
Exploring Quantization for Efficient Pre-Training of Transformer
Language Models

Anonymous ACL submission

Abstract
The increasing scale of Transformer models has001
led to an increase in their pre-training compu-002
tational requirements. While quantization has003
proven to be effective after pre-training and004
during fine-tuning, applying quantization in005
Transformers during pre-training has remained006
largely unexplored at scale for language model-007
ing. This study aims to explore the impact of008
quantization for efficient pre-training of Trans-009
formers, with a focus on linear layer compo-010
nents. By systematically applying straightfor-011
ward linear quantization to weights, activations,012
gradients, and optimizer states, we assess its013
effects on model efficiency, stability, and perfor-014
mance during training. By offering a compre-015
hensive recipe of effective quantization strate-016
gies to be applied during the pre-training of017
Transformers, we promote high training effi-018
ciency from scratch while retaining language019
modeling ability.020

1 Introduction021

Transformers (Vaswani et al., 2017) have become022

the dominant model for natural language process-023

ing, with the GPT family of models (Radford et al.,024

2019) showcasing their effectiveness across vari-025

ous tasks, from language understanding to code026

generation. As the performance of Transformers027

scales nicely with the number of parameters and028

the data size, the current state-of-the-art models029

have reached unprecedented computational require-030

ments both during training and inference (Tay et al.,031

2020). For instance, pre-training a 175B param-032

eter GPT-3 model requires a staggering number033

of 10,000 V100 GPUs for 14.8 days (Patterson034

et al., 2021). As a result, pre-training has become035

extremely expensive, beyond the reach of most036

research groups, and has raised concerns over sus-037

tainability due to CO2 emissions from extensive038

GPU usage (Luccioni et al., 2023).039

To improve the efficiency of Transformers, quan-040

tization has gained significant traction due to its041

recent successes in both post-training (Ashkboos 042

et al., 2024; Dettmers et al., 2022; Frantar et al., 043

2022) and during fine-tuning (Li et al., 2023). 044

Quantized pre-training, where certain parts of the 045

computational graph and model parameters are 046

quantized from the beginning of training, remains 047

a challenging problem. In such scenarios, the train- 048

ing instabilities caused by substantial changes in 049

model parameters and emerging model behaviors 050

do not pair well with the added noise introduced 051

by quantization (Nagel et al., 2022). Additionally, 052

quantizing model components without compromis- 053

ing performance becomes increasingly difficult at 054

larger scales (Dettmers and Zettlemoyer, 2023). 055

Despite its importance, quantized pre-training of 056

Transformer language models remains largely un- 057

explored at scale. 058

In this paper, we present the first in-depth study 059

on the effects of quantizing Transformer language 060

models during pre-training and at scale. Our pri- 061

mary aim is to provide a recipe for quantized pre- 062

training by conducting a controlled study that inves- 063

tigates the impact of quantization on weights, acti- 064

vations, gradients, and optimizer states on model ef- 065

ficiency, stability, and performance, using a simple 066

linear quantization with 4 and 8 bits. Our findings 067

demonstrate that 8-bit quantization for weights and 068

activations can be effectively combined to provide 069

significant memory savings and potential speedup, 070

achieving performance comparable to the baseline 071

model. However, extending quantization to gradi- 072

ents to utilize computational speedup in backward 073

matrix multiplications or reducing precision to 4 074

bits results in notable training instability. 075

Specifically, 4-bit quantization introduces a 076

sharper loss landscape for weights (§4.1) and per- 077

sistent outliers in the channel dimension of activa- 078

tions (§4.2), significantly degrading performance 079

despite attempts to manage them through per- 080

channel quantization. Additionally, gradient quan- 081

tization is particularly problematic due to spikes in 082

1

gradient norms during early training phases and the083

unstructured and sparse nature of gradients through-084

out training (§4.3). While 8-bit gradient quantiza-085

tion does not hurt model convergence, transitioning086

to 4 bits results in non-convergence. Finally, quan-087

tizing the first-order moments of Adam to even088

4 bits is feasible without significant performance089

loss, but the second-order moments require a more090

complex quantization scheme to avoid instabilities091

in the Adam update, even when using 8-bits qaun-092

tization (§4.4).093

2 Related Work094

In recent years, numerous methods have been stud-095

ied to improve the efficiency of neural networks.096

Among these, Quantization-aware training (QAT)097

emerges as an acceleration technique for inference,098

as parameters are stored and operations are con-099

ducted with higher precision during training. The100

induced quantization error during training serves101

as a regularizer, as demonstrated in Gholami et al.102

(2022), ultimately facilitating the development of a103

more quantization-friendly model.104

In contrast, Fully Quantized Training (FQT) har-105

nesses the accelerated gains derived from higher106

throughput in INT8 or INT4 operations supported107

by modern GPUs during training. Additionally,108

FQT capitalizes on memory savings by storing pa-109

rameters in lower precisions. As exemplified by110

Li et al. (2024) and Dettmers et al. (2021), states111

of the Adam optimizer are stored in 4 and 8 bits,112

respectively, to minimize memory footprint. An-113

other strategy introduced by Markov et al. (2023)114

involves quantizing both weights and gradients to115

reduce bandwidth usage in distributed training. Fur-116

thermore, (Wortsman et al., 2024) and (Kim et al.,117

2021) advocate the replacement of linear opera-118

tions with INT8 matrix multiplications to achieve119

substantial speedups.120

Despite the considerable advantages in acceler-121

ating the training process, FQT poses challenges122

attributable to numerical stability and optimiza-123

tion issues inherent in training quantized networks.124

Many existing methods predominantly focus on125

fine-tuning Large Language Models (LLMs) using126

FQT, leveraging the inherent stability of pre-trained127

models in each gradient update. The evolution128

from 16-bit to FP8 data formats, as evidenced by129

remarkable results in mixed precision training on130

LLMs (Peng et al., 2023), showcases the potential131

of FQT. However, the scarcity and difficulty in ob-132

taining hardware that supports FP8 formats pose 133

significant challenges to its widespread adoption. 134

Wortsman et al. (2024) employ 8-bit quantiza- 135

tion for linear operations in both forward and back- 136

ward passes, achieving remarkable results in pre- 137

training large-scale vision language models. Their 138

approach incorporates row-wise quantization for 139

activations and gradients, mitigating the impact of 140

quantization errors on other parameters. However, 141

vision language models significantly differ from 142

large textual language models. Xi et al. (2024b) 143

proposed 4-bit quantization in FQT with Hadamard 144

transformation to address outliers in activations. 145

Acknowledging the sparsity of gradients during 146

training, they propose bit splitting for quantizing 147

gradients in 4-bit precision. However, they predom- 148

inantly focus on fine-tuning, and their experiments 149

on pre-training only consider small models (60M) 150

on a limited dataset (WMT 14 En-De). 151

The generalization of these findings to large- 152

scale language models (LLMs) remains a challenge, 153

especially considering that training such models 154

involves unique complexities. Additionally, their 155

reliance on Hadamard transformations imposes re- 156

strictions on activation dimensions, limiting appli- 157

cability to power-of-two dimensions, a constraint 158

not easily met by recent LLM architectures such as 159

LLaMa. 160

In contrast to the aforementioned complex quan- 161

tization methods, such as quantile quantization and 162

learnable quantization parameters, this study fo- 163

cuses on a more straightforward implementation. 164

The objective is to investigate the effects of quanti- 165

zation and explore the feasibility of training LLMs 166

with full integer operations. The primary goal of 167

this paper is to offer detailed insights into quantiz- 168

ing different components of the model. While more 169

sophisticated quantization methods have the poten- 170

tial to enhance the final performance, our work 171

serves as a foundational investigation, providing 172

valuable insights and paving the way for further 173

exploration in the realm of quantization for LLMs. 174

3 Quantization Methodology 175

In this work, we explore various quantization 176

schemes (§3.1) and granularities (§3.2) on model 177

components. This controlled approach during pre- 178

training allows us to examine the impacts on lan- 179

guage modeling and downstream task performance. 180

2

3.1 Quantization Scheme181

We start by introducing the quantization procedure182

used in our study, which is applied to all linear183

layers of Transformers. We perform fake quantiza-184

tion, where all values and computations are stored185

with higher precision, and every quantization oper-186

ation is followed by de-quantization to introduce187

quantization error. Simulating low-precision pre-188

training fits the purpose of this study since we aim189

to analyze the effects of quantizing different model190

components without focusing on actual training191

speedups that can be obtained by implementing192

custom GPU kernels.193

Figure 1: Overview of the quantization process in for-
ward and backward passes.

Figure 1 illustrates how quantization error is in-194

troduced during both the forward and backward195

passes. Specifically, the quantization error is in-196

jected into either the weights or input activations197

during the forward pass. In the backward pass,198

quantization is applied to the output gradient for199

computing weight updates due to only the gra-200

dient of the weight is stored. Nonetheless, the201

real-valued output gradient is used to compute the202

quantized input gradient since we observed an in-203

crease in training instability when propagating the204

quantization error through the entire backward path.205

Additional details about gradient quantization are206

presented in Section 4.3.207

We employ linear quantization for our experi-208

ments since this is a popular approach compatible209

with existing hardware, and using more complex210

methods could potentially hinder the practical rel-211

evance of our study. Specifically, we map real-212

valued vectors X to a discrete grid of integers as213

follows: 214

Xint = clip

(⌊
X

s

⌉
− z;N,P

)
,

X̂ = s(Xint + z),

(1) 215

where ⌊·⌉ is the round-to-nearest integer operator, 216

N and P represent the quantization range, with 217

N = −2b−1, P = 2b−1 − 1, and b is the bitwidth, 218

since we deal with signed data in our experiments. 219

The scaling factor s is set to the maximum abso- 220

lute value of X/P . Unless specified, we perform 221

symmetric quantization by setting the offset z to 0, 222

which has less overhead than asymmetric quanti- 223

zation where z is set to ⌊min(X)/s⌉ (Nagel et al., 224

2021). During backpropagation, we employ the 225

well-known straight-through estimator (STE) (Ben- 226

gio et al., 2013) mechanism to update the weights. 227

3.2 Quantization Granularity 228

We can choose scaling factors with different granu- 229

larity: per-tensor, per-channel, and per-token quan- 230

tization, where each quantization granularity leads 231

to a specific trade-off between efficiency and perfor- 232

mance. Specifically, per-tensor quantization offers 233

the highest efficiency since it performs a single 234

element-wise floating-point multiplication for the 235

de-quantization step. However, since only a single 236

value is used to rescale the entire tensor, perfor- 237

mance degradation is likely to occur due to such 238

uniform scaling across the tensor elements. 239

On the other hand, per-channel and per-token 240

quantization offer a finer-grained scaling, where 241

different scaling factors are tailored to specific ten- 242

sor element groups (i.e. channels and tokens, re- 243

spectively). Even though such approaches help 244

in terms of performance, they introduce an over- 245

head during the de-quantization step. It is worth 246

noting that, in certain instances, these quantiza- 247

tion granularities cannot be efficiently implemented 248

by hardware-accelerated GEMM kernels. For ex- 249

ample, using per-channel quantization for both 250

weights and activations can not be efficiently im- 251

plemented. 252

3.3 Quantization Efficiency 253

To show the potential memory saving in quantized 254

pre-training, we explore the memory consumption 255

of various components within GPT-2 models dur- 256

ing training using the PyTorch Memory Profiler. 257

We analyze peak memory usage, as shown in Fig- 258

ure 2, which illustrates memory usage for different 259

3

4 8 16
Batch Size

0

10

20

30

40

Pe
ak

 M
em

or
y

Us
ag

e
(G

B)

59%
67%

72%
55%

66%

75%
51%

64%

74%

gpt2-small
gpt2-medium
gpt2-large

Figure 2: Distribution of peak memory usage across dif-
ferent model sizes (GPT-2 Small, Medium, and Large)
for a constant context length of 1024, with varying batch
sizes. Memory usage for model components other than
activations is hatched.

batch sizes with a fixed context length of 1024260

across various model sizes. We observe that when261

a model can fit within the GPU memory, the ma-262

jority of the memory at peak times is consumed by263

activations, particularly with large batch sizes and264

sequence lengths. Under these conditions, gradi-265

ents do not contribute to peak memory usage. More266

details are in Appendix B.267

256 512 1024 2048 4096 8192
Sequence Length

30

40

50

60

70

80

Ex
ec

ut
io

n
Ti

m
e

Sh
ar

e
of

Lin

ea
r L

ay
er

s (
%

)

gpt2-small
gpt2-medium
gpt2-large
gpt2-xlarge

Figure 3: Proportion of total execution time consumed
by linear layers in the attention block of GPT-2 models
(Small, Medium, Large, and X-Large) across different
sequence lengths.

We also profile the execution time of kernels268

using the Nvidia Nsight Profiler to assess the poten-269

tial speedup from quantizing linear layers. Figure270

3 shows the proportion of total execution time con-271

sumed by linear layers in the attention block of272

GPT-2 models of varying sizes across different se-273

quence lengths. This profiling includes both the274

forward and backward passes. We observe that275

for small sequence lengths, linear layers consume276

a significant portion (more than 80%) of the ex-277

ecution time. As the model size increases, this 278

proportion typically rises, but as sequence lengths 279

increase, the proportion of time spent in linear lay- 280

ers decreases, suggesting that self-attention, due to 281

its quadratic computational complexity, becomes 282

the dominant factor in execution time. This indi- 283

cates that while quantizing linear layers can offer 284

substantial speedup, the potential gains are more 285

pronounced with smaller sequence lengths. 286

4 Experimental Results 287

We used GPT-2 small (Radford et al., 2019) (124M) 288

with FlashAttention2 (Dao et al., 2022) for our 289

experiments due to its popularity and remarkable 290

performance-to-compute ratio. For the follow- 291

ing experiments, we pre-trained 30 models from 292

scratch on OpenWebText (Gokaslan and Cohen, 293

2019) for 300k gradient steps with a global batch 294

size of 512 samples and a context length of 1024 295

tokens. For our evaluation setup, we evaluate 296

the performance of the models on a range of lan- 297

guage tasks, including ARC-Easy (Yadav et al., 298

2019), ARC-Challenge (Yadav et al., 2019), Hel- 299

laswag (Zellers et al., 2019), LAMBADA (Paperno 300

et al., 2016), and GLUE score (Wang et al., 2018). 301

Additional details about our training and evaluation 302

setups are provided in Appendix A. 1 303

4.1 Weight Quantization 304

The validation loss curves of applying per-tensor 305

and per-channel quantization to weights with 4 and 306

8 bits are presented in Figure 4 (down). We observe 307

that per-channel weight quantization with 8 bits 308

outperforms the floating-point baseline since the 309

beginning of training in terms of validation loss, 310

while per-tensor weight quantization with 8 bits 311

shows competitive performance. When quantizing 312

to 4 bits, there is a substantial difference between 313

the different granularities, with per-channel weight 314

quantization significantly outperforming per-tensor 315

quantization, as previously discussed in § 3.2. 316

We also evaluate the downstream task perfor- 317

mance of the quantized pre-trained models in Fig- 318

ure 4 (top). We observe that 8-bit weight quanti- 319

zation outperforms 4-bit and achieves competitive 320

performance compared to the floating point base- 321

line, independently of the granularity used. Once 322

again, per-channel weight quantization with 8 bits 323

achieves the best performance among the tested 324

quantization schemes. Overall, we observe similar 325

1We will release the code upon the acceptance of the paper.

4

0 60k 120k 180k 240k 300k
Training Iteration

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Va
lid

at
io

n
Lo

ss

ARCe ARCc HS LAMBADA GLUE Avg.
0.2

0.3

0.4

0.5

Sc
or

es
baseline
8bit per-channel

8bit per-tensor
4bit per-channel

4bit per-tensor

Figure 4: Comparison of different Weight Quantiza-
tion schemes. (Down) Validation loss across training it-
erations for 4-bit and 8-bit quantization, both per-tensor
and per-channel, alongside the baseline. (Top) Perfor-
mance on downstream tasks for the corresponding quan-
tization approaches, demonstrating the efficacy of 8-bit
per-channel weight quantization.

findings when comparing the performance of the326

different methods during the pre-training and down-327

stream phases. Despite the success in quantizing328

weights to 8 bits from scratch, we note that only per-329

forming 8-bit quantization post-training also works330

well, as shown in Appendix C (Table 10). However,331

when it comes to 4-bit quantization, applying quan-332

tization from scratch leads to significantly better333

performance.334

We note a pronounced drop in validation loss335

at the end of training with the 4-bit weight quan-336

tization schemes, as seen in the final training it-337

erations in Figure 4 (down). We hypothesize that338

this is related to reducing the learning rate below339

1e − 6 in the final steps of training in our setup.340

However, this is not observed in all the schemes.341

Nagel et al. (2022) suggested that the oscillations342

in weights originated from performing quantiza-343

tion with STE during training may result in weight344

movements around decision thresholds. Hence, in345

our use case, we hypothesize that the drop in valida-346

tion loss stems from the presence of sharp minima347

when quantizing weights to lower bit-widths and348

that the lower learning rate regime at the end of349

training helps convergence to minima with lower350

loss.351

To further investigate this, we compare the sharp-352

ness of the different models at the end of pre-353

0.05 0.10 0.15 0.20
r

0

1

2

3

4

5

6

SA
M

 m
-s

ha
rp

ne
ss

4bit per-tensor
4bit per-channel
8bit per-tensor

8bit per-channel
baseline

1.0
0.5

0.0
0.5

1.0

1.0 0.5 0.0 0.5 1.0

baseline

1.0
0.5

0.0
0.5

1.0

1.0 0.5 0.0 0.5 1.0

4-bit per-tensor
weight quantization

Figure 5: Sharpness comparison between baseline
model and 4-bit weight quantization. (Top) m-
sharpness. (Down) Loss surfaces.

training using m-sharpness (Foret et al., 2021) with 354

varying radii in Figure 5 (down). We observe that 355

all quantized models converge to sharper minima 356

compared to the floating-point, unquantized base- 357

line. Moreover, there is a direct relation between 358

the sharpness of each quantized model and the rel- 359

ative drop in validation loss observed in Figure 4 360

(down). Specifically, per-tensor weight quantiza- 361

tion with 4 bits shows the highest sharpness and 362

also the highest drop in validation loss. This cor- 363

relation is also observed on a smaller scale for the 364

per-tensor weight quantization model to 4 bits and 365

the per-tensor weight quantization model to 8 bits. 366

To visualize the loss surfaces, we employ the vi- 367

sualization method introduced by Li et al. (2018). 368

The loss surfaces of the baseline and the per-tensor 369

weight quantization model to 4-bits are shown in 370

Figure 5 (right), further illustrating the impact that 371

quantization during pre-training has on the sharp- 372

ness of the final pre-trained model. 373

4.2 Activation Quantization 374

We present the validation loss when quantizing acti- 375

vations during pre-training in Figure 7 (down). We 376

note that quantizing activations to 4 bits is more 377

challenging than training with 4-bit weights, as no- 378

ticed by previous work (Xiao et al., 2023) and as 379

seen by the divergence behavior of per-token and 380

per-tensor activation quantization. On the other 381

hand, quantizing activations to 8 bits works well, 382

especially if performed per-token, which achieves 383

5

Figure 6: Training progression of activation distributions across selected iterations, showing persistent channel-
specific outliers

lower validation loss than the floating-point base-384

line. The performance of downstream tasks of the385

baseline and quantized models is presented in Fig-386

ure 7 (top). We notice a similar performance trend387

across the models, with 8-bit per-token activation388

reaching competitive performance with the base-389

line model.390

0 60k 120k 180k 240k 300k
Training Iteration

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Va
lid

at
io

n
Lo

ss

ARCe ARCc HS LAMBADA GLUE Avg.
0.2

0.3

0.4

0.5

Sc
or

es

baseline
8bit per-token

8bit per-tensor
4bit per-token

4bit per-token asymmetric
4bit per-tensor

Figure 7: Pre-training Activation Quantization effects:
(Down) Validation loss curves for various quantization
schemes; (Top) Downstream task Performance across
Datasets, showing 8-bit quantization closely aligns with
baseline performance.

To investigate 4-bit activation quantization fur-391

ther, we also tried applying an asymmetric scheme.392

The intuition is that, while most activations exhibit393

symmetry around zero, this is not the case for acti-394

vation after GELU activation functions (Hendrycks395

and Gimpel, 2016). Hence, having an asymmet-396

ric scheme can lead to a better utilization of the397

available bits for representation. However, we ob-398

serve that while the asymmetric scheme provides399

an improvement over 4-bit per-token symmetric400

quantization, the model still diverges. We analyze401

the activation distributions of the output projection402

layer within the attention block of layer 7 in Fig-403

ure 6. We see that outliers predominantly reside 404

within specific channels and persistently affect the 405

same channels throughout training. Given our use 406

of per-tensor and per-token quantization for activa- 407

tions, it is evident that such outliers can influence 408

all tokens, given their consistent pattern across the 409

channel dimension. 410

0 40k 80k 120k 160k 200k
Training Iteration

3.0

3.5

4.0

4.5

5.0

Va
lid

at
io

n
Lo

ss

baseline 4bit per-channel

Tokens

0 50 100 150 200 250

Cha
nn

els

0
500

1000
1500

2000
2500

3000
0

10

20

30

40

Figure 8: Validation loss and activation outliers for
4-bit per-channel quantization. (Left) Validation loss
shows convergence but underperforms compared to the
baseline. (Right) Histogram of activation with massive
outliers.

Since activation outliers are mostly predominant 411

in particular channels during training, we explore 412

the efficacy of per-channel 4-bit activation quantiza- 413

tion in Figure 8 (left). We observe that this variant 414

does converge, even though it fails to be competi- 415

tive with the floating-point baseline. Such degra- 416

dation in validation loss can be attributed to the 417

presence of massive outlier activations in specific 418

layers. Despite being important for the model’s per- 419

formance (Sun et al., 2024), these big activations 420

pose a challenge for both per-token and per-channel 421

quantization. An example of these is presented in 422

Figure 8 (right), showing the presence of large acti- 423

vations in the FC2 layer in the final attention block. 424

4.3 Gradient Quantization 425

We perform gradient quantization and present the 426

validation losses obtained during pre-training in 427

Figure 9 (down). We observe that, with 4-bit gra- 428

dient quantization, training becomes highly un- 429

stable or completely fails to converge. With 8 430

6

bits, only per-token quantization converges despite431

showing worse performance compared to our base-432

line model. The observations are similar when433

measuring the performance of the different models434

on downstream tasks, as shown in Figure 9 (top).435

0 60k 120k 180k 240k 300k
Training Iteration

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Va
lid

at
io

n
Lo

ss

ARCe ARCc HS LAMBADA GLUE Avg.

0.2

0.3

0.4

0.5

Sc
or

es

baseline
8bit per-token

8bit per-tensor 4bit per-token

Figure 9: Gradient Quantization. (Down) Validation
loss showing non-convergence for 4-bit and 8-bit per-
tensor quantization. (Top) Performance on downstream
tasks, with only 8-bit per-token approaching baseline
performance.

As previously discussed in §3.1, we quantize the436

output gradients only for the weight updates, avoid-437

ing the instability in training that can result from438

propagating quantization errors when quantizing439

activation gradients. This is illustrated in Figure 10440

(top), where quantizing activation gradients in the441

initial training stages leads to an explosion in the442

validation loss, followed by divergence. Moreover,443

we observe an increase in the L2 norm between444

the floating-point gradients and the quantized coun-445

terparts when quantizing activation gradients com-446

pared to weight gradients.447

To further analyze the subpar performance of448

8-bit per-token gradient quantization, even when449

only applied to weight gradients, we analyze the450

gradients for the QKV projection at the first layer of451

the model early on in training in Figure 10 (down).452

We observe that gradients are mostly sparse during453

training and are prone to induce high quantization454

errors, rendering instabilities.455

4.4 Optimizer States Quantization456

We quantize optimizer states, particularly the457

first and second moments in the Adam optimizer.458

Specifically, the quantized values of each state are459

0 7k 14k 21k 28k 36k
Training Iteration

3

4

5

6

7

8

Ev
al

 L
os

s

0 2 4 6 8 10
layer index

0.00

0.05

0.10

0.15

0.20

0.25

L2
 n

or
m

weight gradient quantization activation gradient quantization

Figure 10: (Top) Validation loss spike illustrating in-
stability from quantizing activation gradients. (Down)
Gradient magnitude histogram for a linear layer, high-
lighting sparsity and potential for quantization error.

0 60k 120k 180k 240k 300k
Training Iteration

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Va
lid

at
io

n
Lo

ss

ARCe ARCc HS LAMBADA GLUE Avg.
0.2

0.3

0.4

0.5

Sc
or

es

baseline
8bit per-channel

8bit per-tensor
4bit per-channel

4bit per-tensor

Figure 11: Quantization of Adam optimizer’s first-
order moments. (Down) Comparison of validation
loss for different quantization approaches; (Top) Per-
formance on downstream tasks, with 8-bit per-channel
closely matching baseline.

stored until the next training iteration, which are 460

then dequantized and used for Adam’s update. To 461

better assess the effect of quantizing each state, we 462

quantize them separately and individually. The val- 463

idation losses when quantizing Adam’s first state 464

are presented in Figure 11 (down). We observe 465

that per-channel quantization to 8 bits works well, 466

achieving performance similar to that of the base- 467

7

line model. Notably, only per-tensor quantization468

to 4 bits failed to converge out of all tested configu-469

rations. Similar findings are found when evaluating470

the downstream performance of the different quan-471

tization schemes in Figure 11 (right).472

0 2k 4k 7k 9k 12k
Training Iteration

4

6

8

10

12

Tr
ai

n
Lo

ss

0 2k 4k 7k 9k 12k
Training Iteration

250

500

750

1000

1250

1500

1750

2000

W
ei

gh
t N

or
m

baseline 8bit per-channel

0 9e-12 6e-11 4e-10 2e-09 2e-08 1e-07
range

10 6

10 5

10 4

10 3

10 2

10 1

de
ns

ity

real
quantized

Figure 12: Second-order moments of Adam quantiza-
tion. (Top) Validation loss quickly diverges. (Down)
Histogram showing the concentration of quantized val-
ues in the zero bin, which contributes to instability in
weight updates.

The results of quantizing Adam’s second state473

are presented in Figure 12 (left). We observe that474

the quantized model failed to converge smoothly475

throughout training, even when applying per-476

channel quantization with 8 bits. This can be ex-477

plained by the usage of a linear symmetric quan-478

tization function around zero in our scheme. This479

causes all small values to be set to zero after quan-480

tization, hurting performance, as presented in Fig-481

ure 12 (right). Given that the second state plays a482

pivotal role in the denominator of Adam’s update,483

such clustering to zero leads to excessively large484

weight updates, causing training to diverge from485

the onset, as observed in Figure 12 (left).486

4.5 Multiple Components Quantization487

As our last studied components, we trained models488

using 8-bit quantization for weights, activations,489

and gradients, as well as isolating quantization490

to only weights and activations with per-channel491

granularity for weights and per-token granularity492

for activations and gradients. Our findings, as de-493

picted in Figure 13, demonstrate that quantizing494

both weights and activations to 8-bit allows per-495

formance to closely align with the baseline model.496

0 60k 120k 180k 240k 300k
Training Iteration

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Va
lid

at
io

n
Lo

ss

ARCe ARCc HS LAMBADA GLUE Avg.
0.2

0.3

0.4

0.5

Sc
or

es

baseline W8A8 - per-channel W8A8G8 - per-channel

Figure 13: Validation loss across training iterations for
weight, activation, and gradient quantization together.

However, extending quantization to include gradi- 497

ents results in a notable decrease in performance. 498

This observation is consistent with earlier results 499

from our independent quantization of gradients, 500

highlighting the significant challenges this intro- 501

duces. 502

5 Conclusion 503

This study presents an extensive analysis of the 504

impact of quantizing specific Transformer compo- 505

nents in 4 and 8 bits during pre-training, in con- 506

trast to concurrent work that focuses on individual 507

methods without comprehensive ablations (Xi et al., 508

2024a). Our study reveals that quantizing weights 509

to 8-bits from the beginning of pre-training is gen- 510

erally successful. However, 4-bit weight quanti- 511

zation can significantly affect model convergence 512

due to a sharper loss landscape. We also found that 513

carefully managing activation outliers is crucial 514

to avoid performance drops with lower-precision 515

quantization. Additionally, we explain the sensitive 516

nature of gradient quantization and its potential to 517

fail at lower bit-widths. We observed that while 518

the first-order moments of the Adam optimizer can 519

be effectively quantized to 4-bits, the second-order 520

moments pose a greater challenge even for 8-bit 521

quantization. Overall, our work establishes an im- 522

portant foundation for future developments in quan- 523

tization approaches tailored to Transformers, open- 524

ing the door to efficiently train large-scale models 525

from scratch for improved accessibility. 526

8

Limitation527

We acknowledge the limitations of our work:528

• We employed linear quantization for our ex-529

periments. While this approach is widely used530

and allows for a controlled study, it may not531

capture the full potential of more sophisticated532

quantization methods.533

• Due to the cost of pre-training and the number534

of experiments, we limited our study to GPT-2535

small, and our findings may not generalize to536

larger models.537

• The efficiency gains discussed are estimated538

using profiling data, and implementing these539

improvements in practice is challenging due540

to the complexity of kernel optimizations.541

References542

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-543
ian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,544
Torsten Hoefler, and James Hensman. 2024. Quarot:545
Outlier-free 4-bit inference in rotated llms. arXiv546
preprint arXiv:2404.00456.547

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.548
2013. Estimating or propagating gradients through549
stochastic neurons for conditional computation.550
arXiv preprint arXiv:1308.3432.551

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,552
Thorsten Brants, Phillipp Koehn, and Tony Robinson.553
2014. One billion word benchmark for measuring554
progress in statistical language modeling. Preprint,555
arXiv:1312.3005.556

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and557
Christopher Ré. 2022. Flashattention: Fast and558
memory-efficient exact attention with io-awareness.559
Advances in Neural Information Processing Systems,560
35:16344–16359.561

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke562
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul-563
tiplication for transformers at scale. In Advances in564
Neural Information Processing Systems.565

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke566
Zettlemoyer. 2021. 8-bit optimizers via block-wise567
quantization. arXiv preprint arXiv:2110.02861.568

Tim Dettmers and Luke Zettlemoyer. 2023. The case569
for 4-bit precision: k-bit inference scaling laws. In570
Proceedings of the 40th International Conference on571
Machine Learning, ICML’23. JMLR.org.572

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and 573
Behnam Neyshabur. 2021. Sharpness-aware mini- 574
mization for efficiently improving generalization. In 575
International Conference on Learning Representa- 576
tions. 577

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 578
Dan Alistarh. 2022. GPTQ: Accurate post-training 579
compression for generative pretrained transformers. 580
arXiv preprint arXiv:2210.17323. 581

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, 582
Michael W Mahoney, and Kurt Keutzer. 2022. A 583
survey of quantization methods for efficient neural 584
network inference. In Low-Power Computer Vision, 585
pages 291–326. Chapman and Hall/CRC. 586

Aaron Gokaslan and Vanya Cohen. 2019. Open- 587
webtext corpus. http://Skylion007.github.io/ 588
OpenWebTextCorpus. 589

Dan Hendrycks and Kevin Gimpel. 2016. Gaus- 590
sian error linear units (gelus). arXiv preprint 591
arXiv:1606.08415. 592

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W 593
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer- 594
only bert quantization. In International conference 595
on machine learning, pages 5506–5518. PMLR. 596

Bingrui Li, Jianfei Chen, and Jun Zhu. 2024. Memory 597
efficient optimizers with 4-bit states. Advances in 598
Neural Information Processing Systems, 36. 599

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and 600
Tom Goldstein. 2018. Visualizing the loss landscape 601
of neural nets. 602

Zhikai Li, Xiaoxuan Liu, Banghua Zhu, Zhen Dong, 603
Qingyi Gu, and Kurt Keutzer. 2023. Qft: Quan- 604
tized full-parameter tuning of llms with affordable 605
resources. arXiv preprint arXiv:2310.07147. 606

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne- 607
Laure Ligozat. 2023. Estimating the carbon footprint 608
of bloom, a 176b parameter language model. Journal 609
of Machine Learning Research, 24(253):1–15. 610

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 611
Marcinkiewicz. 1993. Building a large annotated cor- 612
pus of English: The Penn Treebank. Computational 613
Linguistics, 19(2):313–330. 614

Ilia Markov, Adrian Vladu, Qi Guo, and Dan Alis- 615
tarh. 2023. Quantized distributed training of large 616
models with convergence guarantees. arXiv preprint 617
arXiv:2302.02390. 618

Stephen Merity, Caiming Xiong, James Bradbury, and 619
Richard Socher. 2016. Pointer sentinel mixture mod- 620
els. Preprint, arXiv:1609.07843. 621

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, 622
Yelysei Bondarenko, Mart Van Baalen, and Tijmen 623
Blankevoort. 2021. A white paper on neural network 624
quantization. arXiv preprint arXiv:2106.08295. 625

9

https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1712.09913
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843

Markus Nagel, Marios Fournarakis, Yelysei Bon-626
darenko, and Tijmen Blankevoort. 2022. Overcom-627
ing oscillations in quantization-aware training. In628
Proceedings of the 39th International Conference629
on Machine Learning, volume 162 of Proceedings630
of Machine Learning Research, pages 16318–16330.631
PMLR.632

Denis Paperno, Germán Kruszewski, Angeliki Lazari-633
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro634
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel635
Fernandez. 2016. The LAMBADA dataset: Word636
prediction requiring a broad discourse context. In637
Proceedings of the 54th Annual Meeting of the As-638
sociation for Computational Linguistics (Volume 1:639
Long Papers), pages 1525–1534, Berlin, Germany.640
Association for Computational Linguistics.641

David Patterson, Joseph Gonzalez, Quoc Le, Chen642
Liang, Lluis-Miquel Munguia, Daniel Rothchild,643
David So, Maud Texier, and Jeff Dean. 2021. Carbon644
emissions and large neural network training. arXiv645
preprint arXiv:2104.10350.646

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao,647
Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue Yang,648
Bolin Ni, Jingcheng Hu, et al. 2023. Fp8-lm: Train-649
ing fp8 large language models. arXiv preprint650
arXiv:2310.18313.651

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,652
Dario Amodei, Ilya Sutskever, et al. 2019. Language653
models are unsupervised multitask learners. OpenAI654
blog, 1(8):9.655

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang656
Liu. 2024. Massive activations in large language657
models. arXiv preprint arXiv:2402.17762.658

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-659
zler. 2020. Efficient transformers: A survey.(2020).660
arXiv preprint cs.LG/2009.06732.661

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob662
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz663
Kaiser, and Illia Polosukhin. 2017. Attention is all664
you need. Advances in neural information processing665
systems, 30.666

Alex Wang, Amanpreet Singh, Julian Michael, Felix667
Hill, Omer Levy, and Samuel R Bowman. 2018.668
Glue: A multi-task benchmark and analysis platform669
for natural language understanding. arXiv preprint670
arXiv:1804.07461.671

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer,672
Ari Morcos, Ali Farhadi, and Ludwig Schmidt. 2024.673
Stable and low-precision training for large-scale674
vision-language models. Advances in Neural Infor-675
mation Processing Systems, 36.676

Haocheng Xi, Yuxiang Chen, Kang Zhao, Kaijun Zheng,677
Jianfei Chen, and Jun Zhu. 2024a. Jetfire: Effi-678
cient and accurate transformer pretraining with int8679
data flow and per-block quantization. arXiv preprint680
arXiv:2403.12422.681

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. 682
2024b. Training transformers with 4-bit integers. 683
Advances in Neural Information Processing Systems, 684
36. 685

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 686
Julien Demouth, and Song Han. 2023. Smoothquant: 687
Accurate and efficient post-training quantization for 688
large language models. In International Conference 689
on Machine Learning, pages 38087–38099. PMLR. 690

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. 691
2019. Quick and (not so) dirty: Unsupervised selec- 692
tion of justification sentences for multi-hop question 693
answering. arXiv preprint arXiv:1911.07176. 694

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 695
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 696
machine really finish your sentence? arXiv preprint 697
arXiv:1905.07830. 698

A Experimental Setup 699

A.1 Model and Training Configuration 700

Our experiments leverage the computational en- 701

hancements of the FlashAttention library (Dao 702

et al., 2022), utilizing its GPT-2 implementation 703

within the HuggingFace Trainer framework 2 for 704

our training processes. 705

Training was conducted on the OpenWebText 706

corpus (Gokaslan and Cohen, 2019), adopting a set 707

of training configurations similar to (Dao et al., 708

2022) and nanoGPT 3, without hyperparameter 709

tuning due to computational constraints. We use 710

AdamW optimizer with a learning rate of 6e− 4, 711

combined with a cosine learning rate scheduler set 712

to a half cycle. We adopt mixed precision training 713

in bfloat16. The experiments are conducted with 714

a fixed batch size of 512, employing gradient ac- 715

cumulation as necessary to accommodate the com- 716

putational constraints of our setup across 4xA100 717

80G GPUs. This training configuration remains 718

consistent across all experiments, culminating in a 719

training duration averaging 4.3 days for completion 720

of 300k steps. 721

A.2 Data and Evaluation Metrics 722

The OpenWebText corpus was randomly split into 723

training and validation sets, with 0.5% of the data 724

reserved for validation. Following the methodology 725

of Radford et al. (2019), the performance of our pre- 726

trained models was evaluated on several benchmark 727

datasets. These evaluations focused on perplexity 728

2https://huggingface.co/docs/transformers/en/
main_classes/trainer

3https://github.com/karpathy/nanoGPT

10

https://proceedings.mlr.press/v162/nagel22a.html
https://proceedings.mlr.press/v162/nagel22a.html
https://proceedings.mlr.press/v162/nagel22a.html
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144
https://huggingface.co/docs/transformers/en/main_classes/trainer
https://huggingface.co/docs/transformers/en/main_classes/trainer
https://github.com/karpathy/nanoGPT

measurements on well-known datasets including729

WikiText (Merity et al., 2016), PTB (Marcus et al.,730

1993), and 1BW (Chelba et al., 2014). Our models731

were further evaluated using a range of downstream732

tasks:733

• GLUE (Wang et al., 2018): A collection of734

natural language understanding tasks includ-735

ing question answering, sentiment analysis,736

and textual entailment, designed to bench-737

mark the generalization capabilities of models738

across a diverse range of linguistic challenges.739

• ARC (Yadav et al., 2019): Comprising740

the ARC-Easy and ARC-Challenge, these741

datasets test the model’s reasoning abil-742

ity through science-based question answer-743

ing. ARC-Easy contains simpler questions,744

while ARC-Challenge includes more complex745

queries demanding deeper reasoning.746

• Hellaswag (Zellers et al., 2019): This dataset747

challenges models to predict the most plau-748

sible continuation of a narrative from a large749

corpus of everyday contexts and movie scripts,750

testing the commonsense reasoning ability of751

the models.752

• LAMBADA (Gokaslan and Cohen, 2019):753

Evaluates the model’s capability to predict the754

final word of a textual passage, focusing on755

the contextual understanding of the language.756

For evaluation on downstream tasks, we adopted757

a few-shot approach, utilizing a 5-shot prompting758

method with greedy decoding. Each prompt was759

structured with a task instruction followed by the760

five examples of training data and we compute ac-761

curacy on validation set. We implemented our few-762

shot evaluation protocol following the guidelines763

provided by the lm_evaluation_harness library 4.764

A.3 Comparison of Baseline and Pre-trained765

Model766

Table 1: Comparison of Baseline and Pre-trained Mod-
els: The latter trained for at least twice the duration.

LAMBADA
(accuracy)

LAMBADA
(ppl)

WikiText2
(ppl)

WikiText103
(ppl)

PTB
(ppl)

1BW
(ppl)

Pre-trained
model

33.3 38.48 24.67 29.17 35.86 45.87

Baseline 35.97 34.80 34.32 39.94 35.13 44.03

4https://github.com/zphang/lm_evaluation_
harness

To establish a solid baseline for our experiments, 767

we benchmark our trained model against the pre- 768

trained GPT-2 weights provided by OpenAI across 769

several downstream tasks. The comparison, de- 770

tailed in Table 1, reveals that our model achieves 771

results closely aligned with the original, validating 772

the efficacy of our training approach. In the fol- 773

lowing sections, we will delve into the individual 774

components of the model, discussing the impact 775

and outcomes of our quantization experiments on 776

each. 777

B Memory Analysis 778

In this section, we explore the memory consump- 779

tion patterns of various components within GPT-2 780

models during training, using the PyTorch Mem- 781

ory Profiler. This profiling tool allows for precise 782

monitoring of memory usage throughout the lifecy- 783

cle of a model’s operation, particularly during the 784

forward and backward passes, and during optimiza- 785

tion steps. "Peak memory" in this context refers to 786

the maximum memory usage observed at any point 787

in these stages, providing insights into how differ- 788

ent model configurations impact overall memory 789

requirements. We profiled all attention blocks as 790

well as lm head of the Transformer model. 791

Figure 14 shows how memory usage changes 792

with different batch sizes for a fixed context length 793

of 1024, across various model sizes. Notably, as 794

the batch size increases, the memory allocated for 795

activations becomes more dominant, especially in 796

larger models. This trend is primarily due to the 797

need to store activations for the computation of gra- 798

dients during the backward pass, which increases 799

with larger batch sizes. 800

Figure 15 examines the memory usage across 801

various sequence lengths while keeping the batch 802

size constant at 4. When both batch size and se- 803

quence length are small, peak memory typically oc- 804

curs towards the end of the backward propagation 805

phase. At this stage, memory includes the parame- 806

ters, optimizer states, gradients from all layers, and 807

activations from the initial layers. However, as the 808

sequence length and batch size increase, peak mem- 809

ory usage shifts to the beginning of the backward 810

propagation. At this point, the memory comprises 811

parameters, optimizer states, all activations, and no- 812

tably, the output gradient of the final layers, which 813

matches the size of the logits (proportional to batch 814

size * sequence length * vocabulary size). 815

In conclusion, the analysis reveals that when a 816

11

https://github.com/zphang/lm_evaluation_harness
https://github.com/zphang/lm_evaluation_harness

4 8 16
Batch Size

0

10

20

30

40

M
em

or
y

Us
ag

e
(G

B)

59.04%
67.06%

72.30%

GPT2-SMALL

4 8 16
Batch Size

0

10

20

30

40

M
em

or
y

Us
ag

e
(G

B)

54.80%
66.20%

74.69%

GPT2-MEDIUM

4 8 16
Batch Size

0

10

20

30

40

M
em

or
y

Us
ag

e
(G

B)

50.59%

63.54%

74.22%

GPT2-LARGE

PARAMETER OPTIMIZER_STATE ACTIVATION AUTOGRAD_DETAIL OTHER

Figure 14: Distribution of peak memory usage across different model sizes (GPT-2 Small, Medium, and Large) for
a constant context length of 1024, with varying batch sizes. This figure demonstrates how memory dedicated to
activations increases as batch size increases, highlighting the impact of batch size on memory allocation dynamics
in large-scale models.

256 512 1024
Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
em

or
y

Us
ag

e
(G

B)

38.20% 48.96%
59.29%

GPT2-Small

256 512 1024
Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
em

or
y

Us
ag

e
(G

B)

3.45% 42.67%
55.12%

GPT2-Medium

256 512 1024
Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
em

or
y

Us
ag

e
(G

B)

11.69% 38.48%

50.95%

GPT2-Large

PARAMETER OPTIMIZER_STATE GRADIENT AUTOGRAD_DETAIL ACTIVATION

Figure 15: Peak memory usage profile for different sequence lengths while maintaining a constant batch size of 4,
across different model sizes (GPT-2 Small, Medium, and Large). This figure illustrates the shift in peak memory
usage from gradients to activations as sequence length increases, and the significant impact of sequence length on
memory dynamics during training.

model can fit within the GPU memory, the ma-817

jority of the memory at peak times is consumed818

by activations, especially when working with suf-819

ficiently large batch sizes and sequence lengths.820

Under these conditions, gradients do not contribute821

to peak memory usage. Consequently, quantizing822

gradients will not lead to significant memory sav-823

ings.824

C Quantization Results825

This appendix presents the granular results from826

our experiments on weight, activation, gradient,827

and optimizer states quantization. The tables detail828

the performance metrics, like perplexity and accu-829

racy, under various quantization settings. Finally,830

we present post-training quantization results of our831

baseline model in Tables 10,11.832

12

Table 2: Weight Quantization: evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 55.50 46.70 52.38 59.14

per-channel 56.43 47.32 38.18 46.30

8 bit
per-tensor 48.52 40.01 37.02 45.04

per-channel 42.43 35.94 34.81 43.47

Table 3: Activation Quantization: evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 418.63 264.07 261.64 310.43
per-token 69.82 54.53 56.58 72.06

8 bit
per-tensor 64.77 51.06 37.96 45.26
per-token 42.86 37.17 35.43 43.38

Table 4: Gradient Quantization: evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 17990.70 15560.03 6632.20 6393.07
per-token 128.71 92.74 106.73 110.14

8 bit
per-tensor 123.08 87.81 104.90 111.51
per-token 59.24 47.50 42.28 51.89

Table 5: Adam Optimizer’s First Moments: evaluation of perplexity across multiple datasets.

#bit granularity WikiText103 WikiText2 PTB 1BW

baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 78.78 62.08 66.50 85.60

per-channel 43.02 36.70 38.57 47.90

8 bit
per-tensor 42.93 36.91 39.72 46.63

per-channel 39.84 33.78 35.67 44.29

Table 6: Weight Quantization: accuracy on downstream tasks.

GLUE Score ARC

of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge LAMBADA Hellaswag Average

baseline 33.31 64.46 49.82 49.13 52.06 50.70 46.14 22.07 36.17 29.12 43.30

4 bit
per-tensor 31.76 50.49 45.49 49.13 50.46 36.62 40.70 19.40 27.03 27.25 37.83

per-channel 33.51 59.07 50.90 49.70 52.29 56.34 45.09 22.07 34.21 28.86 43.20

8 bit
per-tensor 33.12 59.07 46.57 48.95 54.24 49.30 46.84 21.40 34.81 28.80 42.31

per-channel 34.78 67.16 53.07 49.42 54.01 50.70 44.21 22.07 36.43 29.17 44.10

Table 7: Activation Quantization: accuracy on downstream tasks.

GLUE Score ARC

of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge LAMBADA Hellaswag Average

baseline 33.31 64.46 49.82 49.13 52.06 50.70 46.14 22.07 36.17 29.12 43.30

4 bit
per-token 34.75 58.09 46.93 49.20 49.20 50.70 39.12 18.73 18.88 27.24 39.29

per-token asymmetric 34.12 57.35 49.82 49.28 50.00 52.11 38.95 17.06 22.30 27.03 39.80

4 bit
per-tensor 34.73 31.62 56.32 49.42 49.66 59.15 32.28 19.40 1.53 26.04 36.02

8 bit
per-token 34.08 61.03 51.62 50.16 55.85 59.15 44.74 19.73 36.46 29.33 44.22
per-tensor 32.84 54.90 48.74 49.15 52.98 57.75 45.44 21.74 34.33 28.77 42.66

13

Table 8: Gradient Quantization: accuracy on downstream tasks.

GLUE Score ARC

of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge LAMBADA Hellaswag Average

baseline 33.31 64.46 49.82 49.13 52.06 50.70 46.14 22.07 36.17 29.12 43.30

4 bit
per-token 34.19 35.29 49.10 49.46 49.54 49.30 33.68 19.40 19.06 26.11 36.51

8 bit
per-token 33.35 42.89 52.71 49.42 50.80 25.35 45.09 18.39 33.81 28.81 38.06
per-tensor 35.25 31.13 45.85 49.48 50.34 54.93 33.33 20.40 18.22 26.15 36.51

Table 9: Quantization of Adam Optimizer’s First-Order Moments: accuracy on downstream tasks.

GLUE Score ARC

of bit granularity MNLI MRPC RTE QNLI SST WNLI Easy Challenge LAMBADA Hellaswag Average

baseline 33.31 64.46 49.82 49.13 52.06 50.70 46.14 22.07 36.17 29.12 43.30

4 bit
per-channel 33.98 66.42 52.35 49.46 51.03 53.52 46.67 21.07 33.15 28.47 43.61
per-tensor 32.36 66.42 46.93 50.32 50.92 42.25 35.44 22.07 20.12 26.49 39.33

8 bit
per-channel 33.25 67.40 50.18 49.48 52.87 50.70 46.67 20.40 36.52 28.91 43.64
per-tensor 34.15 61.76 50.18 49.53 54.70 60.56 45.61 18.39 32.91 28.80 43.66

Table 10: Post-training weight quantization results

#bit
granularity WikiText103 WikiText2 PTB 1BW

(ppl) (ppl) (ppl) (ppl)
baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor 16196.10 17256.89 17471.35 13761.79

per-column 98.39 75.56 81.28 94.40

8 bit
per-tensor 46.45 39.23 41.18 52.15

per-column 40.15 34.45 35.23 44.11

Table 11: Post-training activation quantization results

#bit
granularity WikiText103 WikiText2 PTB 1BW

(ppl) (ppl) (ppl) (ppl)
baseline 39.94 34.32 35.13 44.03

4 bit
per-tensor - - - -

per-column 14022.78 17933.29 13392.28 8763.06

8 bit
per-tensor 70.07 58.45 64.99 149.35

per-column 40.09 34.44 35.43 44.37

14

	Introduction
	Related Work
	Quantization Methodology
	Quantization Scheme
	Quantization Granularity
	Quantization Efficiency

	Experimental Results
	Weight Quantization
	Activation Quantization
	Gradient Quantization
	Optimizer States Quantization
	Multiple Components Quantization

	Conclusion
	Experimental Setup
	Model and Training Configuration
	Data and Evaluation Metrics
	Comparison of Baseline and Pre-trained Model

	Memory Analysis
	Quantization Results

