Prepacking: A Simple Method for Fast Prefilling and Increased Throughput
in Large Language Models

Anonymous Authors'

Abstract

During inference for transformer-based LLMs,
prefilling computes the key-value (KV) cache for
prompt input tokens before autoregressive gen-
eration. This work highlights a pitfall of prefill-
ing: for batches containing high-varying prompt
lengths, significant computation is wasted by the
standard practice of padding sequences to the
maximum length. As LLMs support longer con-
text lengths, variations in prompt lengths within
a batch become more pronounced. To address
this, we propose prepacking, a simple yet effec-
tive method to optimize prefilling computation.
Prepacking combines prompts of varying lengths
into a sequence and packs multiple sequences into
a compact batch using a bin-packing algorithm,
then modifies the attention mask and positional
encoding to compute multiple prefilled KV-caches
within a single sequence. On standard datasets
with varying prompt lengths, our method signif-
icantly improves speed and memory efficiency
compared to default padding-based prefilling in
Huggingface across various model configurations
and inference scenarios.

1. Introduction

Transformer-based large language models (LLMs) have
emerged as a powerful general purpose tool to service natu-
ral language queries (Bai et al., 2022; Touvron et al., 2023;
Achiam et al., 2023). As language models continue to
grow in scale and their usage proliferates across various
domains (Eloundou et al., 2023), the capability to generate
tokens with optimal speed and efficiency becomes increas-
ingly paramount.

The conventional approach to LLM inference with varied

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

size inputs is inefficient, and it is exemplified by the Hug-
gingface Transformers library (Wolf et al., 2020). The
Huggingface library has seen widespread adoption in the
NLP community. Despite its wide use, Huggingface handles
prompts of varying lengths by padding all prompts to match
the length of the longest sequence and processing the batch
through a Transformer model in its entirety. This results
in substantial memory utilization and computational ineffi-
ciency. While LLMs are compute-bound during prefilling,
they are also memory-bound during generation (Kwon et al.,
2023), so it is crucial to optimize memory and GPU utiliza-
tion to enable efficient inference and scalability. As LLMs
grow to support longer context lengths (Reid et al., 2024),
handling variation in prompt length becomes increasingly
important.

In this work, we mitigate wasteful computation with an al-
ternative pre-processing step called prepacking. Prepacking
is specifically aimed at improving the speed and memory
usage of LLM prefilling, which is the initial computation
that populates the Key-Value cache (KV cache) preceding
generation. Prepacking is conceptually simple; rather than
padding every sequence to the same length, we pack mul-
tiple prompts together in place of padding tokens using an
off-the-shelf bin-packing algorithm. This is made possible
by custom attention masking and positional encoding that
enable the computation of a batch within a single sequence.
The positional encoding restarts its index for each prompt in
the sequence and the mask prevents prompts from attending
to previous prompts in the packed sequence (Figure 1). A
forward pass on the pre-packed batch will populate a KV
cache, which we can unpack to get the cache for the original
prompts for next token generations.

As compared to optimized LLM serving platforms which
write CUDA kernels to mitigate paddings such as
vLLM (Kwon et al., 2023), prepacking is entirely im-
plemented in PyTorch. We empirically demonstrate that
prepacking leads to a speedup of up to 6x in prefilling
and time-to-first-token (TTFT) compared to the full batch-
ing method used in Huggingface tested on NVIDIA A6000
GPUs. To evaluate prepacking’s runtime performance under
conditions representative of real-world user traffic, we tested
it across six diverse language datasets with language models

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

Causal
Masking

1 0 1 2 3 4

Prompt Tokens

PAD: : PAD: : PAD 0 1

PAD: : PAD: : PAD: : PAD 0

PAD: : PAD: : PAD 0 1

Prepacking

Independent

Packed Sequences Masking

Attention Mask Key

B Masked
Unmasked

Figure 1: Left: The standard full batching approach (e.g., used in HuggingFace) pads shorter prompts to maximum prompt
length in the batch. Each prompt has its own causal attention mask. Right: Prepacking combines multiple prompts into a
single sequence using a bin-packing algorithm, and applies independent masking and restart positional encodings (numbers
inside token boxes) to avoid prompts attending to other prompts. Both strategies are equivalent at decoding time, but

prepacking is more compute efficient during prefilling.

ranging from 1B to 13B parameters. Prepacking achieves
greater speedup when the sequences within a batch exhibit
more diverse length variations and when the batch size is
large. Additionally, we demonstrate that prepacking is a
simple method for increasing LLM throughput, especially
in memory-constrained settings. Specifically, prepacking
significantly reduces memory consumption by allowing up
to 16x larger batch size during prefilling.

2. Preliminaries
2.1. Transformer Architecture

The decoder-only Transformer (Vaswani et al., 2017; Rad-
ford et al., 2019) is ubiquitous in its use as the deep learning
architecture for autoregressive LLMs. The core component
of the Transformer is self-attention. Self-attention oper-
ates on input sequences X € R™*? and is parameterized
with matrices W, WX WV € R We can write self-
attention as follows

SA(X) = softmax(A)XWV".

_ xXwHw)T
where A = Nz
Thus, a Transformer forward pass will have an O(n?) run-

time where n is the length of the input. To preserve au-
toregressive dependencies, an n X n mask M is applied to
A such that “past” tokens cannot attend to “future” tokens.
Finally, while attention itself is permutation-equivariant,
the inputs X typically incorporate positional information
through the use of positional embeddings.

is an n X n attention matrix.

2.2. Performance Metrics

Key metrics for evaluating LLM serving (Miao et al.,
2023) include latency measures such as Time-to-First-Token

(TTFT), the time required for prefilling the KV cache
and generating the first token, and Time-per-Output-Token
(TPOT), the average time to generate each subsequent token.
Throughput measures the number of requests processed per
unit time. In this work, we focus on optimizing the prefilling
stage by evaluating prefilling time and TTFT metrics.

3. Prepacking

Padding input prompts to the maximum length causes signif-
icant computation waste on pad tokens. We propose a sim-
ple solution: insert more short prompts where padding was
previously located. Because this method “packs” prompts
together to speed up prefilling, we refer to this method as
prepacking. In formal terms, we have a set of k& prompts
p1,- -+, of lengths Iy, --- , I, and our goal is to create
a tensorized batch B = (pi,...,p..), where p},...,p] are
sequences that contain the original prompts such that r < k.
The full algorithm is shown in Algorithm 1.

3.1. Bin Packing

The problem of packing prompts together can be cast as a
bin packing problem, where a bin can contain tokens from
several different sequences. The goal of prepacking is to
efficiently concatenate prompts together such that original
prompts with lengths Iy, ..., [are placed into the smallest
possible r bins, each of a fixed sized. It is guaranteed that
r < k. We shall select m, where m is the maximum prompt
length as previously defined, to be the fixed size of the bins.
For sequences that do not completely reach size m after
bin-packing, they will be padded to reach m. Note that
we choose the smallest possible constant for our bin size
because the bin size will incur quadratic running time. In
general, bin packing is an NP-hard problem (Garey and

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

Johnson, 1979), but many heuristic approaches exist obtain
approximate solutions (Buljubasi¢ and Vasquez, 2016). We
use a First-Fit Decreasing bin packing heuristic as imple-
mented by (Maier, 2021).

3.2. Prompt-wise Independent Masking and Restart
Positional Encoding

Prepacking will concatenate multiple smaller prompts under
a single bin. Simply using the KV-cache of this packed
sequence will be incorrect, because every prompt within the
bin will attend causally to previous prompts. As a remedy,
we create a custom attention mask to prevent items from
attending to each other. We refer to this masking strategy
as independent masking. We describe our masking strategy
below and illustrate it in Figure 1.

Formally, consider a causal (lower triangular) attention mask
M , where entry M; ; = 1 signifies that token ¢; can attend
tot; and ¢ > j. An independent mask M ’ is a mask such
that for all indices a, b that mark the start and end of a
prompt, M!, .. = Ly_,, where L,, is an n x n lower
triangular matrix. All other entries will be 0. Creating the at-
tention mask and extracting the resultant KV-cache requires
a certain amount of bookkeeping for tracking lengths of
sequences and indices, but these operations contribute an
insignificant (linear) overhead compared to the Transformer
forward pass.

Lastly, we need to modify the positional encodings for the
packed sequences. In general, the Transformer architec-
ture is permutation equivariant (Naseer et al., 2021), so the
purpose of positional encodings (PE) is to give the model
information about the position of a token in a sequence.
Thus, in a prepacked sequence, we must edit the PEs for
the tokens such that it is the same as it was in the unpacked
prompts. This leads to positions that “restart” in the packed
sequence at the beginning of any new prompt, hence the
name restart positional encoding. With packed batches,
independent masks, and restart PEs, we can compute and
prefill the KV cache for each prompt and use it for autore-
gressive generation using any decoding algorithm.

3.3. Runtime Analysis

With prepacking, we are guaranteed to compute the exact
KV caches as a padded, full-batching method. Next, we ana-
lyze the gains during the prefilling stage using our approach.
Let the sum of prompt lengths over the batch be denoted
by L =). ;. In the best case scenario, our bin packing
algorithm is able to pack every prompt into bins with no
additional padding. Then we can express the number of bins
as r = L/m. We can now find the runtime of prefilling a
batch with prepacking and compare it to the naive method.

O(rm?) = O(Lm) = O(km(L/k)) < O(km?) (1)

The final inequality holds because the average length must
be less than or equal to the maximum length. Also note
that the prepacking algorithm itself runs in O(k log k) time
which is insignificant toward the overall runtime. Thus, we
find that prepacking will outperform the naive padding ap-
proach in the best case scenario. In the worst case scenario,
we cannot reduce the number of bins from the original batch
size and r = k will lead to the same runtime. We shall show
in our experiments that datasets tend to have enough length
variation such that < k is a comfortable assumption in
practice, and the differences between the naive method and
prepacking can be stark. Figure 5 illustrates an actual pack-
ing done by prepacking which greatly reduces paddings.

4. Experiments

We empirically show the significant throughput improve-
ments and GPU memory savings achieved by prepacking
across real-world datasets with diverse length distributions.
Our comprehensive evaluation spans language models of
varying architectures and scales, ranging from 1.3B to 13B
parameters.

4.1. Datasets, models and baselines

We evaluate prepacking’s runtime performance on 5 real-
world diverse language datasets with a arange of LLMs of
varying sizes. We compare prepacking with two baselines:
1) Full Batching: As implemented by Huggingface (Wolf
et al., 2020), this method pads shorter prompts to match the
longest prompt in a batch, using attention masks to ignore
padding. 2) Length-Ordered Batching: This baseline as-
sumes access to all user requests. It sorts inputs by length
and samples batches to minimize padding. This is imprac-
tical for real-world scenarios with unpredictable request
orders. The details of datasets, models and baselines are in
Appendix E.

4.2. Prefilling Time and TTFT

We compare the prefilling time and Time-to-First-Token
(TTFT) between prepacking and Full Batching across
datasets and models in Figure 2. TTFT measures the to-
tal time required for prefilling the KV cache and generating
the first token. For our method, TTFT additionally includes
an overhead which is the unpacking phase, where we unpack
the prompts to their original order for generation. This un-
packing phase has a linear time complexity in the number of
prompts, which is dominated by the quadratic computational
complexity of prefilling. Prepacking consistently outper-
forms Full Batching with less prefilling time and TTFT,
enhancing speed ranging from 1.6x to 3.5x. Moreover,
Prepacking has lower inference time standard deviations,
attributed to reduced padding overhead, enabling more reli-

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

[- Prepacking (ours)

Full Batching]

Wiki256 - Prefilling ~ Wiki512 - Prefilling MMLU - Prefilling

Alpaca - Prefilling SamSum - Prefilling DAnthropic RLHF - Prefillinng
w0,) i

O o
< 1 I T R
S 08 o8 08 o8 os o8
® °1
-y 06 6] 0s 67 06 o6] os | 06
E A +
B os 4] I 0r o1 [i 0 I 0s 3] 0] 0
£ N
<>(D 00 0 00 0 00 0 00 o 00 ol 0.0
2 \d \4 Q0 2 \4 \4 Q0 Q0 \4 \4 QL Q0 \4 \4 2 QL \4 \4 Q> \4 \4
R e Rl O R\ RO P S RO e
LA v e L v 47 R L v 47 R L v o < RS 7 < &
& @ S S F &S &S
RO R RO R & X Rl K RO RO
I Wiki256 - TTFT 1o Wiki512 - TTFT o MMLU - TTFT o Alpaca - TTFT 1o SamSum - TTFT 1o mAnthropic RLHF -'I'I'F‘I]'n
- i T ’ N
S 0s 0s 0s 0s 0s o8
] . ’ 10]
o L 06 06 06 06 06 o) 05
o
P w A I I R [o o o
=27 1 4
F 0 s 0z o 0 2 I 0 1] 02
° x I x : 1
én 00 0 00 0 00 0 00 ol 00 ol 0.0
Q0 & & QL Q0 Q & QL Q2 Q Q QL QL Q& Q& ol QL & Q QL & Q&
RSO PRI F R R F R &S ROV A ROV
I A o L P GO A AN R ¥ @ 0 ; @ <2
PR & & ¢ R & & & & PSR
& N Ra & R Rl & ROl ° & & N

Figure 2: Average inference time per batch for various language models using prepacking and Full Batching, with a batch
size of 16. The comparison is conducted across multiple datasets with two metrics, Prefilling Time and TTFT. Error bars
represent the standard deviation across batches and seeds. The results show that prepacking consistently leads to reduced
inference times compared to Full Batching and exhibits reduced variability, as evidenced by smaller standard deviation
errors, indicating more reliable and predictable inference times when adopting prepacking.

able and predictable performance suitable for applications
demanding consistent LLM serving.

4.3. GPU Memory Saving and Utilization

We evaluate Prepacking’s GPU memory efficiency, stem-
ming from reduced computation on padded tokens, against
other baselines in Figure 6. Prepacking consistently shows
lower peak memory usage which allows it to process larger
batch size without out-of-memory errors. For example, with
the Llama2-1.3B model on the MMLU dataset, prepacking
can handle batch sizes up to 16 times larger during prefilling
compared to Full Batching. More discussion of the results
are in Appendix F.

4.4. Enhanced Speedup with Increasing Batch Sizes

In reality, the distribution of batch sizes encountered during
language model inference can fluctuate due to non-uniform
user requests arrival patterns. To evaluate our method’s
effectiveness in handling this variability, we conducted ex-
periments across a range of batch sizes for the Llama2-7B
and Llama2-1.3B models. The results shown in Figure 3
show substantial speedup gains achieved by our approach
over Full Batching. Larger batch sizes exhibit greater per-
formance improvements with our method, up to 4.5x and 6x
speedup for the 7B and 1.3B Llama2 models, respectively.
This trend stems from the increased likelihood of diverse
prompt lengths within larger batches, which leads to more
padding overhead for Full Batching. In contrast, our method
efficiently handles variable-length prompts via bin-packing,
mitigating this overhead.

Additionally, in Appendix K, we also show that the speedup

can be predicted with characteristics of the lengths within a
batch.

Speedup in Prefilling Time for Llama2-7B

Speedup in Prefilling Time for Llama2-1.3B
-8~ Alpaca

-8 Alpaca
Anthropic RLHF Anthropic RLHF
-~ MM 44 -o= MM
-8~ samsum &~ samsum
-8 Wiki2s6 -8~ Wiki256
o Wikis12 - Wikis12

Speedup [x times]
(Full Batching / Prepacking)
N oW s U oo
Speedup [x times]
(Full Batching / Prepacking)
w

10 20 30 40 50 60
Batch Size

5 10 15 20 25 30
Batch Size

Figure 3: Speed up across various batch sizes. Speed up
is calculated as the ratio of the prefilling time with full
batching to that of prepacking. Missing data points are due
to out-of-memory issues.

5. Conclusion

We proposed prepacking, a simple and effective approach
to optimize the prefilling computation for LLMs during in-
ference. Our evaluation on typical datasets with varying
prompt lengths demonstrates significant speedups compared
to standard prefilling computation in Huggingface’s imple-
mentation. As language models continue to scale and sup-
port longer context lengths, addressing the inefficiencies
associated with prefilling computation becomes crucial for
optimizing inference speed and computational resource al-
location. Prepacking provides a promising solution to this
challenge, enabling more efficient inference for prompts
with varying lengths. In the future, it would be interesting
to explore more complex decoding strategies post-prefilling
that also incorporate bin packing for further increase in
throughput.

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

References

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, 1. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra,
B. S. Gulavani, A. Tumanov, and R. Ramjee. Taming
throughput-latency tradeoff in 1lm inference with sarathi-
serve. arXiv preprint arXiv:2403.02310, 2024.

R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li, D. Li,
E. Zheng, O. Ruwase, S. Smith, M. Zhang, J. Rasley,
et al. Deepspeed-inference: enabling efficient inference
of transformer models at unprecedented scale. In SC22:
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1-15. IEEE,
2022.

Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. Das-
Sarma, D. Drain, S. Fort, D. Ganguli, T. Henighan, et al.
Training a helpful and harmless assistant with reinforce-
ment learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

M. Buljubasi¢ and M. Vasquez. Consistent neighbor-
hood search for one-dimensional bin packing and two-
dimensional vector packing. Computers & Operations
Research, 76:12-21, 2016.

T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and
T. Dao. Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads, 2024.

T. Eloundou, S. Manning, P. Mishkin, and D. Rock. Gpts are
gpts: An early look at the labor market impact potential of
large language models. arXiv preprint arXiv:2303.10130,
2023.

P. Fegade, T. Chen, P. Gibbons, and T. Mowry. The cora
tensor compiler: Compilation for ragged tensors with
minimal padding. Proceedings of Machine Learning and
Systems, 4:721-747, 2022.

M. Garey and D. Johnson. Computers and intractability a
guide to the theory of np-completeness new york freeman
and co. 1979.

B. Gliwa, I. Mochol, M. Biesek, and A. Wawer. SAMSum
corpus: A human-annotated dialogue dataset for abstrac-
tive summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 70-79, Hong
Kong, China, Nov. 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-5409. URL https:
//www.aclweb.org/anthology/D19-54009.

D. Hendrycks, C. Burns, S. Basart, A. Critch, J. Li, D. Song,
and J. Steinhardt. Aligning ai with shared human values.
Proceedings of the International Conference on Learning
Representations (ICLR), 2021a.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika,
D. Song, and J. Steinhardt. Measuring massive multitask
language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford,
D. S. Chaplot, D. d. I. Casas, F. Bressand, G. Lengyel,
G. Lample, L. Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H.
Yu, J. E. Gonzalez, H. Zhang, and I. Stoica. Efficient
memory management for large language model serving
with pagedattention, 2023.

Y. Leviathan, M. Kalman, and Y. Matias. Fast inference
from transformers via speculative decoding. In Interna-
tional Conference on Machine Learning, pages 19274—
19286. PMLR, 2023.

Z.Liu,J. Wang, T. Dao, T. Zhou, B. Yuan, Z. Song, A. Shri-
vastava, C. Zhang, Y. Tian, C. Re, et al. Deja vu: Con-
textual sparsity for efficient llms at inference time. In
International Conference on Machine Learning, pages

22137-22176. PMLR, 2023.

B. Maier. GitHub - benmaier/binpacking: Distribution
of weighted items to bins (either a fixed number of
bins or a fixed number of volume per bin). Data may
be in form of list, dictionary, list of tuples or csv-file.
— github.com. https://github.com/benmaier/
binpacking, 2021. [Accessed 30-03-2024].

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer
sentinel mixture models, 2016.

X. Miao, G. Oliaro, Z. Zhang, X. Cheng, H. Jin, T. Chen,
and Z. Jia. Towards efficient generative large language
model serving: A survey from algorithms to systems.
arXiv preprint arXiv:2312.15234, 2023.

M. M. Naseer, K. Ranasinghe, S. H. Khan, M. Hayat,
F. Shahbaz Khan, and M.-H. Yang. Intriguing properties
of vision transformers. Advances in Neural Information
Processing Systems, 34:23296-23308, 2021.

NVIDIA. GitHub - NVIDIA/FasterTransformer: Trans-
former related optimization, including BERT, GPT
— github.com. https://github.com/NVIDIA/
FasterTransformer, 2021. [Accessed 29-03-2024].

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
L. Sutskever, et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

https://www.aclweb.org/anthology/D19-5409
https://www.aclweb.org/anthology/D19-5409
https://github.com/benmaier/binpacking
https://github.com/benmaier/binpacking
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lilli-

crap, J. baptiste Alayrac, R. Soricut, A. Lazaridou, O. Fi-
rat, J. Schrittwieser, I. Antonoglou, R. Anil, S. Borgeaud,
A. Dai, K. Millican, E. Dyer, M. Glaese, T. Sotti-
aux, B. Lee, F. Viola, M. Reynolds, Y. Xu, J. Molloy,
J. Chen, M. Isard, P. Barham, T. Hennigan, R. Mcllroy,
M. Johnson, J. Schalkwyk, E. Collins, E. Rutherford,
E. Moreira, K. Ayoub, M. Goel, C. Meyer, G. Thorn-
ton, Z. Yang, H. Michalewski, Z. Abbas, N. Schucher,
A. Anand, R. Ives, J. Keeling, K. Lenc, S. Haykal,
S. Shakeri, P. Shyam, A. Chowdhery, R. Ring, S. Spencer,
E. Sezener, L. Vilnis, O. Chang, N. Morioka, G. Tucker,
C. Zheng, O. Woodman, N. Attaluri, T. Kocisky, E. Elty-
shev, X. Chen, T. Chung, V. Selo, S. Brahma, P. Georgiev,
A. Slone, Z. Zhu, J. Lottes, S. Qiao, B. Caine, S. Riedel,
A. Tomala, M. Chadwick, J. Love, P. Choy, S. Mittal,
N. Houlsby, Y. Tang, M. Lamm, L. Bai, Q. Zhang, L. He,
Y. Cheng, P. Humphreys, Y. Li, S. Brin, A. Cassirer,
Y. Miao, L. Zilka, T. Tobin, K. Xu, L. Proleev, D. Sohn,
A. Magni, L. A. Hendricks, I. Gao, S. Ontaién, O. Bun-
yan, N. Byrd, A. Sharma, B. Zhang, M. Pinto, R. Sinha,
H. Mehta, D. Jia, S. Caelles, A. Webson, A. Morris,
B. Roelofs, Y. Ding, R. Strudel, X. Xiong, M. Ritter,
M. Dehghani, R. Chaabouni, A. Karmarkar, G. Lai,
F. Mentzer, B. Xu, Y. Li, Y. Zhang, T. L. Paine, A. Goldin,
B. Neyshabur, K. Baumli, A. Levskaya, M. Laskin, W. Jia,
J. W. Rae, K. Xiao, A. He, S. Giordano, L. Yagati, J.-B.
Lespiau, P. Natsev, S. Ganapathy, F. Liu, D. Martins,
N. Chen, Y. Xu, M. Barnes, R. May, A. Vezer, J. Oh,
K. Franko, S. Bridgers, R. Zhao, B. Wu, B. Mustafa,
S. Sechrist, E. Parisotto, T. S. Pillai, C. Larkin, C. Gu,
C. Sorokin, M. Krikun, A. Guseynov, J. Landon, R. Datta,
A. Pritzel, P. Thacker, F. Yang, K. Hui, A. Hauth, C.-K.
Yeh, D. Barker, J. Mao-Jones, S. Austin, H. Sheahan,
P. Schuh, J. Svensson, R. Jain, V. Ramasesh, A. Briukhov,
D.-W. Chung, T. von Glehn, C. Butterfield, P. Jhakra,
M. Wiethoff, J. Frye, J. Grimstad, B. Changpinyo, C. L.
Lan, A. Bortsova, Y. Wu, P. Voigtlaender, T. Sainath,
C. Smith, W. Hawkins, K. Cao, J. Besley, S. Srini-
vasan, M. Omernick, C. Gaftney, G. Surita, R. Burnell,
B. Damoc, J. Ahn, A. Brock, M. Pajarskas, A. Petrushk-
ina, S. Noury, L. Blanco, K. Swersky, A. Ahuja, T. Avra-
hami, V. Misra, R. de Liedekerke, M. Iinuma, A. Polo-
zov, S. York, G. van den Driessche, P. Michel, J. Chiu,
R. Blevins, Z. Gleicher, A. Recasens, A. Rrustemi, E. Gri-
bovskaya, A. Roy, W. Gworek, S. Arnold, L. Lee, J. Lee-
Thorp, M. Maggioni, E. Piqueras, K. Badola, S. Vikram,
L. Gonzalez, A. Baddepudi, E. Senter, J. Devlin, J. Qin,
M. Azzam, M. Trebacz, M. Polacek, K. Krishnakumar,
S. yiin Chang, M. Tung, 1. Penchev, R. Joshi, K. Ol-
szewska, C. Muir, M. Wirth, A. J. Hartman, J. Newlan,
S. Kashem, V. Bolina, E. Dabir, J. van Amersfoort,
Z. Ahmed, J. Cobon-Kerr, A. Kamath, A. M. Hrafnkels-
son, L. Hou, I. Mackinnon, A. Frechette, E. Noland,

X. Si, E. Taropa, D. Li, P. Crone, A. Gulati, S. Cevey,
J. Adler, A. Ma, D. Silver, S. Tokumine, R. Powell, S. Lee,
M. Chang, S. Hassan, D. Mincu, A. Yang, N. Levine,
J. Brennan, M. Wang, S. Hodkinson, J. Zhao, J. Lip-
schultz, A. Pope, M. B. Chang, C. Li, L. E. Shafey,
M. Paganini, S. Douglas, B. Bohnet, F. Pardo, S. Odoom,
M. Rosca, C. N. dos Santos, K. Soparkar, A. Guez,
T. Hudson, S. Hansen, C. Asawaroengchai, R. Addanki,
T. Yu, W. Stokowiec, M. Khan, J. Gilmer, J. Lee, C. G.
Bostock, K. Rong, J. Caton, P. Pejman, F. Pavetic,
G. Brown, V. Sharma, M. Luci¢, R. Samuel, J. Djo-
longa, A. Mandhane, L. L. Sjosund, E. Buchatskaya,
E. White, N. Clay, J. Jiang, H. Lim, R. Hemsley, J. La-
banowski, N. D. Cao, D. Steiner, S. H. Hashemi, J. Austin,
A. Gergely, T. Blyth, J. Stanton, K. Shivakumar, A. Sid-
dhant, A. Andreassen, C. Araya, N. Sethi, R. Shivanna,
S. Hand, A. Bapna, A. Khodaei, A. Miech, G. Tanzer,
A. Swing, S. Thakoor, Z. Pan, Z. Nado, S. Winkler, D. Yu,
M. Saleh, L. Maggiore, 1. Barr, M. Giang, T. Kagohara,
I. Danihelka, A. Marathe, V. Feinberg, M. Elhawaty,
N. Ghelani, D. Horgan, H. Miller, L. Walker, R. Tanburn,
M. Tariq, D. Shrivastava, F. Xia, C.-C. Chiu, Z. Ashwood,
K. Baatarsukh, S. Samangooei, F. Alcober, A. Stjern-
gren, P. Komarek, K. Tsihlas, A. Boral, R. Comanescu,
J. Chen, R. Liu, D. Bloxwich, C. Chen, Y. Sun, F. Feng,
M. Mauger, X. Dotiwalla, V. Hellendoorn, M. Sharman,
I. Zheng, K. Haridasan, G. Barth-Maron, C. Swanson,
D. Rogozifiska, A. Andreev, P. K. Rubenstein, R. Sang,
D. Hurt, G. Elsayed, R. Wang, D. Lacey, A. 1li¢, Y. Zhao,
L. Aroyo, C. Iwuanyanwu, V. Nikolaev, B. Lakshmi-
narayanan, S. Jazayeri, R. L. Kaufman, M. Varadarajan,
C. Tekur, D. Fritz, M. Khalman, D. Reitter, K. Dasgupta,
S. Sarcar, T. Ornduff, J. Snaider, F. Huot, J. Jia, R. Kemp,
N. Trdin, A. Vijayakumar, L. Kim, C. Angermueller,
L. Lao, T. Liu, H. Zhang, D. Engel, S. Greene, A. White,
J. Austin, L. Taylor, S. Ashraf, D. Liu, M. Georgaki,
I. Cai, Y. Kulizhskaya, S. Goenka, B. Saeta, K. Vodra-
halli, C. Frank, D. de Cesare, B. Robenek, H. Richardson,
M. Alnahlawi, C. Yew, P. Ponnapalli, M. Tagliasacchi,
A. Korchemniy, Y. Kim, D. Li, B. Rosgen, Z. Ashwood,
K. Levin, J. Wiesner, P. Banzal, P. Srinivasan, H. Yu,
Caglar Unlii, D. Reid, Z. Tung, D. Finchelstein, R. Ku-
mar, A. Elisseeff, J. Huang, M. Zhang, R. Zhu, R. Aguilar,
M. Giménez, J. Xia, O. Dousse, W. Gierke, S. H. Yeganeh,
D. Yates, K. Jalan, L. Li, E. Latorre-Chimoto, D. D.
Nguyen, K. Durden, P. Kallakuri, Y. Liu, M. John-
son, T. Tsai, A. Talbert, J. Liu, A. Neitz, C. Elkind,
M. Selvi, M. Jasarevic, L. B. Soares, A. Cui, P. Wang,
A. W. Wang, X. Ye, K. Kallarackal, L. Loher, H. Lam,
J. Broder, D. Holtmann-Rice, N. Martin, B. Ramadhana,
D. Toyama, M. Shukla, S. Basu, A. Mohan, N. Fer-
nando, N. Fiedel, K. Paterson, H. Li, A. Garg, J. Park,
D. Choi, D. Wu, S. Singh, Z. Zhang, A. Globerson,
L. Yu, J. Carpenter, F. de Chaumont Quitry, C. Rade-

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

baugh, C.-C. Lin, A. Tudor, P. Shroff, D. Garmon, D. Du,
N. Vats, H. Lu, S. Igbal, A. Yakubovich, N. Tripura-
neni, J. Manyika, H. Qureshi, N. Hua, C. Ngani, M. A.
Raad, H. Forbes, A. Bulanova, J. Stanway, M. Sundarara-
jan, V. Ungureanu, C. Bishop, Y. Li, B. Venkatraman,
B. Li, C. Thornton, S. Scellato, N. Gupta, Y. Wang,
I. Tenney, X. Wu, A. Shenoy, G. Carvajal, D. G. Wright,
B. Bariach, Z. Xiao, P. Hawkins, S. Dalmia, C. Farabet,
P. Valenzuela, Q. Yuan, C. Welty, A. Agarwal, M. Chen,
W. Kim, B. Hulse, N. Dukkipati, A. Paszke, A. Bolt,
E. Davoodi, K. Choo, J. Beattie, J. Prendki, H. Vashisht,
R. Santamaria-Fernandez, L. C. Cobo, J. Wilkiewicz,
D. Madras, A. Elqursh, G. Uy, K. Ramirez, M. Harvey,
T. Liechty, H. Zen, J. Seibert, C. H. Hu, M. Elhawaty,
A. Khorlin, M. Le, A. Aharoni, M. Li, L. Wang, S. Kumar,
A. Lince, N. Casagrande, J. Hoover, D. E. Badawy, D. So-
ergel, D. Vnukov, M. Miecnikowski, J. Simsa, A. Koop,
P. Kumar, T. Sellam, D. Vlasic, S. Daruki, N. Shabat,
J. Zhang, G. Su, J. Zhang, J. Liu, Y. Sun, E. Palmer,
A. Ghaffarkhah, X. Xiong, V. Cotruta, M. Fink, L. Dixon,
A. Sreevatsa, A. Goedeckemeyer, A. Dimitriev, M. Ja-
fari, R. Crocker, N. FitzGerald, A. Kumar, S. Ghemawat,
L. Philips, F. Liu, Y. Liang, R. Sterneck, A. Repina,
M. Wu, L. Knight, M. Georgiev, H. Lee, H. Askham,
A. Chakladar, A. Louis, C. Crous, H. Cate, D. Petrova,
M. Quinn, D. Owusu-Afriyie, A. Singhal, N. Wei, S. Kim,
D. Vincent, M. Nasr, C. A. Choquette-Choo, R. Tojo,
S. Lu, D. de Las Casas, Y. Cheng, T. Bolukbasi, K. Lee,
S. Fatehi, R. Ananthanarayanan, M. Patel, C. Kaed,
J. Li, J. Sygnowski, S. R. Belle, Z. Chen, J. Konzel-
mann, S. Pdder, R. Garg, V. Koverkathu, A. Brown,
C. Dyer, R. Liu, A. Nova, J. Xu, S. Petrov, D. Hass-
abis, K. Kavukcuoglu, J. Dean, and O. Vinyals. Gemini
1.5: Unlocking multimodal understanding across millions
of tokens of context, 2024.

Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen,
P. Liang, C. Ré, L. Stoica, and C. Zhang. Flexgen: High-
throughput generative inference of large language models
with a single gpu. In International Conference on Ma-
chine Learning, pages 31094-31116. PMLR, 2023.

R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li,
C. Guestrin, P. Liang, and T. B. Hashimoto. Stanford al-
paca: An instruction-following llama model. https://

github.com/tatsu-lab/stanford_alpaca,
2023.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almabhairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is

all you need. Advances in neural information processing
systems, 30, 2017.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jer-
nite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush. Transformers: State-
of-the-art natural language processing. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations,
pages 38—45, Online, Oct. 2020. Association for Com-
putational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos. 6.

M. Xia, T. Gao, Z. Zeng, and D. Chen. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han.
Smoothquant: Accurate and efficient post-training quanti-
zation for large language models. In International Confer-
ence on Machine Learning, pages 38087-38099. PMLR,
2023.

G.-1. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun.
Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pages 521-538, 2022.

Z. Yuan, Y. Shang, Y. Zhou, Z. Dong, Z. Zhou, C. Xue,
B. Wu, Z. Li, Q. Gu, Y. J. Lee, Y. Yan, B. Chen, G. Sun,
and K. Keutzer. Llm inference unveiled: Survey and
roofline model insights, 2024.

Y. Zhao, Y. Qu, K. Staniszewski, S. Tworkowski, W. Liu,
P. Mitos, Y. Wu, and P. Minervini. Analysing the impact
of sequence composition on language model pre-training.
arXiv preprint arXiv:2402.13991, 2024.

Z. Zheng, X. Ren, F. Xue, Y. Luo, X. Jiang, and Y. You.
Response length perception and sequence scheduling: An
Ilm-empowered 1lm inference pipeline. arXiv preprint
arXiv:2305.13144, 2023.

Y. Zhong, S. Liu, J. Chen, J. Hu, Y. Zhu, X. Liu, X. Jin,
and H. Zhang. Distserve: Disaggregating prefill and
decoding for goodput-optimized large language model
serving. arXiv preprint arXiv:2401.09670, 2024.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

A. Appendix
B. Related Works

Due to space limitations in the main text, we include a detailed discussion on related works in the Appendix.

B.1. Accelerating Inference

Many advancements in accelerating LLM inference make architectural modifications that tradeoff quality with inference
latency. These approaches include exploiting contextual sparsity (Liu et al., 2023), multiple decoding heads (Cai et al.,
2024), model quantization (Xiao et al., 2023), and improved decoding algorithms such as speculative decoding which
augments a base model with an “approximation model” (Leviathan et al., 2023). Packing has been applied to training to
speed up training efficiency, while our work focuses on prefilling stage. (Zheng et al., 2023) reduces padding by clustering
the prompts with similar response lengths into mini batches for generation. Packing and using independent mask can also be
used for pre-training to decrease the distraction between documents (Zhao et al., 2024). Another active area of research
is speeding up inference by improving low-level compute scheduling (Aminabadi et al., 2022; Sheng et al., 2023). Our
approach for improving LLM throughput differs from the aforementioned techniques because: (1) Prepacking aims to
improve prefilling efficiency, not training efficiency; (2) it does not require any architectural changes; (3) it can be fully
implemented in PyTorch and is agnostic to the underlying hardware and cloud platforms.

B.2. LLM Serving

A relevant line of work takes a networking perspective on LLMs, in which a model must be “served” to clients that make
requests. The core problem LLM serving addresses is the scheduling of inference, creating dynamic schedulers that
optimize for throughput and latency. FasterTransformer (NVIDIA, 2021) increases decoding throughput but schedules at
the request-level. To address this, Orca (Yu et al., 2022) proposes iteration-level scheduling which processes requests at
finer granularity than a batch. PagedAttention in VLLM (Kwon et al., 2023) reduces KV-cache memory fragmentation
with techniques inspired by virtual memory with paging. To mitigate wasted computation on padding, vLLM uses custom
CUDA kernels that eliminate computation on padding by iterating through the sequences, while our implementation only
uses PyTorch. The speed-up methods used in vLLM, mainly pagedAttention, which efficiently manages the vVRAM, are
orthogonal to our approach, and we believe a direct comparison with vLLM is not feasible. More recent and concurrent
works such as Sarathi-Serve (Agrawal et al., 2024) and DistServe (Zhong et al., 2024) optimize a trade-off involving
pre-filling and decoding. In our work, we specifically target pre-filling only. As such, our work directly improves TTFT
and is complementary to other works that seek to improve decoding efficiency and throughput while minimizing stalling.
Our work also has great usability with easy implementation in pytorch, without the need of writting custom CUDA kernel
operations such as ragged tensors operations (Fegade et al., 2022).

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

C. Limitation of GPU parallelization

2.00 1 16
— m=50 BN Padding
1.75 4 —— m=100 14] Sentence
— m=200
1. -
207 — m=400 L
G 1.25 S0
c
()] : s
E 1.00 =3 x W Sentence ---- Restart Index
= £ 0,
HO_J E 6 °
< 0.75 A % £
o = 3
0.50 ! 52
2 b
0.25 ~ g
0 B0
0.00 1 ° * Toltoeon Courtzo 0 s * Tolizon Counl'?0
2! 23 25
Batch size Figure 5: An actual example of one batch sampled from the MMLU
dataset shows how a batch of 16 prompts is packed into a compact packed
Figure 4: Prefilling latency scaling with batch. Restart indices denote the point at where independent mask and
batch size k highlights GPU parallelization position encoding are reset to preserve the semantics of each individual
limits. Results averaged over 100 runs. prompt.

Limitations of GPU Batch Parallelization Note that the above analysis assumes no parallelization over a batch. With
perfect batch parallelization, prepacking will have better memory performance but no time improvement. We show
empirically that GPUs cannot parallelize over batches without limitation. To show this, we sample a tensor of dimension
(k, m), that is batch size k and prompt length m. In Figure 4, we demonstrate that for a fixed m, increasing k results in a
higher latency. As the batch size grows, constraints such as memory bandwidth and synchronization overhead become more
pronounced (Yuan et al., 2024). Prepacking exploits this by reducing batch size for a fixed sequence length m. Figure 5
illustrates an actual packing done by prepacking which greatly reduces paddings.

D. Algorithm Box for prepacking

Algorithm 1 The Prepacking Algorithm for Efficient Pre-Filling

Procedure Prepacking(Prompts p1, - - - , pg, Transformer-based Language Model)

Prompt Lengths Iy, - - - , Iy < len(p1,- -+, px)

Maximum Length m < max; [;

Packed sequences pf,--- ,p., bins [idx];., < BINPACK(ly,: - ,lx,m) {idz; stores the start indices of the
prompt(s) present in the packed sequence p/;}

Batch B < TENSORIZE(p), - ,pl)

Independent Masks [M];.,, + INDEPENDENT-MASK([idz];.,.)

Restart Positional Encodings [R]:.. +~ RESTART-PE([idz];.,)

Caches KV's + UNPACK(7(B, [M']1.r, [R]1.+)) {7 will return a KV Cache, which we unpack to obtain prompt-
specific caches}

return K'V's
End Procedure

E. Experiment Setup

With constraints on our academic budget, all experiments are conducted on a single NVIDIA 48GB A6000 GPU connected
to a Colfax CX41060s-EK9 4U Rackmount Server with AMD EPYC (Genoa) 9124 processors.

9

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

E.1. Datasets and Models

To profile prepacking’s runtime performance under conditions representative of real-world user traffic, we evaluate on
a diverse suite of datasets spanning question answering, summarization, instruction following, language modeling, and
human preference modeling. Specifically, we use the MMLU (Hendrycks et al., 2021a), SamSum (Gliwa et al., 2019),
Alpaca (Taori et al., 2023), Wikitext (Merity et al., 2016), and Anthropic HH RLHF (Bai et al., 2022) datasets. While not
actually evaluating task performance, we leverage the variety of formats and prompt length distributions present in these
datasets to simulate the diverse input queries a LLM may encounter from user requests in production environments. Due to
computational constraints, we subsample 1000 prompts from each dataset, and the lengths statistics are presented in Table 1.
We profile a range of language models to comprehensively assess runtime impacts of scale and architecture choices: the
1.3B Sharded LLAMA (Xia et al., 2023), 7B LLAMA 2 (Touvron et al., 2023) and Mistral (Jiang et al., 2023), and 13B
LLAMA 2 (Touvron et al., 2023) spanning 1.3B to 13B parameters with varying configurations shown in Appendix Table 2.
We profile them with 4 bit or 8 bit quantization due to computational constraints. Since prepacking aims to reduce wasted
computation and memory on padding within batches, for fair evaluation, we do not manually construct batches. Instead, we
use actual datasets to randomly sample batches and obtain aggregate metrics with respect to diverse prompt lengths. This
also reflects a more realistic setting in which the flow of queries cannot be controlled.

E.2. Baselines

* Full Batching: As implemented by Huggingface, this method first determines the maximum prompt length across the
batch and appends special padding tokens to shorter prompts until they match the maximum length. It then generates
corresponding attention masks to ensure that the language model disregards the padded tokens during computation.
Huggingface’s inference framework (Wolf et al., 2020) employs this approach for handling prompts of variable lengths,
serving as the basis for this baseline’s profiling.

» Length-Ordered Batching: This baseline assumes access to the full set of user requests, serving as an oracle baseline
that can first sort the inputs according to their lengths and sample batches in order to minimize the padding required
when using the Full Batching. This method reduces computational overhead on paddings. However, it is not practical in
real-world scenarios where user requests arrive in an unpredictable order, and the entire set of requests is not available
upfront. In contrast, prepacking does not rely on this assumption, making it more suitable for handling dynamic and
continuous streams of input prompts.

F. GPU Memory Saving and Utilization

We evaluate Prepacking’s GPU memory efficiency, stemming from reduced computation on padded tokens, against other
baselines in Figure 6. Prepacking consistently exhibits lower peak memory consumption, which directly translates to the
ability to process larger batch sizes without encountering out-of-memory errors. For instance, with the Llama2-1.3B model
on the MMLU dataset, prepacking can accommodate batch sizes up to 16x larger during prefilling compared to Full Batching
before encountering OOM. This has significant implications for deploying models in resource-constrained environments,
where maximizing hardware utilization is crucial. Consequently, as shown in Appendix Figure 12, Prepacking also exhibits
lower GPU utilization when operating with the same batch size as the baselines, owing to its reduced computational
overhead.

10

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

{—o— Prepacking (ours) Full Batching —e— Length-Ordered Batching}
g MMLU (Llama2-1.3B) g Alpaca (Llama2-1.3B) ; Anthropic RLHF (Llama2-1.3B)
4 = [) 230
30
E B (Et; / Ezo /
3 20 2 ol g 20 g
H // = =
2 10 2 10 210
o .__./.—-—0/4‘__././‘/ M .__gg/_:—/'_./‘/./ ° ../‘i:/__—o/./
- < £
© ™ = T v T T ® 07 T T T T T T ™ T © T T T v ™ T T T
&D 22 24 26 28 210 2 21 22 23 24 25 26 27 28 29 g 21 22 23 24 25 26 27 28
Batch Size Batch Size Batch Size
g MMLU (Mistral-7B) g Alpaca (Mistral-7B) g Anthropic RLHF (Mistral-7B)
z £ §
£ E /' £
g g 20 e §
= = /a/ / =]
o o o
[} S 10 [
x x .__.gs::.,'__—.—-—’/' ™
[T T T T T [3 T T T T T T T T T [T T T T T T T
K 22 24 26 28 210 k4 21 22 23 4 25 26 7 28 29 9 2t 22 23 24 25 26 27
Batch Size Batch Size Batch Size
Tg MMLU (Llama2-13B) g Alpaca (Llama2-13B) g Anthropic RLHF (Llama2-13B)
< =) =<
> 30 240 - /0 .
o o o
£ // / €. P g 30
o o ()
= 20 = / / =
> / / 520 > 20
o o o
g g _’/{;/'// g /v_//
%1018 %101 @= x
g p 22 2 o 26 27 22§ 2t 22 2 24 5 28 g1 g8 @ 2 22 2 2 2 26
Batch Size Batch Size Batch Size

Figure 6: Peak GPU memory usage comparison across models and datasets on a single GPU. Absent data points indicate
out-of-memory errors. Prepacking achieves lower peak GPU memory usage and allows for up to 16x larger batch sizes in
prefilling computations than Full Batching and Length-Ordered Batching.

G. Mean GPU utilization comparison

{—0— Prepacking (ours) Full Batching —e— Length-Ordered Batching}

B MMLU (Llama2-1.3B) 2 Alpaca (Llama2-1.3B) 2 Anthropic RLHF (Llama2-1.3B)
£ 100 £ 100 £ 100 =
o o o
-} 5 5
] s 8 s 8 80
5 5o 5 5 / 5 /
2 2 2
g e B NP

2542 254, 40
c [€ —° c o«
g 21 22 22 24 25 26 21 28 29 E 21 22 23 24 25 26 21 28 29 E 2 22 2 2 25 26 2 20
- Batch Size - Batch Size - Batch Size
B MMLU (Mistral-7B)) Alpaca (Mistral-7B)) Anthropic RLHF (Mistral-7B)
£ 100 5 100 r— —0 5 100 = —e
g 2 i74/- 3 A/;r
N N 80 N 90
g % g 60 / g /
2 2 |\ 7 2 ® 4

60 1o
o 0 40 (U]
c .4‘ c { e 70
E 21 22 22 ¢ 25 28 1 28 29 E 21 22 22 ¢ 25 28 31 28 20 E 2 22 2 2 2 26 27
= Batch Size = Batch Size = Batch Size
s MMLU (Llama2-13B) S Alpaca (Llama2-13B) s Anthropic RLHF (Llama2-13B)
£ 100 > £ 100 3 £ 100 ey =
2 2 o 2 v
N N N
5 &0 Ele 5 01~
2 2 2
3 / 3 | 5
F A W T B —————————— R , : , , :
g 2t 22 23 24 25 26 27 28 g 2t 22 23 24 25 26 27 28 g 2t 22 23 24 28 26

Batch Size Batch Size Batch Size

Figure 7: Mean GPU utilization for prefilling the prompts in datasets, sampled with a fixed batch size. Prepacking achieves
lightest GPU utilization when the batch size is the same for every method.

H. Dataset Prepacking vs Length-Ordered Batching

In the previous experiments, we apply prepacking on randomly sampled batches from each dataset. However, this assumes
the inability to control the contents of each batch. Given the ability to determine batches, a method to padding inefficiency

11

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

would be to sort the dataset by length and batch accordingly. We refer to this baseline as Length-Ordered Batching.
Alternatively, we can create batches after performing prepacking on the dataset as a whole and apply prepacking, i.e. Dataset
Prepacking. We find that even in this scenario, where one might expect length-ordered batching to have a near optimal
runtime by reducing the number of pad tokens, we observe prepacking still exhibits improvements as shown in Figure 8,
where we compare the prefilling time per prompt.

To ensure a fair comparison with the length-ordered batching baseline, which operates under the assumption of having
control over the entire dataset, we also apply prepacking at the dataset level. This entails initially employing a packing
algorithm on the dataset and conduct prefilling on the packed requests with customized mask

l—o— Prepacking (ours) Dataset Prepacking (ours) —e— Full Batching —e— Length-Ordered Batchingl
MMLU (Llama2-1.3B) Alpaca (Llama2-1.3B) Anthropic RLHF (Llama2-1.3B)
£ 0.020 ._’-0//. 0.020 o—r// 0.05 /
S8 /
gg 0.015 .\ 0.015 +- 0.04
€ 2 0.010 \o\. 0.03
g£e Y‘% 0.010 g —
0.005 1 . 0.02 b —
23 2 25 22 2 25 2 2 25
Batch Size Batch Size Batch Size
MMLU (Mistral-7B) Alpaca (Mistral-7B) Anthropic RLHF (Mistral-7B)
- 0.100 —Q / 0.20 ._/’e
ET /,/ 0.08 {-® °
B g- 0.075
2s 0.06 - &= 015
Z800507e . \(1
05 [—
s8 0.025 '\ 0.04 - 0.10 1 O e 8
2 2t 2 2 2t 2 2 24
Batch Size Batch Size Batch Size

Figure 8: Comparison of prefilling time per prompt. The Dataset prepacking and Length-Ordered Batching benefit from
access to the entire dataset, in contrast to Batch prepacking and Full Batching, which operate on a per-batch basis. Dataset
prepacking further minimizes prefilling latency through packing when provided with full dataset access. Results are averaged
over 5 runs.

I. Dataset length distribution statistics

Table 1: Evaluation Datasets Length Statistics. Due to computational resources constraints, we choose subsets from these
datasets for evaluation.

Dataset name Subset Min. / Mean / Max. SeqLength
Wikitext Max SeqLen 256 (Wiki256) (Merity et al., 2016) 17737256

Wikitext Max SeqLen 512 (Wiki512) (Merity et al., 2016) 6/120/512

MMLU (Hendrycks et al., 2021b) 4/64/1102

Anthropic HH RLHF (Bai et al., 2022) 22/247/1620

Alpaca (Taori et al., 2023) 43/126/527

SamSum (Gliwa et al., 2019) 21/169/7942

J. Model details

Table 2: Model architecture used in the evaluations

Model Num Params Num layers Hidden dim Num heads
Sheared LLAMA 1.3B (Xia et al., 2023) 1.3B 24 2048 16
LLAMA 2 7B (Touvron et al., 2023) 7B 32 4096 32
Mistral 7B (Jiang et al., 2023) 7B 32 4096 32
LLAMA 2 13B (Touvron et al., 2023) 13B 40 4096 40

12

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

K. How does the performance gain scale with characteristics of lengths within a batch?

Previously in Section 3.3, we find the runtime of full batching is O(km?). Prepacking is O(rm?), where k is the original
batch size, r is the batch size after prepacking, and m is the maximum prompt length. Therefore, we can estimate the
speedup as a function of r/k (Batch Size Reduction). Because in practice it is difficult to predict r from the dataset statistics
alone, we can also estimate the speedup as a function of m — L/k (Max Absolute Deviation), which is how much the
maximum length of a batch deviates from the mean length. We conduct the analysis on 5000 synthetic prompts with lengths
uniformly distributed from 1 to 512, using the Llama2 1.3B model with batch size of 32. As can be seen in Figure ??,
these metrics can predict the speedup obtained by using prepacking over full batching. These findings offer insights into
prepacking’s performance scalability.

Speedup Gain vs. (m — L/k) Speedup Gain vs. r/k
’g\ﬁ 250 ___ R-squared = 0.72 oo 'é 2:301 = —— R-squared = 0.92
$ 225 < 2.25-
-3 —a
X @ 2.00 - x © 2.00 1
s Eilw
> > . T
§2175: FE
v Y < 1.50 A
& £ 1.50 1 &8
m m 1.25 4
2] 2 1.001
200 300 400 500 0.4 0.5 0.6 0.7 0.8 0.9
(m —L/k) rik

Figure 9: Speedup gains relative to full batching, with respect to Batch Size Reduction (r/k) and Max Absolute Deviation
(m — L/k), conducted on Llama2 1.3B with batch size 16 and 5000 prompts.

Speedup Gain vs. (m — L/k) Speedup Gain vs. r/k
—_ (@} —_ a
—_ R- =)60 o — R- =
_g 250 - R-squared = 0.70 U] E 2.5 4 R-squared = 0.93
2 v
[} O
— 3 2.25 1 —a
X g X9
o 2.00 o
=] >
B 21751 22
&5 &G
' g 1.50 ~ N
m om
S 1.25 S
< <
200 300 400 500 0.4 0.5 0.6 0.7 0.8 0.9
(m—L/k) rik

Figure 10: Speedup gains relative to full batching, with respect to Batch Size Reduction (r/k) and Max Absolute Deviation
(m — L/k), conducted on Llama2 7B with batch size 16 and 2500 prompts.

13

Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

Speedup Gain vs. (m — L/k) Speedup Gain vs. r/k
_ . __2.50 .
9 2.4 4 —— R-squared = 0.75 o — R-squared = 0.93
< < 2.254
9 2.2 1 P
X 0 X © 2.00-
X820+ xg2
5> 5>
g 218, g BT
25 25
n 2 1.6 n £ 1.50 A
m [an]
S 141 S 1.251
160 180 200 220 240 0.4 0.5 0.6 0.7 0.8
(m —L/k) rik

Figure 11: Speedup gains relative to full batching, with respect to Batch Size Reduction (r/k) and Max Absolute Deviation
(m — L/k), conducted on Llama2 7B with batch size 32 and 5000 prompts.

Speedup Gain vs. (m — L/k) Speedup Gain vs. r/k

—— R-squared = 0.94

N
(%}
1

2.5 4+ — R-squared = 0.72

N
o
1

Speedup [x]
(Full Batching / Prepacking)

Speedup [X]
(Full Batching / Prepacking)
=
U

=
o
1

04 05 06 07 08 0.9

o
w

125 150 175 200 225 250
(m —L/k) rik

Figure 12: Speedup gains relative to full batching, with respect to Batch Size Reduction (r/k) and Max Absolute Deviation
(m — L/k), conducted on Mistral 7B with batch size 16 and 5000 prompts.

L. Limitations

Our prepacking algorithm is currently only used for the prefilling stage. After prepacking, our current approach is to repack
and then generate normally. This is suboptimal as it involves extra bookkeeping and rearrangement in the memory space.
Extending the prepacking algorithm to the generation stage will be an interesting and efficient future direction.

Additionally, we did not compare our method with hardware-aware approaches or CUDA kernel approaches, which can be
more efficient than prepacking. However, we do not consider this a major limitation as we demonstrate the usability of our
algorithm, which can be fully implemented in PyTorch.

14

