
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUI-PRA: PROCESS REWARD AGENT FOR GUI TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphical User Interface (GUI) Agents powered by Multimodal Large Language
Models (MLLMs) show significant potential for automating tasks. However, they
often struggle with long-horizon tasks, leading to frequent failures. Process Reward
Models (PRMs) are a promising solution, as they can guide these agents with
crucial process signals during inference. Nevertheless, their application to the GUI
domain presents unique challenges. When processing dense artificial inputs with
long history data, PRMs suffer from a "lost in the middle" phenomenon, where
the overwhelming historical context compromises the evaluation of the current
step. Furthermore, standard PRMs lacks GUI changing awareness, providing static
evaluations that are disconnected from the dynamic consequences of actions, a
critical mismatch with the inherently dynamic nature of GUI tasks. In response
to these challenges, we introduce GUI-PRA (Process Reward Agent for GUI
Tasks), a judge agent designed to better provide process reward than standard
PRM by intelligently processing historical context and actively perceiving UI state
changes. Specifically, to directly combat the “lost in the middle” phenomenon, we
introduce a dynamic memory mechanism consisting of two core components: a
Relevance-based Retrieval Module to actively fetch pertinent information from
long histories and a Progressive Summarization Module to dynamically condense
growing interaction data, ensuring the model focuses on relevant context. Moreover,
to address the lack of UI changing awareness, we introduce an Aadaptive UI
Perception mechanism. This mechanism enables the agent to reason about UI state
changes and dynamically select the most appropriate tool to gather grounded visual
evidence, ensuring its evaluation is always informed by the current UI context. To
validate the practical utility of our approach, we conduct experiments on two online
benchmarks for GUI task. Our best results demonstrate an average success rate
improvement of 14.53% across the two benchmarks, a significant outperformance
of the 8.56% gain achieved by the standard PRM baseline.

1 INTRODUCTION

Graphical User Interface (GUI) Agents (Hu et al., 2025a; Li et al., 2024b), powered by the rapid
development of Multimodal Large Language Models (MLLMs) (Zhang et al., 2025; Li et al., 2024a;
Zheng et al., 2024), are emerging as a powerful paradigm for automating complex digital tasks.
By leveraging the advanced reasoning, perception, and action capabilities inherent to MLLMs,
these agents can interpret and interact with graphical environments at a level approaching human
proficiency. Consequently, developing capable GUI Agents is now considered a promising pathway
toward more general and autonomous artificial intelligence.

While numerous efforts have sought to improve GUI automation accuracy, many have centered on
training-based approaches, such as Supervised Fine-Tuning (SFT) (Gunel et al., 2021; Prottasha
et al., 2022) and Reinforcement Learning (RL) Kaelbling et al. (1996); Li (2018). However, these
methods often demand extensive, high-quality data and substantial computational resources. This
raises a critical question: how can the performance of a pre-existing GUI Agent be enhanced at
inference time, without the need for further training? This has led to a growing interest in training-free
techniques that can improve agent capabilities on-the-fly. For instance, many studies leverage the
ReAct paradigm (Yao et al., 2023), which enables agents to create and adjust plans by cyclically
reasoning about their actions and observations. Another popular approach involves decomposing
complex GUI tasks and employing a multi-agent Ye et al. (2025); Zhu et al. (2025b) system, where
specialized agents for planning and execution collaborate to accomplish the goal. Distinct from

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of the GUI-PRA compared to a standard Process Reward Model (PRM). A
standard PRM fails a GUI task due to context loss and lack of UI awareness. Our GUI-PRA over-
comes these limitations with its Dynamic Memory and UI Tool Routing mechanisms to ensure
success.

these methods that enhance an agent’s intrinsic reasoning or collaborative structure, another powerful
strategy is to introduce an external supervisor.

In general-purpose domains, Process Reward Models (PRMs) Gandhi et al. (2025); Wanyan et al.
(2025) have emerged as a highly effective training-free, test-time technique. By providing supervision
on an agent’s intermediate steps, PRMs can guide it towards a more optimal trajectory from a set
of potential action sequences. However, the adaptation of standard PRMs to the distinct challenges
of the GUI domain remains under-explored, and they exhibit critical limitations in this context. A
primary issue is their struggle with long-context tasks, leading to a "lost in the middle" phenomenon
where the model’s ability to evaluate the current action is compromised by an overwhelming amount
of historical data. Furthermore, standard PRMs lack UI changing awareness. They provide static
evaluations based on a textual history, creating a fundamental mismatch with the dynamic nature
of GUI tasks where a single action can substantially alter the visual environment. This poses a
significant challenge, as the PRM’s reward signal becomes disconnected from the visual reality of the
task.

In light of these shortcomings, we introduce GUI-PRA (Process Reward Agent for GUI Tasks),
a training-free framework that transforms a standard PRM into a GUI-domain-specific supervisor.
As illustrated in Figure 1, our design achieves this through two core technical contributions, each
tailored to address a specific limitation of standard PRMs. First, to address the "lost in the middle"
phenomenon, we design a Dynamic Memory mechanism. This mechanism intelligently processes
the dense historical trajectory by employing two components: a Relevance-based Retrieval Module
to filter and retain the most recent and pertinent steps, and a Progressive Summarization Module
to condense the long-term interaction history into a concise narrative. This ensures that the agent’s
evaluation is always based on the most salient historical context. Second, to overcome the PRM’s
lack of UI changing awareness, we introduce an Adaptive UI Perception mechanism. Instead of
passively evaluating based on text, this mechanism enables GUI-PRA to actively reason about the
UI state. It autonomously selects from a suite of complementary tools—such as OmniParserV2 (Lu
et al., 2024) for global UI analysis and Point for fine-grained, localized element grounding—to gather
grounded visual evidence. This ensures that its supervision is always informed by the current visual
reality of the task. Collectively, these components transform a standard PRM into a dynamic and
perceptive agent for GUI tasks.

To validate the effectiveness of our GUI-PRA framework, we conduct a comprehensive evaluation
using models from two prominent series, Qwen2.5-VL (Bai et al., 2025) and InternVL (Zhu et al.,
2025a; Wang et al., 2025), serving as both the base GUI Agent and the PRM. Our experiments
are performed on two online GUI benchmarks: AndroidWorld (Rawles et al., 2025) and Mobile-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MiniWoB++ (Liu et al., 2018). The experimental results demonstrate the clear superiority of our
approach. Specifically, GUI-PRA boosts the average success rate of Qwen2.5-VL-7B-Instruct by
14.53% across both benchmarks, significantly surpassing the 8.56% improvement obtained with a
standard PRM baseline. Therefore, our core contributions are as follows:

• We propose GUI-PRA, a novel agent that surpass standard PRMs for GUI tasks. This agent is
adept at handling dynamic, multi-step tasks, providing better process reward.

• We design two core mechanisms to address the key limitations of standard PRMs: a Dynamic
Memory mechanism to mitigate the “lost in the middle” problem, and an Adaptive UI Perception
mechanism to provide awareness of UI state changes.

• We provide extensive empirical validation on AndroidWorld and MobileMiniWob++. Our best
results show an average success rate improvement of 14.53%, significantly surpassing the 8.56%
gain from a standard PRM baseline.

2 PRELIMINARY

2.1 GUI TASK AUTOMATION

We study GUI task automation: given a natural language goal description g and an initial GUI state
represented by its screenshot and GUI elements (scr0, e0), the agent must generate a sequence of
actions α̂ that successfully completes the specified goal. An action sequence α̂ = (a1, a2, . . . , aT ) is
considered successful if and only if the resulting terminal state satisfies a goal validation predicate V .
Let T be the state transition function of the GUI environment, where St+1 = T (St, at). A sequence
α̂ is accepted iff

V (T (S0, α̂), g) = pass.

The agent in our framework operates using a ReAct-style (Yao et al., 2023) loop to maintain an
explicit transcript of its reasoning and interactions. At step t, the transcript is

Ht =
(
u1, a1, o1, u2, a2, o2, . . . , ut, at, ot

)
,

where ui are the model’s thoughts (free-form reasoning), ai are actions (e.g., clicks or text inputs),
and oi are the resulting observations (the new screenshot and GUI elements (scri, ei)). The policy πθ

conditions on Ht to generate the next thought and action, (ut+1, at+1) ∼ πθ(· | Ht, g). Executing
at+1 yields the observation ot+1 = (scrt+1, et+1), which is appended back to the transcript. This
process is strictly sequential and continues until the agent executes a finish action or reaches its step
budget.

2.2 SUPERVISION WITH A STANDARD PRM

To guide the GUI Agent towards an optimal action sequence, a supervisory signal is introduced
at each step. At any given step t, the policy πθ first generates a set of k candidate thought-action
pairs, Ct = {(ut,j , at,j)}kj=1. Based on the history, the standard PRM evaluates these candidates
and selects the best action to execute. It computes a reward score for each candidate thought-action
(ut,j , at,j) conditioned on the complete, unaltered interaction transcript Ht−1. The model’s objective
is to identify the action most likely to lead to a successful trajectory. The selected action at is formally
determined by:

(ut, at) = argmax
(a,u)∈{(at,j ,ut,j)}k

j=1

(PRM(g, scrt−1, et−1,Ht−1, (a, u))) (1)

The corresponding thought ut is selected along with at. This approach relies on the supervisory
model’s ability to effectively process the raw, and potentially long, history.

3 GUI-PRA

In this section, we present the methodology of GUI-PRA. GUI-PRA is specifically designed to
address the two core limitations of PRMs in this context: the "lost in the middle" problem with long
histories, and a lack of UI changing awareness. The framework achieves this through a three-stage

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The overall workflow of GUI-PRA. (a) The Dynamic Memory module first processes
the raw interaction history to generate a condensed summary. (b) Concurrently, the Adaptive UI
Perception Mechanism actively reasons about the UI state to select the most appropriate tool for
gathering grounded visual evidence. (c) For the final Best-of-N Selection, GUI-PRA integrates these
two information streams along with the previous action and its score from the last step to evaluate
and select the optimal candidate action.

process: (1) the Dynamic Memory mechanism to condense long and noisy interaction histories,
(2) the Adaptive UI Perception mechanism to actively reason about UI state changes and gather
grounded evidence, and (3) the Best-of-N Selection process where the outputs of the first two stages
are integrated to provide an informed supervisory signal. The complete workflow is illustrated in
Figure 2.

3.1 DYNAMIC MEMORY MECHANISM

The process reward model’s performance can be degraded by long and noisy interaction transcripts, a
challenge often termed the "lost in the middle" problem. To mitigate this, we introduce a Dynamic
Memory Mechanism, which serves as the core of our GUI-PRA. This mechanism formalizes the
memory function fmem, transforming the full transcript Ht−1 into a compressed yet comprehensive
summary H′

t−1. The function operates via a two-stage process.

First, a Relevance-based Retrieval stage isolates the most pertinent recent interactions. We define a
retrieval function, fretrieve, that takes the full transcript and identifies a relevance window of size m.
This function filters the history to preserve only the m most recent thought-action-observation tuples:

Hrecent = fretrieve(Ht−1) =
(
(ut−m, at−m, ot−m), . . . , (ut−1, at−1, ot−1)

)
. (2)

The occluded, earlier portion of the transcript is denoted as:
Hearly =

(
(u1, a1, o1), . . . , (ut−m−1, at−m−1, ot−m−1)

)
. (3)

Second, a Progressive Summarization stage condenses the high-level narrative of the early interactions
while discarding low-level noise. We define a summarization function, fsum, which processes the
early history and synthesizes it into a single, concise natural language sentence, Ssum:

Ssum = fsum(Hearly). (4)

Finally, the compressed history H′
t−1 is constructed by prepending the textual summary to the

sequence of recent interactions. This provides the supervisory model with a refined context that
balances long-term narrative with short-term, high-fidelity details. The complete memory function is
thus the composition of these two stages:

H′
t−1 = fmem(Ht−1) = concat(Ssum,Hrecent). (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 ADAPTIVE UI PERCEPTION MECHANISM

A primary limitation of standard PRMs is their "state-change blindness"; they evaluate actions
based on textual history, failing to perceive the visual consequences of those actions on the GUI.
To overcome this, we introduce the Adaptive UI Perception Mechanism, which endows GUI-
PRA with UI changing awareness, transforming it from a passive evaluator into an active perceiver.

At its core, this mechanism operates as a "perceive-reason-verify" loop. When confronted with a UI
state change, GUI-PRA first perceives the change, then reasons about its nature to form a hypothesis
about its informational needs. Finally, it verifies this hypothesis by intelligently selecting a tool to
gather targeted visual evidence. This ensures the final evaluation is a grounded judgment, based on
the most relevant real-time information.

To execute this loop, we equip the agent with two complementary server-side tools (Su et al.,
2025), OmniParser and Point, which provide global and local UI perception respectively (detailed in
Appendix C). The core of our adaptive mechanism lies in the hypothesis-driven selection between
these tools. For instance, when a major UI change occurs (e.g., a screen transition), the agent requires
a holistic understanding of the new layout and selects OmniParser. Conversely, when the task requires
interacting with a specific, fine-grained detail (e.g., locating a particular icon), it selects the Point tool
for precise grounding.

We formalize this hypothesis-driven process as an iterative information-gathering loop that can run
for a maximum of K iterations. At each sub-step i (for i = 1, . . . ,K), the agent’s tool policy, πtool,
makes a reasoned decision to select the next tool based on the goal g, the previous state (scrt−1, et−1),
the summarized history H′

t−1, and all evidence gathered so far Ii−1:

tooli ∼ πtool(· | g, scrt−1, et−1,H′
t−1, Ii−1). (6)

The policy can also output a special Terminate tool if it deems that sufficient information has
been gathered. The loop continues until the Terminate tool is used or the limit K is reached.
The sequence of tool outputs, In = {UI1, . . . ,UIn}, is then synthesized by an aggregation function,
faggregate, into the final, refined evidence UIt = faggregate(In). The complete tool-use function is thus
defined as:

gtool(g, scrt−1, et−1,H′
t−1) = UIt.

3.3 SELECTION: FINE-GRAINED REWARD SCORING

After processing the task context through the Dynamic Memory and Adaptive UI Perception mech-
anisms, the GUI-PRA framework successfully assembles a condensed yet relevant action history,
H′

t−1, grounded visual evidence, UIt. The subsequent and critical task is to leverage this synthesized
information to accurately and efficiently score a set of candidate actions, thereby enabling a Best-of-N
selection strategy. To this end, we have designed a comprehensive Scoring Mechanism with the
following key features. The complete prompt designed for this scoring mechanism is detailed in
Appendix F.3.

Fine-grained Scoring Scale. We establish a scoring range from 0 to 10, which is partitioned into
five distinct tiers (e.g., 0-2, 3-4, etc.). To guide the model toward nuanced and detailed judgment,
we provide a thorough description and explicit criteria for each scoring tier. This structured rubric
ensures that the model can perform a fine-grained evaluation of each candidate action.

Explicit Penalty Rules. To suppress ineffective exploration, the scoring mechanism incorporates
clear penalty clauses. When the GUI Agent executes a repetitive or demonstrably incorrect action,
the GUI-PRA deducts points according to these rules. This negative feedback effectively steers the
agent away from such behaviors in future steps.

Contextual Consistency. To maintain objectivity and ensure consistency across consecutive steps,
we introduce a contextual reference mechanism. Specifically, when scoring the candidate actions for
the current turn, we include the action selected in the previous turn along with its final score as part
of the input. This allows the GUI-PRA to base its scoring not only on the current state but also on its
own recent evaluations, ensuring the reward signal is both stable and temporally consistent.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 ENHANCED SUPERVISION WITH GUI-PRA

In contrast to the standard supervision process metioned in § 3.4, which relies on raw, unprocessed
inputs, our GUI-PRA framework provides Enhanced Supervision through two key architectural
modifications. These enhancements transform the supervisory signal from being static and context-
agnostic to dynamic and well-grounded.

First, whereas a standard PRM conditions its evaluation on the complete and often noisy interaction
transcript Ht−1, GUI-PRA utilizes a refined historical context. It employs the dynamic memory
function, fmem, to generate a concise and salient summary, H′

t−1 = fmem(Ht−1). This allows the
supervisory model to focus on the most relevant prior steps, mitigating the "lost in the middle"
problem.

Second, and more critically, GUI-PRA directly confronts the standard PRM’s lack of UI changing
awareness. A standard PRM provides static evaluations disconnected from the visual consequences of
actions. To overcome this critical mismatch, our Adaptive UI Perception mechanism (gtool) provides
dynamic, real-time visual evidence, UIt. This evidence, gathered by actively reasoning about UI
changes, serves to ground the evaluation in the current visual reality of the task.

Consequently, the final action selection is conditioned on both a focused history and grounded visual
feedback, making the decision significantly more informed. This enhanced, multimodal supervision
process is formalized as follows:

(ut, at) = argmax
(a,u)∈{at,j ,ut,j}k

j=1

(
GUI-PRA(g, scrt−1, et−1,H′

t−1, (a, u),UIt)
)

(7)

4 EXPERIMENT

4.1 BENCHMARK

We choose two online Mobile benchmark and invloves M3A (Rawles et al., 2025) as our excution
environment, a zero-shot framework that integrates ReAct and Reflexion principles, processing
Set-of-Mark (SoM) annotated screenshots to generate structured JSON actions.

AndroidWorld (Rawles et al., 2025) is a dynamic benchmark for GUI agents developed for the
Android ecosystem. It spans 116 tasks across 20 real-world applications. The benchmark establishes
a realistic, online environment by leveraging Android Studio, specifically emulating a Pixel 6 device
model running Android 13 (API Level 33). A key feature of AndroidWorld is its use of task templates,
where specific task instances are generated and controlled via random seeds, ensuring reproducibility.
The tasks are categorized into three difficulty levels—easy, medium, and hard—allowing for a more
granular evaluation of an agent’s capabilities.

MobileMiniWoB++ is a mobile-centric web benchmark adapted by Rawles et al. (2025) from the
original MiniWoB++ benchmark (Liu et al., 2018). It comprises 92 tasks, all of which are integrated
within a single simulated application, meaning the tasks do not involve multi-page navigation.
Consistent with traditional web benchmarks, the tasks in Mobile-MiniWoB++ typically feature a
high density of UI elements, presenting a significant challenge to the agent’s element localization
abilities. A notable limitation of this benchmark is that its task templates are not fully controllable,
leading to minor variations in the specific details of each task instance.

4.2 BASELINES

Our GUI-PRA framework is designed to transform a standard Process Reward Model (PRM) into a
domain-specific supervisor. Consequently, we evaluate its performance against two primary baselines:

• Base Agent (No Guidance): A standalone GUI agent operating without any external supervision.
This baseline measures the raw capability of the base model.

• Standard PRM Guidance: The same base agent guided by a standard, powerful PRM. This
baseline isolates the benefit of our GUI-specific enhancements over a generic guidance method.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main performance comparison on AndroidWorld and MobileMiniWoB++. The guidance
backbones are denoted by -I (InternVL3-78B-Instruct) and -Q (Qwen2.5-VL-72B-Instruct). ∆@1:
SR% gain over the base model; ∆@2: SR% gain of GUI-PRA over the standard PRM.

Model Series Setting DSR (%) SR (%) ∆@1 ∆@2
easy medium hard

AndroidWorld

InternVL3
INTERNVL3-8B-INSTRUCT 9.84 0.00 5.26 6.03 - -

W/ PRM-I 16.39 0.00 5.26 9.48 +3.45 -
W/ GUI-PRA-I 26.23 1.39 5.26 15.09 +9.06 +5.61

Qwen2.5-VL
QWEN2.5-VL-7B-INSTRUCT 18.85 2.78 5.26 11.64 - -

W/ PRM-Q 32.79 2.78 5.26 18.97 +7.33 -
W/ GUI-PRA-Q 32.79 9.72 5.26 21.12 +9.48 +2.15

Mixture Models
INTERNVL3_5-8B-INSTRUCT 11.48 0.00 5.26 6.90 - -

W/ PRM-Q 31.15 2.78 5.26 18.10 +11.20 -
W/ GUI-PRA-Q 31.15 2.78 5.26 18.10 +11.20 0.00

MobileMiniWob++

InternVL3
INTERNVL3-8B-INSTRUCT - - - 39.13 - -

W/ PRM-I - - - 36.96 -2.17 -
W/ GUI-PRA-I - - - 42.39 +3.26 +5.43

Qwen2.5-VL
QWEN2.5-VL-7B-INSTRUCT - - - 38.04 - -

W/ PRM-Q - - - 47.82 +9.78 -
W/ GUI-PRA-Q - - - 57.61 +19.57 +9.79

4.3 EXPERIMENTAL SETUP

Model Selection. We conduct experiments using models from two prominent series: Qwen2.5-VL
(Bai et al., 2025) and InternVL3 (Zhu et al., 2025a).

Agent and Supervisor Roles. For the role of the base GUI Agent, we utilize the moderately-sized
Qwen2.5-VL-7B-Instruct and InternVL3-8B-Instruct. For the supervisory role in both the Standard
PRM baseline and our GUI-PRA framework, we employ their larger, more powerful counterparts:
Qwen2.5-VL-72B-Instruct and InternVL3-78B-Instruct.

Cross-Family Generalization Setting. To assess the generalization capabilities of the supervisory
models, we also evaluate a mixed-model setting where the InternVL3-8B-Instruct agent is guided by
the Qwen2.5-VL-72B-Instruct supervisor.

4.4 EVALUATION METRICS

To provide a comprehensive assessment of our method, we employ two key metrics that evaluate both
the effectiveness and the efficiency of our GUI-PRA.

Success Rate (SR). This is the primary metric for measuring the overall effectiveness of the agent. It
is defined as the percentage of tasks that the agent successfully completes out of the total number of
trials. A higher SR directly corresponds to a more capable and reliable agent.

Difficulty-Stratified Success Rate (DSR). To provide a more granular analysis of agent capabilities,
we introduce the Difficulty-Stratified Success Rate (DSR). This metric disaggregates the overall
Success Rate (SR) to report separate performance scores for tasks classified as ’easy’, ’medium’, and
’hard’. This breakdown pinpoints the specific task complexities where our framework delivers the
most value.

4.5 RESULTS AND ANALYSIS

Overall Performance Superiority. As shown in Table 1, our GUI-PRA framework consistently
delivers superior performance over both the unguided base models and those guided by a standard
PRM. On the AndroidWorld benchmark, GUI-PRA boosts the Qwen2.5-VL model’s overall success

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation study of GUI-PRA components. Performance is reported for the series full
model based on Qwen2.5-VL and variants with key components removed. The ∆@2 column shows
the SR% gain over the standard PRM. The full model performs best, showing the value of each
component.

Method DSR (%) SR (%) ∆@2
easy medium hard

GUI-PRA (Full) 32.79 9.72 5.26 21.12 +2.15
w/o component:
— OmniParserV2 32.79 2.78 5.26 18.97 0.00
— Point 29.51 6.94 5.26 18.53 -0.44
— Memory 31.15 0.00 5.26 17.24 -1.73

rate (SR) by 9.48%. This performance advantage is even more pronounced on the general-purpose
InternVL3 model, where GUI-PRA provides a much larger improvement margin, elevating the SR
from 6.03% to 15.09% (+9.06%). This trend extends to the UI-dense Mobile-MiniWoB++ benchmark,
where GUI-PRA achieves an impressive 19.57% SR gain for Qwen2.5-VL, more than doubling the
performance boost offered by the standard PRM (+9.78%).

Critical Advantage in Complex Tasks. A more granular analysis using the Difficulty-Stratified
Success Rate (DSR) reveals that GUI-PRA’s most significant advantages emerge on tasks of ’medium’
difficulty. For the InternVL3 series, which completely fails on these tasks (0.00% SR) both standalone
and with a standard PRM, GUI-PRA is the only method that enables a non-zero success rate
(1.39%). The impact is even more substantial on the more capable Qwen2.5-VL model, where
GUI-PRA elevates the ’medium’ task success rate from 2.78% to 9.72%, more than tripling the
performance. This demonstrates that GUI-PRA provides a critical boost on moderately challenging
problems, unlocking capabilities for weaker models and substantially enhancing them for stronger
ones.

4.6 ABLATION STUDIES

To validate the distinct contributions of our core mechanisms, we conducted an ablation study on the
Qwen2.5-VL series. As presented in Table 2, the results confirm that each component is critical. The
full model achieves the best performance, while removing any single mechanism leads to a significant
degradation.

Dynamic Memory is the pillar for contextual understanding. Our memory module is not a passive
store but an active filtering and summarization mechanism. Removing it forces the agent to contend
with raw, unfiltered history, causing a catastrophic performance collapse on context-dependent
tasks; the success rate on ’medium’ difficulty tasks plummets from 9.72% to zero. This confirms
that processed, high-signal memory—not just the presence of history—is indispensable for solving
complex tasks.

Adaptive UI Perception is critical for grounded judgment. This mechanism’s value is evident
when its perceptual tools are removed. Removing the global context from OmniParser nullifies any
advantage over the standard PRM on ’medium’ tasks. More revealingly, removing the local grounding
from the Point tool causes performance to drop below the standard PRM baseline (-0.44%). This
outcome demonstrates a critical insight: our framework’s advanced reasoning becomes a liability
without its perceptual tools. GUI-PRA is designed to form hypotheses and expect verification; when
the verification step fails, its sophisticated judgment becomes miscalibrated. This leads to flawed
evaluations that are more detrimental than the simpler, static judgments of a standard PRM. The
full model’s success, therefore, relies on the tight integration of processed memory and an active,
multi-level perception system.

4.7 CASE STUDIES

Figure 3 illustrates a complete operational flow of our GUI-PRA framework, showcasing its interac-
tion with a base GUI Agent to fulfill a user’s request. The top row depicts the trajectory of the base
GUI Agent. It correctly executes all the positive data entry sub-tasks: it navigates to the contacts

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: A complete case of GUI-PRA guiding a GUI Agent to complete the ’ContactsNewCon-
tactDraft’ task. The figure illustrates the parallel process flows, showing the agent’s action trajectory
(top row) and the continuous supervision provided by GUI-PRA (bottom row) across multiple steps
until task completion.

application, initiates the creation of a new contact, and accurately inputs the name, phone number,
and label. In parallel, the bottom row shows the continuous monitoring and reasoning process of our
GUI-PRA. At each step, GUI-PRA leverages its UI Tools to perceive the screen, grounding the
agent’s actions and the state of the UI elements, as evidenced by the ‘Icon‘ and ‘<point>‘ outputs. The
primary challenge here is not the data entry itself, but correctly interpreting the negative constraint:
"Do NOT hit save." GUI-PRA excels by continuously validating the agent’s progress against this
complex goal. It correctly determines the precise moment the task is finished, instructing the agent to
terminate rather than incorrectly proceeding to save.

This intervention prevents the GUI Agent from making an irreversible error that would have resulted
in task failure. This case highlights GUI-PRA’s ability to provide nuanced, process-level supervision
that goes beyond simple action validation, ensuring strict adherence to complex user constraints.

Furthermore, we observe that GUI-PRA’s scoring feedback mechanism and its penalty for repeated
actions were instrumental in guiding it to this correct decision, as detailed in Appendix D.

5 CONCLUSION

In this paper, we introduced GUI-PRA, a novel, training-free framework that transforms a standard
Process Reward Model (PRM) into a GUI-domain-specific supervisor. Our work addresses two critical
limitations of standard PRMs in dynamic GUI environments: the "lost in the middle" phenomenon
with long-context histories, and the lack of UI changing awareness that leads to static evaluations.
To overcome these challenges, GUI-PRA incorporates two core innovations. A Dynamic Memory
mechanism intelligently condenses historical trajectories to maintain focus on salient information.
More critically, an Adaptive UI Perception mechanism endows the agent with UI changing awareness,
enabling it to reason about visual changes and gather grounded evidence before making a judgment.
Extensive experiments on online GUI benchmarks validate the efficacy of our approach, showing that
GUI-PRA significantly improves agent success rates, particularly on more challenging d tasks. This
highlights its potential to robustly enhance the reliability and efficiency of automated GUI agents in
dynamic environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our GUI-PRA framework significantly enhances the autonomy and reliability of GUI agents, making
them more capable of executing complex tasks in real-world digital environments. While the ability
to automate complex digital interactions is a powerful tool, it also introduces potential risks. A
highly autonomous agent could be misused for malicious purposes, such as unauthorized data access,
spam generation, or performing actions without explicit user consent. We strongly urge researchers
and developers to implement robust safety protocols, such as clear user consent mechanisms and
operational constraints, to ensure the ethical deployment of such technologies. Nevertheless, the
original goal of our work is positive: to create more helpful and efficient digital assistants that can
robustly follow user instructions. Therefore, we encourage the community to leverage this technology
responsibly, with a focus on beneficial and user-centric applications.

REPRODUCIBILITY

To ensure the reproducibility of our findings, detailed implementation parameters and prompts
can be found in Appendix B. Additionally, our key source code has been submitted as part of the
supplementary material. These measures are intended to facilitate the verification and replication of
our results by other researchers in the field.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

10

https://arxiv.org/abs/2501.12948


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin
Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-
Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne
Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Borchardt,
Dirk Groeneveld, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa Schoenick, Oscar Michel,
Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi, Ross Girshick, Ali Farhadi,
and Aniruddha Kembhavi. Molmo and pixmo: Open weights and open data for state-of-the-art
vision-language models, 2024. URL https://arxiv.org/abs/2409.17146.

Shubham Gandhi, Jason Tsay, Jatin Ganhotra, Kiran Kate, and Yara Rizk. When agents go astray:
Course-correcting swe agents with prms, 2025. URL https://arxiv.org/abs/2509.
02360.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning for pre-
trained language model fine-tuning, 2021. URL https://arxiv.org/abs/2011.01403.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2024. URL https://arxiv.org/abs/2312.08914.

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling
Tao, Xiangxin Zhou, Ziyu Zhao, Yuhuai Li, Shengze Xu, Shenzhi Wang, Xinchen Xu, Shuofei
Qiao, Zhaokai Wang, Kun Kuang, Tieyong Zeng, Liang Wang, Jiwei Li, Yuchen Eleanor Jiang,
Wangchunshu Zhou, Guoyin Wang, Keting Yin, Zhou Zhao, Hongxia Yang, Fan Wu, Shengyu
Zhang, and Fei Wu. Os agents: A survey on mllm-based agents for general computing devices use,
2025a. URL https://arxiv.org/abs/2508.04482.

Zhiyuan Hu, Shiyun Xiong, Yifan Zhang, See-Kiong Ng, Anh Tuan Luu, Bo An, Shuicheng Yan, and
Bryan Hooi. Guiding vlm agents with process rewards at inference time for gui navigation, 2025b.
URL https://arxiv.org/abs/2504.16073.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285, 1996.

Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Guoyin
Wang, Bei Chen, and Junnan Li. Aria: An open multimodal native mixture-of-experts model,
2024a. URL https://arxiv.org/abs/2410.05993.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, Rui Kong, Yile Wang, Hanfei Geng, Jian Luan, Xuefeng Jin,
Zilong Ye, Guanjing Xiong, Fan Zhang, Xiang Li, Mengwei Xu, Zhijun Li, Peng Li, Yang Liu,
Ya-Qin Zhang, and Yunxin Liu. Personal llm agents: Insights and survey about the capability,
efficiency and security, 2024b. URL https://arxiv.org/abs/2401.05459.

Yuxi Li. Deep reinforcement learning: An overview, 2018. URL https://arxiv.org/abs/
1701.07274.

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana Prasad Sathya
Moorthy, Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Mastering universal user interface
understanding across platforms, 2025. URL https://arxiv.org/abs/2410.18967.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration, 2018. URL https://arxiv.
org/abs/1802.08802.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025. URL https://arxiv.org/abs/2504.14239.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024. URL https://arxiv.org/abs/2408.00203.

11

https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2509.02360
https://arxiv.org/abs/2509.02360
https://arxiv.org/abs/2011.01403
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2508.04482
https://arxiv.org/abs/2504.16073
https://arxiv.org/abs/2410.05993
https://arxiv.org/abs/2401.05459
https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/2410.18967
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2504.14239
https://arxiv.org/abs/2408.00203


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents, 2024. URL https://arxiv.org/abs/2404.
06474.

Nusrat Jahan Prottasha, Abdullah As Sami, Md Kowsher, Saydul Akbar Murad, Anupam Kumar
Bairagi, Mehedi Masud, and Mohammed Baz. Transfer learning for sentiment analysis using bert
based supervised fine-tuning. Sensors, 22(11), 2022. ISSN 1424-8220. doi: 10.3390/s22114157.
URL https://www.mdpi.com/1424-8220/22/11/4157.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2025. URL https://arxiv.org/abs/2405.14573.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen,
Jiawei Gu, Juntao Li, Xiaoye Qu, and Yu Cheng. Openthinkimg: Learning to think with images via
visual tool reinforcement learning, 2025. URL https://arxiv.org/abs/2505.08617.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
reasoning errors, but can correct them given the error location, 2024. URL https://arxiv.
org/abs/2311.08516.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025.

Yuyang Wanyan, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Jiabo Ye, Yutong Kou,
Ming Yan, Fei Huang, Xiaoshan Yang, Weiming Dong, and Changsheng Xu. Look before you
leap: A gui-critic-r1 model for pre-operative error diagnosis in gui automation, 2025. URL
https://arxiv.org/abs/2506.04614.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024. URL https://arxiv.org/abs/2410.23218.

Han Xiao, Guozhi Wang, Yuxiang Chai, Zimu Lu, Weifeng Lin, Hao He, Lue Fan, Liuyang Bian, Rui
Hu, Liang Liu, Shuai Ren, Yafei Wen, Xiaoxin Chen, Aojun Zhou, and Hongsheng Li. Ui-genie:
A self-improving approach for iteratively boosting mllm-based mobile gui agents, 2025. URL
https://arxiv.org/abs/2505.21496.

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang,
and Chunyuan Li. Llava-critic: Learning to evaluate multimodal models, 2025. URL https:
//arxiv.org/abs/2410.02712.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

12

https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2404.06474
https://www.mdpi.com/1424-8220/22/11/4157
https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2505.08617
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2506.04614
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2505.21496
https://arxiv.org/abs/2410.02712
https://arxiv.org/abs/2410.02712
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, Jitong Liao, Qi Zheng, Fei Huang, Jingren Zhou, and Ming Yan.
Mobile-agent-v3: Fundamental agents for gui automation, 2025. URL https://arxiv.org/
abs/2508.15144.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users, 2023. URL https://arxiv.org/abs/
2312.13771.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction tuning for large language models: A
survey, 2025. URL https://arxiv.org/abs/2308.10792.

Kaizhi Zheng, Xuehai He, and Xin Eric Wang. Minigpt-5: Interleaved vision-and-language generation
via generative vokens, 2024. URL https://arxiv.org/abs/2310.02239.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han
Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou,
Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Internvl3:
Exploring advanced training and test-time recipes for open-source multimodal models, 2025a.
URL https://arxiv.org/abs/2504.10479.

Zichen Zhu, Hao Tang, Yansi Li, Dingye Liu, Hongshen Xu, Kunyao Lan, Danyang Zhang, Yixuan
Jiang, Hao Zhou, Chenrun Wang, Situo Zhang, Liangtai Sun, Yixiao Wang, Yuheng Sun, Lu Chen,
and Kai Yu. Moba: Multifaceted memory-enhanced adaptive planning for efficient mobile task
automation, 2025b. URL https://arxiv.org/abs/2410.13757.

13

https://arxiv.org/abs/2508.15144
https://arxiv.org/abs/2508.15144
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2310.02239
https://arxiv.org/abs/2504.10479
https://arxiv.org/abs/2410.13757


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A STATEMENT ON THE USAGE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, a Large Language Model (LLM) was utilized as an
auxiliary tool. Its application was strictly limited to improving the language and readability of the
text, as well as assisting with the formatting of figures. The authors have meticulously reviewed and
edited all machine-generated suggestions to ensure the scientific accuracy and integrity of the final
content, for which they take full responsibility.

B IMPLEMENTATION DETAILS

To ensure the reproducibility of our experimental results, we meticulously documented and controlled
several key parameters and settings throughout the evaluation of GUI-PRA.

For the underlying GUI Agent, we fixed the base inference parameters to maintain consistent behavior
across all experiments. Specifically, the temperature was set to 0.5, top_p to 0.9, and top_k to 80. We
use random seeds to control generation process. During the base model testing phase, a random seed
of 42 was used. For test-time scaling experiments, where eight candidate trajectories were generated,
the following distinct random seeds were employed: [30, 42, 3407, 114514, 256, 64, 1024, 2].

In the configuration of GUI-PRA’s components, the activation threshold for the dynamic memory
mechanism was set to 5, triggering its use when the historical record length exceeded five steps. The
maximum number of routing attempts for the dynamic UI Tool Routing component was capped at 2.

The experiments were conducted on the following hardware configurations: 4x H20 GPUs with
96GB VRAM, 1x A100 GPU with 40GB VRAM, 2x L20 GPUs with 48GB VRAM.

C TOOL DETAILS

Table 3: The perceptual UI Tools used by GUI-PRA for interface analysis.

Tool Input Output Description
OMNIPARSER image SoM + BBox text-driven object detection
POINT image + description point coordinates object localization

The Adaptive UI Perception mechanism of GUI-PRA is facilitated by two complementary, server-
side tools. Their input/output formats are summarized in Table 3, and their specific functionalities are
detailed below:

OmniParser: Global UI Perception. The OmniParser tool (Lu et al., 2024) is designed for
comprehensive GUI interface recognition. Its process consists of two primary stages: Optical
Character Recognition (OCR) and Set-of-Mark (SoM) annotation. First, the OCR module interprets
the semantics of various elements on the GUI and precisely localizes their bounding boxes. Following
this, the Set-of-Mark module utilizes the content and coordinates from the OCR stage to precisely
annotate the interface. This yields both a structured textual representation and an intuitive visual
overlay of the interface, both of which are readily interpretable by the Large Language Model (LLM).

Point: Local UI Element Grounding. The Point tool, based on Molmo-7B-D-0924 (Deitke et al.,
2024), is engineered to precisely ground UI elements from natural language descriptions. It can locate
the coordinates of a UI element based on its corresponding textual content or identify the position of
common GUI icons from more ambiguous, descriptive prompts (e.g., "Phone Icon"). To provide a
clear visual representation for the PRM, we overlay the original GUI screenshot with a red pentagram
at the coordinates generated by the Point tool, effectively highlighting the targeted element.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: A case study illustrating GUI-PRA’s self-correction from an evaluation loop. The figure
shows GUI-PRA assigning conflicting high scores to both the correct answer and a premature
termination action (Steps 7-8), before correcting its judgment in Step 9 to successfully guide the
agent to task completion.

D CASE STUDY: PENALTY FOR REPEATED ACTIONS

The case study in Figure 4 demonstrates a critical capability of GUI-PRA: its ability to self-correct
after entering a flawed evaluation loop. The user’s objective is for the agent to count the to-do items
on the screen and provide a numerical answer.

The sequence shows the agent successfully navigating to the correct "Ideas" screen (Step 6), where
the answer is visually available. However, a problem arises in the evaluation process. In Steps 7 and 8,
GUI-PRA incorrectly gives a perfect score of 10 to both the correct intermediate action (‘"answer":
"3"‘) and the premature final action (‘Action: "complete"‘). This creates a conflicting signal, trapping
the process in a non-productive cycle because it endorses two contradictory steps as equally valid.

The crucial intervention occurs in Step 9. Here, GUI-PRA breaks the stalemate by correcting its own
flawed judgment. It now correctly penalizes the repetitive and premature ‘complete‘ action while
validating the ‘answer‘ action as the correct path forward. This decisive re-evaluation resolves the
ambiguity, breaks the loop, and guides the agent to successfully complete the task by providing the
final answer.

E RELATED WORK

Recently, GUI agents powered by (Multimodal) Large Language Models ((M)LLMs) have demon-
strated significant potential in Graphical User Interfaces (GUIs) automating tasks. Despite these
advancements, existing GUI agents still face challenges in completing complex online GUI tasks. To
address these limitations, many researchers have attempted to decompose the core capabilities of a
GUI agent, such as planning and grounding, to design more sophisticated agent frameworks (Ye et al.,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2025; Zhang et al., 2023). For example, Mobile-Agent-v3 (Ye et al., 2025) involves the coordination
of multiple GUI agent roles that share observations and reasoning trajectories to handle complex,
long-horizon automation workflows. Another line of research focuses on building GUI-specific agents
through fine-tuning (Liu et al., 2025; Hong et al., 2024; Wu et al., 2024; Li et al., 2025). For instance,
InfiGUI-R1 (Liu et al., 2025) employs a two-stage reinforcement learning paradigm to enhance
an agent’s spatial reasoning and error recovery capabilities, respectively. However, a commonality
in these existing methods is their reliance on the agent itself making the correct decision at each
individual step. This dependency increases the risk of task failure, especially when an irreversible
action is taken. In response to this challenge, we introduce a Process Reward Agent for GUI tasks,
which leverages an external agent to provide process supervision, thereby pre-evaluating and selecting
more optimal execution paths.

E.1 PROCESS REWARD MODELS FOR LLMS

Techniques such as Chain-of-Thought (CoT) (Wei et al., 2023) and Chain-of-Action (CoA) are
designed to help LLMs deconstruct complex problems into a sequence of manageable steps for
thought or action. However, during long-chain reasoning processes, LLMs do not always generate
logically sound steps and may even produce self-contradictory outputs. Some existing works have
explored self-reflection (Shinn et al., 2023; DeepSeek-AI et al., 2025) and sef-refine (Madaan et al.,
2023; Pan et al., 2024; Tyen et al., 2024) mechanisms to rectify these reasoning errors. Yet, the
efficacy of such methods is often constrained by the intrinsic capabilities of the model itself, leading
to low success rates or causing the model to become trapped in inefficient correction loops. In
contrast, an alternative and often more effective approach is to introduce external supervision. Several
studies (Gandhi et al., 2025; Xiong et al., 2025; Wanyan et al., 2025; Xiao et al., 2025) have proposed
the use of a Process Reward Model (PRM) to provide external oversight and feedback on the LLM’s
reasoning process, helping it select the optimal reasoning path. In the GUI agent domain, works
like Hu et al. (2025b); Wanyan et al. (2025) have constructed PRMs using reinforcement learning
techniques. However, these methods typically demand rigorous data preparation and entail significant
training overhead. Distinguishing our work from these training-intensive approaches, we transform a
standard PRM into a GUI-specific Process Reward Agent (PRA) by designing a novel training-free
Judge Agent framework.

F PROMPTS

We provide the prompts in constructing GUI-PRA below.

F.1 GUI-PRA: MEMORY

GUI-PRA: Dynamic Memory - Stage 1

SYSTEM:

You are a Process Reward Model. Your task is to evaluate a single candidate action step based
on a user’s prompt and provided screen image. To reduce the impact on the dialogue window,
you need to dynamically manage the cache. Please dynamically manage the user’s action
history part, keeping only the necessary portions. Ensure that the essential key information is
retained.
CRITICAL RULES:
1. You MUST return a list of the EXACT SAME LENGTH as the input history
2. You MUST only keep the last N recent steps (where N is determined by relevance)
3. You MUST set all non-essential earlier steps to empty strings ”
4. You MUST NOT skip steps or create gaps - only preserve consecutive recent steps from the

end
5. You MUST maintain the original step numbering and format
Selection Criteria:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Preserve only the most recent steps necessary for current context
• Remove redundant or outdated information from the beginning
• Keep steps that provide essential operational context
• Consider both textual content and visual context from the screen image

Output Format: Return ONLY a Python list with the same length as input, where unwanted
steps are empty strings.

USER:

Current Goal: {goal}
Full History (as list): {history}
Task: Return a filtered list of the SAME LENGTH where only the last N relevant steps are
preserved (as-is) and all earlier steps are set to empty strings.
Example Input: [’Step 1 -A’, ’Step 2 -B’, ’Step 3 -C’, ’Step 4
-D’]
Example Output: [”, ”, ’Step 3 -C’, ’Step 4 -D’]
Return ONLY the Python list format, nothing else.

GUI-PRA: Dynamic Memory - Stage 2

SYSTEM:
You are a helpful assistant that summarizes text.
USER:
You are an expert summarizer. Your task is to read a list of previous user actions and create a
concise, one sentence summary. The summary should capture the main accomplishments and
the state reached before the final few steps. Actions to Summarize: {actions} Instructions:

• Be concise and to the point.
• Write in a narrative style (e.g., "The user logged in and navigated to...").
• Do not use a list format or mention step numbers.
• The summary should provide context for the "Recent Actions" that will follow it.

Output: Provide ONLY the summary sentence.

F.2 GUI-PRA: UI TOOL ROUTING

GUI-PRA: UI Tool Routing

SYSTEM:
You are a visual assistant with the ability to collect external information using different tools,
specifically for tasks involving Computer, Phone, and Browser Use judging. Your goal is to
evaluate the type of problem based on the input question and choose the most appropriate tool
to gather relevant information for a subsequent process reward model to judge the response.
You only need to decide to use the listed tools to enhance your understanding of the question,
not to answer it.

Here are the available tools:
• Point: Identifies a specific point... Example:
{"name": "Point", "arguments": {"image": "img_1", "param":
"Icon ’Gmail’"}}

• omni_parser: Parses a UI or general image... Example:
{"name": "omni_parser", "arguments": {"image": "img_1"}}

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Terminate: Ends the task and provides... Example:
{"name": "Terminate", "arguments": {"ans": "1985"}}

To gather relevant information:
• Assess the type of question provided...
• If segmentation or line drawing is required, first use the Point tool to identify coordinates.
• Use the selected tools logically and sequentially...

Always ensure that at least one tool is used, and structure the output in a JSON format as shown
below:

Example Output:
Example 1:

{
"thought": "My primary objective is to gather sufficient
information to score the next action for a Process
Reward Model (PRM). To do this, I need a comprehensive
understanding of the entire screen, including all text and
interactive elements. The omni_parser tool is the most
effective choice as it provides a complete analysis of
the UI. Therefore, I will use it to collect the necessary
context for the evaluation.",
"actions": [
{"name": "omni_parser", "arguments": {"image": "img_1"}}
]
}

Example 2:

{
"thought": "In order to help to evaluate the next action
for the PRM, I need to gather the necessary information
first. The next action is likely related to the weather
information, identified by the text ’Sun, Oct 15’.
Therefore, I must pinpoint its location. I will use the
Point tool to obtain the coordinates of this text.",
"actions": [
{"name": "Point", "arguments": {"image": "img_1",
"param": "Text ’Sun,Oct 15’"}}
]
}

If further action is required, continue building on the previous step with the correct tool.

GUI-PRA: UI Tool Routing

USER:
User Question: <initial_prompt>
You have already taken some steps. Here is the history of your actions and their observations:
Current tool calling history: <history_str>

Your Task (OI - Observation & Introspection):
Summarize: Briefly summarize what you have learned from the history.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Decide: Based on your summary and the initial goal, decide on the next step. Do you have
enough information to answer the request?
• If YES, call the tool: {"name": "Terminate", "arguments": {"ans":
"<your final answer>"}}

• If NO, call another tool to get the missing information.
Do not call any tool that you have used before.

F.3 GUI-PRA: BEST OF N SELECTION

GUI-PRA: BoN Selection

SYSTEM:

You are a Process Reward Model (PRM). Your task is to evaluate a single candidate
action step based on a user’s instruction, a provided screen image, and other contextual
information. Do not give a high score just because the reason and the action within the response
are consistent. You need to prioritize whether the action is performed correctly.
Evaluation Process and Criteria:
1. Understand the Goal and Context: Carefully review the user’s final objective, the current

screen image, and the history of prior actions, including previous steps.
2. Determine Your Optimal Action: Based on all available information, internally decide what

the most effective and optimal next action should be to accomplish the task.
3. Evaluate the Candidate Action: Compare the provided candidate action against your optimal

action, using the following detailed criteria for a comprehensive assessment:
4. Progress Toward Goal: Does the action clearly and tangibly advance the task? Reward

meaningful progress; penalize irrelevant or low-impact actions.
5. Error and Stability: Did the action cause an error? Penalize based on severity (fatal errors

should receive the lowest scores, while minor/recoverable errors receive smaller penalties).
The score should also be reduced if the model’s output is ambiguous or unstable.

6. Efficiency: Is this an efficient path to the goal? Penalize redundant or repetitive actions that
yield no significant progress.

7. Reflection Usage: Does the action demonstrate learning from past mistakes (utilizing
reflection)? Reward the effective use of reflection; penalize ignoring its insights.

8. Loop Detection: Does this action create a repetition or loop when compared to previous
steps? Identify and penalize ineffective loops.If there are consecutive repetitive steps, please
reduce the score significantly.

9. Contextual Awareness: Is the action aligned with the overall PlanningStep and TaskStep?
Ensure consistency with the strategy and penalize deviations.

10. Comprehensively evaluate the correctness of the response based on the entire action history.
Ensure the task is actually completed before choosing to end.

Assign a Score: Based on the evaluation above, assign a numerical score from 0 to 10 to the
candidate action. Scoring Guidelines (0-10 Scale):

• - 9-10: Clearly advances the goal; highly efficient; strong use of reflection; no loops.
• - 7-8: Good progress; minor inefficiencies; clear use of reflection; minimal loop risk.
• - 5-6: Moderate progress; limited efficiency; moderate use of reflection; mild repetition

risks.
• - 3-4: Poor progress; inefficient; weak use of reflection; noticeable loop risks.
• - 1-2: Minimal progress; repetitive actions leading to loops; significant errors or deviations

from the plan.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• - 0: Severe issues: explicit loops, critical errors that block progress, wrong Action Space, or
complete irrelevance to the task.

Output Format: Your output must be a single JSON object containing a "score" (as a
number from 0 to 10) and the "original_step" (the exact text of the candidate action you
evaluated). Enclose your entire JSON output within \n<eval><\/eval>\n XML tags.

GUI-PRA: BoN Selection

USER:

Please evaluate the following candidate action based on the user’s instruction and the provided
screen image, following all guidelines from the system prompt.
User’s Instruction: {action_prompt}
Candidate Action to Evaluate: {action}
Please complete a granular scoring for the current step based on the previous steps and scores.
Here’s the last action and its score :previous
Your evaluation should be a JSON object with "score" and "original_step", wrapped
in \n<eval><\/eval>\n tags.

F.4 PRM: BEST OF N SELECTION

PRM: BoN Selection

SYSTEM:

You are a Process Reward Model. Your task is to evaluate a single candidate action step
based on a user’s instruction and provided screen image.
Evaluation Process:
1. Understand the Goal: Carefully review the user’s instruction and the current screen image.
2. Determine Your Optimal Action: Based on the instruction and image, decide what you

believe is the best possible action step.
3. Evaluate the Candidate Action: Compare the provided candidate action step against your

optimal action.
4. Assign a Score: Assign a numerical score to the candidate action from 0 to 100. If the

candidate action is correct and has a correct reasoning process, a higher score should be
given.

Output Format: Your output must be a single JSON object containing a "score" (as a
number from 0 to 10) and the "original_step" (the exact text of the candidate action you
evaluated). Enclose your entire JSON output within \n<eval><\/eval>\n XML tags.

PRM: BoN Selection

User:

Please evaluate the following candidate action based on the user’s instruction and the provided
screen image, following all guidelines from the system prompt.
User’s Instruction: {action_prompt}
Candidate Action to Evaluate: {action}
Your evaluation should be a JSON object with "score" and "original_step", wrapped
in \n<eval><\/eval>\n tags.

20


	Introduction
	Preliminary
	GUI Task Automation
	Supervision with a Standard PRM

	GUI-PRA
	Dynamic Memory Mechanism
	Adaptive UI Perception Mechanism
	Selection: Fine-grained Reward Scoring
	Enhanced Supervision with GUI-PRA

	Experiment
	Benchmark
	Baselines
	Experimental Setup
	Evaluation Metrics
	Results and Analysis
	Ablation Studies
	Case Studies

	Conclusion
	Statement on the Usage of Large Language Models
	Implementation Details
	Tool Details
	Case Study: Penalty for Repeated Actions
	Related Work
	Process Reward Models for LLMs

	PROMPTS
	GUI-PRA: Memory
	GUI-PRA: UI TOOL Routing
	GUI-PRA: Best of N Selection
	PRM: Best of N Selection


