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ABSTRACT

Anomalies refer to the departure of systems and devices from their normal be-
haviour in standard operating conditions. An anomaly in an industrial device
can indicate an upcoming failure, often in the temporal direction. In this paper,
we contribute to: 1) multiple novel LSTM architectures, q-LSTM by immers-
ing quantile techniques for anomaly detection. 2) a new learnable, parameterized
activation function Parameterized Elliot Function (PEF) inside LSTM, which sat-
urates late compared to its nonparameterized siblings including the sigmoid and
tanh, to model temporal long-range dependency. The proposed algorithms are
compared with other well-known anomaly detection algorithms and are evaluated
in terms of performance metrics, such as Recall, Precision and F1-score. Exten-
sive experiments on multiple industrial timeseries datasets (Yahoo, AWS, GE, and
machine sensors, Numenta and VLDB Benchmark data) and non-time series data
show evidence of effectiveness and superior performance of LSTM-based quantile
techniques in identifying anomalies.

1 INTRODUCTION

Anomalies indicate a departure of a system from its normal behaviour. In Industrial systems, they
often lead to failures. By definition, anomalies are rare events. As a result, from a Machine Learn-
ing standpoint, collecting and classifying anomalies pose significant challenges. For example, when
anomaly detection is posed as a classification problem, it leads to extreme class imbalance (data
paucity problem). Morales-Forero & Bassetto (2019) have applied a semi-supervised neural net-
work, a combination of an autoencoder and LSTM, to detect anomalies in the industrial dataset to
mitigate the data paucity problem. Sperl et al. (2020) also tried to address the data imbalance is-
sue of anomaly detection and applied a semi-supervised method to inspect large amounts of data
for anomalies. However, these approaches do not address the problem completely since they still
require some labeled data. Our proposed approach is to train models on a normal dataset and device
some post-processing techniques to detect anomalies. It implies that the model tries to capture the
normal behavior of the industrial device. Hence, no expensive dataset labeling is required. Similar
approaches were tried in the past. Autoencoder-based family of models uses some form of thresh-
olds to detect anomalies. For example, Sakurada & Yairi (2014); Jinwon & Ch (2015) mostly relied
on reconstruction errors. The reconstruction error can be considered as an anomaly score. If the
reconstruction error of a datapoint is higher than a threshold, then the datapoint is declared as an
anomaly. However, the threshold value can be specific to the domain and the model, and deciding
the threshold on the reconstruction error can be cumbersome.

MOTIVATION AND CONTRIBUTION

Unlike the above, our proposed quantile-based thresholds applied in the quantile-LSTM are generic
and not specific to the domain or dataset. We have introduced multiple versions of the LSTM-based
anomaly detector in this paper, namely (i) quantile-LSTM (ii) iqr-LSTM and (iii) Median-LSTM.
All the LSTM versions are based on estimating the quantiles instead of the mean behaviour of an
industrial device. For example, the median is 50% quantile. Our contributions are three-fold:
(1) Introduction of Quantiles in design of quantile-based LSTM techniques and their application in
anomaly identification.
(2) Proposal of the Parameterized Elliot as a ’flexible-form, adaptive, learnable’ activation function
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in LSTM, where the parameter is learnt from the dataset. We have shown empirically that the mod-
ified LSTM architecture with PEF performed better than the Elliot Function (EF) and showed that
such behavior might be attributed to the slower saturation rate of PEF. PEF contributes to improved
performance in anomaly detection in comparison to its non-parameterized siblings.
(3) Evidence of superior performance of the proposed Long Short Term Memory networks (LSTM)
methods over state-of-the-art (SoTA) deep learning and non-deep learning algorithms across multi-
ple Industrial and Non-industrial data sets including Numenta Anomaly Benchmark and the VLDB
anomaly benchmark (Appendix, Table 7, 8, 9 and 10).
There are three key pieces to modelling anomalies: type of time-series we need to work with; model
the temporal dependency and post-process the forecasts to flag that forecast as an anomaly. Given
the nature of anomalies, it is obvious they should model the departure normality or the tail behaviour.
Quantities are the natural statistical quantities to consider in this respect. The temporal modeling
of time-series models is some sort of dynamical systems, including the classical statistical models
like ARMA and its variants. LSTMs are the most popular versions of the non-parametric non-linear
dynamical models. One could technically swap LSTMs with any other sequence architectures suit-
able for the problem. The added advantage LSTMs brings is the multiplicative gates which help
prevent vanishing gradients. This is coupled with the introduction of Parameterized Elliot as activa-
tion function (PEF) which shifts the saturation. A classifier to flag anomalies is also a comparator,
either learnt via supervised task or is based on reasonable heuristics. For the former, we need labels
which we assume do not have in large numbers in reality, For the latter, there is no option but to
default to some heuristics. But thankfully, with a non-parametric, non-linear dynamical system such
as q-LSTM modelling the quantities, even fixed, deterministic comparators turn out to be adaptive
comparators. Therefore, we can consider our contribution as setting this template and making cer-
tain sensible choices in each of the three important puzzles of this template. The rest of the paper is
organized as follows. The proposal and discussion of various LSTM-based algorithms are presented
in section 2. Section 3 describes the LSTM structure and introduces the PEF. This section also ex-
plains the intuition behind choosing a parameterized version of the AF and better variability due to
it. Experimental results are presented in section 4. Section 5 discusses relevant literature in anomaly
detection. We conclude the paper in section 6.

2 ANOMALY DETECTION WITH QUANTILE LSTMS

Quantiles are used as a robust alternative to classical conditional means in Econometrics and Statis-
tics, as they can capture the uncertainty in a prediction and model tail behaviours (Koenker, 2005).
The additional benefit lies in quantiles making very few distributional assumptions. It was also
shown by Tambwekar et al. (2022) that quantiles aid in explainability as they can be used to obtain
several univariate summary statistics that can be directly applied to existing explanation tools. This
served as the motivation behind adopting the idea of quantiles from classification to anomaly detec-
tion, as quantiles capture tail behavior succinctly. It is well known that quantiles minimize check
loss (Horowitz, 1992), which is a generalized version of Mean Absolute Error (MAE) arising from
medians rather than means. It is also known that medians are often preferred to means in robust
settings, particularly in skewed and heavy-tailed data. Thus, in time series data, where LSTM ar-
chitecture has shown beneficial, LSTM architecture is coupled with the idea of quantiles to capture
anomalies (outliers). It is to be noted that this method is applied to univariate time series data only,
and the method is agnostic to data distribution (see Table 6 ). As the empirical results exhibit, the
distributional variance does not impact the prediction quality.

Before we discuss quantile-based anomaly detection, we describe the data structure and processing
setup, with some notations. Let us consider xi, i = 1, 2, .., n be the n time-series training datapoints.
We consider Tk = {xi : i = k, · · · , k + t} be the set of t datapoints, and let Tk be split into
w disjoint windows with each window of integer size m = t

w and Tk = {T 1
k , · · · , Tw

k }. Here,
T j
k = {xk+m(j−1), ..., xk+m(j)−1}. Let Qτ (D) be the sample quantile of the datapoints in the set

D. The training data consists of, for every Tk, Xk,τ ≡ {Qτ (T
j
k )}, j = 1, · · · , w as predictors with

yk,τ ≡ Qτ (Tk+1), sample quantile at a future time-step, as the label or response. Let ŷk,τ be the
predicted value by an LSTM model.
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2.1 VARIOUS QUANTILE-LSTM ALGORITHMS

A general recipe we are proposing to detect anomalies is to: (i) estimate quantile Qτ (xk+t+1) with
τ ∈ (0, 1) and (ii) define a statistic that measures the outlier-ness of the data, given the observation
xk+t+1. Instead of using global thresholds, thresholds are adaptive i.e. they change at every time-
point depending on quantiles.

2.1.1 QUANTILE-LSTM

As the name suggests, in quantile-LSTM, we forecast two quantiles qlow and qhigh to detect the
anomalies present in a dataset. We assume the next quantile values of the time period after sliding
the time period by one position are dependent on the quantile values of the current time period.

(a) Anomaly detection process using quantile-LSTM

(b) Anomaly detection process using median-LSTM

Figure 1: Sigmoid function has been applied as an recurrent function, which is applied on the
outcome of the forget gate (ft = σ(Wf ∗ [ht−1, xt] + bf )) as well as input gate (it = σ(Wi ∗
[ht−1, xt] + bi)). PEF decides the information to store in cell ĉt = PEF (Wc ∗ [ht−1, xt] + bc).

It is further expected that, nominal range of the data can be gleaned from qlow and qhigh. Using
these qlow and qhigh values of the current time windows, we can forecast qlow and qhigh values of
the next time period after sliding by one position. Here, it is required to build two LSTM models,
one for qlow (LSTMqlow) and another for qhigh (LSTMqhigh). Let’s take the hypothetical dataset as
a training set from Figure 1a. It has three time windows from time period x1 · · ·x9. Table 1 defines
the three time windows of the time period x1 · · ·x9 and the corresponding qlow, qhigh values against
the time window.

TW qlow qhigh
x1, x2, x3 X1,low ≡ Qlow(T

1
1 ) X1,high ≡ Qhigh(T

1
1 )

x4, x5, x6 X2,low ≡ Qlow(T
2
1 ) X2,high ≡ Qhigh(T

2
1 )

x7, x8, x9 X3,low ≡ Qlow(T
3
1 ) X3,high ≡ Qhigh(T

3
1 )

Table 1: The first time period and its corresponding time windows

The size of the inputs to the LSTM depends on the number of time windows w and one output.
Since three time windows have been considered for a time period in this example, both the LSTM
models will have three inputs and one output. For example, the LSTM predicting the lower quantile,
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would have X1,low, X2,low, X3,low as its puts and y1,low as its output, for one time-period. A total
of n− t+ 1 instances will be available for training the LSTM models assuming no missing values.

After building the LSTM models, for each time period it predicts the corresponding quantile value
and slides one position to the next time period on the test dataset. Quantile-LSTM applies a fol-
lowing anomaly identification approach. If the observed value xk+t+1 falls outside of the predicted
(qlow, qhigh), then the observation will be declared as an anomaly. For example, the observed value
x10 will be detected as an anomaly if x10 < ŷ1,low or x10 > ŷ1,high. Figure 1a illustrates the
anomaly identification technique of the quantile-LSTM on a hypothetical test dataset.

2.1.2 IQR-LSTM

IQR-LSTM is a special case of quantile-LSTM where qlow is 0.25 and qhigh is the 0.75 quantile.
In addition, another LSTM model predicts median q0.5 as well. Effectively, at every time index
k, three predictions are made ŷk,0.25, ŷk,0.5, ŷk,0.75. Based on this, we define the Inter Quartile
Range (IQR) ŷk,0.75− ŷk,0.25. Using IQR, the following rule identifies an anomaly when xt+k+1 >
ŷk,0.5 + α(ŷk,0.75 − ŷk,0.25) or xt+k+1 < ŷk,0.5 − α(ŷk,0.75 − ŷk,0.25).

2.1.3 MEDIAN-LSTM

Median-LSTM, unlike quantile-LSTM, does not identify the range of the normal datapoints; rather,
based on a single LSTM, distance between the observed value and predicted median (xt+k+1 −
ŷk,0.5) is computed, as depicted in Figure 1b, and running statistics are computed on this derived
data stream. The training set preparation is similar to quantile-LSTM.

To detect the anomalies, Median-LSTM uses an implicit adaptive threshold. It is not reasonable to
have a single threshold value for the entire time series dataset when dataset exhibits seasonality and
trends. We introduce some notations to make description concrete. Adopting the same conventions
introduced before, define dk ≡ xt+k+1−Q0.5(Tk+1), k = 1, 2, . . . , n−t and partition the difference
series into s sets of size t each, i.e., D ≡ Dp, p = 1, . . . , s, where Dp = {di : i = (s − 1)t +
1, . . . , st}. After computing the differences on the entire dataset, for every window Dp, mean (µp)
and standard deviation (σp) are calculated for the individual time period Dp. As a result, µp and
σp will differ from one time period to another time period. Median-LSTM detects the anomalies
using upper threshold and lower threshold parameters of a particular time period Dp and they are
computed as follows:

Tp,lower = µp + wσp;Tp,higher = µp − wσp

An anomaly can be flagged for dk ∈ Tp when either dk > Tp,higher or dk < Tp,lower Now, what
should be the probable value for w? If we consider w = 2, it means that any datapoint beyond two
standard deviations away from the mean on either side will be considered as an anomaly. It is based
on the intuition that differences of the normal datapoints should be close to the mean value, whereas
the anomalous differences will be far from the mean value. Hence 95.45% datapoints are within
two standard deviations distance from the mean value. It is imperative to consider w = 2 since
there is a higher probability of the anomalies falling into the 4.55% datapoints. We can consider
w = 3 too where 99.7% datapoints are within three standard deviations. However, it may miss
the border anomalies, which are relatively close to the normal datapoints and only can detect the
prominent anomalies. Therefore we have used w = 2 across the experiments (See Appendix K for
the characteristics of the proposed methods).

2.2 PROBABILITY BOUND

In this subsection, we analyze different datasets by computing the probability of occurrence of
anomalies using the quantile approach. We have considered 0.1, 0.25, 0.75, 0.9, and 0.95 quantiles
and computed the probability of anomalies beyond these values, as shown in Table 5 of Appendix
A. The multivariate datasets are not considered since every feature may follow a different quantile
threshold. Hence it is not possible to derive a single quantile threshold for all the features. It is
evident from Table 5 of Appendix A that the probability of a datapoint being an anomaly is high if
the datapoint’s quantile value is either higher than 0.9 or lower than 0.1. However, if we increase
the threshold to 0.95, the probability becomes 0 across the datasets. This emphasizes that a higher
quantile threshold does not detect anomalies. It is required to identify the appropriate threshold
value, and it is apparent from the table that most of the anomalies are nearby 0.9 and 0.1 quantile
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values. Table 5 also demonstrates the different nature of the anomalies present in the datasets. For
instance, the anomalies of Yahoo Dataset1 to Yahoo Dataset6 are present nearby the quantile value
0.9, whereas the anomalies in Yahoo Dataset7 to Yahoo Dataset9 are close to both quantile values
0.9 and 0.1. Therefore, it is possible to detect anomalies by two extreme quantile values. We can
consider these extreme quantile values as higher and lower quantile thresholds and derive a lemma.
We provide a proof in the Appendix B. The lemma entails the fact that anomalies are trapped out-
side the high and low quantile threshold values. The bound is independent of data distribution as
quantiles assume nominal distributional characteristics.

3 LSTM WITH PARAMETERIZED ELLIOT ACTIVATION (PEF)

We introduce the novel parameterized Elliot activation function, which is the parameterized version
of the Elliot activation function. The suitability of parameterized Elliot function, PEF, is conceived
as an adaptive variant of usual activation wherein we modify the LSTM architecture by replacing the
activation function of the LSTM gates with PEF. We save ’parameter tuning’ efforts by learning the
parameter values from backpropagation. Additionally, the cost of saturation of standard activation
functions impedes training and prediction, which is an important barrier to overcome. We expect
PEF to have a lower rate of saturation in LSTM compared to other activation functions such as tanh,
sigmoid, etc. To the best of our knowledge, insights on ’learning’ the parameters of an AF are not
available in literature except for the standard smoothness or saturation properties AFs are supposed
to possess. It is, therefore, worthwhile to investigate the possibilities of learning an AF within a
framework or architecture that uses the inherent patterns and variances from data.

A single LSTM block is composed of four major components: an input gate, a forget gate, an output
gate, and a cell state. We have applied the parameterized Elliot Function (PEF) as activation and
introduced a parameter α, which controls the shape of the Elliot function, represented by

f(x) =
αx

1 + |x|
(1)

with the first order derivative of PEF as: f ′(x) = α
(|x|+1)2 . The α in equation 1 is learnt during the

back-propagation like other weight parameters of the LSTM model. There are multiple reasons to
implement the PEF instead of other activation functions. Some of the reasons and salient features
of the PEF are 1. The function is equal to 0, and the derivatives are also equal to α at the origin.
2. The function’s derivative also saturates as the |x| increases. However, the saturation rate is less
than other activation functions, such as tangent. 3. One of the major benefits of the PEF is that it
further decreases the rate of saturation in comparison to the non-parameterized Elliot function.

Parameterized Elliot Function (PEF): One of the major benefits of the Paramterized Elliot func-
tion is that it further decreases the rate of saturation in comparison to the non-parameterize Elliot
function. We have introduced a parameter α, which controls the shape of the Elliot function. After
the introduction of the PEF, the hidden state equation is as follows:ht = OtαcPEF (Ct). By chain
rule, ∂J

∂αc
= ∂J

∂αc
= ∂J

∂ht
Ot ∗ Elliot(Ct). After each iteration, the αc is updated by gradient descent

α
(n+1)
c = αn

c + δ ∗ ∂J
∂αc

(See Appendix C for back propagation of LSTM with PEF).

Intuition behind Our Hypothesis: Glorot & Bengio (2010) hypothesized that in neural networks,
the logistic layer output softmax(b+Wh) might initially rely more on the biases b and hence push
the activation value h towards 0, thus resulting in error gradients of smaller values. They referred
to this as the saturation property of neural networks. This results in slower training and prevents
the gradients from propagating backward until the layers close to the input learns. This saturation
property is observed in the sigmoid. The sigmoid is non-symmetric around zero and obtains smaller
error gradients when the sigmoid outputs a value close to 0. Similarly, tanh in all layers tends to
saturate towards 1, which leads to layer saturation. All the layers attain a particular value, which
is detrimental to the propagation of gradients. However, this issue of attaining saturation would be
less pronounced in cases where two different activation functions are used. Since each activation
function behaves differently in terms of gradients, i.e., sigmoid outputs are in the range [0,1], and
the gradients are minimum at the maximum and minimum values of the function. Tanh, on the other
hand, has minimum gradients at -1 and 1 and reaches its maximum at 0. Therefore, even if the
layers begin to saturate to a common value, some of the layers would escape the saturation regime
of their activations and would still be able to learn essential features. As an outcome, this might
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(a) Derivatives comparisons of various activation
functions.

(b) LSTM values for 4 layers and 50 epochs using
PEF as activation function using AWS2.

(c) LSTM values for 4 layers and 50 epochs using
Sigmoid as activation function using AWS2.

(d) LSTM values for 4 layers and 50 epochs using
Tanh as activation function using AWS2.

(e) The final α values learn on each dataset. We
can see the final α value is different for different
datasets.

Figure 2: The Fig shows the slow saturation rate as well as behavioral comparison of the different
layers of LSTM model after the introduction of PEF with other activation functions. It also shows
the final value of the learned parameter α on various datasets.

result in fewer instances of vanishing gradients. This assumption would mean that networks with
two different activations would learn faster and converge faster to a minima, and the same premise
is supported by a Convergence study (details in section V). As demonstrated by Glorot and Bengio,
if the saturation ratio of layers is less pronounced, it leads to better results in terms of accuracy. A
standard neural network with N layers is given by hl = σ(hl−1W l + b) and sl = hl−1W l + b.
Here hl is the output of the first hidden layer, σ is a non-linear activation function, and b is the
bias. We compute the gradients as ∂Cost

∂slk
= f ′(slk)W

l
k,·

∂Cost
∂sl+1 ; ∂Cost

∂W l
m,n

= zil
∂Cost
∂slk

. Now, we find
the variances of these values. As the network propagates, we must ensure that the variances are
equal to keep the information flowing. Essentially, when ∀(l, l′), V ar[hl] = V ar[hl

′

], it ensures
that forward propagation does not saturate, and when ∀(l, l′), V ar[∂Cost

∂sl
] = V ar[∂Cost

∂sl
′ ], it ensures

that backward propagation flows at a constant rate. Now, what remains is to calculate these variance
values. An elaborate example has been given in the Appendix D.
PEF saturation: The derivative of the PEF is represented by: = α

x2EF 2. While the derivatives

of the sigmoid and tanh are dependent on x, PEF is dependent on both α and x. Even if EF 2(x)
x2
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saturates, the learned parameter α will help the PEF escape saturation. The derivatives of the sig-
moid, tanh saturate when x > 5 or x < −5. However, it is not true with PEF as evident from fig
2a. As empirical evidence, the layer values for every epoch of the model are captured using various
activation functions like PEF, sigmoid and tanh. It is observed that, after about 10 epochs, the val-
ues of the layers becomes more or less constant for sigmoid and tanh (fig 2c and fig 2d), indicating
their values have already saturated whereas for PEF, variation can be seen till it reaches 50 epochs
(fig 2b). This shows that in comparison to sigmoid and tanh as activation functions, PEF escapes
saturation due to its learned parameter α. The parameter α in PEF changes its value as the model
trains over the training dataset while using PEF as the activation function. Since it is a self training
parameter, it returns different values for different datasets at the end of training. These values have
been documented in table 2 and plotted in fig 2e. Table 2 demonstrates the variations in α values
across multiple datasets as these values get updated.

The outcome of such an approach saves the overhead of tuning the model and also opens up avenues
for discovering essential features of not-so-popular AFs. The inherent idea is to consider a ’fixed-
form’ activation and parameterize it. The parameter is ’learned’ via the backpropagation step of the
LSTM network such that the shape of the activation, determined by the parameter, is learned from
data. Thus, if the dataset changes, so does the final form of the activation. In our case, the fixed
form activation is the Elliot Activation function.

4 EXPERIMENT

In this section, we have evaluated the performance of the quantile-LSTM techniques on multiple
datasets. We have identified multiple baseline methods, such as Isolation Forest (iForest), Elliptic
envelope, Autoencoder and several deep learning based approaches for comparison purposes (See
section 5 for more details on baseline methods).

4.1 DATASETS

The dataset properties have been shown in table 6. A total of 29 datasets, including real industrial
datasets and synthetic datasets, have been considered in the experiments. The industrial datasets
include Yahoo webscope (Yahoo!, 2019), AWS cloudwatch (Lavin & Ahmad, 2015), GE, etc. There
are a couple of datasets with either one or few anomalies, such as AWS1, AWS2. We have injected
anomalies in AWS, Yahoo, and GE datasets to produce synthetic data for fair comparison purposes.
The datasets are univariate, unimodal or binodal and follow mostly Weibull, Gamma and Log normal
distribution. The highest anomaly percentage is 1.47 (GE Dataset2), whereas AWS Dataset2 has
reported the lowest percentage of anomaly i.e. 0.08 (For more details see Table 6 of Appendix,
section E).

4.2 RESULTS

Table 3 demonstrates the performance comparison of various LSTM techniques. Precision and
Recall, two performance metrics, are shown in the table. The Median-LSTM has achieved Recall 1
in most datasets (10 out of 15 datasets). In comparison to existing benchmarks, LSTM methods are
SOTA on most of the datasets in terms of Recall. For comparison purposes, we have first compared
the Recall. If the Recall is the same for two different methods, then we have compared the Precision.
The method which has a higher Recall and Precision will be considered as a better performer. In
AWS datasets, most of the techniques have achieved the highest Recall apart from DAGMM and
DevNet. DevNet needs minimum two anomalies hence it is not applicable for AWS1 and AWS2.
However, as per Precision, iqr-LSTM has performed better than other methods. In the case of GE1,
DevNet has produced a better result, whereas quantile based LSTM techniques has outperformed
others on GE2. Median-LSTM has demonstrated better result in Ambient temperature. In the case of
Yahoo datasets, Median-LSTM has achieved the highest Recall on four datasets; however, quantile-
LSTM and iqr-LSTM have produced better results on several datasets. For example, Median-LSTM
and iqr-LSTM both achieved Recall 1 on Yahoo1. However, if we compare the Precision, iqr-LSTM
has shown better results. It is evident from the table 3 that all these LSTM versions are performing
very well on these industrial datasets.
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Dataset Anomaly iqr-LSTM Median-LSTM quantile-LSTM Autoencoder GAN DAGMM DevNet iForest Envelope

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

AWS1 1 0.5 1 0.052 1 0.041 1 0.045 1 0.047 1 0.125 1 NA NA 0.0087 1 0.009 1

AWS2 2 0.13 1 0.22 1 0.0042 1 0.1 0.5 0.18 1 0.11 1 NA NA 0.0062 1 0.04 1

AWS3 1 1 1 0.37 1 0.0181 1 0.0344 1 0.055 1 0 0 NA NA 0.005 1 0.006 1

Ambient temperature 1 0.03 1 0.0769 1 0.02 1 0.055 1 0 0 0 0 NA NA 0.01 1 0.02 1

GE1 3 0.019 1 0.048 1 0.0357 1 0.093 1 0.041 0.33 0 0 0.12 1 0.004 1 0.2 1

GE2 8 1 1 0.66 1 1 1 1 1 0 0 0.8 1 0.8 1 0.16 1 0.034 1

Yahoo1 2 0.076 1 0.0363 1 0.0465 1 1 0.5 0.066 1 0.07 0.5 0 0 0.005 1 0.009 1

Yahoo2 8 0.75 0.375 0.8 1 1 0.375 1 0.25 0.19 0.625 0.10 0.25 0 0 0.04 0.875 0.055 1

Yahoo3 8 0.615 1 0.114 0.675 0.088 1 0.023 0.25 0.11 0.875 0.15 0.62 0.39 0.5 0.04 0.875 0.032 0.875

Yahoo5 9 0.048 0.33 0.1 0.33 0.022 0.66 0.05 0.33 0 0 0.23 0.33 0.67 1 0.029 0.66 0.029 0.66

Yahoo6 4 0.12 1 0.222 1 0.0275 1 0.048 1 0 0 0.041 1 1 1 0.0073 1 0.0075 1

Yahoo7 11 0.096 0.54 0.16 0.63 0.066 0.54 0.083 0.45 0.035 0.54 0.058 0.09 0.33 0.29 0.0082 0.33 0.017 0.54

Yahoo8 10 0.053 0.7 0.142 0.8 0.028 0.3 0 0 0 0 0 0 0.063 0.11 0.01 0.6 0.010 0.6

Yahoo9 8 1 0.75 0.333 1 0.0208 0.75 1 0.37 0 0 0.5 0.375 0.07 0.8 0.04 1 0.047 1

Table 3: Performance comparison of various quantile LSTM techniques with other state of the art
algorithms.

Dataset Anomaly iqr-LSTM Median-LSTM quantile-LSTM iForest Envelope Autoencoder GAN DAGMM DevNet

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

AWS syn1 11 0.769 0.909 0.687 1 1 0.909 0.034 1 0.10 1 1 0.63 0.84 1 0.71 0.90 0.09 0.73

AWS syn2 22 0.7 1 0.733 1 0.6875 1 0.065 1 0.33 1 0.5 0.63 0.70 1 0.56 1 0.44 0.27

AWS syn3 11 1 0.9 0.47 1 1 1 0.025 1 0.072 1 0.64 0.5 0.68 1 0 0 0.2 0.45

GE syn1 13 0.0093 1 0.203 1 0.071 0.769 0.0208 1 0.135 1 0.23 0.11 0.25 0.61 0 0 0.33 1

GE syn2 18 0.0446 1 1 1 1 1 0.3 1 0.409 1 1 0.38 0.9 1 0.9 1 0.9 1

Yahoo syn1 12 1 1 0.217 0.833 0.375 1 0.027 1 0.056 1 1 0.83 0.31 1 0.29 0.41 0 0

Yahoo syn2 18 0.181 0.55 0.653 0.944 1 0.611 0.233 1 0.124 1 1 0.42 1 0.61 0.55 0.61 0 0

Yahoo syn3 18 0.89 0.94 0.3333 0.555 0.6 1 0.0410 1 0.0762 0.944 1 0.88 0.81 0.71 0.3 0.66 0.17 0.63

Yahoo syn5 19 0.081 0.52 0.521 0.631 0.0625 0.578 0.03125 0.842 0.0784 0.842 0.15 0.47 0.42 0.53 0.52 0.52 0.73 0.92

Yahoo syn6 14 0.065 0.85 0.65 0.928 0.764 0.928 0.01825 1 0.00761 0.285 0.05 0.28 0.8 0.29 0.041 0.28 0 0

Yahoo syn7 21 0.61 0.59 0.375 0.714 0.411 0.66 0.032 0.952 0.052 0.85 0.18 0.42 0.14 0.38 0.058 0.047 0.11 0.64

Yahoo syn8 20 0.32 0.65 0.482 0.823 0.197 0.7 0.0192 0.75 0.023 0.7 0.009 0.05 0.25 0.1 0 0 0.23 0.64

Yahoo syn9 18 1 0.77 1 1 1 0.94 0.053 1 0.048 1 0.875 0.388 0.72 1 0.57 0.22 0.03 0.29

Table 4: Performance comparison of various quantile LSTM techniques on synthetic datasets with
other state of the art algorithms.

Table 4 shows the comparison with other baseline algorithms on multiple synthetic datasets. As
in the previous table, Recall and Precision have been shown as performance metrics. As per these
metrics, quantile-based approaches have outperformed iForest and other deep learning based algo-
rithms on 7 out of 13 datasets. If we consider the Precision alone, the quantile LSTM based tech-
niques have demonstrated better performance on 10 synthetic datasets. Our methods outperformed
tree based anomaly identifiers Multi-Generations Tree (MGTree) and Uni-variate Multi-Generations
Tree (UVMGTree) (Sarkar et al., 2022) as well, in terms of Recall (See Table 8 of Appendix G).
There are multiple reasons for the better performance demonstrated by the quantile based LSTM
approaches. First is the efficacy of the LSTM, which is well documented. Median-LSTM has de-
tected the anomalies for each time period utilizing mean and standard deviation. It also has helped to
capture the trend and seasonality. quantile-LSTM do not have any predefined threshold, which has
improved their performance. Additionally, the flexibility of the parameter α in determining the shape
of the activation helped in isolating the anomalies. This is evident from Fig 2e which represents the
variation in α values of the PEF function across the datasets. α has been initialized to 1.5 for all
the datasets. We have also experimented the algorithms on another well known benchmark dataset
VLDB Paparrizos et al. (2022) (See Appendix M) and observed superior performance of median-
LSTM over other benchmark methods including LSTM autoencoders where reconstruction loss in
the autoencoder is used in conjunction with the recurrent structure to flag anomalies Srivastava et al.
(2015).

5 RELATED WORK

Literature on quantile based anomaly detection (Tambuwal & Neagu, 2021; Solovjovs et al., 2021)
including a quantile based Autoencoder approach (Ryu et al., 2022) suggested diversifying the

8
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source of anomaly score by considering uncertainty term along with reconstruction error in anomaly
score computation. However, there is no discussion on setting the appropriate threshold on the
anomaly scores. Well known supervised machine learning approaches such as Linear Support Vec-
tor Machines (SVM), Random Forest (RF) and Random Survival Forest (RSF) (Voronov et al., 2018;
Verma et al., 2017) have been explored for fault diagnosis and the life-time prediction of industrial
systems. Popular unsupervised approaches such as Anomaly Detection Forest (Sternby et al., 2020),
and k-means based Isolation Forest (Karczmarek et al., 2020) try to isolate the anomalies from the
normal dataset. These methods like Anomaly Detection Forest do not require labeled data requires
a training phase with a subsample of the dataset under consideration. A wrong selection of the
training subsample can cause too many false alarms. Recently, Deep Learning (DL) models based
on auto-encoders, long-short term memory (Erfani et al., 2016; Zhou & Paffenroth, 2017) are in-
creasingly gaining attention for anomaly detection. Yin et al. (2020) have proposed an integrated
model of Convolutional Neural Network (CNN) and LSTM based auto-encoder for Yahoo Web-
scope time-series anomaly detection. For reasons unknown, Yin et al. (2020) have taken only one
Yahoo Webscope data to demonstrate their approach’s efficacy. TA stacked LSTM (Malhotra et al.,
2015) is used for time series anomaly prediction, and the network is trained on a normal dataset.
Hierarchical Temporal Memory (HTM) method has been applied recently on sequential streamed
data and compared with other time series forecasting models (Osegi, 2021). The authors in Saurav
et al. (2018) have performed online timeseries anomaly detection using deep RNN. The incremental
retraining of the neural network allows to adopt concept drift across multiple datasets. There are
various works (Morales-Forero & Bassetto, 2019; Sperl et al., 2020), which attempt to address the
data imbalance issue of the anomaly datasets since anomalies are very rare and occur occasionally.
Hence they propose semi-supervised approaches but cannot avoid the expensive dataset labeling.
Some approaches (Zong et al., 2018) apply predefined thresholds, such as fixed percentile value to
detect the anomalies. However, a fixed threshold value may not be equally effective on different
domain datasets. Deep Autoencoding Gaussian Mixture Model (DAGMM) is an unsupervised DL
based anomaly detection algorithm (Zong et al., 2018), where it utilizes a deep autoencoder to gener-
ate a low-dimensional representation and reconstruction error for each input datapoint and is further
fed into a Gaussian Mixture Model (GMM). Deviation Network(DevNet) (Pang et al., 2019) is a
novel method that harnesses anomaly scoring networks, Z-score based deviation loss and Gaussian
prior together to increase efficiency for anomaly detection.

6 DISCUSSION AND CONCLUSION

In this paper, we have proposed multiple versions of the SoTA anomaly detection algorithms along
with a forecasting based LSTM method. We have demonstrated that combining the quantile tech-
nique with LSTM can be successfully implemented to detect anomalies in industrial and non-
industrial datasets (See Table 7 of Appendix F) without label availability for training. It has been
shown that the performance of the baseline methods is sensitive to the predefined thresholds (See
Appendix L), whereas quantile based thresholds are generic. We have also exploited the parameter-
ized Elliot activation function and shown anomaly distribution against quantile values, which helps
in deciding the quantile anomaly threshold. The design of a flexible form activation, i.e., PEF, also
helps in accommodating variance in the unseen data as the shape of the activation is learned from
data. PEF, as seen in Table 9 in Appendix H captures anomalies better than vanilla Elliot. The statis-
tical significance of the performance is highlighted in Table 16. The quantile thresholds are generic
and will not differ for different datasets. The proposed techniques have addressed the data imbalance
issue and expensive training dataset labeling in anomaly detection. These methods are useful where
data is abundant. Traditional deep learning based methods use classical conditional means and as-
sume random normal distributions as the underlying structure of data. These assumptions make the
methods vulnerable to capturing the uncertainty in prediction and make them incapable of modeling
tail behaviours. Quantile in LSTM (for time series data) is a robust alternative that we leveraged in
isolating anomalies successfully. The distribution-agnostic behavior of Quantiles tuned out to be a
useful tool in modeling tail behavior and detecting anomalies. The proposed methods have a few
drawbacks 1. quantile based LSTM techniques are applicable only on univariate datasets. 2. A few
of the methods such as quantile-LSTM, iqr-LSTM have dependency on multiple thresholds.

9
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7 ETHICS STATEMENT

The present paper discusses various anomaly detection techniques and mostly performed the exper-
iments on publicly available datasets for reproducibility purposes. The paper empirically studies
various behaviors of (mostly existing) algorithms on machine/systems data. Since our experiment
do not involve human or animal subjects, it is unlikely to introduce any ethical or societal concerns.

8 REPRODUCIBILITY

We have performed the experiments mostly on the publicly available datasets (except for the
GE dataset). We have given the links of the datasets in the main text. Code of the quan-
tile based LSTM techniques are available in https://anonymous.4open.science/r/Quantile-LSTM-
D840/README.md..
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A PROBABILITY BOUND

Dataset P(E > 0.95) P(E > 0.9) P(E > 0.75) P(F < 0.25) P(F < 0.10)

AWS Dataset1 0 0.01 0.004 0 0

AWS Dataset2 0 0.1 0.1 0 0

AWS Dataset3 0 0.007 0.0032 0 0

Yahoo Dataset1 0 0.014 0.005 0 0

Yahoo Dataset2 0 0.105 0.062 0 0

Yahoo Dataset3 0 0.103 0.076 0 0

Yahoo Dataset4 0 0.014 0.0055 0 0

Yahoo Dataset5 0 0.043 0.016 0 0

Yahoo Dataset6 0 0.028 0.011 0 0

Yahoo Dataset7 0 0.047 0.018 0.0069 0.017

Yahoo Dataset8 0 0.011 0.004 0.016 0.041

Yahoo Dataset9 0 0.017 0.0069 0.011 0.029

Sensor Dataset1 0 0.0344 0.0135 0 0

Sensor Dataset2 0 0 0 0.013 0.033

GE Dataset1 0 0.003 0.002 0 0

GE Dataset2 0 0.05 0.042 0 0

AWS Datasetsyn1 0 0.08 0.035 0 0

AWS Datasetsyn2 0 0.08 0.035 0 0

AWS Datasetsyn3 0 0.1 0.1 0 0

Yahoo Datasetsyn1 0 0.074 0.034 0 0

Yahoo Datasetsyn2 0 0.21 0.15 0 0

Yahoo Datasetsyn3 0 0.13 0.11 0 0

Yahoo Datasetsyn5 0 0.08 0.036 0 0

Yahoo Datasetsyn6 0 0 0 0.025 0.062

Yahoo Datasetsyn7 0 0.047 0.018 0.03 0.076

Yahoo Datasetsyn8 0 0.034 0.015 0.026 0.051

Yahoo Datasetsyn9 0 0.017 0.0069 0.034 0.088

Sensor Datasetsyn1 0 0 0 0.108 0.39

Sensor Datasetsyn2 0 0 0 0.146 0.36

GE DatasetSyn1 0 0.017 0.0104 0 0

GE DatasetSyn2 0 0.11 0.096 0 0

Table 5: Various probability values on different quantile threshold parameters (See lemma 1 of the
main paper ).

B LEMMA

Lemma 1:
For an univariate dataset D, the probability of an anomaly P(A) = P(E > αhigh)+P(F < αlow),
where αhigh, αlow are the higher and lower level quantile thresholds respectively.
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Figure 3: The structure of LSTM cell.

Proof. A datapoint is declared an anomaly if its quantile value is higher than αhigh or lower than
αlow. Here αhigh, αlow are the higher and lower quantile threshold value. P(E > αhigh) is the prob-
ability of an anomaly whose quantile value is higher than αhigh. On the other side, P(F < αlow) is
the probability of quantile value of anomalous datapoint lower than αlow. Hence the presence of an
anomaly in a dataset is possible if one of the events is true. Therefore

P(A) = P (E > αhigh ∪ F < αlow)

P(A) = P(E > αhigh) + P(F < αlow)− P (E > αhigh ∩ F < αlow)

Both the events E ,Fare mutually exclusive. Hence the above Equation can be written as
P(A) = P(E > αhigh) + P(F < αlow) (2)

C BACKPROPAGATION OF LSTM WITH PEF

For backward propagation, it is required to compute the derivatives for all major components of the
LSTM. J is the cost function and the relationship between vt and hidden state ht is vt = wv∗ht+bv .
The predicted value y′ = softmax(vt). The derivative of the hidden state can be shown as follow

∂J

∂ht
=

∂J

∂vt

∂vt
∂ht

∂J

∂ht
=

∂J

∂vt

∂(wv ∗ ht + bv)

∂ht

∂J

∂ht
=

∂J

∂vt
wv

The variable involved in the output gate is ot.
∂J

∂ot
=

∂J

∂ht

∂ht

∂ot
∂J

∂ot
=

∂J

∂ht

∂(ot ∗ PEF (Ct))

∂ot
∂J

∂ot
=

∂J

∂ht
PEF (Ct)

Ct is the cell state and the chain rule for cell state can be written as
∂J

∂Ct
=

∂J

∂ht

∂ht

∂Ct
(3)

∂J
∂ht

value already we have calculated as part of hidden state equation.

∂ht

∂Ct
=

∂(ot ∗ PEF (Ct))

∂Ct

=
αot

(|Ct|+ 1)2
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After setting the value of ∂ht

∂Ct
in equation 4

∂J

∂Ct
=

∂J

∂ht

αot
(|Ct|+ 1)2

(4)

The chain rule for ĉt is

∂J

∂ĉt
=

∂J

∂Ct

∂Ct

∂ĉt

We need to derive only ∂Ct

∂ĉt
since ∂J

∂Ct
is available from equation 5.

∂Ct

∂ĉt
=

∂(ft ∗ Ct−1 + ĉt ∗ it)
∂ĉt

= it

After replacing the value of ∂Ct

∂ĉt

∂J

∂ĉt
=

∂J

∂Ct
∗ it

Similar way ∂J
∂ac

= ∂J
∂ĉt

∗ α
(|ac|+1)2 The following derivatives for input gate

∂J

∂it
=

∂J

∂Ct
ĉt

∂J

∂ai
=

∂J

∂Ct
ĉt(it(1− it))

For forget gate, below are the derivatives

∂J

∂ft
=

∂J

∂Ct
Ct−1

∂J

∂af
=

∂J

∂Ct
Ct−1(ft(1− ft))

Zt is the concatenation of the ht−1, xt. The derivatives of the weights are as follow

∂J

∂wf
=

∂J

∂af
Zt

∂J

∂wi
=

∂J

∂ai
Zt

∂J

∂wv
=

∂J

∂vt
ht

∂J

∂wo
=

∂J

∂ao
Zt

C.1 PARAMETERIZED ELLIOT FUNCTION

One of the major benefit of the parameterized Elliot function is that it further decreases the rate of
saturation in comparison to the non-parameterize Elliot function. We have applied one parameter
α, which controls the shape of the Elliot function. There will be different derivatives if we apply
parameterize Elliot function in LSTM.

PEF =
αx

1 + |x|

After the introduction of the PEF, the hidden state equation is as follow

ht = OtαcPEF (Ct)
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As per the chain rule, the derivative for αc will be

∂J

∂αc
=

∂J

∂ht

∂OtαcElliot(Ct)

∂αc

∂J

∂αc
=

∂J

∂ht
Ot ∗ Elliot(Ct)

After each iteration, the αc is updated as per equation 5.

α(n+1)
c = αn

c + δ ∗ ∂J

∂αc
(5)

Similarly, we can derive αĉ and update the parameter.

D INTUITION WITH AN EXAMPLE:

Firstly, we attempt to find variance for two sigmoid activations in a network. The derivative of each
activation output is approximately 0.25(σ′(0) = 0.25), as the weights are uniformly initialized, and
the input features are assumed to have the same variance. Hence,

f ′(slk) = 0.25

V ar[z2] = V ar[x]((0.25)2n1V ar[W 1′ ] ∗ (0.25)2n2V ar[W 2′ ])

We see that this diminishing factor of 0.25N steeply drops the variance during the forward pass.
Similarly, we observe that the gradient,

∂Cost

∂slk
= f ′(slk)W

l
k,·

∂Cost

∂sl+1

has f ′(slk) as one of the factors, and thus the diminishing factor is tied to the variance. Even when
N = 2 the variance reduces by a factor of 44 = 256.
Let’s compute variance for neural network with two hidden layers using sigmoid and tanh activa-
tions. For tanh, if the initial values are uniformly distributed around 0, the derivative is f ′(slk) = 1.
Therefore, the variance for the second layer output is, V ar[z2] = V ar[x]∗((0.25)2∗n1∗V ar[W 1′ ]∗
n2 ∗V ar[W 2′ ]). We see that the diminishing factor is just 42 = 16, and this results in a much better
variance when compared to the previous case. Therefore, using different AFs instead of the same
implies a reduction in vanishing gradients and results in a much better flow of information because
the variance value is preserved for longer.
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E DATASET PROPERTIES

Dataset Name Anomaly% Size Missing Data Modal Distribution #Variables TW/ Period

Publicly available actual industrial data

AWS Dataset1 0.09 1049 No Unimodal Weibull Univariate 84/168

AWS Dataset2 0.08 2486 No Unimodal Weibull Univariate 38/152

AWS Dataset3 0.066 1499 No Multimodal Weibull Univariate 38/152

Yahoo Dataset1 0.14 1421 No Unimodal Weibull Univariate 20/60

Yahoo Dataset2 0.54 1462 No Unimodal Gamma Univariate 30/90

Yahoo Dataset3 0.55 1440 No Unimodal Weibull Univariate 10/120

Yahoo Dataset4 0.28 1422 No Bimodal Weibull Univariate 105/210

Yahoo Dataset5 0.63 1421 No Bimodal Log-normal Univariate 24/72

Yahoo Dataset6 0.28 1421 No Multimodal Weibull Univariate 74/148

Yahoo Dataset7 0.53 1680 No Unimodal Weibull Univariate 125/250

Yahoo Dataset8 0.59 1680 No Unimodal Log-normal Univariate 116/232

Yahoo Dataset9 0.47 1680 No Unimodal Weibull Univariate 30/90

Machine Temperature Dataset 0.19 501 No Multimodal Weibull Univariate 38/114

Private actual industrial data

GE Dataset1 0.18 1609 No Unimodal Exponential Univariate 117/234

GE Dataset2 1.47 544 No Multimodal Weibull Univariate 50/150

Publicly available synthetic industrial data

AWS DatasetSyn1 1.03 1059 No Unimodal Exponential Univariate 84/168

AWS DatasetSyn2 0.877 2506 No Unimodal Weibull Univariate 38/152

AWS DatasetSyn3 0.72 1509 No Unimodal Gamma Univariate 38/152

Yahoo DatasetSyn1 0.83 1431 No Unimodal Weibull Univariate 20/60

Yahoo DatasetSyn2 1.22 1472 No Unimodal Gamma Univariate 30/90

Yahoo DatasetSyn3 1.24 1450 No Unimodal Weibull Univariate 10/120

Yahoo DatasetSyn4 0.977 1432 No Bimodal Weibull Univariate 105/210

Yahoo DatasetSyn5 1.32 1431 No Bimodal Weibull Univariate 24/72

Yahoo DatasetSyn6 0.97 1431 No Multimodal Weibull Univariate 74/148

Yahoo DatasetSyn7 1.12 1690 No Unimodal Weibull Univariate 125/250

Yahoo DatasetSyn8 1.18 1690 No Multimodal Log-normal Univariate 116/232

Yahoo DatasetSyn9 1.065 1690 No Bimodal Weibull Univariate 30/90

Private synthetic industrial data

GE DatasetSyn1 0.80 1619 No Unimodal Log-normal Univariate 117/232

GE DatasetSyn2 3.30 554 No Multimodal Exponential Univariate 50/150

Table 6: Anomaly Dataset Properties.

F COMPARISON ON NON-INDUSTRIAL DATASETS

Since, we used industrial datasets in the initial comparison with multiple deep learning based
anomaly detection techniques, thus to provide further survey, here we use non-industrial datasets
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(See Table 7). Here, Deviation Networks gives NA because it does not work for single anomaly
containing datasets.

Dataset Anomaly quantile-LSTM Autoencoder GAN DevNet

Precision Recall Precision Recall Precision Recall Precision Recall

TravelTime387 3 0.011 0.67 1 0.33 0.024 0.33 0.01 0.33

TravelTime451 1 0.006 1 0 0 0.016 1 NA NA

Occupancy6005 1 0.03 1 0 0 0.007 1 NA NA

Occupancyt4013 2 0.06 1 0.438 0.5 0.014 0.5 0.02 1

Speed6005 1 0.014 1 0.103 1 0.009 1 NA NA

Speed7578 4 0.086 1 0.792 1 0.2 0.9 0.16 0.75

Speedt4013 2 0.053 1 0.75 0.5 0.043 1 0.1 1

Table 7: Performance comparison of various quantile LSTM techniques on non-industrial datasets.

G COMPARISON WITH TREE BASED ALGORITHMS

In this section, we have compared the quantile-LSTM with other tree based algorithms, such as
UVMGTree, MGTree (Sarkar et al., 2022). In table 8, two performance metrics, Precision and
Recall have been considered. It has been noticed from the same table that quantile-LSTM has
produced better Recall, compared with other tree based anomaly identifier algorithms. However,
both the tree based anomaly identifier algorithms have better Precision in comparison to quantile-
LSTM. Since, Recall has been given higher priority, quantile-LSTM is competitive enough with
other tree based anomaly detection algorithms.

Dataset UVMGTree(K-means) MGTree(K-means) quantile-LSTM

Precision Recall Precision Recall Precision Recall

AWS Dataset1 100% 100% 100% 100% 5.2% 100%

AWS Dataset2 18% 100% 100% 50% 2.2% 100%

Yahoo Dataset1 15% 100% 50% 50% 3.6% 100%

Yahoo Dataset2 66% 22% 100% 12% 61% 100%

Yahoo Dataset3 87% 87% 100% 12% 11% 87%

Yahoo Dataset5 33% 33% 100% 33% 10% 33%

Yahoo Dataset6 100% 100% 100% 100% 22% 100%

Yahoo Dataset7 77% 63% 50% 27% 16% 63%

Yahoo Dataset8 60% 60% 100% 10% 14% 80%

Yahoo Dataset9 100% 100% 100% 62% 33% 100%

Table 8: The performance comparison of UVMGTree with other standard anomaly identifier algo-
rithms
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H PERFORMANCE COMPARISON BETWEEN ELLIOT FUNCTION AND PEF AS
ACTIVATION FUNCTION

In order to compare performance of Elliot function and parameterized Elliot function as activation
functions, we experimented them by using them as activation functions in the LSTM layer of the
models and comparing the results after they run on multiple datasets. The results are shown in Table
9.

Dataset Elliot Function Parameterized Elliot Function

Precision Recall Precision Recall

AWS Dataset1 0 0 0.041 1

AWS Dataset2 0.002 1 0.0042 1

AWS Dataset3 0.04 1 0.0181 1

AWS DatasetSyn1 0.02 0.73 1 0.909

AWS DatasetSyn2 0.39 0.77 0.6875 1

AWS DatasetSyn3 0.06 0.73 1 1

Yahoo Dataset1 0.006 0.25 0.0465 1

Yahoo Dataset2 0.02 1 1 0.375

Yahoo Dataset3 0.05 1 0.088 1

Yahoo Dataset5 0.001 0.33 0.022 0.66

Yahoo Dataset6 0.002 0.17 0.0275 1

Yahoo Dataset7 0.03 0.09 0.066 0.54

Yahoo Dataset8 0.017 0.4 0.028 0.3

Yahoo Dataset9 0.43 0.75 0.0208 0.75

Yahoo DatasetSyn1 0.14 0.86 0.375 1

Yahoo DatasetSyn2 0.04 0.72 1 0.611

Yahoo DatasetSyn3 0.1 0.78 0.6 1

Yahoo DatasetSyn5 0.004 0.31 0.0625 0.578

Yahoo DatasetSyn6 0.015 0.69 0.764 0.928

Yahoo DatasetSyn7 0.35 0.43 0.411 0.66

Yahoo DatasetSyn8 0.024 0.5 0.197 0.7

Yahoo DatasetSyn9 0.27 0.67 1 0.94

Table 9: Comparison of Precision and Recall score for LSTM with Elliot Function and parameter-
ized Elliot Function as Activation Function.

According to the data gathered after running the models, we found that parameterized Elliot function
has a better Precision and Recall for as except four of the datasets. Thus, we could conclude that
using parameterized Elliot function as an activation function gave better performance for quantile-
LSTM.

I BASELINE METHODS

We have identified multiple baseline methods, such as iForest, Elliptic envelope, Autoencoder and
deep learning based approaches for comparison purposes. iForest is an isolation-based approach,
whereas elliptic envelope is an unsupervised method.
Isolation Forest: iForest is an unsupervised anomaly detection algorithm Liu et al. (2008), which
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creates a forest of binary trees based on random partition. It is an ensemble algorithm and the au-
thors have shown that it is possible to isolate an anomaly with a minimum number of partitions. We
have implemented the iForest using sklearn with the default configuration provided in the library.
Elliptic Envelope : It is another unsupervised approach which relies on a geometric configuration-
ellipse to detect the anomalies. It creates an imaginary elliptic area on the datasets. The datapoints
falling outside this elliptical area are considered as an anomaly. We have applied sklearn package of
the python with default parameters to implement this algorithm.
Autoencoder: We have considered Autoencoder for comparison purpose. Like quantile-LSTM,
Autoencoder is trained on the normal datapoints. It relies on the reconstruction error to identify any
anomaly present in the dataset. We have computed the mean square error (MSE) to measure the
reconstruction error. It detects the anomalies based on an upper and lower threshold on the MSE.
Deep Autoencoding Gaussian Mixture Model (DAGMM): It is an unsupervised DL based
anomaly detection algorithm Zong et al. (2018), where it utilizes a deep autoencoder to generate
a low-dimensional representation and reconstruction error for each input datapoint and it is further
fed into a Gaussian Mixture Model (GMM). Normal datapoints have been used for training purpose
of the model. We have referred the implementation by Nakae Nakae (2018) and the configuration
applied for KDDCUP datasets. However, we have implemented upper and lower threshold on the
scores instead of percentile based threshold to detect the anomalies.
Generative Adversarial Networks (GAN) GANs are DL based generative models that generate
samples similar to the training dataset by learning the true data distribution. It is an unsupervised
approach and it is designed to find regularities or patterns in the input dataset in such way that it
generates output very similar to the original dataset. The model consists of two sub-models, one
is generator and another discriminator. The discriminator tries to identify the generated output ei-
ther real or fake. We have considered the GAN implementation as a reference Sankar & Harper
(2021). Like previous approach, we have applied upper and lower threshold instead of percentile
based threshold to detect the anomalies.
Deviation Network (DevNet) This is a novel method that harnesses anomaly scoring networks, Z-
score based deviation loss and Gaussian prior together to increase efficiency for anomaly detection.
In this model first the anomaly scoring network is used to get a scalar anomaly score. Then the
anomaly score is learned by a reference score generator to create a reference score. Lastly the refer-
ence score and its standard deviation are put into the deviation loss function to optimize the losses
in the anomaly scores with reference to the mean of the reference scores.
LSTM AutoEncoder The LSTM autoencoder network architecture uses the first couple of neural
network layers to create the compressed representation of the input data, the encoder. A repeat vec-
tor layer to distribute the compressed representational vector across the time steps of the decoder is
then deployed. The final output layer of the decoder provides the reconstructed input data. Increase
in reconstruction loss in the autoencoder is used to flag anomalies.

Autoencoder, GAN, DAGMM and DevNet all Deep Learning based baseline algorithms considered
two thresholds ( upper threshold and lower thresholds) on reconstruction errors or predicted value.
The thresholds are the same for all baseline algorithms. We have considered these two thresholds to
align the baseline methods with the quantile based approaches. For example, in Autoencoder, upper
and lower threshold are considered as follow:

Upper threshold = mean error + 2 ∗ std error (6)

Lower threshold = mean error − 2 ∗ std error (7)

,where mean error and std error are the mean and standard deviation of the reconstruction error.
Equations 6 and 7 have been applied by all DL based baseline methods.

J F1 COMPARISON ON BENCHMARK DATASETS

Another metric which is very well-known for performance comparison is F1 scores. There are situ-
ations, where it is difficult to compare algorithms based on precision and recall. In those cases, F1
scores can be effective to evaluate the algorithms. Table 10 demonstrates the performance compar-
ison of the quantile based LSTM techniques with other baseline algorithms in terms of F1 scores.
It is evident from Table that quantile based LSTM approaches have outperformed others in most of
the datasets.
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Dataset iqr-LSTM median-LSTM quantile-LSTM GAN DAGMM Autoencoder LSTM-Autoencoders

AWS Dataset1 0.66 0.1 0.8 0.09 0.22 0.86 0.057

AWS Dataset2 0.23 0.044 0.008 0.03 0.21 0.16 0.166

AWS Dataset3 1 0.071 0.035 0.1 0 0.066 0.035

Yahoo Dataset1 0.14 0.07 0.088 0.125 0.013 0.66 0.16

Yahoo Dataset2 0.5 0.88 0.54 0.29 0.14 0.4 0.4

Yahoo Dataset3 0.76 0.20 0.16 0.2 0.24 0.42 0.875

Yahoo Dataset5 0.084 0.15 0.042 0 0.27 0.086 0.125

Yahoo Dataset6 0.21 0.36 0.053 0 0.08 0.091 0.170

Yahoo Dataset7 0.16 0.25 0.11 0.066 0.071 0.14 0.101

Yahoo Dataset8 0.099 0.24 0.05 0 0 0 0.023

Yahoo Dataset9 0.85 0.5 0.04 0 0.42 0.54 0.533

GE Dataset1 0.038 0.09 0.06 0.074 0 0.17 0.20

GE Dataset2 1 0.8 1 0 0.088 1 1

Table 10: The F1 measure comparison of quantile based LSTM techniques with other standard
anomaly identifier algorithms.

K CHARACTERISTICS OF THE LSTM TECHNIQUES

Here, we will discuss the strength and limitations of the approaches, proposed in this paper.

K.1 QUANTILE-LSTM

The advantages of the quantile-LSTM are

1. It does not need the entire dataset in memory for anomaly identification.

2. Two thresholds (Upper, Lower) are used in quantile-LSTM and the thresholds are flexible.

3. It has exploited quantile, which is distribution agnostic.

However, it has several disadvantages.

1. This technique needs two LSTM models and two thresholds.

2. A special case of quantile-LSTM, iqr-LSTM requires three LSTM. Building multiple mod-
els can be expensive.

K.2 MEDIAN-LSTM

The median-LSTM has a couple of advantages over other methods. They are listed as follow:

1. It has applied a single LSTM model, which computes the median unlike quantile-LSTM,
which has applied two LSTM models.

2. median-LSTM does not identify the range of the normal data points; rather, it computes the
distance of the observed value from the median.

The weakness of the approach are:

1. median-LSTM expects the entire time series dataset to be present from where it tries to
identify the anomalies. In contrast, quantile-LSTM does not need the whole dataset to
be present. Therefore, median-LSTM may require higher memory for huge number of
datapoints.

2. In the case of quantile-LSTM, the upper and lower quantile values may differ for different
datasets. However, it is always 0.5 quantile for median-LSTM irrespective of the datasets.
Hence it is not that flexible like other approaches.
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L VARYING THRESHOLDS

Autoencoder, GAN, DAGMM and DevNet all Deep Learning based baseline algorithms considered
two thresholds ( upper threshold and lower thresholds) on reconstruction errors or predicted value.
To understand the impact of different thresholds on the performance, we have considered three
baseline algorithms GAN, Autoencoder and Devnet. The baseline methods have considered five
different sets of threshold values for upper and lower thresholds. The sets are shown in column
head of tables 11, 12 and 13, where the first threshold is the upper percentile/value and the second
threshold is the lower percentile/value.

GAN 99.25 and 0.75 99.75 and 0.25 99.9 and 0.1 mean ±1.5 ∗ std mean ±1 ∗ std

Dataset Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Yahoo Dataset1 0.09 1 0.25 1 0.5 1 0.0086 1 0.007 1

Yahoo Dataset2 0.348 1 0.333 0.375 0.4 0.25 0.037 0.875 0.013 1

Yahoo Dataset3 0.28 0.5 0.444 0.286 0.28 0.5 0.0543 0.5 0.0322 0.875

Yahoo Dataset5 0.007 1 0.007 1 0.007 1 0 0 0 0

Yahoo Dataset6 0.18 1 0.4 1 0.4 1 0 0 0 0

Yahoo Dataset7 0.154 0.364 0.3 0.273 0.5 0.182 0.041 0.63 0.04 0.63

Yahoo Dataset8 0.038 0.1 0.1 0.1 0.25 0.1 0 0 0 0

Yahoo Dataset9 0.192 0.625 0.5 0.625 0.5 0.25 0 0 0.0052 0.375

Table 11: Comparison of Precision and Recall score for GAN with varying thresholds for anomaly
Upper Bound and Lower Bound(as mentioned in each column head).

Autoencoders 99.25 and 0.75 99.75 and 0.25 99.9 and 0.1 mean ±1.5 ∗ std mean ±1 ∗ std

Dataset Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Yahoo Dataset1 0.5 0.07 0.5 0.036 0.5 0.019 0.0069 0.5 0.0099 1

Yahoo Dataset2 0.5 0.4 0.333 0.5 0.2 0.5 1 0.25 1 0.25

Yahoo Dataset3 0.44 0.5 0.4 0.5 0.25 0.333 0.7 0.875 0.122 0.875

Yahoo Dataset5 0.13 0.33 0.375 0.33 0.6 0.33 0.042 0.33 0.035 0.33

Yahoo Dataset6 0.18 1 0.5 0.33 0.5 0.5 0.023 1 0.022 1

Yahoo Dataset7 0.5 0.5 0.5 0.5 0.5 0.5 0.043 0.36 0.032 0.45

Yahoo Dataset8 0 0 0 0 0.25 0.1 0.008 0.1 0.004 0.1

Yahoo Dataset9 0.18 0.625 0.5 0.625 0.33 0.125 1 0.5 0.12 0.625

Table 12: Comparison of Precision and Recall score for Autoencoders with varying thresholds for
anomaly Upper Bound and Lower Bound(as mentioned in each column head).

It is evident from the above tables that performance vary significantly based on the thresholds de-
cided by the algorithm. Therefore it is very important to decide a correct threshold which can
identify all the probable anomalies from the dataset. Most of the cases, it is not feasible to know the
appropriate threshold before applying the baseline algorithms.

M VLDB

Using the VLDB Benchmark, we generated a timeseries dataset of 5500 datapoints containing 40
anomalies. We used various Deep Learining based algorithms on this generated non-industrial
dataset. From table 14, we can clearly see that in terms of recall our proposed algorithm(Median-
LSTM) works almost as well as GAN and far better than the other two. While in terms of precision
Median-LSTM gives the best values, thus performing better than the other algorithms overall.
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Devnet 99.25 and 0.75 99.75 and 0.25 99.9 and 0.1 mean ±1.5 ∗ std mean ±1 ∗ std

Dataset Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Yahoo Dataset1 0.002 1 0.002 1 0.001 1 0 0 0.004 1

Yahoo Dataset2 0.005 1 0.005 1 0.005 1 0 0 0.004 0.4

Yahoo Dataset3 0.0078 1 0.0078 1 0.0078 1 0.0988 0.727 0.0354 0.909

Yahoo Dataset5 0.111 0.5 0.333 0.5 0.333 0.5 0.0279 1 0.0153 1

Yahoo Dataset6 0.167 1 0.5 1 0.5 0.667 0.333 1 0.0347 1

Yahoo Dataset7 0.054 0.2 0.125 0.2 0.25 0.2 0.033 0.571 0.0106 0.714

Yahoo Dataset8 0 0 0 0 0 0 0 0 0 0

Yahoo Dataset9 0 0 0 0 0 0 0 0 0 0

Table 13: Comparison of Precision and Recall score for Devnet with varying thresholds for anomaly
Upper Bound and Lower Bound(as mentioned in each column head).

VLDB Dataset Precision Recall

Median-LSTM 0.513 0.976

GAN 0.0072 1

Autoencoders 0.013 0.025

Devnet 0.0357 0.158

LSTM-Autoencoders 0.064 0.143

Table 14: Comparison of Precision and Recall score for VLDB generated dataset for various deep
learning anomaly detection techniques.

VLDB Dataset F1-score

Median-LSTM 0.673

GAN 0.0143

Autoencoders 0.0171

Devnet 0.0582

LSTM-Autoencoders 0.0884

Table 15: Comparison of F1-score for VLDB generated dataset for various deep learning anomaly
detection techniques.
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N TABLES

We have experimented each of the algorithms on AWS datasets 5 times and mean(µ) and std
deviation(σ) of the results have been computed and shown in Table 16. The superior results are
marked as bold. Iqr-LSTM (a variant of quantile-LSTM) has outperformed others in AWS1 and
AWS3.

Dataset iqr-LSTM GAN Autoencoder DAGMM

Precision(µ± σ) Recall(µ± σ) Precision(µ± σ) Recall(µ± σ) Precision(µ± σ) Recall(µ± σ) Precision(µ± σ) Recall(µ± σ)

AWS Dataset1 875±0.216 1±0 0.061±0.008 1±0 0.026±0.0111 1±0 0.031±0.054 0.25±0.43

AWS Dataset2 0.126±0.067 1±0 0.16±0.0275 1±0 0.14±0.076 0.62±0.21 0.0425±0.038 1±0

AWS Dataset3 1±0 1±0 0.039±0.008 1±0 0.017±0.01 1±0 0±0 0±0

Table 16: Statistical analysis of the algorithms on AWS datasets.

Dataset α after training α initial value

AWS Dataset1 1.612 0.1

AWS Dataset2 0.895 0.1

AWS Dataset3 1.554 0.1

AWS DatasetSyn1 1.537 0.1

AWS DatasetSyn2 0.680 0.1

AWS DatasetSyn3 1.516 0.1

Yahoo Dataset1 1.432 0.1

Yahoo Dataset2 1.470 0.1

Yahoo Dataset3 1.658 0.1

Yahoo Dataset5 1.686 0.1

Yahoo Dataset6 1.698 0.1

Yahoo Dataset7 1.725 0.1

Yahoo Dataset8 1.850 0.1

Yahoo Dataset9 1.640 0.1

Table 17: Different α values for each Dataset after the training.
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