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Abstract

Recurrent Neural Networks (RNNs) frequently exhibit complicated dynamics,
and their sensitivity to the initialization process often renders them notoriously
hard to train. Recent works have shed light on such phenomena analyzing when
exploding or vanishing gradients may occur, either of which is detrimental for
training dynamics. In this paper, we point to a formal connection between RNNs
and chaotic dynamical systems and prove a qualitatively stronger phenomenon
about RNNs than what exploding gradients seem to suggest. Our main result proves
that under standard initialization (e.g., He, Xavier etc.), RNNs will exhibit Li-Yorke
chaos with constant probability independent of the network’s width. This explains
the experimentally observed phenomenon of scrambling, under which trajectories
of nearby points may appear to be arbitrarily close during some timesteps, yet will
be far away in future timesteps. In stark contrast to their feedforward counterparts,
we show that chaotic behavior in RNNs is preserved under small perturbations
and that their expressive power remains exponential in the number of feedback
iterations. Our technical arguments rely on viewing RNNs as random walks under
non-linear activations, and studying the existence of certain types of higher-order
fixed points called periodic points that lead to phase transitions from order to chaos.

1 Introduction

In standard feedforward neural networks (FNNs), computation is performed “from left to right”
propagating the input through the hidden units to the output. In contrast, recurrent neural networks
(RNNs) form a feedback loop, transfering information from their output back to their input (e.g.,
LSTMs (Hochreiter and Schmidhuber, 1997), GRUs (Cho et al., 2014)). This feedback loop allows
RNNs to share parameters across time because the weights and biases of each iteration are identical.
As a result, RNNs can capture long range temporal correlations in the input. For these reasons, they
have been very successful in applications in sequence learning domains, such as speech recognition,
natural language processing, video understanding, and time-series prediction (Bahdanau et al., 2014;
Cho et al., 2014; Chung et al., 2014).

⇤Authors order determined by the output of a randomly initialized recurrent network (operating at the chaotic
regime).
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Unfortunately, their unique ability to share parameters across time comes at a cost: RNNs are sensitive
to their initialization processes, which makes them extremely difficult to train and causes complicated
evaluation and training dynamics (Le et al., 2015; Laurent and von Brecht, 2016; Miller and Hardt,
2018). Roughly speaking, because the hidden units of an RNN are applied to the input over and over
again, the final output can quickly explode or vanish, depending on whether its Jacobian’s spectral
norm is greater or smaller than one respectively. Similar issues also arise during backpropagation
that hinder the learning process (Allen-Zhu et al., 2018).

Besides the hurdles with their implementation, recurrent architectures pose significant theoretical
challenges. Several basic questions include how to properly initialize RNNs, what is their expressivity
power (also known as representation capabilities), and why do they converge or diverge, all of which
require further investigations. In this paper, we take a closer look at randomly initialized RNNs:

Can we get a better understanding of the behavior of RNNs at initialization using dynamical systems?

We draw on the extensive dynamical systems literature—which has long asked similar questions
about the topological behavior of iterated compositions of functions—to study the properties of RNNs
with standard random initializations. We prove that under common initialization strategies, e.g., He
or Xavier (He et al., 2015, 2016), RNNs can produce dynamics that are characterized by chaos, even
in innocuous settings and even in the absence of external input. Most importantly, chaos arises with
constant probability which is independent of the network’s width. Our theoretical findings explain
empirically observed behavior of RNNs from prior works, and are also validated in our experiments.1

More broadly, our work builds on recent works that aim at understanding neural networks through the
lens of dynamical systems; for example, Chatziafratis et al. (2020b,a) use Sharkovsky’s theorem from
discrete dynamical systems to provide depth-width tradeoffs for the representation capabilities of
neural networks, and Sanford and Chatziafratis (2022) further give more fine-grained lower bounds
based on the notion of “chaotic itineraries”.

1.1 Two Motivating Behaviors of RNNs

Before stating our main result, we illustrate two concrete behaviors of RNNs that inspired our work.
The first example demonstrates that randomly initialized RNNs can lead to what is perhaps most
commonly perceived as “chaos”, while the second example demonstrates a qualitatively different
behavior of RNNs compared to FNNs. Our main result unifies the conclusions drawn from these two.

Scrambling Trajectories at Initialization Prior works have empirically demonstrated that RNNs
can behave chaotically when their weights and biases are chosen according to a certain scheme.
For example, Laurent and von Brecht (2016) consider a simple 4-dimensional RNN with specific
parameters in the absence of input data. They plot the trajectories of two nearby points x, y with
kx� yk  10�7 as they are propagated through many iterations of the RNN. They observe that the
long-term behavior (e.g., after 200 iterations) of the trajectories is highly sensitive to the initial states,
because distances may become small, then large again and so on. We ask:

Are RNNs (provably) chaotic even under standard heuristics for random initialization?

We answer this question in the affirmative both experimentally and theoretically. This question is
helpful to understand for multiple reasons. First, it informs us about the behavior of most RNNs,
as we start with a random setting of the parameters. Second, proving that a system is chaotic is
qualitatively much stronger than simply knowing its gradient to be exploding; this will become
evident below, where we describe the phenomenon of scrambling from dynamical systems. Finally,
understanding why and how often an RNN is chaotic can lead to even better methods for initialization.

To begin, we empirically verify the above statement by examining randomly initialized RNNs.
Figure 1 demonstrates that trajectories of different points may be close together during some timesteps
and far apart during future timesteps, or vice versa. This phenomenon, which will be rigorously
established in later sections, is called scrambling (Li and Yorke, 1975) and emerges as a direct
consequence of the existence of higher order fixed points (called periodic points) of the continuous
map defined by the random RNN.

1Our code is made publicly available here: https://github.com/steliostavroulakis/Chaos_RNNs/
blob/main/Depth_2_RNNs_and_Chaos_Period_3_Probability_RNNs.ipynb
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Figure 1: Points x, y with initial distance kx � yk  10�7 and their subsequent kf t(x) � f t(y)k
distances across t = 150 iterations of a randomly initialized RNN. The idea behind scrambling is
that the trajectories, even though they get arbitrarily close, they also separate later and vice versa.

Persistence of Chaos in RNNs vs FNNs Our second example is related to the expressive power of
neural networks. A standard measure used to capture their representation capabilities is the number
of linear regions formed by the non-linear activations (Montufar et al., 2014); the higher this number,
the more expressive the network is. Counting the maximum possible number of linear regions across
different architectures has also been leveraged in order to obtain depth vs width tradeoffs in many
works (Telgarsky, 2015; Eldan and Shamir, 2016; Chatziafratis et al., 2020b,a).

Here, we are inspired by a remarkable observation of Hanin and Rolnick (2019a), who showed
that real-valued FNNs from R ! R may lose their expressive power if their weights are randomly
perturbed or those weights are initialized according to standard methods. Roughly speaking, they
show that in such networks the number of linear regions grows only linearly in the total number of
neurons. These results contrast with the aforementioned analyses of the theoretical maximum number
of regions, which is exponential in depth. We ask the analogous question for RNNs instead of FNNs:

Will randomly initialized or perturbed RNNs lose their high expressivity like FNNs did?

We show a contrast between RNNs and FNNs, by showing that the number of linear regions in random
RNNs remains exponential on the number of its feedback iterations. Once again, the fundamental
difference lies on the fact that RNNs share parameters across time. Indeed, the analyses of many prior
works (Hanin and Rolnick, 2019a,b; Hanin et al., 2021) crucially relies on the “fresh” randomness
injected at every layer, e.g., that the weights/biases of each neuron are initialized independently of
each other; obviously, this is no longer true in RNNs where the same units are repeatedly used across
different iterations. This shared randomness raises new technical challenges for bounding the number
of linear regions, but we manage to indirectly bound them by studying fixed points of random RNNs.

2 Our Main Results

Our main contribution is to prove that randomly initialized RNNs can exhibit Li-Yorke chaos (Li and
Yorke, 1975) (see definitions below), and to quantify when and how often this type of chaos appears
as we vary the variance of the weights chosen by the random initialization. To do so, we use discrete
dynamical systems which naturally capture the behavior of RNNs: simply start with some shallow
NN implementing a continuous map f , and after t feedback iterations of the RNN, its output will be
exactly f t (f composed with itself t times). We begin with some basic definitions:
Definition 2.1. (Scrambled Set) Let (X, d) be a compact metric space and let f : X ! X be a
continuous map. Two points x, y 2 X are called proximal if:

lim inf
n!1

d(fn(x), fn(y)) = 0

and are called asymptotic if
lim sup
n!1

d(fn(x), fn(y)) = 0.

A set Y ✓ X is called scrambled if 8x, y 2 Y, x 6= y, the points x, y are proximal, but not asymptotic.
Definition 2.2. (Li-Yorke Chaos) The dynamical system (X, f) is Li-Yorke chaotic if there is an
uncountable scrambled set Y ✓ X .
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Figure 2: Left: Recreation of a figure from Hanin and Rolnick (2019a) where small Gaussian
perturbation (N (0, 0.1)) is added independently on every weight/bias of each layer of a simple FNN.
As a result, after adding noise, the high expressivity (i.e., number of linear regions) breaks down;
having “fresh” noise in each layer was crucial. Right: Here we depict the same network as before but
shown as RNN, and we add noise as before. Perhaps surprisingly, RNNs exhibit different behavior
than FNNs: high expressivity is preserved even after noise. As we show, due to shared randomness
across iterations, small perturbations do not “‘break” expressivity.

Li-Yorke chaos leads both to scrambling phenomena (Figure 1) and to high expressivity (Right of
Figure 2). Interestingly, this is not true for FNNs (Left of Figure 2), where the fresh randomness
at each neuron leads to concentration of the Jacobian’s norm around 1, which is sufficient to avoid
chaos. In other words, these definitions capture exactly the fact that trajectories get arbitrarily close,
but also move apart infinitely often (as in Fig. 1). Intuitively, when scrambling occurs in RNNs, their
#linear regions will be large and their input-output Jacobian will have spectral norm larger than one.
Definition 2.3 (Simple RNN Model). For k,� > 0, let RNN (k,�2) be a family of recurrent neural
networks with the following properties:

• Input: The input to the network is 1-dimensional, i.e., a single number x 2 [0, 1].

• Hidden Layer: There is only one hidden layer of width at least k, with ReLU(x) =
max(x, 0) activations neurons, each of which has its own bias terms bi ⇠ Unif([0, 1]).

• Output: The output is a real number in [0, 1] which takes the functional form fk(x) =

clip(
P

k

i=1 aiReLU(x � bi)), where the weights are i.i.d. Gaussians ai ⇠ N (0, �
2

k
), and

clip(·) ensures that fk(x) 2 [0, 1] similarly to the input (i.e., it “clips” the input so that it
remains in [0, 1] as it is an RNN).

• Feedback Loop: fk(x) becomes the new input number, so after t iterations the output is
(fk � fk � . . . � fk)(x), i.e., t compositions of fk with itself.

As we show, even this innocuous class of RNNs (see Sec. 3 for general model) leads to scrambling.
Theorem 2.4 (Li-Yorke Chaos at Initialization). Consider fk 2 RNN (k�,�2) initialized according
to the He normal initialization (set �2 = 2, so weight variance is 2/k). Then, there exists some
constant � > 0 (independent of the width) and width kHe > 1, such that for sufficiently large
k > kHe, fk is Li-Yorke chaotic with probability at least �.

This answers our two questions posed earlier: RNNs may remain chaotic under initialization heuris-
tics, and maintain their high expressivity, because Li-Yorke chaos implies an exponential #linear
regions (Theorem 1.5 in Chatziafratis et al. (2020b)). Next, we focus on threshold phenomena:
Theorem 2.5. [Order-to-Chaos Transition] For fk 2 RNN (k,�2), we get the following 3 regimes
as we vary the variance of the weights ai ⇠ N (0, �

2

k
):

• (Low variance, order) Let ai ⇠ N (0, 1
4k log k

). Then, the probability that fk is Li-Yorke
chaotic is at most 1

k
.
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• (Edge of chaos) Let ai ⇠ N (0, 2
k
) (i.e., He initialization). Then, fk is Li-Yorke chaotic with

constant (albeit small) probability.

• (High-variance, chaos) Let ai ⇠ N (0, �
2

k
) for � = !(1). Then,

limk!1 Pr [fk is Li-Yorke chaotic] = 1.

To the best of our knowledge, we are the first to study Li-Yorke chaos in the context of RNNs and to
prove that scrambling phenomena appear with constant probability independent of the width. We
emphasize that Li-Yorke chaos is stronger than exploding gradients, as any chaotic system requires
the input-output map to be non-contracting (as otherwise it would converge to a fixed point).

Techniques Contrary to many prior works (Laurent and von Brecht, 2016; Miller and Hardt, 2018),
we do not require differentiability of activations like tanh(·), as we rely on properties of continuous
functions. Most importantly, we deviate from past works (Bertschinger and Natschläger, 2004; Poole
et al., 2016), as we do not use tools from mean-field analysis (where the number of neurons, width or
depth goes to infinity), since here we are interested on the dependence on the width k. Instead, we
study the fixed points and higher-order fixed points of fk 2 RNN (k,�2) (see Sec. 3), bounding the
probability that fk has a certain type of fixed point known to lead to chaos.

This is done by viewing RNNs as random walks under non-linear activations. To give some intuition
behind our findings, consider a random walk starting from 0 in which we consider increments
di ⇠ N (0, 1). It is quite well-known in the literature of random walks, that the expected number
of steps needed for a random walk starting from 0 with increments di ⇠ N (0, 1) to reach n and
come back to 0 is ⇥(n2) iterates. For an RNN to be chaotic, as it turns out, we need to find the
probability that it has certain type of fixed points; this can be bounded below by the probability that
the random walk reaches point 1 and then goes back to 0. As a result, if we rescale appropriately and
the increments di ⇠ N (0, 1

k
), then we need ⇥(k) iterates. Roughly speaking, k plays the role of the

size of the width (di are the weights). In reality, the random walk we analyze is more complicated as
the (random) biases affect the length of each increment in the random walk.

Experiments Finally, we validate our theory by extensive simulations on a variety of randomly
initialized RNN architectures. Our goal is twofold: Firstly, to demonstrate that Li-Yorke chaos is
indeed present across different models and different initialization heuristics, and not just an artifact
of the specificities of our RNN family. Secondly, to estimate the value of the aforementioned
constant probability of chaos �� in the Edge of Chaos regime, which is known to be the most
interesting (Bertschinger and Natschläger, 2004; Yang and Schoenholz, 2017; Hanin, 2018), yielding
a comparison for which initializations are more likely to be Li-Yorke chaotic (see table in Fig. 3).

2.1 Further Related Works

Several works have studied RNNs in the context of chaotic dynamical systems and edge of chaos
initialization (Sompolinsky et al., 1988; Bertschinger and Natschläger, 2004; Saxe et al., 2013; Kad-
mon and Sompolinsky, 2015; Poole et al., 2016). They study neural networks in the limit of infinitely
large widths or depth and derive properties of the dynamics, typically using mean-field analysis.
Moreover, the notion of chaos used there is not from Li and Yorke (1975), as they do not analyze
periodic points in the trajectories of the networks, nor do they establish scrambling phenomena. For
example, Bertschinger and Natschläger (2004) observe that the sequence of activations in the neurons
of the network exhibit increasingly unpredictable and complicated patterns as the variance increases
and use this notion to determine the edge of chaos and threshold phenomena.

3 Preliminaries

Higher-order Fixed Points Let f : [a, b] ! [a, b] be a continuous map. The notion of a periodic
point is a generalization of a fixed point:
Definition 3.1. We say f contains period n or has a point of period n � 1, if there exists a point
x0 2 [a, b] such that:

fn(x0) = x0 and f t(x0) 6= x0, 8 1  t  n� 1.
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where it is common to use fn(x0) to denote the composition of f with itself n times, evaluated at
point x0. In particular, C := {x0, f(x0), f(f(x0)), . . . , fn�1(x0)} has n distinct elements (each of
which is a point of period n) and is called a cycle (or orbit) with period n.

Period 3 implies Chaos Of particular interest, is the case of functions f that contain period 3. In
1975, a seminal paper by Li and Yorke (1975), introduced the term “chaos” as used in mathematics
nowadays, and proved connections with periodic functions as defined above.
Fact 1. Let f : R ! R be continuous. If f has a period 3 point then two properties hold: First, f
contains points of any period n 2 N. Second, f will exhibit scrambling as defined in Def. 2.1,2.2.

Sometimes we say that f is “chaotic in the sense of Li and Yorke”. On a historical note, this turned
out to be a special case of an older result by Sharkovsky (1964).

In other words, a sufficient condition to obtain scrambling phenomena is to show that f contains a
point of period 3. In general, the uncountable set of chaotic points may, however, be of measure zero,
in which case the map is said to have unobservable chaos or unobservable nonperiodicity (Collet and
Eckmann, 2009). Our Theorem 2.4 informs us that this is not the case for randomly initialized RNNs.

Other RNN Models Recurrent models have been thoroughly studied because of their success in
sequence learning. Following notation from Laurent and von Brecht (2016), here is a general model
for RNNs:

ut = �(ut�1,W1xt,W2xt, . . . ,Wkxt)

where the index t 2 N represents the current time, ut 2 Rd represents the current state of the system,
xt the current external input, and Wi’s are weight matrices. Regarding training or initialization of
weights many tricks have been proposed, e.g., the popular “identity matrix” trick of Le et al. (2015)
to preserve lengths. Laurent and von Brecht (2016) to simplify the above, they study what is referred
to as the dynamical system induced by the RNN, i.e, they consider trajectories of ut in the absence of
external inputs:

ut = �(ut�1, 0, 0, . . . , 0)

This is much more tractable and gives us insights into the architecture of the RNN as it decouples
the influence of the external data xt’s (with which any possible response can be produced) from the
model itself. For more on other simplified RNN variants with specific statistical assumptions on
weights/input, and connections to edge of chaos, see Bertschinger and Natschläger (2004). Similarly,
our RNN family has no external input; we show that even in 1-dimensional settings, chaos emerges.

4 Persistence of Chaos and Phase Transitions
In this section we prove our main results. As we alluded to in the previous section, in order to show
chaos in the sense of Li and Yorke, we will bound the probability that the family RNN (k,�2)
contains a point of period 3, since this will serve as a “witness of chaos”. We start with some simple
observations.

4.1 Triangular Wave with Period 3

Perhaps the simplest example of a continuous function f that has period 3 is the following triangle
wave function: f(x) = 2x, for x 2 [0, 1/2], and 2(1� x), for x 2 (1/2, 1]. Indeed, one can check
that the set { 2

9 ,
4
9 ,

8
9} is a periodic orbit of length 3, since f( 29 ) =

4
9 , f(

4
9 ) =

8
9 and finally, f( 89 ) =

2
9

closing the loop. This simple function has played an interesting role in obtaining depth vs width
tradeoffs in recent years Telgarsky (2015, 2016); Chatziafratis et al. (2020b).

4.2 Persistence of Chaos

Now consider a function from RNN : fk(x) = clip(
P

k

i=1 aiReLU(x � bi)) for independent
ai ⇠ N (0, �

2

k
) and bi ⇠ Unif([0, 1]).

Theorem 4.1. Fix any � 2 (0, 1). There exists � such that for any sufficiently large k (whose
minimum value depends on �), fk is 3-periodic with probability at least 1� �.

For the theorem we need some intermediate lemmas. We begin with a sufficient condition for chaos:
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Lemma 4.2. Let yi =
P

i�1
◆=1 a◆(bi � b◆) so that fk(bi) = clip(yi). If there exists indices i < ` such

that yi > 1 and y` < 0, then fk has period 3.

Proof. We can assume without loss of generality that b1 < b2 < · · · < bk. Suppose there are indices
i < ` as specified in the statement. Since yi > 1, after clipping we know that fk(xi) = 1, and since
y` < 0, after clipping we know that fk(x`) = 0. Let’s check how intervals are mapped under f : since
xi  x` 2 [0, 1] and because of continuity of fk, we have that fk([0, xi]) = [0, 1], and similarly that
fk([xi, x`]) = [0, 1]. By combining this with the intermediate value theorem for f3

k
(3 iterations of

fk applied to itself), we can exhibit a 3-cycle with two elements in (0, xi) and a third in (xi, x`).

Proof Sketch of Theorem 4.1. Roughly, the proof operates by choosing a subset of t ordered elements
{yij}j2[t] ⇢ {yi}i2[k] that meets several key properties such that there exists j < j0 such that yj > 1
and yj0 < 0. Using this and Lemma 4.2 (for i = j and ` = j0), we will conclude that fk has period 3.
However, there are three immediate challenges that make such a result challenging to obtain:

1. (Randomness) If the variance parameter � is small, then there will be a substantial constant
probability of an yj lying in the interval [0, 1] and thus meeting neither characteristic.

2. (Correlations) Due to the function’s expression as a linear combination of ReLU neurons
with small coefficients, the function fk is smooth, and yi’s in the same vicinity are highly
correlated. This makes it more difficult to ensure that sign changes to the yj’s are likely.

3. (Biases) The randomness of the biases bi makes it more difficult to assess the correlations of
the yi’s, since having small gaps b` � bi will yield stronger correlations between the two
consecutive values of the function.

We mitigate these issues by carefully selecting parameters t and � and the subset {yij}j2[t]. Problems
from (1) can be avoided by choosing � to be large enough to ensure that for sufficiently large i
relative to k, it’s highly unlikely for any yij to lie in the interval [0, 1]; if none of these lie in that
interval, then it is sufficient to find yij and yij0 that exhibit a positive-to-negative sign change. To
minimize correlation for (2) between nearby yij ’s, we choose those ij’s to ensure that each is a large
multiplicative factor times its predecessor; this relies on key intuition from random walks, where
increasing temporal differences between random variables makes them increasingly independent. We
avoid the atypical samples of bi of (3) by gradually defining a set of “good” bi’s that exist with high
probability and completing the proof while assuming the bi’s are good.

Proof of Theorem 4.1. A primary goal of our analysis is to bound the variances and covariances of
yi’s to aid in our selection of a subset of yij ’s that are nearly independent. We first assume that the
biases bi are held fixed, while the weights ai are chosen at random; we will later prove bounds that
hold for all typical biases. We let Ea [·] denote such an expectation over random a for fixed b. For
indices i < `, we have that Ea [yi] = 0 and also the following:

Ea

⇥
y2
i

⇤
=

i�1X

◆=1

E
⇥
a2
◆

⇤
(bi � b◆)

2 =
�2

k

i�1X

◆�1

(bi � b◆)
2 and Ea [yiy`] =

�2

k

i�1X

◆=1

(bi � b◆)(b` � b◆).

For fixed bi’s, each yi =
P

i�1
◆=1 a◆(bi � b◆) is drawn from a Gaussian distribution with mean 0 and

variance �
2

k

P
i�1
◆�1(bi � b◆)2. We bound these quantities with high probability over random choices

of biases bi; for the remainder of the argument, we assume that the low-probability “bad case” (i.e.,
having small gaps b` � bi) does not occur and apply those bounds without worry about the effects of
the bias terms. By defining bi as the ith smallest element from sample of size k from Unif([0, 1]),
the distribution of each is a Beta distribution: bi ⇠ Beta(i, k + 1� i) (see Bertsekas and Tsitsiklis
(2008)). We recall the low-order moments of these biases in order to bound the moments of the yi’s.
Assume ◆ < i.

E [bi] =
i

k + 1
, E

⇥
b2
i

⇤
=

i(i+ 1)

(k + 1)(k + 2)
and Var [bi] =

i(k + 1� i)

(k + 1)2(k + 2)

We establish a simple lower bound on the summation used to express Ea

⇥
y2
i

⇤
: Ea

⇥
y2
i

⇤
 i�

2

2k (bi �
bi/2)

2. We apply Chebyshev’s inequality to lower-bound bi and upper-bound bi/2. To do so, note
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that for sufficiently large k, Var [bi]  (k+1)2/4
(k+1)2(k+2) 

1
2k . Assume i � k3/4. Then, by Chebyshev’s

bound,

Pr


bi 

7i

8k

�
 Pr


|bi � E [bi]| �

i

8k

�
 32p

k
.

By the same calculation, Pr
⇥
bi/2 � 5i

8k

⇤
 32p

k
. Then, Pr

h
Ea

⇥
y2
i

⇤
� i

3
�
2

8k3

i
� 1� 64p

k
. Later, this

will be important for showing that yj 62 [0, 1] with high probability with � large enough.

We also upper-bound the covariances. Note that Ea [yiy`]  i�
2

k
bib`. For i � k3/4, the above

calculations ensure that Ea [yiy`]  3i2`�2

2k3 with probability at least 1� 64p
k

.

Now, we choose the elements yij that guarantee the needed properties. Let ij := k

rt�j (assuming
that k is divisible by 2rt) for t := 6

�
and r = (12t)8. We assume that k � ( 72

�
)192/� = r4t, which

ensures that every ij � k3/4, since

ij >
k

rt
� k3/4rt

rt
= k3/4.

These choices ensure that the variance of each element is high enough to make belonging to [0, 1]
unlikely for any yi,j , while spreading apart successive iterates yi,j and yi,j+1 to make them nearly
independent. To do so, we analyze the normalized variables xj :=

yijq
Vara[yij ]

, for j 2 [t].

Note that, given fixed b, xj ⇠ N (0, 1) and with probability 1� 128t2p
k

, for every j < j0,

Ea [xjxj0 ] =
E
h
yk/rt�jy

k/rt�j0

i

r
Vara

⇥
yk/rt�j

⇤
Vara

h
y
k/rt�j0

i 
3�2

2r2(t�j)+(t�j0)

�2

8r3/2(t�j)+3/2(t�j0)

= 12rj/2�j
0
/2  12p

r
 1

t4
.

Hence, for a sufficiently large r, the xj’s are essentially uncorrelated. Note that x = (x1, . . . , xt) 2
Rt (if we assume a fixed b that satisfies the above high probability events) has x ⇠ N (0,⌃), where
⌃j,j = 1 and ⌃j,j0  1

t4
. The smallest eigenvalue of ⌃ can be bounded. (Similarly for µmax(⌃), see

Lemma B.1.) Given the lack of correlation between the t random variables for sufficiently large r,
we bound the probability that the signs of the elements of x follow a certain pattern. We basically
need to show that x has a + sign that precedes a � sign (like triangle waves have +2 slope followed
by �2 slope). Using this, we can estimate the probability of period 3 emerging and this completes
the proof. (Due to space limitations, some last steps are in Appendix B.)

Corollary 4.3. For weights drawn as ai ⇠ N (0,!( 1
k
)), the limk!1 Pr [fk is 3-periodic] = 1.

Combining the fact that fk will have period 3 with some constant probability �, with the work
of Chatziafratis et al. (2020b) on the expressivity of networks as measured by #linear regions we get:

Corollary 4.4. With the same probability �, the number of linear regions of fk 2 RNN is exponen-
tial in the number t of feedback iterations, with a growth rate of � = 1+

p
5

2 .

Theorem 4.5. Consider fk initialized according to the He initialization (i.e. fk from Thm. 4.1 with
� = 2). For sufficiently large k, fk is 3-periodic w.p. at least some constant. (Proof in App. B.2.)

Theorem 4.6. Consider fk initialized with ai ⇠ N (0, 1
4k log k

). Then, the probability that fk has no
fixed points (therefore exhibits no chaotic behavior) is � 1� 1

k
. (Proof in App. B.3.)

5 Experiments

Our goal is to evaluate how robust our findings are to specifications of the RNN model, and to
empirically estimate some bounds on how often scrambling phenomena appear2.

2Our code is made publicly available here: https://github.com/steliostavroulakis/Chaos_RNNs/
blob/main/Depth_2_RNNs_and_Chaos_Period_3_Probability_RNNs.ipynb
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Robustness across Different Models We try different architectures and initialization techniques
from the literature (He et al., 2015; Glorot and Bengio, 2010), truncated Gaussians, and others, for
setting the weights and the biases. Our table in Fig. 3 summarizes the results across 10000 runs of
each experiment. For each experiment, the first layer has width 2, where the weights and biases of
each neuron are initialized according to each line, whereas the second layer has width 1 with weight
and bias as specified in each line. Notice that the last column contains the probability that the recurrent
model is chaotic, having period 3. The way we classify whether the output of an RNN is chaotic or
not is done by plotting one iteration of the RNN and three iterations of the RNN and then checking
whether there are more fixed points in the latter, implying period 3 (for a pictorial representation
see Figure 7 in Appendix C). The purpose of this experiment was to quantify the probability for

Figure 3: The rightmost column has the estimates for the probability that the RNN exhibits period
3. We ran the experiment for 10000 times and checked whether the random RNN has period 3
(see Fig. 7). Each line specifies the type of initialization or activation unit used.

having period 3 in one-dimensional randomly initialized RNNs, as in higher dimensions there is not
a clean mathematical statement for checking periods 3. This validates our theoretical findings that
chaos (in the sense of Li-Yorke) persists, in contrast to FNNs (see Figure 2).

RNNs transitions in Higher Dimensions In higher dimensions, we used an MNIST dataset as
input to a 64-dimensional RNN with 1 hidden layer, width 64, fully connected, with ReLU activation
functions and He initialization. Note that we did not train the RNN as this was not our purpose. We
simply initialized it and observed (Fig. 4) how the values of the output neurons fluctuate with respect
to t (the number of compositions of the RNN with itself) for various �. Since high dimensions do
not have clean characterizations of chaos such as period 3, we instead detect chaos by relying on a
necessary condition: Jacobian’s spectral norm being more than 1 (See Fig. 5).

Figure 4: The y-axis has values for 4 different output neurons, while x-axis is number of RNN
compositions. From left-to-right, as we vary �, RNN becomes unstable similarly to 1D case in Fig. 1.

Additional Experiments and Remarks. Regarding the experiments reported in Figure 3, the
reported numbers were without the Clipping operation, so that the architecture is more faithful to
practice. We believe it is an interesting direction to further understand the chaotic properties of neural
networks at initialization and exactly quantify both experimentally and theoretically the probability
of chaos. Of course, for the simpler one-dimensional case, we were able to use the period 3 property
which is a simple to state and simple to verify condition. For higher dimensional RNNs, that are
closer to those being used in practice nowadays, it still remains a challenging problem to characterize
when chaos emerges. Other notions of chaos like Devanay’s chaos (Huang and Ye, 2002) could also
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Figure 5: The y-axis is the % of RNNs (out of 1000 runs) having large Jacobian norm, and x-axis
is varying values of �. Echoing our main theorems 2.4, 2.5, we experimentally determine for two
popular initialization schemes the threshold where the input-output Jacobian has spectral norm > 1.

be useful when exploring chaotic properties of neural nets (Devaney’s chaos is a stronger notion of
chaos compared to Li–Yorke’s chaos).

For completeness, we also performed some additional experiments with the Clipping operation and
the numbers are still ranging from 2%-9% for the probability of chaos. Specifically, following the
setup of Fig. 3, out of 10000 runs, we got (with Clipping) that the chaos frequency reported in the
last column is 3.6, 5.8, 9.7, 5.7, 2.2 respectively for the different initializations. We also performed
experiments with other types of activations units and higher values for the width and the depth and
we still observe that these variants too exhibit period 3. For example, with tanh activations, the last
column would be 9.7, 11, 17.6, 2.6, 4.6 respectively. If we instead change the width to be equal to
4, the numbers become 13.1, 8.1, 14.09, 0.8, 2 and in another setting where the depth equals 3 the
numbers become 6.5, 3.1, 5, 0.34, 1.14.

Conclusion

Using tools from discrete dynamical systems, we show simple models for randomly initialized
recurrent neural networks exhibiting scrambling phenomena and we study the associated threshold
phenomena for the emergence of Li-Yorke chaos. Our theory and experiments explain observed RNN
behaviors, highlighting the difference between FNNs and RNNs in a simple setting. More broadly, we
believe this connection can be fruitful to obtain a better understanding of RNNs at initialization as it
adds to a recent thread of works that give interesting new perspectives on neural networks, borrowing
ideas from dynamical systems.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] We just used MNIST dataset. Our
code is made publicly available here: https://github.com/steliostavroulakis/
Chaos_RNNs/blob/main/Depth_2_RNNs_and_Chaos_Period_3_Probability_
RNNs.ipynb

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We

develop theory to understand observed behavior of RNNs.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Some of the proofs

are in the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce
the main experimental results (either in the supplemental material or as
a URL)? [Yes] As a URL:Our code is made publicly available here:
https://github.com/steliostavroulakis/Chaos_RNNs/blob/main/Depth_
2_RNNs_and_Chaos_Period_3_Probability_RNNs.ipynb

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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