
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ERROR BOUNDS FOR DEEP LEARNING-BASED UN-
CERTAINTY PROPAGATION IN SDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic differential equations are commonly used to describe the evolution of
stochastic processes. The uncertainty of such processes is best represented by the
probability density function (PDF), whose evolution is governed by the Fokker-
Planck partial differential equation (FP-PDE). However, it is generally infeasible
to solve the FP-PDE in closed form. In this work, we show that physics-informed
neural networks (PINNs) can be trained to approximate the solution PDF using
existing methods. The main contribution is the analysis of the approximation er-
ror: we develop a theory to construct an arbitrary tight error bound with PINNs.
In addition, we derive a practical error bound that can be efficiently constructed
with existing training methods. Finally, we explain that this error-bound theory
generalizes to approximate solutions of other linear PDEs. Several numerical ex-
periments are conducted to demonstrate and validate the proposed methods.

1 INTRODUCTION

Stochastic differential equations (SDEs) are widely used to model the evolution of stochastic pro-
cesses across various fields like sciences, engineering, economics, and finance. In many of these
applications, particularly in safety-critical domains, a key concern is understanding how uncertainty
of the process modeled by SDE propagates over space and time. This uncertainty is often repre-
sented by a probability density function (PDF) and is governed by the Fokker-Planck partial dif-
ferential equation (FP-PDE). However, solving the FP-PDE is generally computationally expensive
and prone to numerical errors, except in simple cases (Spencer & Bergman, 1993; Drozdov & Mo-
rillo, 1996; Tabandeh et al., 2022). Recent advancements suggest using deep-learning frameworks,
called physics-informed neural networks (PINNs), to approximate PDE solutions with notable suc-
cess (Sirignano & Spiliopoulos, 2018; Lu et al., 2021). Despite their effectiveness, PINNs are still
subject to approximation errors, a crucial concern in safety-critical systems. In this work, we tackle
this challenge by developing a method to approximate the PDF of an SDE using PINNs and rigor-
ously bound the approximation error.

Recent works on using PINNs to approximate solutions to PDEs typically analyze approximation
errors in terms of total error, representing the cumulative error across all space and time (De Ryck
& Mishra, 2022b;a; Mishra & Molinaro, 2023; De Ryck et al., 2024). While this approach may be
useful in some applications, it is less informative for SDEs and uncertainty propagation in stochastic
processes. Moreover, total error bounds are often overly loose, sometimes exceeding the actual
errors by several orders of magnitude. Crucially, these bounds do not provide insight into the worst-
case approximation error at specific time instances or within particular subsets of space, which
is essential in many stochastic systems. For example, in autonomous driving scenarios involving
pedestrian crossings, accurately prediction and bounding the probability of collision requires precise
reasoning over specific time instances and spatial regions. Loose over-approximations can lead to
undesirable behaviors, such as sudden braking.

In this work, we show how PINNs can be used to approximate PDFs of processes modeled by
SDEs and, more importantly, introduce a method for tightly bounding the approximation error as a
function of time and space. Our key insight is that the error is related to the residual of the FP-PDE
and is governed by the same equation. Thus, a second PINN can be used to learn the error, with
its own error also following the FP-PDE. This leads to a recursive formulation of error functions,
each of which can be approximated using a PINN. We establish sufficient training conditions under

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

which this series converges with a finite number of terms. Specifically, we prove that two PINNs
are enough to obtain arbitrarily tight error bounds. Additionally, we derive a more practical bound
requiring only one error PINN at the cost of losing arbitrary tightness, and provide a method to verify
its sufficient condition. Finally, we illustrate and validate these error bounds through experiments
on several SDEs, supporting our theoretical claims.

In short, the main contribution is five-fold:

• a method for approximating the PDF of processes modeled by SDEs using PINNs,
• a novel approach to tightly bound the approximation error over time and space through a

recursive series of error functions learned by PINNs,
• a proof that this recursive process converges with only two PINNs needed for arbitrarily

tight bounds,
• the derivation of a more practical error bound requiring just one PINN, along with a method

to verify its sufficiency, and
• validation of the proposed error bounds through experiments on several SDEs.

1.1 RELATED WORK

Research on approximating solutions to PDEs using PINNs often focuses on estimating the total
error, which represents the cumulative error across all time and space. For instance, (Mishra &
Molinaro, 2023) provide an abstract upper bound on the total error, expressed in terms of training
error, the number of training samples, and constants related to the stability of PDEs. Their numerical
experiments reveal that this total error bound is loose, exceeding the actual errors by nearly three or-
ders of magnitude. Similarly, De Ryck & Mishra (2022a) consider FP-PDE equations deriving from
linear stochastic differential equations. They propose an abstract approach to bound the total error
in terms of training error and some constants related to the PDEs, but they do not present numerical
experiments. In another approach, (De Ryck & Mishra, 2022b) propose a general framework to
derive different types of total error bounds for PINNs and operators, while (De Ryck et al., 2024)
estimate the total error for Navier-Stokes PDEs. In contrast to these works, this work emphasizes
bounding the worst-case error at any specific time. This focus is particularly valuable in practical
applications of stochastic systems.

Error analysis is a well-established area focused on demonstrating the approximation capabilities
of neural networks. For example, Hornik (1991) proves that a standard multi-layer feed-forward
neural network can approximate a target function such that the generalization is arbitrarily small.
Yarotsky (2017) considers the worst-case error and shows that deep ReLU neural networks are
able to approximate universal functions in the Sobolev space. More recently, deep operator nets
(DeepONet) have been suggested to learn PDE operators, with (Lanthaler et al., 2022) proving that
for every ϵ > 0, there exists DeepONets such that the total error is smaller than ϵ. While these
studies establish that the approximation error (whether in terms of average or worst-case) can be
made arbitrarily small, they do not address the critical question: what are the error bounds for a
given approximate solution? This is the central issue tackled by this work.

Error estimates have also been studied when neural networks are trained as surrogate models for
given target functions. For instance, Barron (1994) derives the total error between given the training
configurations and the target function. More recently, Yang et al. (2022) propose to estimate the
worst-case approximation error given the target function. A fundamental difference between our
work and these studies is that we do not have the target function or model.

Solving PDEs is a well-studied area with various established approaches. For the FP-PDE equation,
numerical methods, such as the finite elements method, have been employed (Spencer & Bergman,
1993). Additionally, Chakravorty (2006) uses Galerkin projection method for solution approxima-
tion. Recent works (Khoo et al., 2019; Song et al., 2023; Lin & Ren, 2024) present numerical meth-
ods for approximating transition probability between two regions, which is also governed by the
FP-PDE. For general PDEs, Zada et al. (2021) propose an analytical method to obtain approximate
solutions based on optimal auxiliary function. While these studies demonstrate accurate approxima-
tions through posterior evaluation, they can be computationally expensive and often lack the ability
to quantify and bound the error. In contrast, our method for approximating solutions to the FP-PDE
using PINNs is computationally tractable and centers on constructing error bounds for them.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PROBLEM FORMULATION

The aim of this work is uncertainty propagation with quantified error bounds for continuous time
and space stochastic processes using deep neural networks. We specifically focus on stochastic
processes described by the following (possibly nonlinear) Stochastic Differential Equations (SDE),

dx(t) = f(x(t), t)dt+ g(x(t), t)dw(t), (1)

where t ∈ T ⊆ R≥0 is time, x(t) ∈ X ⊆ Rn is the state of the system at time t, and w(t) ∈ Rm

is a standard Brownian motion. For Ω = X × T , function f : Ω → Rn represents the deterministic
evolution of the system, and function g : Ω → Rn×m is a term that defines the coupling of the
noise. We assume that f(x, t) and g(x, t) are locally Lipschitz continuous in x, and denote the i-th
dimension of f and (j, k)-th element of g by fi and gjk, respectively. The initial state x(0) is a
random variable distributed according to a given probability density function (PDF) p0 : X → R≥0,
i.e., x(0) ∼ p0. We assume that p0 is bounded and sufficiently smooth1.

The solution to the SDE in equation 1 is a stochastic process x with a corresponding PDF p :
Ω → R≥0 over space and time, i.e., x(t) ∼ p(·, t) (Øksendal, 2003). PDF p is governed by the
Fokker-Planck (FP) partial differential equation (PDE):

∂p(x, t)

∂t
+

n∑
i=1

∂

∂xi
[fip(x, t)]−

1

2

n∑
i=1,j=1

∂2

∂xi∂xj

[
m∑

k=1

gikgjkp(x, t)

]
= 0, (2)

and must satisfy the initial condition

p(x, 0) = p0(x) ∀x ∈ X. (3)

To simplify notation, we denote by D[·] the differential operator associated with the FP-PDE:

D[·] := ∂

∂t
[·] +

n∑
i=1

∂

∂xi
[fi·]−

1

2

n∑
i=1,j=1

∂2

∂xi∂xj

[
m∑

k=1

gikgjk·

]
.

Then, equation 2 and equation 3 can be rewritten in a compact form as

D[p(x, t)] = 0, subject to p(x, 0) = p0(x). (4)

Note that, since f and g are assumed to be locally Lipschitz continuous, the PDE in equation 4 is
well-posed, i.e., there exists a sufficiently smooth and unique solution p (Evans, 2022), (Karatzas &
Shreve, 2014, Ch. 5, Theorem 2.5).

Computation of p in closed form is generally not possible, and even numerical approaches are limited
to simple SDEs (Spencer & Bergman, 1993; Drozdov & Morillo, 1996; Tabandeh et al., 2022). In
this work, we focus on using PINNs to approximate p, and crucially, we aim to formally bound the
resulting approximation error.

Problem 1 Given stochastic process x(t) described by the SDE in equation 1, a bounded subset
X ′ ⊂ X , and a time interval T , train a neural network p̂(x, t) that approximates p(x, t), and for
every t ∈ T construct eB : T → R≥0 such that

sup
x∈X′

|p(x, t)− p̂(x, t)| ≤ eB(t). (5)

In our approach, we exploit the governing equation of p in equation 4 for both training for p̂ and for
its error quantification. Specifically, we first show that existing methods for training PINNs to ap-
proximate solutions of PDEs can be adapted to approximate p well if the training loss is sufficiently
small. Then, we show that the resulting approximation error can be written as an infinite series of
approximate error functions, each of which satisfying a PDE similar to equation 4. This implies
that each error function itself can be approximated using a PINN. Then, we derive conditions, under
which only a finite number of such PINNs is needed to obtain an error bound eB(t) with guarantees.

Remark 1 While we focus on p̂ being a neural network, our method of deriving temporal error
bound eB(t) is not limited to neural networks and generalizes to any sufficiently smooth function p̂
that approximates the true solution p.

1at least twice continuously differentiable with respect to x.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 APPROXIMATING PDF VIA PINN

Given the PDE in equation 4, as common in physics-informed deep learning, we approximate p by
learning a neural network p̂(x, t; θ), where θ represents the parameters of the neural network. For
training, spatial-temporal data points {(xj , 0)j}N0

j=1, {(xj , tj)j}Nr
j=1 ⊂ Ω, for some N0, Nr ∈ N,

are sampled, and the loss function is derived from the governing physics in equation 4 as L =
w0L0 + wrLr, where w0, wr ∈ R+ are the weights, and

L0 =
1

N0

N0∑
j=1

∥p0(xj)− p̂(xi, 0; θ)∥22, Lr =
1

Nr

Nr∑
j=1

∥D[p̂(xj , tj ; θ)]∥22. (6)

The loss function in equation 6 quantifies the deviation of the true and approximate solution in terms
of the boundary condition (L0) and the infinitesimal variation over space and time (Lr) (Sirignano
& Spiliopoulos, 2018). The parameters of p̂(x, t; θ) are learned by minimizing θ∗ = argminL.

Assumption 1 p̂ is assumed to be at least twice continuously differentiable with respect to x and
continuously differentiable with respect to t with bounded derivatives.

Assumption 1 is present because p̂ is trained by the physics-informed loss in equation 6, in which the
second term Lr requires the computation of the first and second derivatives with respect to time and
space, respectively. To satisfy Assumption 1, smooth activation functions (e.g., Tanh and Softplus)
can to be used in the architecture of p̂(x, t; θ). For instance, this assumption is satisfied by a fully
connected NN with twice differentiable activation functions.

Our training approach for p̂ follows existing methods to approximate PDE solutions using PINNs;
see Appendix B for more details. The key difference is that we provide error bounds on the approx-
imation error as detailed in the next section.

4 BOUNDING APPROXIMATION ERROR

In this section, we derive bounds for the approximation error e(x, t) := p(x, t) − p̂(x, t). We first
characterize e(x, t) as a series of approximate solutions to PDEs. Then, we show that, by training
just two PINNs under certain sufficient conditions, the series can be bounded, resulting in arbitrary
tight bound on e(x, t). While these conditions are feasible, they may be challenging to verify in
practice. To that end, we finally introduce a more practical bound that requires training of only one
PINN, albeit at the cost of losing arbitrary tightness. All the proofs are provided in the appendix.

Note that FP-PDE operator D is a linear operator; hence, by applying it to e(x, t), we obtain:

D[e] = D[p− p̂] = D[p]−D[p̂].

As D[p] = 0, we can see that the error is essentially related to the residue of D[p̂]. Then, we can
define the governing PDE of e(x, t) as

D[e(x, t)] +D[p̂(x, t)] = 0 subject to e(x, 0) = p0(x)− p̂(x, 0). (7)

Hence, using a similar approach as in Section 3, a PINN can approximate e(x, t) in equation 7.
Based on this, we can define the i-th error and its associated approximation in a recursive manner.

Definition 1 (i-th error and approximation) Let e0 := p and ê0 := p̂. We define, for i ≥ 1, the
i-th error to be ei(x, t) = ei−1(x, t)− êi−1(x, t), where each êi is a smooth, bounded function that
is constructed via a PINN that approximates ei governed by the recursive PDE (see Appendix A.1):

D[ei(x, t)] +

i∑
j=1

D[êj−1(x, t)] = 0 subject to ei(x, 0) = ei−1(x, 0)− êi−1(x, 0). (8)

By this construction, the approximation error e(x, t), for every choice of n ≥ 0, is given by

e(x, t) = p(x, t)− p̂(x, t) =

n∑
i=1

êi(x, t) + en+1(x, t). (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the remainder of this section, we derive upper bounds for the right-hand side of equation 9.

First, we express how well êi approximates the i-th error ei by defining the relative approximation
factor αi(t) as

αi(t) :=
maxx∈X′ |ei(x, t)− êi(x, t)|

maxx∈X′ |êi(x, t)|
. (10)

Recall from Def. 1 that ei − êi = ei+1. Hence, equation 10 can be written in a recursive form as

max
x∈X′

|ei+1(x, t)| = αi(t) max
x∈X′

|êi(x, t)|, (11)

which relates the unknown (i+ 1)-th error to the i-th error approximation.

Remark 2 By the definition of αi(t) in equation 10, it holds that αi(t) ≥ 0 for all i ≥ 1 and t ∈ T .

Now let e∗i (t), ê
∗
i (t) denote the maximum of ei(x, t), êi(x, t) over subset X ′ ⊂ X , respectively, i.e.,

e∗i (t) := max
x∈X′

|ei(x, t)|, ê∗i (t) := max
x∈X′

|êi(x, t)|. (12)

Recall that each êi(x, t) can be represented using a PINN. Hence, it is safe to assume that the
absolute value of its upper-bound over set X ′ is strictly greater than zero in finite-time training.

Assumption 2 Assume that, for all 1 ≤ i < n, ê∗i (t) > 0.

Then, the following lemma upper-bounds the approximation error e(x, t) using ê∗i (t).

Lemma 1 Consider the approximation error e(x, t) = p(x, t) − p̂(x, t) in equation 9 with n ≥ 2,
and the upper-bounds ê∗i (t) for 1 ≤ i < n over set X ′ ⊂ X in equation 12. Define ratio

γ i+1
i
(t) :=

ê∗i+1(t)

ê∗i (t)
. (13)

Then, under Assumption 2, it holds that, ∀x ∈ X ′,

|e(x, t)| ≤ ê∗1(t)
(
1 +

n∑
m=2

m−1∏
i=1

γ i+1
i
(t) +

e∗n+1

ê∗n−1

n−2∏
i=1

γ i+1
i
(t)

)
. (14)

Next, we derive an upper- and lower-bound for the ratio γ i+1
i
(t) in equation 14 using αi(t).

Lemma 2 If the relative approximation factors αi(t) < 1 for all 2 ≤ i < n, then

αi−1(t)

1 + αi(t)
≤ γ i

i−1 (t)
≤ αi−1(t)

1− αi(t)
. (15)

Lemma 2 establishes the relationship between ratio γ i
i−1

and relative approximation factors αi un-
der condition αi < 1. Intuitively, this condition holds when êi approximates ei reasonably well
(see equation 10). Lastly, we show that under certain conditions on α1 and α2, an ordering over
γ 2

1
, γ 3

2
, . . . , γ i

i−1
can be achieved.

Lemma 3 If, for all t ∈ T ,

0 < α1(t) < 1, (16a)
0 < α2(t) < 1− α1(t), (16b)

α2(t)(1 + α2(t)) < α1(t)
2, (16c)

then there exist feasible 0 ≤ αi(t) < 1 for 2 < i < n such that

γ i
i−1

(t) < γ 2
1
(t) < 1. (17)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The intuition behind Lemma 3 is that if ê1 and ê2 are trained to certain accuracy (satisfying Condi-
tions 16), then there exist feasible ê3, ê4, . . . , ên−1 such that the ratios γ 3

2
, γ 4

3
, . . . , γn−1

n−2
are upper

bounded by γ 2
1
< 1. Specifically, Condition 16a on α1 indicates that ê1 must be learned well enough

so that the magnitude of its maximum learning error is less than its own maximum magnitude (see
equation 10). By fixing α1, Conditions 16b-16c on α2 require ê2 to approximate e2 more accurately
than the approximation of e1 by ê1. These conditions are feasible, i.e., they can be satisfied since
each PINN can be trained arbitrary well (Hornik, 1991; De Ryck et al., 2021; Mertikopoulos et al.,
2020; Mishra & Molinaro, 2023). However, verifying them can be challenging. In Section 4.2, we
provide a method of checking for α1 condition and derive a bound that only relies on this condition;
checking α2 during training remains an open problem.

Finally, we can state our main result, which is a bound on the approximation error of p̂ using Lem-
mas 1-3. Specifically, the following theorem shows that the approximation error bound in Lemma 1
becomes a geometric series as n → ∞ under Conditions 16; hence, solving Problem 1.

Theorem 1 (Temporal error bound) Consider Problem 1 and two approximate error functions
ê1(x, t), ê2(x, t) constructed by Definition 1 that satisfy Conditions 16. Then,

|p(x, t)− p̂(x, t)| ≤ eB(t) = ê∗1(t)
(1

1− γ 2
1
(t)

)
, (18)

where ê∗1(t) is defined in equation 12, and γ 2
1
(t) = ê∗2(t)/ê

∗
1(t).

The above theorem shows that temporal error bound eB(t) can be obtained by training only two
PINNs that approximate the first two errors e1, e2 according to Def. 1 and that satisfy Conditions 16.
In fact, using these two PINNs, it is possible to construct an arbitrary tight eB as stated below.

Theorem 2 (Temporal error bound of arbitrary tightness) Given Problem 1 and tolerance ϵ ∈
(0,∞) on the error bound, a temporal error bound eB(t) can be obtained by training two approxi-
mate error functions ê1(x, t) and ê2(x, t) through physics-informed learning such that

eB(t)− max
x∈X′

|e(x, t)| < ϵ. (19)

The proof of Theorem 2 is based on the observation that γ 2
1
→ 0 when (i) ê1(x, t) → e1(x, t) and

(ii) ê2(x, t) → e2(x, t). Then, according to equation 18, eB(t) → ê∗1(t), which itself ê∗1(t) → e∗1(t)
under (i). Since, PINNs ê1 and ê2 can be made arbitrary well, eB can be arbitrary tight. This result
is important because it shows that arbitrary tightness can be achieved without the need for training
infinite number of PINNs, i.e., êi, i = 1, 2, . . .

Remark 3 The construction of eB(t) in Theorems 1 only requires the values of ê∗1(t) and γ 2
1
(t)

which are obtained from the known functions ê1(x, t), ê2(x, t). Checking for α1 and α2 conditions
can be performed a posterior.

Remark 4 Given the approximate functions p̂ and ê1, temporal bound eB becomes tighter as the
approximation accuracy of ê2 increases. As ê2 → e2, α2 → 0+. Also, as α2 → 0+, by equation 15,
the upper bound of γ 2

1
decreases, and consequently, eB becomes tighter by equation 18.

In the following subsections, we extend the result of Theorem 1 which is based on training n = 2
approximate error PINNs, to cases of n > 2 and n = 1 to bound error of p̂.

4.1 n-TH ORDER SPACE-TIME ERROR BOUND (n > 2)

Here, we derive a generalized error bound for e(x, t) with approximation error PINNs êi, where
i = 1, . . . , n for n > 2. Note that an alternative way to express the error bound in Theorem 1 is as
an interval e(x, t) ∈

[
− eB(t), eB(t)

]
, which is uniform over x for any t ∈ T . Below, we show

that, for n > 2, an error bound that depends on both space and time can be constructed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Corollary 1 (Space-time Error Bound) Consider PINNs êi(x, t), i = 1, . . . , n, for some n > 2
trained per Def.1 such that αn−1 and αn satisfy Conditions 16, and define the n-th order temporal
error bound to be

enB(t) = ê∗n−1(t)(
1

1− γ n
n−1

(t)
),

where ê∗n−1(t) is defined in equation 12, and γ n
n−1

(t) = ê∗n(t)/ê
∗
n−1(t). Then,

e(x, t) ∈
[n−2∑

i=1

êi(x, t)− enB(t),

n−2∑
i=1

êi(x, t) + enB(t)
]
. (20)

This corollary shows that, even though 2-nd order error approximation is sufficient to obtain a tempo-
ral bound (Theorem 1), higher order approximations lead to more information, i.e., space in addition
to time, on the error bound.

4.2 FIRST ORDER TEMPORAL ERROR BOUND (n = 1)

We also present a temporal error bound by learning only the first error approximation function ê1,
which removes the dependence on α2 at the cost of losing the arbitrary tightness property.

Corollary 2 (First order temporal error bound) Let ê1 be trained such that α1(t) < 1 for all
t ∈ T . Then

|e(x, t)| < eS(t) = 2ê∗1(t). (21)

Note that, while the first-order error bound eS(t) is at most twice larger than the arbitrary tight
error bound eB(t) in Theorem 1, it has significant practical uses. Firstly, it only requires training of
one PINN, i.e., ê1. Secondly, the condition α1(t) < 1 can be checked during training of ê1 using
properties of the FP-PDE as detailed below.

Checking α1(t) < 1 condition From the definition of α1(t) in equation 10, it suffices to bound
the unknown term |e1(x, t)− ê1(x, t)| for all (x, t) ∈ Ω to check for α1. We do this by using three
constants: two related to FP-PDE as introduced in (Mishra & Molinaro, 2023), and one universal
constant from Sobolev embedding theorem (Mizuguchi et al., 2017)(Hunter & Nachtergaele, 2001,
Theorem 12.71). First, the stability constant Cpde of the first error PDE (D[·] +D[p̂]) is defined as

∥e1(x, t)− ê1(x, t)∥Z ≤ Cpde∥(D[e1] +D[p̂])− (D[ê1] +D[p̂])∥Y ,
where Z = W k,q norm , Y = Ls norm, 1 ≤ s, q < ∞, and k ≥ 0. Note that since e1, ê1 and
(D[e1] + D[p̂]) − (D[ê1] + D[p̂]) = −(D[ê1] + D[p̂]) are bounded2, such constant Cpde exists for
k ≤ 1. Second, the quadrature constant Cquad > 0 is defined such that for some β > 0,∣∣∣∣∣

∫
Ω

(
D[ê1(x, t)] +D[p̂(x, t)]

)
dxdt−

N∑
i=1

wi

(
D[ê1(xi, ti)] +D[p̂(xi, ti)]

)∣∣∣∣∣ ≤ CquadN
−β ,

where {(xi, ti)i}Ni=1 ∈ Ω is a set of N quadrature points, and wi ∈ R>0 are weights according
to the quadrature rules. The procedure of deriving these universal constants for general PDEs with
bounded derivatives is shown in (Mishra & Molinaro, 2023). The third constant Cembed is defined as

∥e1(x, t)− ê1(x, t)∥∞ ≤ Cembed∥e1(x, t)− ê1(x, t)∥W 1,q .

Constant Cembed exists because e1(x, t)− ê1(x, t) is bounded (per Def. 1), and the first derivatives
of e1(x, t) and ê1(x, t) are also bounded.

Proposition 1 (Checking α1(t) < 1) Let x ∈ Rn, {(xi, ti)i}Ni=1 ∈ Ω be N space-time samples
based on quadrature rules, ê1(x, t) be the first error approximation, and let εT be the physics-
informed loss of ê1(x, t) evaluated on the set {(xi, ti)i}Ni=1. Then for some q ≥ 2 and β > 0,
α1(t) < 1 for all t ∈ T if

1

mint ê∗1(t)

[
Cembed

(
CpdeεT + CpdeC

1
q

quadN
−β
q

)]
< 1. (22)

2p̂, ê1 are approximate functions with bounded derivatives

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

By Proposition 1, it is clear that as the training loss decreases (εT → 0) with sufficiently large
number of samples (N → ∞), the left-hand side of equation 22 goes to zero. Hence, condition
α1 < 1 can be satisfied by training with a sufficiently large dataset and small loss.

Remark 5 (Generalization to linear PDEs) While the presented approach focuses on SDEs and
training an approximate PDF p̂ and bounding its error, the only essential requirement is that the
FP-PDE operator D is linear. Therefore, this approach naturally extends to all linear PDEs (linear
D) subject to initial and boundary conditions. We illustrate this in a case study in Sec. 5.

5 NUMERICAL EXPERIMENTS

We present illustrative experiments to demonstrate the proposed methods on ten systems listed in
Table 1. The table indicates the method to obtain the true solution. Note that the ‘1D Heat PDE’
system is an illustration of generalizability of our method to linear PDEs beyond SDEs. We also note
that these experiments are not an exhaustive study on hyperparameters or neural network architecture
but aim to showcase the efficacy of the error bounds using existing PINN training methods. All the
details on the system dynamics, hyperparameters, additional plots, etc. are provided in Appendix B.

Table 1: Systems dynamics with their initial conditions (I.C.) and true solution method. Computa-
tion time for Monte-carlo simulations are reported. The parameters for high-dimensional systems
(3D-10D) are provided in Appendix B.6

System Dynamics I.C. True Solution

1D Linear SDE dx = −0.2xdt+
√
0.4dw Gaussian analytical

1D Nonlinear SDE dx = (−0.1x3 + 0.1x2 + 0.5x+ 0.5)dt+ 0.8dw N (−2, 0.52) Monte-Carlo (100 hrs)
1D State-dependent SDE dx = (0.002x)dt+ (0.01x)dw Gaussian analytical

Inverted Pendulum SDE dx =

[
x2

− sin(x1)

]
dt+

[
0.5 0.0
0.0 0.5

]
dw N (

[
0.5π
0.0

]
,

[
0.5 0.0
0.0 0.5

]
) Monte-Carlo (13 hrs)

1D Heat PDE ut − uxx = 0 − sin(πx) analytical
3D OU dx = (A3x)dt+B3dw N (µ3,Σ3) Numerical integration
3D Time-varying OU dx = (Ã3(t)x)dt+B3dw N (µ3,Σ3) Numerical integration
7D OU dx = (A7x)dt+B7dw N (µ7,Σ7) Numerical integration
10D OU dx = (A10x)dt+B10dw N (µ10,Σ10) Numerical integration
10D Time-varying OU dx = (Ã10(t)x)dt+B10dw N (µ̃10,Σ10) Numerical integration

Our implementation is in Python and Pytorch, and the code is provided in the supplementary mate-
rial. All experiments are conducted on a MacBook Pro with Apple M2 processor and 24GB RAM,
excepts for the multiple trials on the ‘1D nonlinear SDE’, which was run on an AMD Ryzen 5
6-Core Processor with 32GB RAM and NVIDIA GeForce RTX 2060.

Table 2: Error bound results. Here, tp̂train and tê1train are the training times in seconds, emax
S :=

maxt(eS(t)/maxx p(x, t)) and eavg
S := avgt(eS(t)/maxx p(x, t)) are the maximum and average

of the first temporal error bound eS normalized by the true solution, Gapmin := mint((eS(t) −
e∗(t))/maxx p(x, t)) and Gapmax := maxt((eS(t) − e∗(t))/maxx p(x, t)) are the minimum and
maximum gaps (over time) between the error bound and maximum error normalized by the true
solution, αmax

1 := maxt α1(t), and αvar
1 := vartα1(t). Each row is the result of one random seed.

System p̂ loss ê1 loss tp̂train tê1train emax
S eavg

S Gapmin Gapmax αmax
1 αvar

1

1D Linear SDE 2e-3 2e-2 5 17 0.19 0.18 0.064 0.085 0.37 1e-3
1D Nonlinear SDE 1e-3 4e-3 718 3723 0.48 0.27 0.054 0.214 0.60 6e-3
1D Nonlinear SDE (GPU, seed0) 1e-4 4e-3 345 4433 0.14 0.05 0.007 0.062 0.45 4e-3
1D State-dependent SDE 5e-3 5e-3 31 598 0.24 0.14 0.026 0.130 0.43 6e-3
Inverted Pendulum SDE 1e-3 4e-2 1411 3576 0.25 0.16 0.015 0.132 0.75 3e-2
1D Heat PDE 1e-4 4e-5 41 156 135 10.3 0.002 49.10 0.40 5e-3
3D OU 1e-4 8e-3 276 2017 0.05 0.04 0.015 0.029 0.20 2e-4
3D Time-varying OU 1e-4 4e-3 338 2219 0.06 0.05 0.020 0.032 0.16 3e-4
7D OU 2e-4 1e-2 1018 2684 0.19 0.11 0.036 0.098 0.74 2e-2
10D OU 1e-4 1e-2 1710 3670 0.20 0.15 0.067 0.119 0.68 5e-3
10D Time-varying OU 1e-4 6e-3 2835 13883 0.16 0.12 0.053 0.095 0.98 9e-3

For the 1D Nonlinear SDE on GPU, the variance of α1 over all six random seeds i = {0, 1, ..., 5} is vart,iα
(i)
1 (t) = 0.11.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 4 2 0 2 4 6
x

1
2

3

t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 P
DF

p
p

(a) p(x, t) and p̂(x, t)

6 4 2 0 2 4 6
x

1
2

3

t

7.5
5.0
2.5

0.0
2.5
5.0
7.5

×1
0

2

e

e1
e1

(b) e(x, t) and ê1(x, t)

0.00
0.25
0.50
0.75

PD
F

t=1.5, eS = 0.104
p
p
eS

0.00
0.25
0.50
0.75

PD
F

t=2.0, eS = 0.091

2 0 2
x

0.00
0.25
0.50
0.75

PD
F

t=3.0, eS = 0.093

(c) p, p̂ and eS

0.2

0.0

0.2

e

t=1.5, eB = 0.067, eS = 0.104

e1
e1

eB

eS

0.1
0.0
0.1

e

t=2.0, eB = 0.059, eS = 0.091

2 0 2
x

0.1
0.0
0.1

e

t=3.0, eB = 0.066, eS = 0.093

(d) e1, ê1, eB and eS

Figure 1: True and approximate PDF solutions for the 1D Linear SDE with quantified error bounds.

1.0 1.5 2.0 2.5 3.0
t

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13
eB(t)
eS(t)
max

x
|e(x, t)|

(a) error and bounds

1.0 1.5 2.0 2.5 3.0
t

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

1

(b) α1 < 1

1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1
2

(c) α2 < 1− α1

1.0 1.5 2.0 2.5 3.0
t

0.02

0.04

0.06

0.08

0.10

0.12

0.14
2
1
2(1 + 2)

(d) α2(1 + α2) < α1

Figure 2: Error e and the first- and second-order temporal bounds eS , eB , along with the training
conditions of α1(t) and α2(t) in equation 16 for all t ∈ T of the 1D Linear SDE.

Table 2 summarizes the results on all systems. Note that the smaller emax
S and eavg

S are, the tighter
error bounds are. Positive Gapmin implies that the bound is valid, small Gapmax implies that the
bound is close to the true error, and the smaller αmax

1 is, the better ê1 is trained. We also note
that the 1D Heat experiment shows large values of the normalized metrics emax

S , eavg
S , and Gapmin

because its true solution (used in the denominator) becomes extremely small at the final time.

In summary, Table 2 shows: (i) scalability: our framework is able to scale to 10-dimensional system,
(ii) stability: the variance on α1 over the time domain is small, showing the error bound’s applicabil-
ity for all time, (iii) training challenges: training of ê1 may encounter local minima due to random
initialization of neural networks, (iv) α1 condition: α1 < 1 is satisfied though it becomes increas-
ingly challenging to meet as dimensionality grows, and (v) error bound tightness: the error bounds
are tight across all dynamical systems. Below, we discuss individual systems in more details.

1D Linear SDE Figs. 1a-1b visualize the true and learned PDFs p and p̂ and the true and learned
errors e and ê1, respectively. PDFs p and p̂ along with error bound eS(t) at t = 1.5, 2, 3 seconds
are shown in Fig. 1c. Observe that p is always within eS bound from p̂, validating the bound.
Fig. 1d shows errors e and ê1 and compares bound eS(t) with the arbitrary tight error bound eB(t)
at the same time instances. As predicted, eB(t) is tighter than es(t). We note that learning ê2 is
challenging; hence, for illustration purposes of eB(t), we used ê2 = e2 + δ, where δ is a small
perturbation for this experiment. Fig. 2 provides a different visualization for eS(t) and eB(t) as
well as satisfaction of the α1 and α2 conditions. Specifically, Fig. 2a validates that maxx |e(x, t)| ≤
eB(t) ≤ eS(t) for all t ∈ T . Note that eS(t)/eB(t) is at most 1.63 < 2, as predicted by Corollary 2.

1D Nonlinear SDE Figs. 3a-3b show the PDFs p and p̂ and errors e and ê1. The error bound
eS(t) is illustrated in Figs. 3c-3d in the solution and error spaces, respectively. Observe that the true
error is upper bounded, and the true PDF p lies within eS of approximate PDF p̂. Figs. 3e-3f show
a tighter eS(t) by training neural networks (with more complicated activation functions) on GPU.
To illustrate that α1 does in fact decrease with more training, we conducted multiple training trials
for this system. Fig. 3g shows the obtained results, validating that α1 does indeed decrease as the
training loss of the ê1(x, t) decreases, as predicted by Proposition 1. Note that one trial (out of six
trials) failed to train ê1 that satisfies α1(t) < 1 for some t, as seen in Fig. 9 in Appendix B.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 4 2 0 2 4 6x 0
1

2 3 4 5

t

0.0

0.2

0.4

0.6

0.8

 P
DF

p
ps

(a) p(x, t) and p̂(x, t)

6 4 2 0 2 4 6x 0
1

2 3 4 5

t

4
2

0
2
4
6
8

×1
0

2

 e

e1
e1

(b) e1(x, t) and ê1(x, t)

0.0

5.0

PD
F

×10 1
t : 1.0, eS : 0.089

p
p
eS

0.0

5.0

PD
F

×10 1
t : 3.0, eS : 0.11

5.0 2.5 0.0 2.5 5.0
x

0.0

5.0

PD
F

×10 1
t : 5.0, eS : 0.115

(c) p, p̂, eS

1.0

0.0

1.0

e

×10 1
t : 1.0, 1 : 0.454

e1
e1
eS

1.0
0.0
1.0

e

×10 1
t : 3.0, 1 : 0.6

5.0 2.5 0.0 2.5 5.0
x

1.0
0.0
1.0

e

×10 1
t : 5.0, 1 : 0.447

(d) e1, ê1, eS

0.00

0.25

0.50

PD
F

t : 1.0, eS : 0.01
p
p
eS

0.00

0.25

0.50

PD
F

t : 3.0, eS : 0.017

5.0 2.5 0.0 2.5 5.0
x

0.00

0.25

0.50

PD
F

t : 5.0, eS : 0.034

(e) p(x, t) and p̂(x, t)

1.0
0.0
1.0

e

×10 2
t : 1.0, 1 : 0.108

e1
e1
eS

2.5

0.0

2.5

e

×10 2
t : 3.0, 1 : 0.453

5.0 2.5 0.0 2.5 5.0
x

5.0

0.0

5.0

e

×10 2
t : 5.0, 1 : 0.307

(f) e1(x, t) and ê1(x, t)

10 310 210 1100101102

e1 training loss

100

101

m
ax

(
1
(t)

)

seed0
seed1
seed2
seed3
seed4
seed5

(g) α1 vs training loss

Figure 3: Visualization of the results for 1D Nonlinear SDE. (a)-(d) illustrate error bound eS , and
(e)-(f) show one (seed0) of the multiple training trials on GPU, (g) αmax

1 is plotted vs ê loss.

9 5 0 5 9
x1

9

5

0

5

9

x 2

p

9 5 0 5 9
x1

p

9 5 0 5 9
x1

e1

9 5 0 5 9
x1

e1

9 5
0

5 9
x1 9

5
0

5
9

x 2

0.02
0.01

0.00
0.01
0.02

 e

e1
eS

0.0 0.1
Colorbar for p and p

0.00 0.01
Colorbar for e1 and e1

t=3.0, 1 = 0.26, eS = 0.022

Figure 4: First order temporal error bound of the 2D inverted pendulum at t = 3. At the right: the
approximation error e is bounded by the green 3D surface eS constructed by ê1.

Others Fig. 4 visualizes error bound eS for the 2D inverted pendulum at a given time, showing
eS for multi-dimensional systems. See Appendices B.3-B.6 for results of other systems.

6 CONCLUSION

We introduced a physics-informed learning method to approximate the PDF of an SDE and bound
its error using a series of recursive error functions learned with PINNs. We proved that only a finite
number of recursive steps are required to bound the error, with two error terms being sufficient to
achieve arbitrarily tight bounds at any time instance. We also developed a more efficient approach
by constructing a first order temporal error bound using just one error function, which reduces com-
putation, provides clear termination criteria, and yields bounds at most twice as loose as the tightest
ones. This method was validated on several non-Gaussian dynamical systems. In our implementa-
tion, we trained the solution and error functions separately but hypothesize that jointly training them
could improve performance and reliability. Future work will explore this joint training approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

All the results can be reproduced via the supplemental zip file. There are two folders in the zip
file: (1) pinn pde-release-2025ICLR , and (2) pinn pde-release-2025ICLR GPU. The former folder
containes the main results that are built on the Macbook Pro. The latter folder includes the results
that are built using the Linux desktop. Both folders contain a README.md file that explains the
steps of building and running the python codes. Python virtual environments are used to manage
the required packages; they are listed in the requirements.txt file. It is recommended that the exact
same packages with same versions are installed for reproducibility purpose. The pre-trained neural
networks used to generate the results of this paper are provided. One can use these pre-trained
neural networks to reproduce the plots by passing the −−train= 0 argument. The code are designed
to use the same random seeds, so one can also train the exact same neural networks by passing the
−−train= 1 argument, assuming that the required packages are installed successfully.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Machine
learning, 14:115–133, 1994.

Suman Chakravorty. A homotopic galerkin approach to the solution of the fokker-planck-
kolmogorov equation. In 2006 American Control Conference, pp. 6–pp. IEEE, 2006.

Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed neural networks (pinns)
approximating kolmogorov pdes. Advances in Computational Mathematics, 48(6):79, 2022a.

Tim De Ryck and Siddhartha Mishra. Generic bounds on the approximation error for physics-
informed (and) operator learning. Advances in Neural Information Processing Systems, 35:
10945–10958, 2022b.

Tim De Ryck, Samuel Lanthaler, and Siddhartha Mishra. On the approximation of functions by tanh
neural networks. Neural Networks, 143:732–750, 2021.

Tim De Ryck, Ameya D Jagtap, and Siddhartha Mishra. Error estimates for physics-informed neural
networks approximating the navier–stokes equations. IMA Journal of Numerical Analysis, 44(1):
83–119, 2024.

AN Drozdov and M Morillo. Solution of nonlinear fokker-planck equations. Physical Review E, 54
(1):931, 1996.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

John K Hunter and Bruno Nachtergaele. Applied analysis. World Scientific Publishing Company,
2001.

Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113.
springer, 2014.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving for high-dimensional committor functions
using artificial neural networks. Research in the Mathematical Sciences, 6:1–13, 2019.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deeponets: A
deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applica-
tions, 6(1):tnac001, 2022.

Bo Lin and Weiqing Ren. Deep learning method for computing committor functions with adaptive
sampling. arXiv preprint arXiv:2404.06206, 2024.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021.

Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher. On the almost sure conver-
gence of stochastic gradient descent in non-convex problems. Advances in Neural Information
Processing Systems, 33:1117–1128, 2020.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
neural networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1–43, 2023.

Makoto Mizuguchi, Kazuaki Tanaka, Kouta Sekine, and Shin’ichi Oishi. Estimation of sobolev
embedding constant on a domain dividable into bounded convex domains. Journal of inequalities
and applications, 2017:1–18, 2017.

Bernt Øksendal. Stochastic differential equations. Springer, 2003.

Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Steven E Shreve et al. Stochastic calculus for finance II: Continuous-time models, volume 11.
Springer, 2004.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Zezheng Song, Maria K Cameron, and Haizhao Yang. A finite expression method for solving high-
dimensional committor problems. arXiv preprint arXiv:2306.12268, 2023.

BF Spencer and LA Bergman. On the numerical solution of the fokker-planck equation for nonlinear
stochastic systems. Nonlinear Dynamics, 4:357–372, 1993.

Armin Tabandeh, Neetesh Sharma, Leandro Iannacone, and Paolo Gardoni. Numerical solution of
the fokker–planck equation using physics-based mixture models. Computer Methods in Applied
Mechanics and Engineering, 399:115424, 2022.

Yejiang Yang, Tao Wang, Jefferson P Woolard, and Weiming Xiang. Guaranteed approximation
error estimation of neural networks and model modification. Neural Networks, 151:61–69, 2022.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103–114, 2017.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

Laiq Zada, Rashid Nawaz, Kottakkaran Sooppy Nisar, Muhammad Tahir, Mehmet Yavuz, Mo-
hammed KA Kaabar, and Francisco Martı́nez. New approximate-analytical solutions to partial
differential equations via auxiliary function method. Partial Differential Equations in Applied
Mathematics, 4:100045, 2021.

A PROOFS

A.1 DERIVATION OF DEFINITION 1

Denote e(x, t) := e1(x, t) = p(x, t)− p̂(x, t) as the first error and initialize e0(x, t) := p(x, t) and
ê0(x, t) = p̂(x, t). Then, Eq. equation 7 becomes Definition 1 for i = 1:

D[e1(x, t)] +D[ê0(x, t)] = 0, subject to e1(x, 0) = e0(x, 0)− ê0(x, 0).

For i = 2, we define e2(x, t) := e1(x, t)−ê1(x, t) and obtain D[e2(x, t)] = D[e1(x, t)]−D[ê1(x, t)]
(because D[·] is a linear operator). Since ê1 ̸= e1, we have

D[ê1] +D[ê0] := r1 ̸= 0.

Hence, we have the recursive PDE for i = 2 (omitting x and t for simplicity of presentation):

D[e2] = D[e1]−D[ê1] = (−D[ê0])−(−D[ê0]+r1) = −r1 =⇒ D[e2]+r1 := D[e2]+

2∑
j=1

D[êj−1] = 0.

The derivation recursively follows for i > 2.

A.2 PROOF OF LEMMA 1

Proof 1 From Definition 1, we have that, for all x ∈ X ′,

|p(x, t)− p̂(x, t)| =

∣∣∣∣∣
n∑

i=1

êi(x, t) + en+1(x, t)

∣∣∣∣∣ ≤
n∑

i=1

|êi(x, t)|+ |en+1(x, t)|

≤
n∑

i=1

max
x

|êi(x, t)|+max
x

|en+1(x, t)| :=
n∑

i=1

ê∗i (x, t) + e∗n+1(x, t).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

From the definition of γ i+1
i

in equation 13, we obtain (omitting t for simplicity of presentation)

|p(x, ·)− p̂(x, ·)| ≤ ê∗1

(
1 +

ê∗2
ê∗1

+
ê∗3
ê∗1

+ · · ·+ ê∗n
ê∗1

+
e∗n+1

ê∗1

)
= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2
γ n

n−1

e∗n+1

ê∗n
)
]

:= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2

ê∗n
ê∗n−1

e∗n+1

ê∗n
)
]

= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

)
]
.

A.3 PROOF OF LEMMA 2

Proof 2 From Definition 1, we have, for i ≥ 0,
ei(x, t) = êi(x, t) + ei+1(x, t). (23)

By taking the maximum on the absolute value of equation 23, we get
max

x
|ei(x, t)| ≤ max

x
|êi(x, t)|+max

x
|ei+1(x, t)|. (24)

Similarly, from equation 23, we obtain
êi(x, t) = ei(x, t)− ei+1(x, t) =⇒
max

x
|êi(x, t)| ≤ max

x
|ei(x, t)|+max

x
|ei+1(x, t)|. (25)

Now take 2 ≤ i < n, and suppose the corresponding αi(t) < 1. Then, we can write the two
inequalities in Eqs. equation 24 and equation 25 with the definition of ê∗i (t) in equation 12 and the
expression in equation 11 as {

αi−1(t)ê
∗
i−1(t) ≤ ê∗i (t) + αi(t)ê

∗
i (t)

ê∗i (t) ≤ αi−1(t)ê
∗
i−1(t) + αi(t)ê

∗
i (t).

(26)

By rearranging equation 26, we obtain the lower and upper bounds of γ i
i−1

(t):

αi−1(t)

1 + αi(t)
≤ ê∗i (t)

ê∗i−1(t)
= γ i

i−1 (t)
≤ αi−1(t)

1− αi(t)
, 2 ≤ i < n, (27)

which is well defined because the denominator ê∗i−1 = e∗n−2 > 0 by Assumption 2, and the (RHS)
of equation 27 is always ≥ the (LHS) of equation 27 if 0 ≤ αi(t) < 1 for all 2 ≤ i < n.

A.4 PROOF OF LEMMA 3

Proof 3 For simplicity of presentation, we omit writing the dependent variable t. Assume the con-
ditions in equation 16 are satisfied; then it is true that 0 < α2 < 1. Since both α1, α2 < 1, by
Lemma 2 and Condition equation 16b, we obtain

γ 2
1
≤ α1

1− α2
< 1,

proving the RHS of equation 17.

For the LHS of equation 17, let αi ≤ α2 for all 2 < i < n. Since α2 < 1, then by Lemma 2, we have

γ i
i−1

≤ αi−1

1− αi
≤ αi−1

1− α2
≤ α2

1− α2
. (28)

What remains is to show that RHS of equation 28 is < γ 2
1

. From Condition equation 16c, we have

α2(1 + α2) < α2
1 (29)

< α1(1− α2), (30)
where equation 30 holds by Condition equation 16b. From equation 30, we obtain

α2

1− α2
<

α1

1 + α2
. (31)

By combining Eqs. equation 28 and equation 31, we have

γ i
i−1

<
α1

1 + α2
< γ 2

1
, 2 < i < n.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.5 PROOF OF THEOREM 1

Proof 4 Take n → ∞ for Lemma 1, and train ê1 and ê2 such that the sufficient conditions of equa-
tion 16 are met, therefore, γ 3

2
, γ 4

3
, . . . , γn−1

n−2
< γ 2

1
< 1 by Lemma 3. Then we have

|p(x, t)− p̂(x, t)|

≤ ê∗1 lim
n→∞

(
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+

[
γ 2

1
γ 3

2
. . . γn−1

n−2
γ n

n−1

]
+
[
γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

])
= ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+

[
γ 2

1
γ 3

2
. . . γn−1

n−2

ê∗n
ê∗n−1

]
+

[
γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

])
≤ ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ2

2
1
+ · · ·+ γn−2

2
1

+
[
γn−2

2
1

ê∗n
ê∗n−1

]
+

[
γn−2

2
1

e∗n+1

ê∗n−1

])
=

[
ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ2

2
1
+ · · ·+ γn−2

2
1

)]
+
[
ê∗1 lim

n→∞

(
γn−2

2
1

(ê∗n + e∗n+1)

ê∗n−1

)]
. (32)

The first term in equation 32 forms a geometric series, and the second term in equation 32 is zero
as n goes to infinity, because ê∗1, ê

∗
n−1, ê

∗
n, e

∗
n+1 are bounded by construction and ê∗n−1 > 0 by

Assumption 2. Hence,

|p(x, t)− p̂(x, t)| ≤ ê∗1

(1

1− γ 2
1

)
. (33)

A.6 PROOF OF THEOREM 2

Proof 5 We omit the time variable t in this proof for readability. By Definition 1, the maximum
approximation error maxx |e1(x, ·)| := e∗1. Using the relations of ê1 = e1 − e2, ê

∗
1 ≤ e∗1 + e∗2, the

error bound in Theorem 1 can be upper-bounded by

eB = ê∗1

(1

1− ê∗2/ê
∗
1

)
≤ (e∗1 + e∗2)

(1

1− ê∗2/ê
∗
1

)
. (34)

Hence, the gap between eB and the maximum approximation error e∗1 is upper-bounded by

eB − e∗1 ≤ e∗1

(1

1− ê∗2/ê
∗
1

− 1
)
+ e∗2

(1

1− ê∗2/ê
∗
1

)
. (35)

Now suppose ê1 approximates e1 sufficiently well such that e2(x, t) = e1(x, t)− ê1(x, t) := δ(x, t),
where δ(x, t) denotes a sufficiently small function for all (x, t) ∈ Ω. Furthermore, suppose ê2
approximates e2 sufficiently well such that ê2(x, t) → e2(x, t) = δ(x, t) for all (x, t) ∈ Ω. Define
δ∗ := maxx |δ(x, ·)|, then ê∗2 → δ∗, and δ∗ → 0 as δ(x, t) → 0 for all (x, t) ∈ Ω. Consequently,
the RHS of equation 35, at the limit, becomes

lim
ê∗2→δ∗,δ∗→0

[
e∗1

(1

1− ê∗2/ê
∗
1

− 1
)
+ e∗2

(1

1− ê∗2/ê
∗
1

)]
= lim

δ∗→0

[
e∗1

(1

1− δ∗/ê∗1
− 1

)
+ δ∗

(1

1− δ∗/ê∗1

)]
= δ∗ (36)

Lastly, for every ϵ ∈ (0,∞), take δ∗ to be smaller than ϵ, then the proof is completed.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.7 PROOF OF COROLLARY 1

Proof 6 The proof is a natural extension to that of theorem 1. Assume m > 1 be a finite integer. By
Definition 1, we have

p(x, t)− p̂(x, t) = lim
n→∞

n∑
i=1

êi(x, t) + en+1(x, t)

=

m−1∑
i=1

êi(x, t) + lim
n→∞

(n∑
i=m

êi(x, t) + en+1(x, t)
)

=⇒ p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t) = lim
n→∞

(n∑
i=m

êi(x, t) + en+1(x, t)
)

=⇒ |p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| = | lim
n→∞

(n∑
i=m

êi(x, t) + en+1(x, t)
)
|

=⇒ |p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| ≤ lim
n→∞

n∑
i=m

ê∗i (x, t) + e∗n+1(x, t)

≤ ê∗m(t)
(
1 +

ê∗m+1(t)

ê∗m(t)
+

ê∗m+2(t)

ê∗m(t)
+ · · ·+ ê∗n(t)

ê∗m(t)
+

e∗n+1(t)

ê∗m(t)

)
= lim

n→∞
ê∗m

(
1 + γm+1

m
+ γm+1

m
γm+2

m+1
+ . . .+ γm+1

m
γm+2

m+1
. . . γ n

n−1

e∗n+1

ê∗n

)
(37)

Under the same condition in lemma 3, but now impose on αm(t) and αm+1(t) such that 0 <
αm(t) < 1 and 0 < αm+1(t) < 1 − αm(t), αm+1(t)(1 + αm+1(t)) < α2

m(t). Then γm+1
m

(t) < 1

is greater than all the other γm+2
m+1

(t), γm+3
m+2

(t), Thus, equation 37 is bounded by

|p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| ≤ lim
n→∞

ê∗m(t)
(
1 + γm+1

m
+ γ2

m+1
m

+ · · ·+ γn−1
m+1
m

+ γn−1
m+1
m

e∗n+1

ê∗n

)
=

[
ê∗m(t) lim

n→∞

(
1 + γm+1

m
+ γ2

m+1
m

+ · · ·+ γn−1
m+1
m

)]
+

[
ê∗m(t) lim

n→∞
αn−1(t)γ

n−1
m+1
m

(t)
]
. (38)

Since ê∗m(t) is bounded, γm+1
m

< 1, and ∃αn−1 ≤ αm+1 < 1, the first term in equation 38 forms a
geometric series, and the second term goes to zero. Hence .equation 38 becomes

|p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| ≤ ê∗m(t)
(1

1− γm+1
m

(t)

)
=⇒

p(x, t)− p̂(x, t) ∈
[m−1∑

i=1

êi(x, t)− ê∗m(t)
(1

1− γm+1
m

(t)

)
,

m−1∑
i=1

êi(x, t) + ê∗m(t)
(1

1− γm+1
m

(t)

)]
.

(39)

Now take n = m+ 1, then the proof is completed.

A.8 PROOF OF COROLLARY 2

Proof 7 For every t ∈ R≥0, let 0 < α1(t) < 1. Suppose there exists a ”virtual” ê2(x, t) such that
ê2(x, t) = e2(x, t) for all (x, t) ∈ Ω ; this implies that the third error e3(x, t) is zero. Hence, the
series in equation 9 becomes finite

|p(x, t)− p̂(x, t)| ≤ ê∗1(t) + ê∗2(t) + 0

= ê∗1(t)
(
1 + γ 2

1
(t)

)
. (40)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

By the virtual ê2 = e2, and the relation e∗2 = α1ê
∗
1, we have

max
x

|ê2(x, t)| = max
x

|e2(x, t)|

=⇒ ê∗2(t) = e∗2 = α1(t)ê
∗
1(t)

=⇒ γ 2
1
(t) = α1(t). (41)

Combined γ 2
1
= α1 with equation 40, we prove that

|p(x, t)− p̂(x, t)| ≤ ê∗1

(
1 + γ 2

1
(t)

)
= ê∗1(t)

(
1 + α1(t)

)
< ê∗1(t)(1 + 1) = 2ê∗1(t). (42)

It is clear that eS(t) is not arbitrary tight because of the constant 2.

A.9 PROOF OF PROPOSITION 1

Proof 8 Let x ∈ Rn. By (Mishra & Molinaro, 2023, theorem 2.6), we know

εG := ∥e1 − ê1∥W 1,q ≤ CpdeεT + CpdeC
1
q

quadN
−β
q , (43)

where Cpde > 0 are the stability estimates of the first error PDE associated with the W 1,q norm,
q ≥ 2, and Cquad, β > 0 are the constants according to the quadrature sampling points. For
expression simplicity, denote e2 := e1 − ê1. Since e1(x, t) and ê1(x, t) are bounded, we know there
exists a universal embedding constant Cembed (Mizuguchi et al., 2017) such that

|e2(x, t)| ≤ Cembed∥e2(x, t)∥W 1,q . (44)

Hence, we have

|e2(x, t)| ≤ Cembed

(
CpdeεT + CpdeC

1
q

quadN
−β
q

)
. (45)

Using the definition of α1(t) :=
maxx |e2(x,t)|

ê∗1(t)
, we obtain

α1(t) ≤
maxx |e2(x, t)|
mint ê∗1(t)

≤ 1

mint ê∗1(t)

[
Cembed

(
CpdeεT + CpdeC

1
q

quadN
−β
q

)]
. (46)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B ADDITIONAL RESULTS OF NUMERICAL EXPERIMENTS

Here, we report training details and additional results of the numerical experiments. The baseline
training scheme is done by randomly selecting space-time points at every training epoch. The other
training scheme employs adaptive sampling and residual gradient loss suggested by (Lu et al., 2021)
and (Yu et al., 2022). Adaptive sampling exploits the infinite training data property of physics-
informed learning by automatically adding the space-time points whose residual values are large.
Residual gradient loss is an additional physics-informed loss term that regularizes the change of
residual with respect to space and time; it has been shown to stabilize and accelerate the training.
We consider this regularization because the residual of p̂, i.e. D[p̂], is used as inputs to the subsequent
training of ê1. For completeness, we implement a normalized loss function based on equation 8 to
train êi for all i ≥ 0:

L = w0L0 + wrLr + w∇rL∇r, N = max
xk∈X′

|ei(xk, 0)|

L0 =
1

N0

N0∑
j

∥ êi(xj , 0)− ei(xj , 0)

N
∥22, Lr =

Vol(T)
Nr

Nr∑
j

∥D[êi(xj , tj)] + ri(xj , tj)

N
∥22,

L∇r =
Vol(T)
Nr

Nr∑
j

∥∇
(D[êi(xj , tj)] + ri(xj , tj)

N

)
∥22, (47)

where Vol(T) is the duration of the time interval, L∇r is the loss term of residual gradient, and N is
a normalization constant. The baseline training has no regularization, i.e., w∇r = 0. Both training
schemes use Adam optimizer with initial learning rate 10−3 and exponentially decay learning rate.

B.1 1D LINEAR SDE

We considered an 1D system (Ornstein-Uhlenbech process) dx = −0.2xdt+
√
0.4dw. Suppose the

state is at x− at t−1, then the analytical solution of p(x, t) is p(x, t) =
√

0.2
0.4π(1−e−0.4t) exp

(
−

0.2(x−x−e−0.2t)2

0.4(1−e−0.4t)

)
. To avoid the initial distribution of a delta function δ(x − x−), the initial dis-

tribution p0(x) = p(x, t = 1;x−1 = 1) is used. In this experiment, the input domain is:
x ∈ [−6, 6], t ∈ [1, 3]. p̂(x, t) and ê1(x, t) are 2 hidden layers and 32 neurons MLPs using Softplus
activation. Both neural networks initialize the weights using kaiming normal and 0.01 bias. The
baseline training scheme is used, i.e., randomly selected N0 = 500, Nr = 500 space-time points
are sampled at each epoch. The maximum training epochs for both p̂, ê1 are 2k. The weights of the
loss function in equation 47 are w0 = 1, wr = 1 and w∇r = 0. Training loss of p̂(x, t) and ê1(x, t)
are shown in Fig. 5a. The artificial ê2(x, t) constructed by perturbing the true e2(x, t) is shown in
Fig. 5b.

0 250 500 750 1000 1250 1500 1750 2000
0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

tra
in

 lo
ss

: p

0 500 1000 1500 2000 2500 3000 3500 4000
epochs

0.02

0.04

0.06

0.08

0.10

0.12

0.14

tra
in

 lo
ss

: e
1

(a) Training loss of p̂(x, t) and ê1(x, t).

6 4 2 0 2 4 6

0.010

0.005

0.000

0.005

0.010 t=1.5
e2

e2

6 4 2 0 2 4 6
0.010

0.005

0.000

0.005

0.010 t=2.0
e2

e2

6 4 2 0 2 4 6

0.01

0.00

0.01 t=3.0
e2

e2

(b) e2(x, t) and ê2(x, t).

Figure 5: Training loss and synthesized ê2(x, t).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.2 1D NONLINEAR SDE

Firstly, the ”true” PDF p(x, t) is obtained by extensive Monte-Carlo simulation of the SDE at some
time instances using Euler Scheme; ∆t = 0.0005 s, ∆x = 0.06, and 109 samples. This Monte-
Carlo simulation took 100 hours on the MacBook Pro machine. The small time step and large
samples are necessary to create accurate probability densities. Secondly, the result in Fig. 3(a)-(d) is
obtained from p̂(x, t) using a 3 hidden layers 50 neurons Softplus activation MLP, and ê1(x, t) using
a 6 hidden layers 50 neurons Softplus activation MLP. Both neural networks initialize the weights
using kaiming normal and 0.01 bias. The training scheme employs adaptive sampling and residual
gradient loss, i.e., w0 = wr = w∇r = 1. At the beginning of training, N0 = 1000, Nr = 1000
space-time points are sampled from a uniform distribution. During training, 5 additional initial
samples and 5 residual samples are added every 100 epochs. The maximum epochs for training p̂
and ê1 are 15000 and 25000, respectively. Figure 6a and Fig. 6b show the space-time samples (as
blue dots) used during training. Figure 6c plots the training loss of p̂(x, t) and ê1(x, t); periodic
spikes exist due to the adaptive sampling.

6
4

2
0

2
4

6

x
0

1

2

3

4

5

t

0.0
1.0

2.0

3.0

4.0

5.0 ×1
0

4
r2 1

(a) (D[p̂(x, t)])2

6
4

2
0

2
4

6

x
0

1

2

3

4

5

t

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

×1
0

4
r2 2

r2
2

sample points

(b) (D[ê1(x, t)] +D[p̂(x, t)])2

0 2000 4000 6000 8000 10000 12000 14000
0.002

0.004

0.006

0.008

0.010

0.012

tra
in

 lo
ss

: p

0 5000 10000 15000 20000 25000
epochs

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

tra
in

 lo
ss

: e
1

(c) training loss of p̂(x, t) and ê1(x, t).

Figure 6: Residuals and training loss of p̂(x, t) and ê1(x, t).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The results in Fig. 3(e)-(f) are obtained by training on the Linux desktop with GPU. p̂(x, t) is a 5
hidden layer 50 neurons MLP using GeLU activation for the hidden layers and Softplus activation
for the final output (to ensure non-negative probability density). ê1(x, t) is a 5 hidden layer 50
neurons MLP using GeLU activation for the hidden layers. Both neural networks initialize the
weights using kaiming normal and 0.01 bias. The adaptive sampling and residual gradient loss are
employed (w0 = wr = w∇r = 1). At the beginning of training p̂(x, t), N0 = 500 and Nr = 600
space-time points are sampled uniformly, together with a deterministic set of 40 initial points and
1600 residual points from a uniform grid. One additional initial point and one residual point are
added during training of p̂(x, t). At the beginning of training ê1(x, t), N0 = 500 and Nr = 1000
space-time points are sampled uniformly, together with a deterministic set of 40 initial points and
1600 residual points from a uniform grid. One additional initial point and ten residual points are
added during training of ê1(x, t). Both neural networks have maximum 50000 training epochs. The
maximum training time of p̂(x, t) is 778 seconds; the maximum training time of ê1(x, t) is 49643
seconds. Below from Fig. 7 to Fig. 12, we report the first order temporal error bound results of all
the six trials, each using different random seed.

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

PD
F

t : 0.5, eS : 0.011
p
p
eS

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 3.0, eS : 0.017

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

PD
F

t : 1.0, eS : 0.01

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 4.0, eS : 0.026

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6

PD
F

t : 2.0, eS : 0.009

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6
t : 5.0, eS : 0.034

(a) p(x, t) and p̂(x, t)

5.0 2.5 0.0 2.5 5.0
0.010

0.005

0.000

0.005

0.010

Er
ro

r

t : 0.5, 1 : 0.123
e1

e1
eS

5.0 2.5 0.0 2.5 5.0

0.01

0.00

0.01
t : 3.0, 1 : 0.453

5.0 2.5 0.0 2.5 5.0
0.010

0.005

0.000

0.005

0.010
Er

ro
r

t : 1.0, 1 : 0.108

5.0 2.5 0.0 2.5 5.0

0.02

0.00

0.02
t : 4.0, 1 : 0.348

5.0 2.5 0.0 2.5 5.0
x

0.005

0.000

0.005

Er
ro

r

t : 2.0, 1 : 0.386

5.0 2.5 0.0 2.5 5.0
x

0.02

0.00

0.02
t : 5.0, 1 : 0.307

(b) e(x, t) and ê1(x, t).

Figure 7: First order temporal error bounds of GeLU neural networks, random seed= 0.

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

PD
F

t : 0.5, eS : 0.011
p
p
eS

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 3.0, eS : 0.009

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

PD
F

t : 1.0, eS : 0.011

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 4.0, eS : 0.015

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6

PD
F

t : 2.0, eS : 0.008

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6
t : 5.0, eS : 0.015

(a) p(x, t) and p̂(x, t)

5 0 5
0.010

0.005

0.000

0.005

0.010

Er
ro

r

t : 0.5, 1 : 0.117
e1

e1
eS

5 0 5

0.005

0.000

0.005

t : 3.0, 1 : 0.634

5 0 5
0.010

0.005

0.000

0.005

0.010

Er
ro

r

t : 1.0, 1 : 0.063

5 0 5

0.01

0.00

0.01
t : 4.0, 1 : 0.515

5 0 5
x

0.005

0.000

0.005

Er
ro

r

t : 2.0, 1 : 0.396

5 0 5
x

0.01

0.00

0.01
t : 5.0, 1 : 0.693

(b) e(x, t) and ê1(x, t).

Figure 8: First order temporal error bounds of GeLU neural networks, random seed= 1.

Lastly, we report the first order temporal error bound results if the neural networks are trained
without residual gradient regularization. In this training setting, the weights of the loss are set
to w0 = 1, wr = 2 and w∇r = 0, and the maximum training epochs are also 50000 for both
p̂ and ê1. Figure 13 compares the training results of using adaptive sampling and residual gra-
dient regularization (top row) vs only using adaptive sampling (bottom row). The former has

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

PD
F

t : 0.5, eS : 0.003
p
p
eS

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 3.0, eS : 0.014

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
PD

F
t : 1.0, eS : 0.003

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 4.0, eS : 0.016

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6

PD
F

t : 2.0, eS : 0.008

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6
t : 5.0, eS : 0.019

(a) p(x, t) and p̂(x, t)

5.0 2.5 0.0 2.5 5.0

0.002

0.000

0.002

Er
ro

r

t : 0.5, 1 : 0.499
e1

e1
eS

5.0 2.5 0.0 2.5 5.0

0.01

0.00

0.01
t : 3.0, 1 : 1.26

5.0 2.5 0.0 2.5 5.0

0.002

0.000

0.002

Er
ro

r

t : 1.0, 1 : 0.571

5.0 2.5 0.0 2.5 5.0

0.01

0.00

0.01
t : 4.0, 1 : 1.52

5.0 2.5 0.0 2.5 5.0
x

0.005

0.000

0.005

Er
ro

r

t : 2.0, 1 : 1.038

5.0 2.5 0.0 2.5 5.0
x

0.02

0.01

0.00

0.01

0.02 t : 5.0, 1 : 1.012

(b) e(x, t) and ê1(x, t).

Figure 9: First order temporal error bounds of GeLU neural networks, random seed= 2.

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

PD
F

t : 0.5, eS : 0.007
p
p
eS

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 3.0, eS : 0.013

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

PD
F

t : 1.0, eS : 0.005

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6
t : 4.0, eS : 0.018

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6

PD
F

t : 2.0, eS : 0.005

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

0.6
t : 5.0, eS : 0.017

(a) p(x, t) and p̂(x, t)

5.0 2.5 0.0 2.5 5.0

0.005

0.000

0.005

Er
ro

r

t : 0.5, 1 : 0.184
e1

e1
eS

5.0 2.5 0.0 2.5 5.0

0.01

0.00

0.01
t : 3.0, 1 : 0.691

5.0 2.5 0.0 2.5 5.0
0.0050

0.0025

0.0000

0.0025

0.0050

Er
ro

r

t : 1.0, 1 : 0.312

5.0 2.5 0.0 2.5 5.0

0.01

0.00

0.01

t : 4.0, 1 : 0.673

5.0 2.5 0.0 2.5 5.0
x

0.0050

0.0025

0.0000

0.0025

0.0050

Er
ro

r

t : 2.0, 1 : 1.04

5.0 2.5 0.0 2.5 5.0
x

0.01

0.00

0.01
t : 5.0, 1 : 0.729

(b) e(x, t) and ê1(x, t).

Figure 10: First order temporal error bounds of GeLU neural networks, random seed= 3.

maxt eS(t) = 0.115,maxt α1(t) = 0.6, and the latter has maxt eS(t) = 0.158, α1(t) = 0.917.
In terms of learning time, the latter is faster; it takes 225 seconds for p̂(x, t) and 866 seconds for
ê1(x, t), while training using both residual gradient regularization and adaptive sampling is slower:
p̂(x, t) for 715 seconds and ê1(x, t) for 3868 seconds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

PD
F

t : 0.5, eS : 0.006
p
p
eS

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6
t : 3.0, eS : 0.011

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

PD
F

t : 1.0, eS : 0.006

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6
t : 4.0, eS : 0.013

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

PD
F

t : 2.0, eS : 0.007

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6
t : 5.0, eS : 0.017

(a) p(x, t) and p̂(x, t)

6 4 2 0 2 4 6

0.005

0.000

0.005

Er
ro

r

t : 0.5, 1 : 0.24
e1

e1
eS

6 4 2 0 2 4 6
0.010

0.005

0.000

0.005

0.010 t : 3.0, 1 : 0.785

6 4 2 0 2 4 6

0.005

0.000

0.005

Er
ro

r

t : 1.0, 1 : 0.223

6 4 2 0 2 4 6

0.01

0.00

0.01
t : 4.0, 1 : 0.769

6 4 2 0 2 4 6
x

0.005

0.000

0.005

Er
ro

r

t : 2.0, 1 : 0.675

6 4 2 0 2 4 6
x

0.01

0.00

0.01
t : 5.0, 1 : 0.673

(b) e(x, t) and ê1(x, t).

Figure 11: First order temporal error bounds of GeLU neural networks, random seed= 4.

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

PD
F

t : 0.5, eS : 0.021
p
p
eS

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6
t : 3.0, eS : 0.034

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

PD
F

t : 1.0, eS : 0.026

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6
t : 4.0, eS : 0.034

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

PD
F

t : 2.0, eS : 0.032

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6
t : 5.0, eS : 0.032

(a) p(x, t) and p̂(x, t)

6 4 2 0 2 4 6
0.02

0.01

0.00

0.01

0.02

Er
ro

r

t : 0.5, 1 : 0.177
e1

e1
eS

6 4 2 0 2 4 6

0.02

0.00

0.02
t : 3.0, 1 : 0.427

6 4 2 0 2 4 6

0.02

0.00

0.02

Er
ro

r

t : 1.0, 1 : 0.328

6 4 2 0 2 4 6

0.02

0.00

0.02
t : 4.0, 1 : 0.402

6 4 2 0 2 4 6
x

0.02

0.00

0.02

Er
ro

r

t : 2.0, 1 : 0.437

6 4 2 0 2 4 6
x

0.02

0.00

0.02
t : 5.0, 1 : 0.369

(b) e(x, t) and ê1(x, t).

Figure 12: First order temporal error bounds of GeLU neural networks, random seed= 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0

5.0

PD
F

×10 1
t : 1.0, eS : 0.089

p
p
eS

0.0

5.0

PD
F

×10 1
t : 3.0, eS : 0.11

5.0 2.5 0.0 2.5 5.0
x

0.0

5.0

PD
F

×10 1
t : 5.0, eS : 0.115

(a) p(x, t) and p̂(x, t)

1.0

0.0

1.0
e

×10 1
t : 1.0, 1 : 0.454

e1
e1
eS

1.0
0.0
1.0

e

×10 1
t : 3.0, 1 : 0.6

5.0 2.5 0.0 2.5 5.0
x

1.0
0.0
1.0

e

×10 1
t : 5.0, 1 : 0.447

(b) e(x, t) and ê1(x, t).

6
4

2
0

2
4

6

x
0

1

2

3

4

5

t

0.0
1.0

2.0

3.0

4.0

5.0 ×1
0

4
r2 1

(c) (D[p̂(x, t)])2

0.0

5.0

×10 1
t : 1.0, eS : 0.07

p
p
eS

0.0

5.0

×10 1
t : 3.0, eS : 0.1

5.0 2.5 0.0 2.5 5.0
x

0.0

5.0

×10 1
t : 5.0, eS : 0.158

(d) p(x, t) and p̂(x, t)

1.0

0.0

1.0 ×10 1
t : 1.0, 1 : 0.237

e1
e1
eS

1.0
0.0
1.0

×10 1
t : 3.0, 1 : 0.615

5.0 2.5 0.0 2.5 5.0
x

2.0

0.0

2.0
×10 1
t : 5.0, 1 : 0.619

(e) e(x, t) and ê1(x, t).

6
4

2
0

2
4

6

x
0

1

2

3

4

5

t

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8

×1
0

3
r2 1

(f) (D[p̂(x, t)])2

Figure 13: Comparison of different training schemes. Top: adaptive sampling and residual gradient
regularization. Bottom: only adaptive sampling.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.3 1D SDE WITH STATE-DEPENDENT NOISE

We considered a 1D SDE with state-dependent noise (also known as geometric brownian motion)
dx = (ax)dt + (bx)dw, where x ∈ R is the state. The associated FP-PDE is ∂p

∂t + ∂[axp]
∂x −

1
2b

2 ∂2[x2p]
∂x2 = 0. By (Shreve et al., 2004), a special analytical solution of the FP-PDE exists if

x > 0: p(x, t) = 1/(bx
√
2πt) exp(−(log x

x− − νt)2/(2b2t)), where ν = a − b2

2 , and δ(x − x−)
is the initial delta distribution. Similar to 1D linear SDE, we let t0 = 1 such that p0(x) is not
a delta function (boundedness assumption). The input domain is x ∈ [90, 110], t ∈ [1, 6]; the
parameters are (a, b, x0) = (0.002, 0.01, 100). p̂(x, t) is a 5 hidden layers 32 neurons MLP using
Softplus activation. ê1(x, t) is a 5 hidden layers 64 neurons MLP using Softplus activation. Since
the state domain is large x ∈ [90, 100], p̂(x, t) and ê1(x, t) transform the state input to x̄ = (x −
100)/100, then pass x̄ to the first hidden layer. Both neural networks initialize the weights using
kaiming normal and 0.01 bias. The adaptive sampling and residual gradient loss is employed
during training, i.e., w0 = wr = w∇r = 1. At the beginning of training, N0 = 1000 initial
points are sampled, half of which are sampled from the initial Gaussian distribution, the others are
sampled from uniform distribution; Nr = 1000 residual space-time points are sampled from uniform
distribution. During training, one residual space-time point is added every 100 epochs. Figs. 14a
and 14b plot the solution, error, and the neural network approximations; p̂(x, t) and ê1(x, t) are
trained with 0.0045 loss for 30 seconds and 0.005 loss for 598 seconds, respectively. The first order
temporal error bound at t = {2.0, 4.0, 6.0} is illustrated in the solution and error spaces in Fig. 14c
and Fig. 14d, respectively. Again, eS(t) successfully constructs a tight temporal error bound if
α1(t) condition is satisfied. Figure 15a plots the training residuals of the neural network at specific
time instances; By Definition 1, we desire D[ê1(x, t)] → −D[p̂(x, t)]. Due to adaptive sampling,
periodic spikes are present in Fig. 15b as well.

90 95 100 105
110

x
0

1
2

3
4

5

t

0.0

0.1

0.2

0.3

0.4

 P

DF

p
p

(a) p(x, t) and p̂(x, t)

90 95 100 105
110

x
0

1
2

3
4

5

t

4
3
2
1

0
1
2

×1
0

2

 e

e1
e1

(b) e1(x, t) and ê1(x, t)

0.0

0.2

0.4 t=2.0, eS = 0.042 ps

p
eS

0.0

0.2

0.4 t=4.0, eS = 0.025

92 96 100 104 108
x

0.0

0.2

0.4 t=6.0, eS = 0.02

(c) p, p̂, eS

92 96 100 104 108
-0.05

0.00

0.05 t:2.0, 1 : 0.17 es

e1
eS

92 96 100 104 108

-0.02

0.00

0.02
t:4.0, 1 : 0.29

92 96 100 104 108
x

-0.02

0.00

0.02 t:6.0, 1 : 0.43

(d) e1, ê1, eS

Figure 14: First order temporal error bound of the 1D SDE with state-dependent noise.

90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0

0.005

0.000

0.005
t=2.0 D[e1]

D[p]

90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0

0.005

0.000

0.005
t=4.0

90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0
x

0.005

0.000

0.005
t=6.0

(a) D[ê1(x, t)] vs −D[p̂(x, t)]

0 200 400 600 800

0.01

0.02

0.03

0.04

tra
in

 lo
ss

: p

0 500 1000 1500 2000 2500 3000 3500 4000
epochs

0.01

0.02

0.03

0.04

tra
in

 lo
ss

: e
1

(b) training loss of p̂(x, t) and ê1(x, t).

Figure 15: Residuals and training loss of p̂(x, t) and ê1(x, t).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.4 NONLINEAR INVERTED PENDULUM

We considered an inverted pendulum system given by dx = f(x)dt + Bdw, where x =

[θ, θ̇]T ∈ R2 is the state, f(x) = [x2,− g
l sin(x1)]

T , g is the gravity acceleration, l is
the length of the inverted pendulum, B ∈ R2×2, and dw ∈ R2. The initial distribu-
tion is a multivariate Gaussian x0 ∼ N (µ0,Σ0). In this experiments, the input domain is
x1 ∈ [−3π,−3π], x2 ∈ [−3π,−3π], and t ∈ [0, 5]. The parameters are (g, l, B, µ0,Σ0) =
(9.8, 9.8, [0.5, 0.0; 0.0, 0.5], [0.5π, 0.0]T , [0.5, 0.0; 0.0, 0.5]). Similarly, p(x, t) is obtained by
Monte-Carlo simulation of the SDE at some time instances using Euler Scheme; ∆t = 0.01 s,
∆x1 = 0.3768,∆x2 = 0.3768, and 108 samples. This Monte-Carlo simulation took 13 hours on
the MacBook Pro machine. p̂(x, t) is a 5 hidden layers 32 neurons MLP using Softplus activation.
ê1(x, t) is a 7 hidden layers 32 neurons MLP using Softplus activation. Both neural networks ini-
tialize the weights using kaiming normal and 0.01 bias. Adaptive sampling and residual gradient
is used during training, again, w0 = wr = w∇r = 1. N0 = 500 initial points and Nr = 1500
residual space-time points are sampled uniformly at the beginning of training. Additional 5 initial
and 5 residual points are added every 100 epochs during training. Figure 16 plots the p(x, t) in the
first row, and the trained p̂(x, t) in the second row. The approximation error is plotted in the first
row in Fig. 17, while the second row shows the first error approximation ê1(x, t). Fig. 18 shows a
3d surface plot of the absolute errors |e(x, t)|, which are upper-bounded by the surface of the eS(t).
Figure 19 plots the training loss of p̂(x, t) and ê1(x, t).

5 0 5

5

0

5

t=1.0

5 0 5

5

0

5

t=2.0

5 0 5

5

0

5

t=3.0

5 0 5

5

0

5

t=4.0

5 0 5

5

0

5

t=5.0

5 0 5

5

0

5

5 0 5

5

0

5

5 0 5

5

0

5

5 0 5

5

0

5

5 0 5

5

0

5

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200p(x, t)

p(x, t)

Figure 16: p(x, t) and p̂(x, t) at t = {1.0, 2.0, 3.0, 4.0, 5.0}.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

5 0 5

5

0

5

t=1.0

5 0 5

5

0

5

t=2.0

5 0 5

5

0

5

t=3.0

5 0 5

5

0

5

t=4.0

5 0 5

5

0

5

t=5.0

5 0 5

5

0

5

1 = 0.75

5 0 5

5

0

5

1 = 0.43

5 0 5

5

0

5

1 = 0.26

5 0 5

5

0

5

1 = 0.27

5 0 5

5

0

5

1 = 0.31

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125e(x, t)

e1(x, t)

Figure 17: e(x, t) and ê1(x, t) at t = {1.0, 2.0, 3.0, 4.0, 5.0}.

10
0

10 10

0
10
0.000
0.005
0.010
0.015
0.020

|e
|

t=1.0, eS = 0.008

10
0

10 10

0
10
0.000
0.005
0.010
0.015
0.020

|e
|

t=2.0, eS = 0.014

10
0

10 10

0
10
0.000
0.005
0.010
0.015
0.020

|e
|

t=3.0, eS = 0.022

10
0

10 10

0
10
0.000
0.005
0.010
0.015
0.020

|e
|

t=4.0, eS = 0.022

10
0

10 10

0
10
0.000
0.005
0.010
0.015
0.020

|e
|

t=5.0, eS = 0.018

Figure 18: Absolute errors |e(x, t)| and first order temporal error bounds eS(t) (illustrated as the
green surface) at t = {1.0, 2.0, 3.0, 4.0, 5.0}.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000

0.001

0.002

0.003

0.004

0.005

tra
in

 lo
ss

: p

0 2000 4000 6000 8000 10000 12000 14000
epochs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

tra
in

 lo
ss

: e
1

Figure 19: training loss of p̂(x, t) and ê1(x, t).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.5 1D HEAT EQUATION

We considered an one-dimensional heat equation ut−uxx = 0 with boundary condition, u(±1, t) =
0,∀t. Let t0 = 0, and the initial distribution u0(x) = − sin(πx). In this experiments, the input
domain is x ∈ [−1, 1], t ∈ [0, 1]. For this particular problem, analytical solution exists: u(x, t) =
− sin(πx) exp−π2t, which allows us to validate the first order temporal error bound using trained
û(x, t), ê1(x, t). û(x, t) is a 3 hidden layers 64 neurons MLP using Tanh activation. ê1(x, t) is a 5
hidden layers 100 neurons MLP using Tanh activation. Both neural networks initialize the weights
using xavier uniform and zero bias. The baseline training scheme (w0 = wr = 1) is used with
N0 = 500, Nr = 500 random samples at each epoch. Figure 21 show the residuals and training loss
of the neural networks. Again, we desire D[ê1(x, t)] → −D[û(x, t)] for good training.

1
0

1

x 0.00.20.40.60.81.0 t

1.0

0.5

0.0

0.5

1.0

u
u

(a) u(x, t) and û(x, t)

1
0

1

x 0.00.20.40.60.81.0 t

0.5

0.0

0.5

1.0

×1
0

2
Er

ro
r

e1
e

(b) e(x, t) and ê1(x, t)

1.0
0.0
1.0

×10 1
t : 0.2, eS : 0.0077

u
u
eS

5.0
0.0
5.0

×10 3
t : 0.6, eS : 0.0047

1.0 0.5 0.0 0.5 1.0
x

1.0

0.0

1.0
×10 2
t : 1.0, eS : 0.0073

(c) u, û, and eS

5.0
0.0
5.0

×10 3
t : 0.2, 1 : 0.101

e
e1
eS

5.0

0.0

5.0 ×10 3
t : 0.6, 1 : 0.072

1.0 0.5 0.0 0.5 1.0
x

5.0
0.0
5.0

×10 3
t : 1.0, 1 : 0.192

(d) e, ê1 and eS

Figure 20: first order temporal error bound of 1D heat equation.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.01

0.00

0.01
t=0.2 D[e1]

D[u]

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.02

0.01

0.00

t=0.6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.01

0.00

0.01
t=1.0

(a) D[ê1(x, t)] vs −D[p̂(x, t)]

0 2000 4000 6000 8000 10000

0.0002

0.0004

0.0006

0.0008

0.0010

tra
in

 lo
ss

: p

0 2000 4000 6000 8000 10000
epochs

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

tra
in

 lo
ss

: e
1

(b) training loss of û(x, t) and ê1(x, t).

Figure 21: Residuals and training loss of û(x, t) and ê1(x, t).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

B.6 HIGH-DIMENSIONAL ORNSTEIN-UHLENBECK

We considered the generalization of the 1D Ornstein-Uhlenbeck process to n-dimension with time-
varying dynamics: dx = (An(t)x)dt + Bndw, where x,w ∈ Rn, and the initial distribution is
multi-variate Gaussian p(x, 0) ∼ N (µn,Σn). For this system, the probability density functions over
time remains Gaussian p(x, t) ∼ N (µn(t),Σn(t)), but there is no close-form solution to µn(t) and
Σn(t) in general (Särkkä & Solin, 2019). Here, we use Euler forward numerical integration (0.0001
seconds time step) to obtain the ”true” PDF. The solution domain we tested is Ω = [−1, 1]n× [0, 1].

For the 3D OU, the dynamics is A3 =

[
0.3 0.0 0.0
0.0 0.3 0.0
−0.1 0.0 0.3

]
, B3 = diag([0.05, 0.05, 0.05]) and

the intial distribution is µ3 = [−0.2, 0.2, 0.0],Σ3 = diag([0.1, 0.1, 0.1]). For the 3D time-

varying OU, the dynamics is Ã3(t) =

[
0.3 0.0 0.0
0.0 0.3 0.0
−0.1 0.0 0.3

]
+ (e−t3)

[
0.0 0.5 0.0
0.0 0.0 0.5
0.0 −0.3 0.0

]
with

the same noise coupling and initial distribution as the 3D OU. For the 7D OU, the dynam-
ics is an almost diagonal A7 = diag([0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]) with A7[7, 1] =
−0.01, B7 = diag([0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]). The initial distribution is µ7 =
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],Σ7 = diag([0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12]). For the 10D
OU, the dynamics is an almost diagonal A10 = diag([0.05, ...0.05]) with A10[10, 1] = −0.01,
B10 = diag([0.05, ..., 0.05]). The initial distribution is zero mean µ10 = [0.0, ..., 0.0],Σ10 =

diag([0.11, ..., 0.11]). For the 10D time-varying OU, the dynamics is Ã10(t) = A10 +(e−t3)∆A10,
where ∆A10 is first initialing a zero 10 by 10 matrix, then setting ∆A10[1, 2] = 0.1,∆A10[2, 3] =
0.1, and ∆A10[10, 2] = −0.1. The noise coupling is the same as the 10D OU, the initial distribution
is µ̃10 = [−0.2, 0.1, 0.2, 0.05,−0.25, 0.22, 0.18,−0.12, 0.01, 0.04], and the covariance is the same
as well. For all the experiments (3D-10D), we use the same neural networks: p̂(x, t) and ê1(x, t) are
5 hidden layers 32 neurons MLP using GeLU activation; the final output of p̂ is passed into Softplus
to ensure non-negative value. Both neural networks initialize the weights using kaiming normal
and 0.0 bias. The adaptive sampling is employed during training, i.e., w0 = wr = 1. At the be-
ginning of training, N0 = Nr = 2000 points are sampled for p̂, and N0 = Nr = 300 points are
sampled for ê1. Additional 40 samples are added for both trainings if the loss of the current epoch
is smaller than 0.95 times the minimum loss. After training, we evaluate the results at uniform time
instances t = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For each time instances, the evaluated state points are
chosen by (1) a deterministic uniform grid (50 × 50 × 50) for the 3D cases, or (2) uniformly 107

samples at random for the 7D and 10D cases. Figs. 22- 26 report (i) the first order temporal error
bound eS(t) versus the maximum error maxx |e1(x, t)| for all time (normalized by maxx |p(x, t)|
as used in Table. 2), (ii) the condition α1(t) < 1, ∀t ∈ T , and (iii) the training history of p̂ and ê1.
Lastly, Figs. 27 and 28 visualize the PDF p(x, t), the PDF approximation p̂(x, t), the approximation
error e1(x, t), and the first error approximation ê1(x, t) as 3D contour plots for the 3D Time-varying
OU.

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.03

0.04

0.05

0.06

er
ro

r (
no

rm
al

ize
d)

eS (normalized)
max|e1| (normalized)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.16

0.17

0.18

0.19

0.20

1

(a) eS(t) vs maxx |e(x, t)| and α1(t)

0 200 400 600 800 1000

0.0002

0.0004

0.0006

0.0008

tra
in

 lo
ss

: p

0 2000 4000 6000 8000 10000
epochs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

tra
in

 lo
ss

: e
1

(b) training loss of p̂(x, t) and ê1(x, t).

Figure 22: Results of the first-order temporal error bound of 3D OU.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
0.02

0.03

0.04

0.05

0.06

er
ro

r (
no

rm
al

ize
d)

eS (normalized)
max|e1| (normalized)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.11

0.12

0.13

0.14

0.15

0.16

1

(a) eS(t) vs maxx |e(x, t)| and α1(t)

0 200 400 600 800 1000 1200

0.0002

0.0004

0.0006

0.0008

tra
in

 lo
ss

: p

0 2000 4000 6000 8000 10000
epochs

0.01

0.02

0.03

0.04

tra
in

 lo
ss

: e
1

(b) training loss of p̂(x, t) and ê1(x, t).

Figure 23: Results of the first-order temporal error bound of 3D Time-varying OU.

0.0 0.2 0.4 0.6 0.8 1.0
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

er
ro

r (
no

rm
al

ize
d)

eS (normalized)
max|e1| (normalized)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.3

0.4

0.5

0.6

0.7

1

(a) eS(t) vs maxx |e(x, t)| and α1(t)

0 250 500 750 1000 1250 1500 1750 2000
0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
tra

in
 lo

ss
: p

0 2000 4000 6000 8000 10000
epochs

0.02

0.04

0.06

0.08

0.10

tra
in

 lo
ss

: e
1

(b) training loss of p̂(x, t) and ê1(x, t).

Figure 24: Results of the first-order temporal error bound of 7D OU.

0.0 0.2 0.4 0.6 0.8 1.0
0.050

0.075

0.100

0.125

0.150

0.175

0.200

er
ro

r (
no

rm
al

ize
d)

eS (normalized)
max|e1| (normalized)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.50

0.55

0.60

0.65

1

(a) eS(t) vs maxx |e(x, t)| and α1(t)

0 250 500 750 1000 1250 1500 1750 2000

0.0002

0.0004

0.0006

0.0008

0.0010

tra
in

 lo
ss

: p

0 2000 4000 6000 8000 10000
epochs

0.02

0.04

0.06

0.08

0.10

tra
in

 lo
ss

: e
1

(b) training loss of p̂(x, t) and ê1(x, t).

Figure 25: Results of the first-order temporal error bound of 10D OU.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0

0.04

0.06

0.08

0.10

0.12

0.14

0.16

er
ro

r (
no

rm
al

ize
d)

eS (normalized)
max|e1| (normalized)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1

(a) eS(t) vs maxx |e(x, t)| and α1(t)

0 500 1000 1500 2000 2500

0.0002

0.0004

0.0006

0.0008

tra
in

 lo
ss

: p

0 5000 10000 15000 20000 25000 30000
epochs

0.01

0.02

0.03

0.04

0.05

tra
in

 lo
ss

: e
1

(b) training loss of p̂(x, t) and ê1(x, t).

Figure 26: Results of the first-order temporal error bound of 10D Time-varying OU.

0

0.5

1

1.5

2

(a) p at t = 0.0

0

0.5

1

1.5

2

(b) p̂ at t = 0.0

0

0.5

1

1.5

2

(c) p at t = 1.0

0

0.5

1

1.5

2

(d) p̂ at t = 1.0

Figure 27: 3D Time-varying OU: PDF p and the neural network approximation p̂ for different t.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

-0.03

-0.01

0

0.01

0.03

(a) e1 at t = 0.0

-0.03

-0.01

0

0.01

0.03

(b) ê1 at t = 0.0

-0.03

-0.01

0

0.01

0.03

(c) e1 at t = 1.0

-0.03

-0.01

0

0.01

0.03

(d) ê1 at t = 1.0

Figure 28: 3D Time-varying OU: approximation error e1 and the neural network approximation ê1
for different t.

32

	Introduction
	Related Work

	Problem Formulation
	Approximating PDF via PINN
	Bounding Approximation Error
	n-th Order Space-time Error Bound (n > 2)
	First Order Temporal Error Bound (n=1)

	Numerical Experiments
	Conclusion
	Proofs
	Derivation of Definition 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Proposition 1

	Additional Results of Numerical Experiments
	1D Linear SDE
	1D Nonlinear SDE
	1D SDE with State-dependent Noise
	Nonlinear Inverted Pendulum
	1D Heat Equation
	High-Dimensional Ornstein-Uhlenbeck

