷︷ ︸
I5

. (19)

Consider now the term I1. We have the following:

I1 :=

t∑
k=τt

1

a(k)

(
E∥mk∥2 − E∥mk+1∥2

)
=

t∑
k=τt

( 1

a(k)
− 1

a(k − 1)

)
E∥mk∥2 +

1

a(τt − 1)
E∥mτt∥2 −

1

a(t)
E∥mt+1∥2

≤
t∑

k=τt

( 1

a(k)
− 1

a(k − 1)

)
E∥mk∥2 +

1

a(τt − 1)
E∥mτt∥2

≤ 4U2
v

( t∑
k=τt

( 1

a(k)
− 1

a(k − 1)

)
+

1

a(τt − 1)

)
= 4U2

v

1

a(t)
= 4

U2
v

ca
(1 + t)ω = O(tω).

For the term I2, note that

I2 = 2

t∑
k=τt

E[Λ(Ok, vk, θk, γ(k), q(k), h(k))]

≤ 4DC1(Ur + Uv)(τt + 1)2
t∑

k=τt

b(k − τt) + 2C2

t∑
k=τt

b(t)

+ 4C3(Ur + Uv)τt

t−τt∑
k=0

a(k) + 2C4(Uc + Uα)τt

t−τt∑
k=0

c(k)

≤ 4DC1(Ur + Uv)(τt + 1)2
t−τt∑
k=0

b(k) + 2C2(t− τt + 1)b(t)

+ (4C3(Ur + Uv)τt + 2C4(Uc + Uα)τt)

t−τt∑
k=0

a(k)

≤ 4DC1(Ur + Uv)(τt + 1)2cb
(1 + t− τt)

1−σ

1− σ
+ 2C2(t− τt + 1)cb(1 + t)−σ

+ (4C3(Ur + Uv)τt + 2C4(Uc + Uα)τt)ca
(1 + t− τt)

1−ω

1− ω

≤
[4DC1(Ur + Uv)(τt + 1)2cb

1− σ
+ 2C2cb +

(4C3(Ur + Uv)τt + 2C4(Uc + Uα)τt)ca
1− ω

]
(1 + t)1−ω

= O((log t)2t1−ω).



Now, we get the following inequalities for the terms I3, I4 and I5, respectively:

I3 := 2

t∑
k=τt

√
E∥mk∥2

√
Ey2k ≤ 2

( t∑
k=τt

Ey2k
)1/2( t∑

k=τt

E∥mk∥2
)1/2

,

I4 := Bq

t∑
k=τt

b(k)

a(k)
)
√

E∥mk∥2 ≤
( t−τt∑

k=0

b(k)2

a(k)2
)1/2( t∑

k=τt

E∥mk∥2
)1/2

,

I5 := Cq

t∑
k=τt

a(k) ≤ Cqca(1 + t)1−ω/(1− ω).

Combining all the terms, we obtain

2λe

t∑
k=τt

E∥mk∥2 ≤ 4U2
v

ca
(1 + t)ω

+
[4DC1(Ur + Uv)(τt + 1)2cb

1− σ
+ 2C2cb +

(4C3(Ur + Uv)τt + 2C4(Uc + Uα)τt + Cq)ca
1− ω

]
(1 + t)1−ω

+
( t∑
k=τt

Ey2k
)1/2( t∑

k=τt

E∥mk∥2
)1/2

+
( t−τt∑

k=0

b(k)2

a(k)2
)1/2( t∑

k=τt

E∥mk∥2
)1/2

.

We assume t ≥ 2τt − 1. After substituting the value of yk and applying the squaring technique as in the proof of Theorem 1,
we obtain ( t∑

k=τt

E∥vk − v∗(k)∥2
)
/(1 + t− τt) = O

(
1

t1−ω

)
+O

(
log t

tω

)
+O

(
1

t2(σ−ω)

)
.

Remark 5 It is important to mention here that the requirement that v∗t+1 lies within the projection region C has also been
made by Wu et al., [2020] except however that they assume that the set C is a ball of some radius Rw. We do not assume
any such structure on the set C except that it be compact and convex which suffices for our purpose.

B.4 PROOF OF COROLLARY 1

Note that we have the following result from Theorem 1:

min
0≤k≤t

E[∥∇L(θk, γ(k))∥2] = O(tσ−β)) +O((log t)2t−σ) +O(ϵapp) +O(ε(t)), (20)

where,

ε(t) = (2

t∑
k=τt

E∥Ak∥2 + 8

t∑
k=τt

E∥Bk∥2)/(1 + t− τt),

Ak = Lk − L(θk, γ(k)),

Bk = vk − v(θk, γ(k)).

Now, from the results of Theorem 2, we have

ε(t) = O(tω−1) +O(log t · t−ω) +O(t−2(σ−ω)).

Substituting the above in (20), we have

min
0≤k≤t

E[∥∇L(θk, γ(k))∥2] = O(tσ−β) +O(log2 t · t−σ) +O(tω−1) +O(log t · t−ω) +O(t−2(σ−ω)) +O(ϵapp)

= O(tσ−β) +O(log2 t · t−ω) +O(tω−1) +O(t−2(σ−ω)) +O(ϵapp)

= O(tσ−β) +O(log2 t · t−ω) +O(t−2(σ−ω)) +O(ϵapp).



The second equality holds because ω < σ while the third equality is true because σ − β > ω − 1. Optimising over the
choice of ω, σ, β, we obtain ω = 0.4, σ = 0.6 and β = 1. Hence,

min
0≤k≤t

E[∥∇L(θk, γ(k))∥2] = O(log2 t · t−0.4) +O(ϵapp).

Therefore, in order to obtain an ϵ-approximate (ignoring the approximation error as with Wu et al., [2020]) stationary point
of the performance function L(θ, γ), namely,

min
0≤k≤T

E[∥∇L(θk, γ(k))∥2] = O(log2 T · T−0.4) +O(ϵapp) ≤ O(ϵapp) + ϵ,

we need to set T = Õ(ϵ−2.5).

B.5 PROOF OF THEOREM 3

We use the following notation here.

ζ(O, θ, γ, q, h,G) = ⟨∇L(θ, γ), G−1H(O, θ, γ, q, h)EO′ ,q,h[G
−1H(O

′
, θ, γ, q, h)]⟩,

where H(·) has been defined in the proof of Theorem 1. Further, O
′
= (s, a, s

′
) denotes the independent sample s ∼ µθ,

a ∼ πθ, s
′ ∼ p(s, ., a). Hence, EO′ ,q,h[·] denotes the expectation w.r.t. the joint distribution of s ∼ µθ, a ∼ πθ,

s
′ ∼ p(s, ., a), q ∼ p̄(.|s, a, s′

), hi ∼ pi(.|s, a, s
′
), i = 1, . . . , N . The remaining notations are the same as those used in the

proof of Theorem 1.

Now we will state and prove Lemma 8 below that will be used in the proof of Theorem 3 . Moreover, the proof of Lemma 8
shall rely on Lemmas 8.1–8.5 that we also state and prove in the following. Finally, collecting all these results together, we
shall obtain the claim for Theorem 3.

Lemma 8 For any t ≥ 0,

E[ζ(Ot, θt, γ(t), q(t), h(t), G(t))] ≥ −(D1(τ + 1)

t∑
k=t−τ+1

E[∥θk − θk−1∥] +D2bk
τ−1 + T1

t∑
i=t−τ+1

E[|γm(i)− γm(i− 1)|]

+ TG

t∑
i=t−τ+1

E∥G(i)−1 −G(i− 1)−1∥),

where D1, D2, T1, TG are positive constants and t ≥ τ ≥ 0.

Proof We have

E[ζ(Ot, θt, γ(t), q(t), h(t), G(t))]

= Est∼p,at∼πθt ,st+1∼p[E[⟨∇L(θt, γ(t)), G(t)−1H(Ot, θt, γ(t), q(t), h(t))

− EO′ ,q,h[G(t)−1H(O
′
, θt, γ(t), q, h)]⟩|st, at, st+1]]

= E[⟨∇L(θt, γ(t)), G(t)−1H̄(Ot, θt, γ(t))− EO′ ,q,h[G(t)−1H(O
′
, θt, γ(t), q, h)]⟩]

= E[⟨∇L(θt, γ(t)), G(t)−1H̄(Ot, θt, γ(t))− EO′ [Eq,h[G(t)−1H(O
′
, θt, γ(t), q, h)|s, a, s

′
]]⟩]

= E[⟨∇L(θt, γ(t)), G(t)−1H̄(Ot, θt, γ(t))− EO′ [G(t)−1H̄(O
′
, θt, γ(t))]⟩]

= E[Q̂(Ot, θt, γ(t), G(t))],

where

H̄(O, θ, γ) = (c(s, a, s
′
, γ)− L(θ, γ) + (fs′

T − fs
T )v∗(θ, γ))∇ log πθ(a|s),

c(s, a, s
′
, γ) =

∑
q

(q · p̄(q|s, a, s
′
)) +

k=N∑
k=1

γk(
∑
h

(h · pk(h|s, a, s
′
))− αk).

The proof makes use of the supporting lemmas 8.1–8.5 below.



lemma 8.1 For any t ≥ 0,

|Q̂(Ot, θt, γ(t), G(t))− Q̂(Ot, θt, γ(t), G(t− τ))| ≤ TG∥G(t)−1 −G(t− τ)−1∥,

for some TG > 0.

Proof The following holds:

Q̂(Ot, θt, γ(t), G(t))− Q̂(Ot, θt, γ(t), G(t− τ))

= ⟨∇L(θt, γ(t)), G(t)−1H̄(Ot, θt, γ(t))− EO′ [G(t)−1H̄(O
′
, θt, γ(t))]⟩

− ⟨∇L(θt, γ(t)), G(t− τ)−1H̄(Ot, θt, γ(t))− EO′ [G(t− τ)−1H̄(O
′
, θt, γ(t))]⟩

= ⟨∇L(θt, γ(t)), (G(t)−1 −G(t− τ)−1)H̄(Ot, θt, γ(t))− EO′ [(G(t)−1 −G(t− τ)−1)H̄(O
′
, θt, γ(t))]⟩

≤ 2D(Ur + Uv)∥∇L(θt, γ(t))∥∥G(t)−1 −G(t− τ)−1∥
≤ 2D(Ur + Uv)UL∥G(t)−1 −G(t− τ)−1∥.

The claim follows by letting TG = 2D(Ur + Uv)UL > 0.

lemma 8.2 For any t ≥ 0,

|Q̂(Ot, θt, γ(t), G(t− τ))− Q̂(Ot, θt, γ(t− τ), G(t− τ))| ≤ T1|γm(t)− γm(t− τ)|

for some T1 > 0.

Proof Denoting O = (s, a, s
′
), we have for any θ, γ1, γ2, that

Q̂(O, θ, γ1, G)− Q̂(O, θ, γ2, G)

= ⟨∇L(θ, γ1), G−1H̄(O, θ, γ1)− EO′ [G−1H̄(O
′
, θ, γ1)]⟩ − ⟨∇L(θ, γ2), G−1H̄(O, θ, γ2)− EO′ [G−1H̄(O

′
, θ, γ2)]⟩

= ⟨∇L(θ, γ1), G−1H̄(O, θ, γ1)− EO′ [G−1H̄(O
′
, θ, γ1)]⟩ − ⟨∇L(θ, γ1), G−1H̄(O, θ, γ2)− EO′ [G−1H̄(O

′
, θ, γ2)]⟩

+ ⟨∇L(θ, γ1), G−1H̄(O, θ, γ2)− EO′ [G−1H̄(O
′
, θ, γ2)]⟩ − ⟨∇L(θ, γ2), G−1H̄(O, θ, γ2)− EO′ [G−1H̄(O

′
, θ, γ2)]⟩

= ⟨∇L(θ, γ1), G−1H̄(O, θ, γ1)−G−1H̄(O, θ, γ2)− EO′ [G−1H̄(O
′
, θ, γ1)] + EO′ [G−1H̄(O

′
, θ, γ2)]⟩︸ ︷︷ ︸

I1

+ ⟨∇L(θ, γ1)−∇L(θ, γ2), G−1H̄(O, θ, γ2)− EO′ [G−1H̄(O
′
, θ, γ2)]⟩︸ ︷︷ ︸

I2

,

where G is a non-singular square matrix and ∥G∥ < UG. We have by lemma 2 that

∥∇L(θ, γ1)−∇L(θ,γ
2)∥ ≤ C|γ1

m − γ2
m|.

Now,

∥H̄(O, θ, γ1)− H̄(O, θ, γ2)∥

= ∥(c(s, a, s
′
, γ1)− c(s, a, s

′
, γ2)− L(θ, γ1) + L(θ, γ2) + (fs′

T − fs
T )(v∗(θ, γ1)− v∗(θ, γ2)))∇ log πθ(a|s)∥

≤ D(|c(s, a, s
′
, γ1)− c(s, a, s

′
, γ2)|+ |L(θ, γ1)− L(θ, γ2)|+ 2∥v∗(θ, γ1)− v∗(θ, γ2)∥)

≤ D(2N(Uc + Uα)|γ1
m − γ2

m|+ 2L2|γ1
m − γ2

m|),

where |γ1
m − γ2

m| = max
i=1,2,3....,N

|γ1
i − γ2

i |. Hence (for the term I1), we have that

I1 ≤ 4D(N(Uc + Uα) + L2)∥∇L(θ, γ1)∥UG|γ1
m − γ2

m|.

Now observe that (for the term I2),

I2 ≤ ∥∇L(θ, γ1)−∇L(θ, γ2)∥∥H̄(O, θ, γ2)− EO′ [H̄(O
′
, θ, γ2)]∥

≤ 4D(Ur + Uv)∥∇L(θ, γ1)−∇L(θ, γ2)∥
≤ 4DC(Ur + Uv)UG|γ1

m − γ2
m|



Combining the RHS of the two terms, we obtain

|Q̂(O, θ, γ1, G)− Q̂(O, θ, γ2, G)| ≤ T1|γ1
m − γ2

m|,

where T1 = 4D(N(Uc + Uα) + L2)ULUG + 4DC(Ur + Uv)UG.

lemma 8.3 For any t ≥ 0, θ1, θ2, G, γ = (γ1, γ2, ..., γN )T with 0 ≤ γi ≤ M for i ∈ {1, 2, , , .., N} and G being a
non-singular square matrix with ∥G−1∥ ≤ UG,

|Q̂(O, θ1, γ,G)− Q̂(O, θ2, γ,G)| ≤ T2∥θ1 − θ2∥,

for some T2 > 0.

Proof Denote O = (s, a, s
′
). We have for any θ1, θ2, γ,G, the following:

Q̂(O, θ1, γ,G)− Q̂(O, θ2, γ,G)

= ⟨∇L(θ1, γ), G
−1H̄(O, θ1, γ)− EO′ [G−1H̄(O

′
, θ1, γ)]⟩ − ⟨∇L(θ2, γ), G

−1H̄(O, θ2, γ)− EO′ [G−1H̄(O
′
, θ2, γ)]⟩

= ⟨∇L(θ1, γ), G
−1H̄(O, θ1, γ)− EO′ [G−1H̄(O

′
, θ1, γ)]⟩ − ⟨∇L(θ1, γ), G

−1H̄(O, θ2, γ)− EO′ [G−1H̄(O
′
, θ2, γ)]⟩

+ ⟨∇L(θ1, γ), G
−1H̄(O, θ2, γ)− EO′ [G−1H̄(O

′
, θ2, γ)]⟩ − ⟨∇L(θ2, γ), G

−1H̄(O, θ2, γ)− EO′ [G−1H̄(O
′
, θ2, γ)]⟩

= ⟨∇L(θ1, γ), G
−1H̄(O, θ1, γ)−G−1H̄(O, θ2, γ)− EO′ [G−1H̄(O

′
, θ1, γ)] + EO′ [G−1H̄(O

′
, θ2, γ)]⟩︸ ︷︷ ︸

I1

+ ⟨∇L(θ1, γ)−∇L(θ2, γ), G
−1H̄(O, θ2, γ)− EO′ [G−1H̄(O

′
, θ2, γ)]⟩︸ ︷︷ ︸

I2

.

Now,

∥H̄(O, θ1, γ)− H̄(O, θ2, γ)∥

= ∥(c(s, a, s
′
, γ)− L(θ1, γ) + (fs′

T − fs
T )v∗(θ1, γ))∇ log πθ1(a|s)

− (c(s, a, s
′
, γ)− L(θ2, γ) + (fs′

T − fs
T )v∗(θ2, γ))∇ log πθ2(a|s)∥

≤ ∥(c(s, a, s
′
, γ)− L(θ1, γ) + (fs′

T − fs
T )v∗(θ1, γ))(∇ log πθ1(a|s)−∇ log πθ2(a|s))∥

+ ∥(L(θ2, γ)− L(θ1, γ) + (fs′
T − fs

T )(v∗(θ1, γ)− v∗(θ1, γ)))∇ log πθ2(a|s)∥
≤ 2(Ur + Uv)Mm∥θ1 − θ2∥+D(|L(θ2, γ)− L(θ1, γ)|+ 2L1∥θ1 − θ2∥).

Also, clearly

|L(θ1, γ)− L(θ2, γ)|

= |
∑
s∈S

µθ1(s)
∑

a∈A(s)

πθ1(s, a)(d(s, a) +

N∑
k=1

γ(k)(hk(s, a)− αk))−
∑
s∈S

µθ2(s)
∑

a∈A(s)

πθ2(s, a)(d(s, a) +

N∑
k=1

γ(k)(hk(s, a)− αk))|

≤ 2UrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ 2Ur|A|L
(
1 + ⌈logk b−1⌉+ 1/(1− k)

)
∥θ1 − θ2∥

= CL∥θ1 − θ2∥.

Hence,

∥H̄(O, θ1, γ)− H̄(O, θ2, γ)∥ ≤ 2(Ur + Uv)Mm∥θ1 − θ2∥+DCL∥θ1 − θ2∥+ 2L1D∥θ1 − θ2∥.



Also, note that

∥EO′ [H̄(O
′
, θ1, γ)]− EO′ [H̄(O

′
, θ2, γ)]∥

= ∥Eθ1 [H̄(O
′
, θ1, γ)]− Eθ2 [H̄(O

′
, θ2, γ)]∥

≤ ∥Eθ1 [H̄(O
′
, θ1, γ)]− Eθ1 [H̄(O

′
, θ2, γ)]∥+ ∥Eθ1 [H̄(O

′
, θ2, γ)]− Eθ2 [H̄(O

′
, θ2, γ)]∥

≤ Eθ1∥H̄(O
′
, θ1, γ)− H̄(O

′
, θ2, γ)∥+ 4D(Ur + Uv)dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤
[
2(Ur + Uv)Mm +DCL + 2L1D + 4D(Ur + Uv)|A|UrL

(
1 + ⌈logk b−1⌉+ 1

1− k

)]
∥θ1 − θ2∥

= A2∥θ1 − θ2∥.

Thus, we have

I1 ≤ 2ULUG(Ur + Uv)Mm∥θ1 − θ2∥+ ULUGDCL∥θ1 − θ2∥+ 2ULUGL1D∥θ1 − θ2∥+ UGULA2∥θ1 − θ2∥.

For the term I2, we have

I2 ≤ ∥∇L(θ1, γ)−∇L(θ2, γ)∥∥G−1H̄(O, θ2, γ)− EO′ [G−1H̄(O
′
, θ2, γ)]∥

≤ 4D(Ur + Uv)UGML∥θ1 − θ2∥.

The last inequality follows from Lemma 1.

Finally, we have

Q̂(O, θ1, γ,G)− Q̂(O, θ2, γ,G) ≤ T2∥θ1 − θ2∥,

where,

T2 = 2ULUG(Ur + Uv)Mm + ULUGDCL + 2ULUGL1D + UGULA2 + 4D(Ur + Uv)UGML,

A2 = 2(Ur + Uv)Mm +DCL + 2L1D + 4D(Ur + Uv)|A|UrL

(
1 + ⌈logk b−1⌉+ 1

1− k

)
.

lemma 8.4 For any t ≥ 0,conditioned on θt−τ , γ(t− τ) and G(t− τ),

|E[(Q̂(Ot, θt−τ , γ(t− τ), G(t− τ))− Q̂(Õt, θt−τ , γ(t− τ), G(t− τ)))|θt−τ , γ(t− τ), G(t− τ)]|

≤ 2DUG(Ur + Uv)UL|A|L
t∑

i=t−τ

E∥θi − θt−τ∥

Proof By the definition of Q̂(O, θ, γ),

E[(Q̂(Ot, θt−τ , γ(t− τ), G(t− τ))− Q̂(Õt, θt−τ , γ(t− τ), G(t− τ))|θt−τ , γ(t− τ), G(t− τ)]

= E[⟨∇L(θt−τ , γ(t− τ)), G(t− τ)−1H̄(Ot, θt−τ , γ(t− τ)−G(t− τ)−1H̄(Õt, θt−τ , γ(t− τ)⟩|θt−τ , γ(t− τ), G(t− τ)]

= E[(⟨∇L(θt−τ , γ(t− τ)), G(t− τ)−1H̄(Ot, θt−τ , γ(t− τ)⟩
− ⟨∇L(θt−τ , γ(t− τ)), G(t− τ)−1H̄(Õt, θt−τ , γ(t− τ))⟩)|θt−τ , γ(t− τ), G(t− τ)]

≤ 4UGD(Ur + Uv)ULdTV (P (Ot = .|st−τ+1, θt−τ ), (P (Õt = .|st−τ+1, θt−τ )).

Now,

dTV (P (Ot = .|st−τ+1, θt−τ ), (P (Õt = .|st−τ+1, θt−τ )) ≤
1

2
|A|L

t∑
i=t−τ

E∥θi − θt−τ∥.



This inequality follows in a similar manner as the proof of Lemma D.2 of Wu et al., [2020]. Hence,

E[Q̂(Ot, θt−τ , γ(t− τ), G(t− τ))− Q̂(Õt, θt−τ , γ(t− τ), G(t− τ))|θt−τ , γ(t− τ), G(t− τ)]

≤ 2DUG(Ur + Uv)UL|A|L
t∑

i=t−τ

E∥θi − θt−τ∥.

The claim follows.

lemma 8.5 For any t ≥ 0, conditioned on θt−τ , γ(t− τ) and G(t− τ),

|E[(Q̂(Õt, θt−τ , γ(t− τ), G(t− τ))− Q̂(O
′

t, θt−τ , γ(t− τ), G(t− τ)))|θt−τ , γ(t− τ), G(t− τ)]|
≤ 4DUG(Ur + Uv)ULbk

τ−1.

Proof

E[(Q̂(Õt, θt−τ , γ(t− τ), G(t− τ))− Q̂(O
′

t, θt−τ , γ(t− τ), G(t− τ)))|θt−τ , γ(t− τ), G(t− τ)]

= E[⟨∇L(θt−τ , γ(t− τ)), G(t− τ)−1H̄(Õt, θt−τ , γ(t− τ))−G(t− τ)−1H̄(O
′

t, θt−τ , γ(t− τ))⟩|θt−τ , γ(t− τ), G(t− τ)]

= E[(⟨∇L(θt−τ , γ(t− τ)), G(t− τ)−1H̄(Õt, θt−τ , γ(t− τ))⟩

− ⟨∇L(θt−τ , γ(t− τ)), G(t− τ)−1H̄(O
′

t, θt−τ , γ(t− τ))⟩)|θt−τ , γ(t− τ), G(t− τ)]

≤ 4DUG(Ur + Uv)ULdTV (P (Õt = .|st−τ+1, θt−τ ), µθt−τ
⊗ πθt−τ

⊗ P )

≤ 4DUG(Ur + Uv)ULbk
τ−1.

The last inequality comes using an inequality on the total variation distance that is shown in the proof of Lemma D.3 of Wu
et al., [2020].

Proof of Lemma 8:

We decompose E[Q̂(Ot, θt, γ(t), G(t))] as:

E[Q̂(Ot, θt, γ(t), G(t))]

= E[Q̂(Ot, θt, γ(t), G(t))− Q̂(Ot, θt, γ(t), G(t− τ))] + E[Q̂(Ot, θt, γ(t), G(t− τ))− Q̂(Ot, θt, γ(t− τ), G(t− τ))]

+ E[Q̂(Ot, θt, γ(t− τ), G(t− τ))− Q̂(Ot, θt−τ , γ(t− τ), G(t− τ))]

+ E[Q̂(Ot, θt−τ , γ(t− τ), G(t− τ))− Q̂(Õt, θt−τ , γ(t− τ), G(t− τ))]

+ E[Q̂(Õt, θt−τ , γ(t− τ), G(t− τ))− Q̂(O
′

t, θt−τ , γ(t− τ), G(t− τ))] + E[Q̂(O
′

t, θt−τ , γ(t− τ))],

where Õt is from the auxiliary Markov chain and O
′

t = (st, at, st+1) is from the stationary distribution with st ∼
µθt−τ , at ∼ πθt−τ , st+1 ∼ p(st, ., at) and which actually satisfies E[Q̂(O

′

t, θt−τ , γ(t − τ))] = 0. By collecting the
corresponding bounds from Lemmas 8.1–8.5, we have



E[Q̂(Ot, θt, γ(t), G(t))] ≥ −T1E|γm(t)− γm(t− τ)| − T2E∥θt − θt−τ∥ − 2DUG(Ur + Uv)UL|A|L
t∑

i=t−τ

E∥θi − θt−τ∥

− 4DUG(Ur + Uv)ULbk
τ−1 − TGE∥G(t)−1 −G(t− τ)−1∥

≥ −T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)| − T2

t∑
i=t−τ+1

E∥θi − θi−1∥

− 2D(Ur + Uv)UL|A|L
t∑

i=t−τ+1

i∑
j=t−τ+1

E∥θj − θj−1∥ − 4D(Ur + Uv)ULbk
τ−1

− TGE∥G(t)−1 −G(t− τ)−1∥

≥ −T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)| − T2

t∑
i=t−τ+1

E∥θi − θi−1∥

− 2D(Ur + Uv)UL|A|Lτ
t∑

j=t−τ+1

E∥θj − θj−1∥ − 4D(Ur + Uv)ULbk
τ−1

− TGE∥G(t)−1 −G(t− τ)−1∥

≥ −(D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2bk
τ−1 + T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)|

+ TG

t∑
i=t−τ+1

E∥G(i)−1 −G(i− 1)−1∥),

where D1 := max{T2, 2DUG(Ur + Uv)UL|A|L} and D2 := 4DUG(Ur + Uv)UL, respectively, which completes the
proof.

Under the update rule of Algorithm 2 for the actor, we have:

θt+1 = θt + b(t)G(t)−1δtΨstat .

Now,

G(t)−1δt∇ log πθt(at|st)

= G(t)−1(q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− Lt + vTt (f(st+1)− f(st))∇ log πθt(at|st)

= G(t)−1(q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− L(θt, γ(t)) + L(θt, γ(t))− Lt + (f(st+1)
T − f(st)

T )(vt − v∗t )

+ (f(st+1)
T − f(st)

T )v∗t )∇ log πθt(at|st)
= G(t)−1(L(θt, γ(t))− Lt + (f(st+1)

T − f(st)
T )(vt − v∗t ))∇ log πθt(at|st)

+G(t)−1(q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− L(θt, γ(t)) + (f(st+1)
T − f(st)

T )v∗t )∇ log πθ(at|st)

= G(t)−1(∆H(Ot, Lt, vt, θt, γ(t)) +H(Ot, θt, γ(t), q(t), h(t))).

We have,



EO′ ,q,h[G
−1(H(O

′
, θ, γ, q, h)−∆H

′
(O

′
, θ, γ))]

= G−1EO′ ,q,h[q +

k=N∑
k=1

γ(k)(hk − αk)− L(θ, γ) + V (θ,γ)(s
′
)− V (θ,γ)(s))∇ log πθ(a|s)]

= G−1∇L(θ, γ),

where EO′ ,q,h[·] denotes the expectation w.r.t s ∼ µθ, a ∼ πθ, s
′ ∼ p(s, ., a), q ∼ p̄(.|s, a, s′

), hi ∼ pi(.|s, a, s
′
). Hence,

L(θt+1, γ(t)) ≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)), G(t)−1∆H(Ot, Lt, vt, θt, γ(t)) +G(t)−1H(Ot, θt, γ(t), q(t), h(t))⟩
−MLb(t)

2∥G(t)−1δt∇ log πθt(at|st)∥2

≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)), G(t)−1∆H(Ot, Lt, vt, θt, γ(t))⟩

+ b(t)⟨∇L(θt, γ(t)), G(t)−1H(Ot, θt, γ(t), q(t), h(t))− EO′ ,q(t),h(t)[G(t)−1H(O
′
, θt, γ(t), q(t), h(t))]⟩

+ b(t)⟨∇L(θt, γ(t)), EO′ ,q(t),h(t)[G(t)−1H(O
′
, θt, γ(t), q(t), h(t))]⟩ −MLb(t)

2∥G(t)−1δt∇ log πθt(at|st)∥2

≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)), G(t)−1∆H(Ot, Lt, vt, θt, γ(t))⟩
+ b(t)ζ(Ot, θt, γ(t), q(t), h(t), G(t)) + b(t)⟨∇L(θt, γ(t)), G(t)−1∇L(θt, γ(t))⟩

+ b(t)⟨∇L(θt, γ(t)), EO′ [G(t)−1∆H
′
(O

′
, θt, γ(t))]⟩ −MLb(t)

2∥G(t)−1δt∇ log πθt(at|st)∥2

≥ L(θt, γ(t)) + b(t)⟨∇L(θt, γ(t)), G(t)−1∆H(Ot, Lt, vt, θt, γ(t))⟩
+ b(t)ζ(Ot, θt, γ(t), q(t), h(t), G(t)) + b(t)λ∥∇L(θt, γ(t))∥2

+ b(t)⟨∇L(θt, γ(t)), EO′ [G(t)−1∆H
′
(O

′
, θt, γ(t))]⟩ −MLb(t)

2∥G(t)−1δt∇ log πθt(at|st)∥2.

The last inequality holds as G(t)−1 is a positive definite and symmetric matrix with minimum eigenvalue ≥ λ. After
rearranging the terms and summing the expectation of the terms from τt to t, we have

λ

t∑
k=τt

E∥∇L(θk, γ(k))∥2 ≤
t∑

k=τt

1

b(k)
(E[L(θk+1, γ(k))]− E[L(θk, γ(k))])︸ ︷︷ ︸

I1

−
t∑

k=τt

E⟨∇L(θk, γ(k)), G(k)−1∆H(Ok, Lk, vk, θk, γ(k))⟩︸ ︷︷ ︸
I2

−
t∑

k=τt

E[ζ(Ok, θk, γ(k), q(k), h(k), G(k))]︸ ︷︷ ︸
I3

−
t∑

k=τt

E⟨∇L(θk, γ(k)), EO′ [G(k)−1∆H
′
(O

′
, θk, γ(k))]⟩︸ ︷︷ ︸

I4

+

t∑
k=τt

b(k)E[ML∥G(k)−1δk∇ log πθk(ak|sk)∥2]︸ ︷︷ ︸
I5

.

For term I1,

t∑
k=τt

1

b(k)
(E[L(θk+1, γ(k))]− E[L(θk, γ(k))]) ≤ B1(t− τt + 1)1−β+σ +B2(1 + t)σ.



This inequality comes from part I1 of Section B.1.

For term I2,

−
t∑

k=τt

E⟨∇L(θk, γ(k)), G(k)−1∆H(Ok, Lk, vk, θk, γ(k))⟩

≤

√√√√ t∑
k=τt

E∥∇L(θk, γ(k))∥2

√√√√ t∑
k=τt

E∥G(k)−1∆H(Ok, Lk, vk, θk, γ(k))∥2.

Now,

E∥G(k)−1∆H(Ok, Lk, vk, θk, γ(k))∥2

= E∥G(k)−1(L(θk, γ(k))− Lk + (f(sk+1)
T − f(sk)

T )(v(k)− v(θk, γ(k))
∗))∇ log πθk(ak|sk)∥2

≤ U2
GD

2(2E∥Ak∥2 + 8E∥Bk∥2).

Hence,

I2 ≤ DUG

√√√√ t∑
k=τt

E∥∇L(θk, γ(k))∥2

√√√√ t∑
k=τt

(2E∥Ak∥2 + 8E∥Bk∥2).

Next, for the term I3, we have

E[ζ(Ot, θt, γ(t), q(t), h(t), G(t))] ≥ −(D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2bk
τ−1 + T1

t∑
i=t−τ+1

E|γm(i)− γm(i− 1)|

+ TG

t∑
i=t−τ+1

E∥G(i)−1 −G(i− 1)−1∥).

We can write

G(i)−1 −G(i− 1)−1 = G(i)−1(G(i− 1)−G(i))G(i− 1)−1.

By letting τ
△
= τt, we have

E[ζ(Ok, θk, γ(k), q(k), h(k), G(k))] ≥ −(2D1D(τt + 1)2(Ur + Uv)UGb(k − τt) +D2b(t)

+ T1(Uc + Uα)(τt + 1)c(k − τt) + TG(τt + 1)U2
G(UG +D2)a(k − τt)).

After simplifying, we have

t∑
k=τt

E[ζ(Ok, θk, γ(k), q(k), h(k), G(k))] ≥ −A1(τt + 1)2(1 + t)1−ω

for some A1 > 0. Now, for term I4, we have

t∑
k=τt

E⟨∇L(θk, γ(k)), EO′ [G(k)−1∆H
′
(O

′
, θk, γ(k))]⟩ ≥ −2DULUGϵapp(1 + t− τt).



Also, for the term I5, we have

t∑
k=τt

b(k)E[ML∥G(k)−1δk∇ log πθk(ak|sk)∥2] ≤ C1(1 + t− τt)
1−σ,

where C1 is a positive constant. After combining all terms, we have

λ

t∑
k=τt

E∥∇L(θk, γ(k))∥2 ≤ O((t+ 1)1−β+σ) +O((τt + 1)2(1 + t)1−ω)

+DUG

√√√√ t∑
k=τt

E∥∇L(θk, γ(k))∥2

√√√√ t∑
k=τt

(2E[A2
k] + 8E[B2

k])

+ 2DULUGϵapp(1 + t− τt).

Dividing now both sides by (1 + t− τt) and assuming t ≥ 2τt − 1, we obtain

λ

t∑
k=τt

E∥∇L(θk, γ(k))∥2/(1 + t− τt) ≤ O(1 + t)σ−β +O((τt + 1)2(1 + t)−ω) + 2DULUGϵapp

+DUG

√√√√ 1

1 + t− τt

t∑
k=τt

E∥∇L(θk, γ(k))∥2

√√√√√ t∑
k=τt

(2E[A2
k] + 8E[B2

k])

1 + t− τt
.

After applying the earlier square technique, we obtain

t∑
k=τt

E∥∇L(θk, γ(k))∥2/(1 + t− τt) = O(tσ−β) +O(log2 t · t−ω) +O(ϵapp) +O(ϵ(t)),

where ϵ(t) =
t∑

k=τt

(2E[A2
k] + 8E[B2

k])/(1 + t− τt).

B.6 PROOF OF THEOREM 4: ESTIMATING THE AVERAGE REWARD FOR CONSTRAINED NATURAL
ACTOR CRITIC

We will use the same notations as used in Section B.2.

Proof of Theorem 4

From the algorithm we have the update rule as

Lt+1 = Lt + a(t)(q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk))− Lt).



Unrolling the above recursion, we have

y2t+1 = (Lt+1 − L∗
t+1)

2

=

(
Lt + a(t)

(
q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− Lt

)
− L∗

t+1

)2

=

(
yt + L∗

t − L∗
t+1 + a(t)

(
q(t) +

k=N∑
k=1

γk(t)(hk(t)− αk)− Lt

))2

= y2t + 2a(t)yt(Ct − Lt) + 2yt(L
∗
t − L∗

t+1) + (L∗
t − L∗

t+1 + a(t)(Ct − Lt))
2

≤ y2t + 2a(t)yt(Ct − Lt) + 2yt(L
∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2

= y2t − 2a(t)y2t + 2a(t)y2t + 2a(t)yt(Ct − Lt) + 2yt(L
∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2

= y2t − 2a(t)y2t + 2a(t)yt(Ct − Lt + yt) + 2yt(L
∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2

= (1− 2a(t))y2t + 2a(t)yt(Ct − L∗
t ) + 2yt(L

∗
t − L∗

t+1) + 2(L∗
t − L∗

t+1)
2 + 2a(t)2(Ct − Lt)

2,

where Ct = q(t) +
∑k=N

k=1 γk(t)(hk(t)− αk). The first inequality is due to (x+ y)2 ≤ 2x2 + 2y2.

Rearranging and summing from τt to t, we have

t∑
k=τt

E[y2k] ≤
t∑

k=τt

1

2a(k)
E(y2k − y2k+1)︸ ︷︷ ︸
I1

+

t∑
k=τt

E[Ξ̂(Ok, Lk, θk, γ(k), q(k), h(k))]︸ ︷︷ ︸
I2

+

t∑
k=τt

1

a(k)
E[yk(L

∗
k − L∗

k+1)]︸ ︷︷ ︸
I3

+

t∑
k=τt

1

a(k)
E[(L∗

k − L∗
k+1)

2]︸ ︷︷ ︸
I4

+

t∑
k=τt

a(k)E[(Ck − Lk)
2]︸ ︷︷ ︸

I5

.

After carrying out an analysis similar to that of section B.2, we obtain

t∑
k=τt

E[y2k]/(1 + t− τt) = O(tω−1) +O(log2 t · t−ω) +O(t−2(σ−ω)).

B.7 PROOF OF THEOREM 4: ESTIMATING THE CONVERGENCE POINT OF CRITIC FOR
CONSTRAINED NATURAL ACTOR CRITIC

The update rule for the critic in Algorithm 2 is similar to the one in Algorithm 1. Hence we will get the inequality (19) for
natural constrained actor critic also. After carrying out an analysis similar to Section B.3 we get

( t∑
k=τt

E∥vk − v∗(k)∥2
)
/(1 + t− τt) = O

(
1

t1−ω

)
+O

(
log t

tω

)
+O

(
1

t2(σ−ω)

)
.

B.8 PROOF OF COROLLARY 2

We have the following result from Theorem 3:

min
0≤k≤t

E[∥∇L(θk, γ(k))∥2] = O(tσ−β)) +O((log t)2t−ω) +O(ϵapp) +O(ε(t)), (21)



where,

ε(t) = (2

t∑
k=τt

E∥Ak∥2 + 8

t∑
k=τt

E∥Bk∥2)/(1 + t− τt),

Ak = Lk − L(θk, γ(k)),

Bk = vk − v(θk, γ(k)).

From the results of Theorem 4, we have

ε(t) = O(tω−1) +O(log t · t−ω) +O(t−2(σ−ω)).

Putting this back in (21), we obtain

min
0≤k≤t

E[∥∇L(θk, γ(k))∥2] = O(tσ−β) +O(log2 t · t−ω) +O(tω−1) +O(log t · t−ω) +O(t−2(σ−ω)) +O(ϵapp)

= O(tσ−β) +O(log2 t · t−ω) +O(tω−1) +O(t−2(σ−ω)) +O(ϵapp)

= O(tσ−β) +O(log2 t · t−ω) +O(t−2(σ−ω)) +O(ϵapp)

The last equality above again holds because (σ − β) > (ω − 1). Optimising over the choice of ω, σ and β, we have ω = 0.4,
σ = 0.6 and β = 1, respectively. Hence,

min
0≤k≤t

E[∥∇L(θk, γ(k))∥2] = O(log2 t · t−0.4) +O(ϵapp).

Therefore, in order to obtain an ϵ-approximate (ignoring the approximation error as with Wu et al., [2020]) stationary point
of the performance function (L(θ, γ)), namely,

min
0≤k≤T

E[∥∇L(θk, γ(k))∥2] = O(log2 T · T−0.4) +O(ϵapp) ≤ O(ϵapp) + ϵ,

we need to set T = Õ(ϵ−2.5).

C EXPERIMENTAL SETTING

For detailed information about the settings involved for the three Safety-Gym environments, Safety-PointGoal1-v0 (SPG1-
v0), Safety-CarGoal1-v0 (SCG1-vo) and SafetyPointPush1-v0 (SPP1-v0), respectively, please see Safety Gymnasium. We
experimentally compare C-AC and C-NAC algorithms with C-DQN on the three settings.

The C-DQN algorithm is obtained from the algorithm Deep Q-Network (DQN) Mnih et al., [2015] by (a) modifying the
basic setting to incorporate the average reward framework from the discounted reward setting considered there and (b)
relaxing the constraints to form a Lagrangian in a similar manner as the C-AC and C-NAC algorithms. We also update the
Lagrange parameter using the same updates as C-AC and C-NAC, respectively. This ensures a fair comparison across all the
algorithms. Note, however, that such an update of the Lagrange parameter had not been used previously in the context of the
DQN algorithm. We have taken the threshold level to be 0.1 for all the settings.

We observe that the constraint threshold is satisfied by all the three algorithms in the three different environments. Table 3
exhibits the values of the constraint costs (both average and standard error) over ten independent runs of each algorithm. As
can be seen from the table as well as the bottom row of plots in Figure 1, the constraint threshold is met by all the three
algorithms on each of the settings.

https://safety-gymnasium.readthedocs.io/en/latest/environments/safe_navigation/goal.html


Table 3: Comparision of C-AC , C-NAC and C-DQN in terms of constraint cost ± standard error.

Algorithm SafetyPointGoal1-v0 SafetyCarGoal1-v0 SafetyPointPush1-v0
C-AC 0.038 ± 0.026 0.0195 ± 0.027 0.028 ± 0.018

C-NAC 0.049 ± 0.045 0.047 ± 0.046 0.0295 ± 0.032
C-DQN 0.039 ± 0.023 0.00872 ± 0.0076 0.035 ± 0.022
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