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ABSTRACT

Stochastic differential equations are commonly used to describe the evolution of
stochastic processes. The uncertainty of such processes is best represented by the
probability density function (PDF), whose evolution is governed by the Fokker-
Planck partial differential equation (FP-PDE). However, it is generally infeasible
to solve the FP-PDE in closed form. In this work, we show that physics-informed
neural networks (PINNs) can be trained to approximate the solution PDF using
existing methods. The main contribution is the analysis of the approximation er-
ror: we develop a theory to construct an arbitrary tight error bound with PINNs.
In addition, we derive a practical error bound that can be efficiently constructed
with existing training methods. Finally, we explain that this error-bound theory
generalizes to approximate solutions of other linear PDEs. Several numerical ex-
periments are conducted to demonstrate and validate the proposed methods.

1 INTRODUCTION

Stochastic differential equations (SDEs) are widely used to model the evolution of stochastic pro-
cesses across various fields like sciences, engineering, economics, and finance. In many of these
applications, particularly in safety-critical domains, a key concern is understanding how uncertainty
of the process modeled by SDE propagates over space and time. This uncertainty is often repre-
sented by a probability density function (PDF) and is governed by the Fokker-Planck partial dif-
ferential equation (FP-PDE). However, solving the FP-PDE is generally computationally expensive
and prone to numerical errors, except in simple cases (Spencer & Bergman, 1993; Drozdov & Mo-
rillo, 1996; Tabandeh et al., 2022). Recent advancements suggest using deep-learning frameworks,
called physics-informed neural networks (PINNs), to approximate PDE solutions with notable suc-
cess (Sirignano & Spiliopoulos, 2018; Lu et al., 2021). Despite their effectiveness, PINNs are still
subject to approximation errors, a crucial concern in safety-critical systems. In this work, we tackle
this challenge by developing a method to approximate the PDF of an SDE using PINNs and rigor-
ously bound the approximation error.

Recent works on using PINNs to approximate solutions to PDEs typically analyze approximation
errors in terms of total error, representing the cumulative error across all space and time (De Ryck
& Mishra, 2022b;a; Mishra & Molinaro, 2023; De Ryck et al., 2024). While this approach may be
useful in some applications, it is less informative for SDEs and uncertainty propagation in stochastic
processes. Moreover, total error bounds are often overly loose, sometimes exceeding the actual
errors by several orders of magnitude. Crucially, these bounds do not provide insight into the worst-
case approximation error at specific time instances or within particular subsets of space, which
is essential in many stochastic systems. For example, in autonomous driving scenarios involving
pedestrian crossings, accurately prediction and bounding the probability of collision requires precise
reasoning over specific time instances and spatial regions. Loose over-approximations can lead to
undesirable behaviors, such as sudden braking.

In this work, we show how PINNs can be used to approximate PDFs of processes modeled by
SDEs and, more importantly, introduce a method for tightly bounding the approximation error as a
function of time and space. Our key insight is that the error is related to the residual of the FP-PDE
and is governed by the same equation. Thus, a second PINN can be used to learn the error, with
its own error also following the FP-PDE. This leads to a recursive formulation of error functions,
each of which can be approximated using a PINN. We establish sufficient training conditions under
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which this series converges with a finite number of terms. Specifically, we prove that two PINNs
are enough to obtain arbitrarily tight error bounds. Additionally, we derive a more practical bound
requiring only one error PINN at the cost of losing arbitrary tightness, and provide a method to verify
its sufficient condition. Finally, we illustrate and validate these error bounds through experiments
on several SDEs, supporting our theoretical claims.

In short, the main contribution is five-fold:

• a method for approximating the PDF of processes modeled by SDEs using PINNs,
• a novel approach to tightly bound the approximation error over time and space through a

recursive series of error functions learned by PINNs,
• a proof that this recursive process converges with only two PINNs needed for arbitrarily

tight bounds,
• the derivation of a more practical error bound requiring just one PINN, along with a method

to verify its sufficiency, and
• validation of the proposed error bounds through experiments on several SDEs.

1.1 RELATED WORK

Research on approximating solutions to PDEs using PINNs often focuses on estimating the total
error, which represents the cumulative error across all time and space. For instance, (Mishra &
Molinaro, 2023) provide an abstract upper bound on the total error, expressed in terms of training
error, the number of training samples, and constants related to the stability of PDEs. Their numerical
experiments reveal that this total error bound is loose, exceeding the actual errors by nearly three or-
ders of magnitude. Similarly, De Ryck & Mishra (2022a) consider FP-PDE equations deriving from
linear stochastic differential equations. They propose an abstract approach to bound the total error
in terms of training error and some constants related to the PDEs, but they do not present numerical
experiments. In another approach, (De Ryck & Mishra, 2022b) propose a general framework to
derive different types of total error bounds for PINNs and operators, while (De Ryck et al., 2024)
estimate the total error for Navier-Stokes PDEs. In contrast to these works, this work emphasizes
bounding the worst-case error at any specific time. This focus is particularly valuable in practical
applications of stochastic systems.

Error analysis is a well-established area focused on demonstrating the approximation capabilities
of neural networks. For example, Hornik (1991) proves that a standard multi-layer feed-forward
neural network can approximate a target function such that the generalization is arbitrarily small.
Yarotsky (2017) considers the worst-case error and shows that deep ReLU neural networks are
able to approximate universal functions in the Sobolev space. More recently, deep operator nets
(DeepONet) have been suggested to learn PDE operators, with (Lanthaler et al., 2022) proving that
for every ϵ > 0, there exists DeepONets such that the total error is smaller than ϵ. While these
studies establish that the approximation error (whether in terms of average or worst-case) can be
made arbitrarily small, they do not address the critical question: what are the error bounds for a
given approximate solution? This is the central issue tackled by this work.

Error estimates have also been studied when neural networks are trained as surrogate models for
given target functions. For instance, Barron (1994) derives the total error between given the training
configurations and the target function. More recently, Yang et al. (2022) propose to estimate the
worst-case approximation error given the target function. A fundamental difference between our
work and these studies is that we do not have the target function or model.

Solving PDEs is a well-studied area with various established approaches. For the FP-PDE equation,
numerical methods, such as the finite elements method, have been employed (Spencer & Bergman,
1993). Additionally, Chakravorty (2006) uses Galerkin projection method for solution approxima-
tion. Recent works (Khoo et al., 2019; Song et al., 2023; Lin & Ren, 2024) present numerical meth-
ods for approximating transition probability between two regions, which is also governed by the
FP-PDE. For general PDEs, Zada et al. (2021) propose an analytical method to obtain approximate
solutions based on optimal auxiliary function. While these studies demonstrate accurate approxima-
tions through posterior evaluation, they can be computationally expensive and often lack the ability
to quantify and bound the error. In contrast, our method for approximating solutions to the FP-PDE
using PINNs is computationally tractable and centers on constructing error bounds for them.
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2 PROBLEM FORMULATION

The aim of this work is uncertainty propagation with quantified error bounds for continuous time
and space stochastic processes using deep neural networks. We specifically focus on stochastic
processes described by the following (possibly nonlinear) Stochastic Differential Equations (SDE),

dx(t) = f(x(t), t)dt+ g(x(t), t)dw(t), (1)

where t ∈ T ⊆ R≥0 is time, x(t) ∈ X ⊆ Rn is the state of the system at time t, and w(t) ∈ Rm

is a standard Brownian motion. For Ω = X × T , function f : Ω → Rn represents the deterministic
evolution of the system, and function g : Ω → Rn×m is a term that defines the coupling of the
noise. We assume that f(x, t) and g(x, t) are locally Lipschitz continuous in x, and denote the i-th
dimension of f and (j, k)-th element of g by fi and gjk, respectively. The initial state x(0) is a
random variable distributed according to a given probability density function (PDF) p0 : X → R≥0,
i.e., x(0) ∼ p0. We assume that p0 is bounded and sufficiently smooth1.

The solution to the SDE in equation 1 is a stochastic process x with a corresponding PDF p :
Ω → R≥0 over space and time, i.e., x(t) ∼ p(·, t) (Øksendal, 2003). PDF p is governed by the
Fokker-Planck (FP) partial differential equation (PDE):

∂p(x, t)

∂t
+

n∑
i=1

∂

∂xi
[fip(x, t)]−

1

2

n∑
i=1,j=1

∂2

∂xi∂xj

[
m∑

k=1

gikgjkp(x, t)

]
= 0, (2)

and must satisfy the initial condition

p(x, 0) = p0(x) ∀x ∈ X. (3)

To simplify notation, we denote by D[·] the differential operator associated with the FP-PDE:

D[·] := ∂

∂t
[·] +

n∑
i=1

∂

∂xi
[fi·]−

1

2

n∑
i=1,j=1

∂2

∂xi∂xj

[
m∑

k=1

gikgjk·

]
.

Then, equation 2 and equation 3 can be rewritten in a compact form as

D[p(x, t)] = 0, subject to p(x, 0) = p0(x). (4)

Note that, since f and g are assumed to be locally Lipschitz continuous, the PDE in equation 4 is
well-posed, i.e., there exists a sufficiently smooth and unique solution p (Evans, 2022), (Karatzas &
Shreve, 2014, Ch. 5, Theorem 2.5).

Computation of p in closed form is generally not possible, and even numerical approaches are limited
to simple SDEs (Spencer & Bergman, 1993; Drozdov & Morillo, 1996; Tabandeh et al., 2022). In
this work, we focus on using PINNs to approximate p, and crucially, we aim to formally bound the
resulting approximation error.

Problem 1 Given stochastic process x(t) described by the SDE in equation 1, a bounded subset
X ′ ⊂ X , and a time interval T , train a neural network p̂(x, t) that approximates p(x, t), and for
every t ∈ T construct eB : T → R≥0 such that

sup
x∈X′

|p(x, t)− p̂(x, t)| ≤ eB(t). (5)

In our approach, we exploit the governing equation of p in equation 4 for both training for p̂ and for
its error quantification. Specifically, we first show that existing methods for training PINNs to ap-
proximate solutions of PDEs can be adapted to approximate p well if the training loss is sufficiently
small. Then, we show that the resulting approximation error can be written as an infinite series of
approximate error functions, each of which satisfying a PDE similar to equation 4. This implies
that each error function itself can be approximated using a PINN. Then, we derive conditions, under
which only a finite number of such PINNs is needed to obtain an error bound eB(t) with guarantees.

Remark 1 While we focus on p̂ being a neural network, our method of deriving temporal error
bound eB(t) is not limited to neural networks and generalizes to any sufficiently smooth function p̂
that approximates the true solution p.

1at least twice continuously differentiable with respect to x.
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3 APPROXIMATING PDF VIA PINN

Given the PDE in equation 4, as common in physics-informed deep learning, we approximate p by
learning a neural network p̂(x, t; θ), where θ represents the parameters of the neural network. For
training, spatial-temporal data points {(xj , 0)j}N0

j=1, {(xj , tj)j}Nr
j=1 ⊂ Ω, for some N0, Nr ∈ N,

are sampled, and the loss function is derived from the governing physics in equation 4 as L =
w0L0 + wrLr, where w0, wr ∈ R+ are the weights, and

L0 =
1

N0

N0∑
j=1

∥p0(xj)− p̂(xi, 0; θ)∥22, Lr =
1

Nr

Nr∑
j=1

∥D[p̂(xj , tj ; θ)]∥22. (6)

The loss function in equation 6 quantifies the deviation of the true and approximate solution in terms
of the boundary condition (L0) and the infinitesimal variation over space and time (Lr) (Sirignano
& Spiliopoulos, 2018). The parameters of p̂(x, t; θ) are learned by minimizing θ∗ = argminL.

Assumption 1 p̂ is assumed to be at least twice continuously differentiable with respect to x and
continuously differentiable with respect to t with bounded derivatives.

Assumption 1 is present because p̂ is trained by the physics-informed loss in equation 6, in which the
second term Lr requires the computation of the first and second derivatives with respect to time and
space, respectively. To satisfy Assumption 1, smooth activation functions (e.g., Tanh and Softplus)
can to be used in the architecture of p̂(x, t; θ). For instance, this assumption is satisfied by a fully
connected NN with twice differentiable activation functions.

Our training approach for p̂ follows existing methods to approximate PDE solutions using PINNs;
see Appendix B for more details. The key difference is that we provide error bounds on the approx-
imation error as detailed in the next section.

4 BOUNDING APPROXIMATION ERROR

In this section, we derive bounds for the approximation error e(x, t) := p(x, t) − p̂(x, t). We first
characterize e(x, t) as a series of approximate solutions to PDEs. Then, we show that, by training
just two PINNs under certain sufficient conditions, the series can be bounded, resulting in arbitrary
tight bound on e(x, t). While these conditions are feasible, they may be challenging to verify in
practice. To that end, we finally introduce a more practical bound that requires training of only one
PINN, albeit at the cost of losing arbitrary tightness. All the proofs are provided in the appendix.

Note that FP-PDE operator D is a linear operator; hence, by applying it to e(x, t), we obtain:

D[e] = D[p− p̂] = D[p]−D[p̂].

As D[p] = 0, we can see that the error is essentially related to the residue of D[p̂]. Then, we can
define the governing PDE of e(x, t) as

D[e(x, t)] +D[p̂(x, t)] = 0 subject to e(x, 0) = p0(x)− p̂(x, 0). (7)

Hence, using a similar approach as in Section 3, a PINN can approximate e(x, t) in equation 7.
Based on this, we can define the i-th error and its associated approximation in a recursive manner.

Definition 1 (i-th error and approximation) Let e0 := p and ê0 := p̂. We define, for i ≥ 1, the
i-th error to be ei(x, t) = ei−1(x, t)− êi−1(x, t), where each êi is a smooth, bounded function that
is constructed via a PINN that approximates ei governed by the recursive PDE (see Appendix A.1):

D[ei(x, t)] +

i∑
j=1

D[êj−1(x, t)] = 0 subject to ei(x, 0) = ei−1(x, 0)− êi−1(x, 0). (8)

By this construction, the approximation error e(x, t), for every choice of n ≥ 0, is given by

e(x, t) = p(x, t)− p̂(x, t) =

n∑
i=1

êi(x, t) + en+1(x, t). (9)
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In the remainder of this section, we derive upper bounds for the right-hand side of equation 9.

First, we express how well êi approximates the i-th error ei by defining the relative approximation
factor αi(t) as

αi(t) :=
maxx∈X′ |ei(x, t)− êi(x, t)|

maxx∈X′ |êi(x, t)|
. (10)

Recall from Def. 1 that ei − êi = ei+1. Hence, equation 10 can be written in a recursive form as

max
x∈X′

|ei+1(x, t)| = αi(t) max
x∈X′

|êi(x, t)|, (11)

which relates the unknown (i+ 1)-th error to the i-th error approximation.

Remark 2 By the definition of αi(t) in equation 10, it holds that αi(t) ≥ 0 for all i ≥ 1 and t ∈ T .

Now let e∗i (t), ê
∗
i (t) denote the maximum of ei(x, t), êi(x, t) over subset X ′ ⊂ X , respectively, i.e.,

e∗i (t) := max
x∈X′

|ei(x, t)|, ê∗i (t) := max
x∈X′

|êi(x, t)|. (12)

Recall that each êi(x, t) can be represented using a PINN. Hence, it is safe to assume that the
absolute value of its upper-bound over set X ′ is strictly greater than zero in finite-time training.

Assumption 2 Assume that, for all 1 ≤ i < n, ê∗i (t) > 0.

Then, the following lemma upper-bounds the approximation error e(x, t) using ê∗i (t).

Lemma 1 Consider the approximation error e(x, t) = p(x, t) − p̂(x, t) in equation 9 with n ≥ 2,
and the upper-bounds ê∗i (t) for 1 ≤ i < n over set X ′ ⊂ X in equation 12. Define ratio

γ i+1
i
(t) :=

ê∗i+1(t)

ê∗i (t)
. (13)

Then, under Assumption 2, it holds that, ∀x ∈ X ′,

|e(x, t)| ≤ ê∗1(t)
(
1 +

n∑
m=2

m−1∏
i=1

γ i+1
i
(t) +

e∗n+1

ê∗n−1

n−2∏
i=1

γ i+1
i
(t)

)
. (14)

Next, we derive an upper- and lower-bound for the ratio γ i+1
i
(t) in equation 14 using αi(t).

Lemma 2 If the relative approximation factors αi(t) < 1 for all 2 ≤ i < n, then

αi−1(t)

1 + αi(t)
≤ γ i

i−1 (t)
≤ αi−1(t)

1− αi(t)
. (15)

Lemma 2 establishes the relationship between ratio γ i
i−1

and relative approximation factors αi un-
der condition αi < 1. Intuitively, this condition holds when êi approximates ei reasonably well
(see equation 10). Lastly, we show that under certain conditions on α1 and α2, an ordering over
γ 2

1
, γ 3

2
, . . . , γ i

i−1
can be achieved.

Lemma 3 If, for all t ∈ T ,

0 < α1(t) < 1, (16a)
0 < α2(t) < 1− α1(t), (16b)

α2(t)(1 + α2(t)) < α1(t)
2, (16c)

then there exist feasible 0 ≤ αi(t) < 1 for 2 < i < n such that

γ i
i−1

(t) < γ 2
1
(t) < 1. (17)

5
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The intuition behind Lemma 3 is that if ê1 and ê2 are trained to certain accuracy (satisfying Condi-
tions 16), then there exist feasible ê3, ê4, . . . , ên−1 such that the ratios γ 3

2
, γ 4

3
, . . . , γn−1

n−2
are upper

bounded by γ 2
1
< 1. Specifically, Condition 16a on α1 indicates that ê1 must be learned well enough

so that the magnitude of its maximum learning error is less than its own maximum magnitude (see
equation 10). By fixing α1, Conditions 16b-16c on α2 require ê2 to approximate e2 more accurately
than the approximation of e1 by ê1. These conditions are feasible, i.e., they can be satisfied since
each PINN can be trained arbitrary well (Hornik, 1991; De Ryck et al., 2021; Mertikopoulos et al.,
2020; Mishra & Molinaro, 2023). However, verifying them can be challenging. In Section 4.2, we
provide a method of checking for α1 condition and derive a bound that only relies on this condition;
checking α2 during training remains an open problem.

Finally, we can state our main result, which is a bound on the approximation error of p̂ using Lem-
mas 1-3. Specifically, the following theorem shows that the approximation error bound in Lemma 1
becomes a geometric series as n → ∞ under Conditions 16; hence, solving Problem 1.

Theorem 1 (Temporal error bound) Consider Problem 1 and two approximate error functions
ê1(x, t), ê2(x, t) constructed by Definition 1 that satisfy Conditions 16. Then,

|p(x, t)− p̂(x, t)| ≤ eB(t) = ê∗1(t)
( 1

1− γ 2
1
(t)

)
, (18)

where ê∗1(t) is defined in equation 12, and γ 2
1
(t) = ê∗2(t)/ê

∗
1(t).

The above theorem shows that temporal error bound eB(t) can be obtained by training only two
PINNs that approximate the first two errors e1, e2 according to Def. 1 and that satisfy Conditions 16.
In fact, using these two PINNs, it is possible to construct an arbitrary tight eB as stated below.

Theorem 2 (Temporal error bound of arbitrary tightness) Given Problem 1 and tolerance ϵ ∈
(0,∞) on the error bound, a temporal error bound eB(t) can be obtained by training two approxi-
mate error functions ê1(x, t) and ê2(x, t) through physics-informed learning such that

eB(t)− max
x∈X′

|e(x, t)| < ϵ. (19)

The proof of Theorem 2 is based on the observation that γ 2
1
→ 0 when (i) ê1(x, t) → e1(x, t) and

(ii) ê2(x, t) → e2(x, t). Then, according to equation 18, eB(t) → ê∗1(t), which itself ê∗1(t) → e∗1(t)
under (i). Since, PINNs ê1 and ê2 can be made arbitrary well, eB can be arbitrary tight. This result
is important because it shows that arbitrary tightness can be achieved without the need for training
infinite number of PINNs, i.e., êi, i = 1, 2, . . .

Remark 3 The construction of eB(t) in Theorems 1 only requires the values of ê∗1(t) and γ 2
1
(t)

which are obtained from the known functions ê1(x, t), ê2(x, t). Checking for α1 and α2 conditions
can be performed a posterior.

Remark 4 Given the approximate functions p̂ and ê1, temporal bound eB becomes tighter as the
approximation accuracy of ê2 increases. As ê2 → e2, α2 → 0+. Also, as α2 → 0+, by equation 15,
the upper bound of γ 2

1
decreases, and consequently, eB becomes tighter by equation 18.

In the following subsections, we extend the result of Theorem 1 which is based on training n = 2
approximate error PINNs, to cases of n > 2 and n = 1 to bound error of p̂.

4.1 n-TH ORDER SPACE-TIME ERROR BOUND (n > 2)

Here, we derive a generalized error bound for e(x, t) with approximation error PINNs êi, where
i = 1, . . . , n for n > 2. Note that an alternative way to express the error bound in Theorem 1 is as
an interval e(x, t) ∈

[
− eB(t), eB(t)

]
, which is uniform over x for any t ∈ T . Below, we show

that, for n > 2, an error bound that depends on both space and time can be constructed.

6
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Corollary 1 (Space-time Error Bound) Consider PINNs êi(x, t), i = 1, . . . , n, for some n > 2
trained per Def.1 such that αn−1 and αn satisfy Conditions 16, and define the n-th order temporal
error bound to be

enB(t) = ê∗n−1(t)(
1

1− γ n
n−1

(t)
),

where ê∗n−1(t) is defined in equation 12, and γ n
n−1

(t) = ê∗n(t)/ê
∗
n−1(t). Then,

e(x, t) ∈
[ n−2∑

i=1

êi(x, t)− enB(t),

n−2∑
i=1

êi(x, t) + enB(t)
]
. (20)

This corollary shows that, even though 2-nd order error approximation is sufficient to obtain a tempo-
ral bound (Theorem 1), higher order approximations lead to more information, i.e., space in addition
to time, on the error bound.

4.2 FIRST ORDER TEMPORAL ERROR BOUND (n = 1)

We also present a temporal error bound by learning only the first error approximation function ê1,
which removes the dependence on α2 at the cost of losing the arbitrary tightness property.

Corollary 2 (First order temporal error bound) Let ê1 be trained such that α1(t) < 1 for all
t ∈ T . Then

|e(x, t)| < eS(t) = 2ê∗1(t). (21)

Note that, while the first-order error bound eS(t) is at most twice larger than the arbitrary tight
error bound eB(t) in Theorem 1, it has significant practical uses. Firstly, it only requires training of
one PINN, i.e., ê1. Secondly, the condition α1(t) < 1 can be checked during training of ê1 using
properties of the FP-PDE as detailed below.

Checking α1(t) < 1 condition From the definition of α1(t) in equation 10, it suffices to bound
the unknown term |e1(x, t)− ê1(x, t)| for all (x, t) ∈ Ω to check for α1. We do this by using three
constants: two related to FP-PDE as introduced in (Mishra & Molinaro, 2023), and one universal
constant from Sobolev embedding theorem (Mizuguchi et al., 2017)(Hunter & Nachtergaele, 2001,
Theorem 12.71). First, the stability constant Cpde of the first error PDE (D[·] +D[p̂]) is defined as

∥e1(x, t)− ê1(x, t)∥Z ≤ Cpde∥(D[e1] +D[p̂])− (D[ê1] +D[p̂])∥Y ,
where Z = W k,q norm , Y = Ls norm, 1 ≤ s, q < ∞, and k ≥ 0. Note that since e1, ê1 and
(D[e1] + D[p̂]) − (D[ê1] + D[p̂]) = −(D[ê1] + D[p̂]) are bounded2, such constant Cpde exists for
k ≤ 1. Second, the quadrature constant Cquad > 0 is defined such that for some β > 0,∣∣∣∣∣

∫
Ω

(
D[ê1(x, t)] +D[p̂(x, t)]

)
dxdt−

N∑
i=1

wi

(
D[ê1(xi, ti)] +D[p̂(xi, ti)]

)∣∣∣∣∣ ≤ CquadN
−β ,

where {(xi, ti)i}Ni=1 ∈ Ω is a set of N quadrature points, and wi ∈ R>0 are weights according
to the quadrature rules. The procedure of deriving these universal constants for general PDEs with
bounded derivatives is shown in (Mishra & Molinaro, 2023). The third constant Cembed is defined as

∥e1(x, t)− ê1(x, t)∥∞ ≤ Cembed∥e1(x, t)− ê1(x, t)∥W 1,q .

Constant Cembed exists because e1(x, t)− ê1(x, t) is bounded (per Def. 1), and the first derivatives
of e1(x, t) and ê1(x, t) are also bounded.

Proposition 1 (Checking α1(t) < 1) Let x ∈ Rn, {(xi, ti)i}Ni=1 ∈ Ω be N space-time samples
based on quadrature rules, ê1(x, t) be the first error approximation, and let εT be the physics-
informed loss of ê1(x, t) evaluated on the set {(xi, ti)i}Ni=1. Then for some q ≥ 2 and β > 0,
α1(t) < 1 for all t ∈ T if

1

mint ê∗1(t)

[
Cembed

(
CpdeεT + CpdeC

1
q

quadN
−β
q

)]
< 1. (22)

2p̂, ê1 are approximate functions with bounded derivatives
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By Proposition 1, it is clear that as the training loss decreases (εT → 0) with sufficiently large
number of samples (N → ∞), the left-hand side of equation 22 goes to zero. Hence, condition
α1 < 1 can be satisfied by training with a sufficiently large dataset and small loss.

Remark 5 (Generalization to linear PDEs) While the presented approach focuses on SDEs and
training an approximate PDF p̂ and bounding its error, the only essential requirement is that the
FP-PDE operator D is linear. Therefore, this approach naturally extends to all linear PDEs (linear
D) subject to initial and boundary conditions. We illustrate this in a case study in Sec. 5.

5 NUMERICAL EXPERIMENTS

We present illustrative experiments to demonstrate the proposed methods on ten systems listed in
Table 1. The table indicates the method to obtain the true solution. Note that the ‘1D Heat PDE’
system is an illustration of generalizability of our method to linear PDEs beyond SDEs. We also note
that these experiments are not an exhaustive study on hyperparameters or neural network architecture
but aim to showcase the efficacy of the error bounds using existing PINN training methods. All the
details on the system dynamics, hyperparameters, additional plots, etc. are provided in Appendix B.

Table 1: Systems dynamics with their initial conditions (I.C.) and true solution method. Computa-
tion time for Monte-carlo simulations are reported. The parameters for high-dimensional systems
(3D-10D) are provided in Appendix B.6

System Dynamics I.C. True Solution

1D Linear SDE dx = −0.2xdt+
√
0.4dw Gaussian analytical

1D Nonlinear SDE dx = (−0.1x3 + 0.1x2 + 0.5x+ 0.5)dt+ 0.8dw N (−2, 0.52) Monte-Carlo (100 hrs)
1D State-dependent SDE dx = (0.002x)dt+ (0.01x)dw Gaussian analytical

Inverted Pendulum SDE dx =

[
x2

− sin(x1)

]
dt+

[
0.5 0.0
0.0 0.5

]
dw N (

[
0.5π
0.0

]
,

[
0.5 0.0
0.0 0.5

]
) Monte-Carlo (13 hrs)

1D Heat PDE ut − uxx = 0 − sin(πx) analytical
3D OU dx = (A3x)dt+B3dw N (µ3,Σ3) Numerical integration
3D Time-varying OU dx = (Ã3(t)x)dt+B3dw N (µ3,Σ3) Numerical integration
7D OU dx = (A7x)dt+B7dw N (µ7,Σ7) Numerical integration
10D OU dx = (A10x)dt+B10dw N (µ10,Σ10) Numerical integration
10D Time-varying OU dx = (Ã10(t)x)dt+B10dw N (µ̃10,Σ10) Numerical integration

Our implementation is in Python and Pytorch, and the code is provided in the supplementary mate-
rial. All experiments are conducted on a MacBook Pro with Apple M2 processor and 24GB RAM,
excepts for the multiple trials on the ‘1D nonlinear SDE’, which was run on an AMD Ryzen 5
6-Core Processor with 32GB RAM and NVIDIA GeForce RTX 2060.

Table 2: Error bound results. Here, tp̂train and tê1train are the training times in seconds, emax
S :=

maxt(eS(t)/maxx p(x, t)) and eavg
S := avgt(eS(t)/maxx p(x, t)) are the maximum and average

of the first temporal error bound eS normalized by the true solution, Gapmin := mint((eS(t) −
e∗(t))/maxx p(x, t)) and Gapmax := maxt((eS(t) − e∗(t))/maxx p(x, t)) are the minimum and
maximum gaps (over time) between the error bound and maximum error normalized by the true
solution, αmax

1 := maxt α1(t), and αvar
1 := vartα1(t). Each row is the result of one random seed.

System p̂ loss ê1 loss tp̂train tê1train emax
S eavg

S Gapmin Gapmax αmax
1 αvar

1

1D Linear SDE 2e-3 2e-2 5 17 0.19 0.18 0.064 0.085 0.37 1e-3
1D Nonlinear SDE 1e-3 4e-3 718 3723 0.48 0.27 0.054 0.214 0.60 6e-3
1D Nonlinear SDE (GPU, seed0) 1e-4 4e-3 345 4433 0.14 0.05 0.007 0.062 0.45 4e-3
1D State-dependent SDE 5e-3 5e-3 31 598 0.24 0.14 0.026 0.130 0.43 6e-3
Inverted Pendulum SDE 1e-3 4e-2 1411 3576 0.25 0.16 0.015 0.132 0.75 3e-2
1D Heat PDE 1e-4 4e-5 41 156 135 10.3 0.002 49.10 0.40 5e-3
3D OU 1e-4 8e-3 276 2017 0.05 0.04 0.015 0.029 0.20 2e-4
3D Time-varying OU 1e-4 4e-3 338 2219 0.06 0.05 0.020 0.032 0.16 3e-4
7D OU 2e-4 1e-2 1018 2684 0.19 0.11 0.036 0.098 0.74 2e-2
10D OU 1e-4 1e-2 1710 3670 0.20 0.15 0.067 0.119 0.68 5e-3
10D Time-varying OU 1e-4 6e-3 2835 13883 0.16 0.12 0.053 0.095 0.98 9e-3

For the 1D Nonlinear SDE on GPU, the variance of α1 over all six random seeds i = {0, 1, ..., 5} is vart,iα
(i)
1 (t) = 0.11.
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Figure 1: True and approximate PDF solutions for the 1D Linear SDE with quantified error bounds.
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Figure 2: Error e and the first- and second-order temporal bounds eS , eB , along with the training
conditions of α1(t) and α2(t) in equation 16 for all t ∈ T of the 1D Linear SDE.

Table 2 summarizes the results on all systems. Note that the smaller emax
S and eavg

S are, the tighter
error bounds are. Positive Gapmin implies that the bound is valid, small Gapmax implies that the
bound is close to the true error, and the smaller αmax

1 is, the better ê1 is trained. We also note
that the 1D Heat experiment shows large values of the normalized metrics emax

S , eavg
S , and Gapmin

because its true solution (used in the denominator) becomes extremely small at the final time.

In summary, Table 2 shows: (i) scalability: our framework is able to scale to 10-dimensional system,
(ii) stability: the variance on α1 over the time domain is small, showing the error bound’s applicabil-
ity for all time, (iii) training challenges: training of ê1 may encounter local minima due to random
initialization of neural networks, (iv) α1 condition: α1 < 1 is satisfied though it becomes increas-
ingly challenging to meet as dimensionality grows, and (v) error bound tightness: the error bounds
are tight across all dynamical systems. Below, we discuss individual systems in more details.

1D Linear SDE Figs. 1a-1b visualize the true and learned PDFs p and p̂ and the true and learned
errors e and ê1, respectively. PDFs p and p̂ along with error bound eS(t) at t = 1.5, 2, 3 seconds
are shown in Fig. 1c. Observe that p is always within eS bound from p̂, validating the bound.
Fig. 1d shows errors e and ê1 and compares bound eS(t) with the arbitrary tight error bound eB(t)
at the same time instances. As predicted, eB(t) is tighter than es(t). We note that learning ê2 is
challenging; hence, for illustration purposes of eB(t), we used ê2 = e2 + δ, where δ is a small
perturbation for this experiment. Fig. 2 provides a different visualization for eS(t) and eB(t) as
well as satisfaction of the α1 and α2 conditions. Specifically, Fig. 2a validates that maxx |e(x, t)| ≤
eB(t) ≤ eS(t) for all t ∈ T . Note that eS(t)/eB(t) is at most 1.63 < 2, as predicted by Corollary 2.

1D Nonlinear SDE Figs. 3a-3b show the PDFs p and p̂ and errors e and ê1. The error bound
eS(t) is illustrated in Figs. 3c-3d in the solution and error spaces, respectively. Observe that the true
error is upper bounded, and the true PDF p lies within eS of approximate PDF p̂. Figs. 3e-3f show
a tighter eS(t) by training neural networks (with more complicated activation functions) on GPU.
To illustrate that α1 does in fact decrease with more training, we conducted multiple training trials
for this system. Fig. 3g shows the obtained results, validating that α1 does indeed decrease as the
training loss of the ê1(x, t) decreases, as predicted by Proposition 1. Note that one trial (out of six
trials) failed to train ê1 that satisfies α1(t) < 1 for some t, as seen in Fig. 9 in Appendix B.2.
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Figure 3: Visualization of the results for 1D Nonlinear SDE. (a)-(d) illustrate error bound eS , and
(e)-(f) show one (seed0) of the multiple training trials on GPU, (g) αmax

1 is plotted vs ê loss.
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Figure 4: First order temporal error bound of the 2D inverted pendulum at t = 3. At the right: the
approximation error e is bounded by the green 3D surface eS constructed by ê1.

Others Fig. 4 visualizes error bound eS for the 2D inverted pendulum at a given time, showing
eS for multi-dimensional systems. See Appendices B.3-B.6 for results of other systems.

6 CONCLUSION

We introduced a physics-informed learning method to approximate the PDF of an SDE and bound
its error using a series of recursive error functions learned with PINNs. We proved that only a finite
number of recursive steps are required to bound the error, with two error terms being sufficient to
achieve arbitrarily tight bounds at any time instance. We also developed a more efficient approach
by constructing a first order temporal error bound using just one error function, which reduces com-
putation, provides clear termination criteria, and yields bounds at most twice as loose as the tightest
ones. This method was validated on several non-Gaussian dynamical systems. In our implementa-
tion, we trained the solution and error functions separately but hypothesize that jointly training them
could improve performance and reliability. Future work will explore this joint training approach.
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REPRODUCIBILITY STATEMENT

All the results can be reproduced via the supplemental zip file. There are two folders in the zip
file: (1) pinn pde-release-2025ICLR , and (2) pinn pde-release-2025ICLR GPU. The former folder
containes the main results that are built on the Macbook Pro. The latter folder includes the results
that are built using the Linux desktop. Both folders contain a README.md file that explains the
steps of building and running the python codes. Python virtual environments are used to manage
the required packages; they are listed in the requirements.txt file. It is recommended that the exact
same packages with same versions are installed for reproducibility purpose. The pre-trained neural
networks used to generate the results of this paper are provided. One can use these pre-trained
neural networks to reproduce the plots by passing the −−train= 0 argument. The code are designed
to use the same random seeds, so one can also train the exact same neural networks by passing the
−−train= 1 argument, assuming that the required packages are installed successfully.
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A PROOFS

A.1 DERIVATION OF DEFINITION 1

Denote e(x, t) := e1(x, t) = p(x, t)− p̂(x, t) as the first error and initialize e0(x, t) := p(x, t) and
ê0(x, t) = p̂(x, t). Then, Eq. equation 7 becomes Definition 1 for i = 1:

D[e1(x, t)] +D[ê0(x, t)] = 0, subject to e1(x, 0) = e0(x, 0)− ê0(x, 0).

For i = 2, we define e2(x, t) := e1(x, t)−ê1(x, t) and obtain D[e2(x, t)] = D[e1(x, t)]−D[ê1(x, t)]
(because D[·] is a linear operator). Since ê1 ̸= e1, we have

D[ê1] +D[ê0] := r1 ̸= 0.

Hence, we have the recursive PDE for i = 2 (omitting x and t for simplicity of presentation):

D[e2] = D[e1]−D[ê1] = (−D[ê0])−(−D[ê0]+r1) = −r1 =⇒ D[e2]+r1 := D[e2]+

2∑
j=1

D[êj−1] = 0.

The derivation recursively follows for i > 2.

A.2 PROOF OF LEMMA 1

Proof 1 From Definition 1, we have that, for all x ∈ X ′,

|p(x, t)− p̂(x, t)| =

∣∣∣∣∣
n∑

i=1

êi(x, t) + en+1(x, t)

∣∣∣∣∣ ≤
n∑

i=1

|êi(x, t)|+ |en+1(x, t)|

≤
n∑

i=1

max
x

|êi(x, t)|+max
x

|en+1(x, t)| :=
n∑

i=1

ê∗i (x, t) + e∗n+1(x, t).

13
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From the definition of γ i+1
i

in equation 13, we obtain (omitting t for simplicity of presentation)

|p(x, ·)− p̂(x, ·)| ≤ ê∗1

(
1 +

ê∗2
ê∗1

+
ê∗3
ê∗1

+ · · ·+ ê∗n
ê∗1

+
e∗n+1

ê∗1

)
= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2
γ n

n−1

e∗n+1

ê∗n
)
]

:= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2

ê∗n
ê∗n−1

e∗n+1

ê∗n
)
]

= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

)
]
.

A.3 PROOF OF LEMMA 2

Proof 2 From Definition 1, we have, for i ≥ 0,
ei(x, t) = êi(x, t) + ei+1(x, t). (23)

By taking the maximum on the absolute value of equation 23, we get
max

x
|ei(x, t)| ≤ max

x
|êi(x, t)|+max

x
|ei+1(x, t)|. (24)

Similarly, from equation 23, we obtain
êi(x, t) = ei(x, t)− ei+1(x, t) =⇒
max

x
|êi(x, t)| ≤ max

x
|ei(x, t)|+max

x
|ei+1(x, t)|. (25)

Now take 2 ≤ i < n, and suppose the corresponding αi(t) < 1. Then, we can write the two
inequalities in Eqs. equation 24 and equation 25 with the definition of ê∗i (t) in equation 12 and the
expression in equation 11 as {

αi−1(t)ê
∗
i−1(t) ≤ ê∗i (t) + αi(t)ê

∗
i (t)

ê∗i (t) ≤ αi−1(t)ê
∗
i−1(t) + αi(t)ê

∗
i (t).

(26)

By rearranging equation 26, we obtain the lower and upper bounds of γ i
i−1

(t):

αi−1(t)

1 + αi(t)
≤ ê∗i (t)

ê∗i−1(t)
= γ i

i−1 (t)
≤ αi−1(t)

1− αi(t)
, 2 ≤ i < n, (27)

which is well defined because the denominator ê∗i−1 = e∗n−2 > 0 by Assumption 2, and the (RHS)
of equation 27 is always ≥ the (LHS) of equation 27 if 0 ≤ αi(t) < 1 for all 2 ≤ i < n.

A.4 PROOF OF LEMMA 3

Proof 3 For simplicity of presentation, we omit writing the dependent variable t. Assume the con-
ditions in equation 16 are satisfied; then it is true that 0 < α2 < 1. Since both α1, α2 < 1, by
Lemma 2 and Condition equation 16b, we obtain

γ 2
1
≤ α1

1− α2
< 1,

proving the RHS of equation 17.

For the LHS of equation 17, let αi ≤ α2 for all 2 < i < n. Since α2 < 1, then by Lemma 2, we have

γ i
i−1

≤ αi−1

1− αi
≤ αi−1

1− α2
≤ α2

1− α2
. (28)

What remains is to show that RHS of equation 28 is < γ 2
1

. From Condition equation 16c, we have

α2(1 + α2) < α2
1 (29)

< α1(1− α2), (30)
where equation 30 holds by Condition equation 16b. From equation 30, we obtain

α2

1− α2
<

α1

1 + α2
. (31)

By combining Eqs. equation 28 and equation 31, we have

γ i
i−1

<
α1

1 + α2
< γ 2

1
, 2 < i < n.
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A.5 PROOF OF THEOREM 1

Proof 4 Take n → ∞ for Lemma 1, and train ê1 and ê2 such that the sufficient conditions of equa-
tion 16 are met, therefore, γ 3

2
, γ 4

3
, . . . , γn−1

n−2
< γ 2

1
< 1 by Lemma 3. Then we have

|p(x, t)− p̂(x, t)|

≤ ê∗1 lim
n→∞

(
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+

[
γ 2

1
γ 3

2
. . . γn−1

n−2
γ n

n−1

]
+
[
γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

])
= ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+

[
γ 2

1
γ 3

2
. . . γn−1

n−2

ê∗n
ê∗n−1

]
+

[
γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

])
≤ ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ2

2
1
+ · · ·+ γn−2

2
1

+
[
γn−2

2
1

ê∗n
ê∗n−1

]
+

[
γn−2

2
1

e∗n+1

ê∗n−1

])
=

[
ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ2

2
1
+ · · ·+ γn−2

2
1

)]
+
[
ê∗1 lim

n→∞

(
γn−2

2
1

(ê∗n + e∗n+1)

ê∗n−1

)]
. (32)

The first term in equation 32 forms a geometric series, and the second term in equation 32 is zero
as n goes to infinity, because ê∗1, ê

∗
n−1, ê

∗
n, e

∗
n+1 are bounded by construction and ê∗n−1 > 0 by

Assumption 2. Hence,

|p(x, t)− p̂(x, t)| ≤ ê∗1

( 1

1− γ 2
1

)
. (33)

A.6 PROOF OF THEOREM 2

Proof 5 We omit the time variable t in this proof for readability. By Definition 1, the maximum
approximation error maxx |e1(x, ·)| := e∗1. Using the relations of ê1 = e1 − e2, ê

∗
1 ≤ e∗1 + e∗2, the

error bound in Theorem 1 can be upper-bounded by

eB = ê∗1

( 1

1− ê∗2/ê
∗
1

)
≤ (e∗1 + e∗2)

( 1

1− ê∗2/ê
∗
1

)
. (34)

Hence, the gap between eB and the maximum approximation error e∗1 is upper-bounded by

eB − e∗1 ≤ e∗1

( 1

1− ê∗2/ê
∗
1

− 1
)
+ e∗2

( 1

1− ê∗2/ê
∗
1

)
. (35)

Now suppose ê1 approximates e1 sufficiently well such that e2(x, t) = e1(x, t)− ê1(x, t) := δ(x, t),
where δ(x, t) denotes a sufficiently small function for all (x, t) ∈ Ω. Furthermore, suppose ê2
approximates e2 sufficiently well such that ê2(x, t) → e2(x, t) = δ(x, t) for all (x, t) ∈ Ω. Define
δ∗ := maxx |δ(x, ·)|, then ê∗2 → δ∗, and δ∗ → 0 as δ(x, t) → 0 for all (x, t) ∈ Ω. Consequently,
the RHS of equation 35, at the limit, becomes

lim
ê∗2→δ∗,δ∗→0

[
e∗1

( 1

1− ê∗2/ê
∗
1

− 1
)
+ e∗2

( 1

1− ê∗2/ê
∗
1

)]
= lim

δ∗→0

[
e∗1

( 1

1− δ∗/ê∗1
− 1

)
+ δ∗

( 1

1− δ∗/ê∗1

)]
= δ∗ (36)

Lastly, for every ϵ ∈ (0,∞), take δ∗ to be smaller than ϵ, then the proof is completed.
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A.7 PROOF OF COROLLARY 1

Proof 6 The proof is a natural extension to that of theorem 1. Assume m > 1 be a finite integer. By
Definition 1, we have

p(x, t)− p̂(x, t) = lim
n→∞

n∑
i=1

êi(x, t) + en+1(x, t)

=

m−1∑
i=1

êi(x, t) + lim
n→∞

( n∑
i=m

êi(x, t) + en+1(x, t)
)

=⇒ p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t) = lim
n→∞

( n∑
i=m

êi(x, t) + en+1(x, t)
)

=⇒ |p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| = | lim
n→∞

( n∑
i=m

êi(x, t) + en+1(x, t)
)
|

=⇒ |p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| ≤ lim
n→∞

n∑
i=m

ê∗i (x, t) + e∗n+1(x, t)

≤ ê∗m(t)
(
1 +

ê∗m+1(t)

ê∗m(t)
+

ê∗m+2(t)

ê∗m(t)
+ · · ·+ ê∗n(t)

ê∗m(t)
+

e∗n+1(t)

ê∗m(t)

)
= lim

n→∞
ê∗m

(
1 + γm+1

m
+ γm+1

m
γm+2

m+1
+ . . .+ γm+1

m
γm+2

m+1
. . . γ n

n−1

e∗n+1

ê∗n

)
(37)

Under the same condition in lemma 3, but now impose on αm(t) and αm+1(t) such that 0 <
αm(t) < 1 and 0 < αm+1(t) < 1 − αm(t), αm+1(t)(1 + αm+1(t)) < α2

m(t). Then γm+1
m

(t) < 1

is greater than all the other γm+2
m+1

(t), γm+3
m+2

(t), . . . . Thus, equation 37 is bounded by

|p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| ≤ lim
n→∞

ê∗m(t)
(
1 + γm+1

m
+ γ2

m+1
m

+ · · ·+ γn−1
m+1
m

+ γn−1
m+1
m

e∗n+1

ê∗n

)
=

[
ê∗m(t) lim

n→∞

(
1 + γm+1

m
+ γ2

m+1
m

+ · · ·+ γn−1
m+1
m

)]
+

[
ê∗m(t) lim

n→∞
αn−1(t)γ

n−1
m+1
m

(t)
]
. (38)

Since ê∗m(t) is bounded, γm+1
m

< 1, and ∃αn−1 ≤ αm+1 < 1, the first term in equation 38 forms a
geometric series, and the second term goes to zero. Hence .equation 38 becomes

|p(x, t)− p̂(x, t)−
m−1∑
i=1

êi(x, t)| ≤ ê∗m(t)
( 1

1− γm+1
m

(t)

)
=⇒

p(x, t)− p̂(x, t) ∈
[m−1∑

i=1

êi(x, t)− ê∗m(t)
( 1

1− γm+1
m

(t)

)
,

m−1∑
i=1

êi(x, t) + ê∗m(t)
( 1

1− γm+1
m

(t)

)]
.

(39)

Now take n = m+ 1, then the proof is completed.

A.8 PROOF OF COROLLARY 2

Proof 7 For every t ∈ R≥0, let 0 < α1(t) < 1. Suppose there exists a ”virtual” ê2(x, t) such that
ê2(x, t) = e2(x, t) for all (x, t) ∈ Ω ; this implies that the third error e3(x, t) is zero. Hence, the
series in equation 9 becomes finite

|p(x, t)− p̂(x, t)| ≤ ê∗1(t) + ê∗2(t) + 0

= ê∗1(t)
(
1 + γ 2

1
(t)

)
. (40)
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By the virtual ê2 = e2, and the relation e∗2 = α1ê
∗
1, we have

max
x

|ê2(x, t)| = max
x

|e2(x, t)|

=⇒ ê∗2(t) = e∗2 = α1(t)ê
∗
1(t)

=⇒ γ 2
1
(t) = α1(t). (41)

Combined γ 2
1
= α1 with equation 40, we prove that

|p(x, t)− p̂(x, t)| ≤ ê∗1

(
1 + γ 2

1
(t)

)
= ê∗1(t)

(
1 + α1(t)

)
< ê∗1(t)(1 + 1) = 2ê∗1(t). (42)

It is clear that eS(t) is not arbitrary tight because of the constant 2.

A.9 PROOF OF PROPOSITION 1

Proof 8 Let x ∈ Rn. By (Mishra & Molinaro, 2023, theorem 2.6), we know

εG := ∥e1 − ê1∥W 1,q ≤ CpdeεT + CpdeC
1
q

quadN
−β
q , (43)

where Cpde > 0 are the stability estimates of the first error PDE associated with the W 1,q norm,
q ≥ 2, and Cquad, β > 0 are the constants according to the quadrature sampling points. For
expression simplicity, denote e2 := e1 − ê1. Since e1(x, t) and ê1(x, t) are bounded, we know there
exists a universal embedding constant Cembed (Mizuguchi et al., 2017) such that

|e2(x, t)| ≤ Cembed∥e2(x, t)∥W 1,q . (44)

Hence, we have

|e2(x, t)| ≤ Cembed

(
CpdeεT + CpdeC

1
q

quadN
−β
q

)
. (45)

Using the definition of α1(t) :=
maxx |e2(x,t)|

ê∗1(t)
, we obtain

α1(t) ≤
maxx |e2(x, t)|
mint ê∗1(t)

≤ 1

mint ê∗1(t)

[
Cembed

(
CpdeεT + CpdeC

1
q

quadN
−β
q

)]
. (46)
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B ADDITIONAL RESULTS OF NUMERICAL EXPERIMENTS

Here, we report training details and additional results of the numerical experiments. The baseline
training scheme is done by randomly selecting space-time points at every training epoch. The other
training scheme employs adaptive sampling and residual gradient loss suggested by (Lu et al., 2021)
and (Yu et al., 2022). Adaptive sampling exploits the infinite training data property of physics-
informed learning by automatically adding the space-time points whose residual values are large.
Residual gradient loss is an additional physics-informed loss term that regularizes the change of
residual with respect to space and time; it has been shown to stabilize and accelerate the training.
We consider this regularization because the residual of p̂, i.e. D[p̂], is used as inputs to the subsequent
training of ê1. For completeness, we implement a normalized loss function based on equation 8 to
train êi for all i ≥ 0:

L = w0L0 + wrLr + w∇rL∇r, N = max
xk∈X′

|ei(xk, 0)|

L0 =
1

N0

N0∑
j

∥ êi(xj , 0)− ei(xj , 0)

N
∥22, Lr =

Vol(T )
Nr

Nr∑
j

∥D[êi(xj , tj)] + ri(xj , tj)

N
∥22,

L∇r =
Vol(T )
Nr

Nr∑
j

∥∇
(D[êi(xj , tj)] + ri(xj , tj)

N

)
∥22, (47)

where Vol(T ) is the duration of the time interval, L∇r is the loss term of residual gradient, and N is
a normalization constant. The baseline training has no regularization, i.e., w∇r = 0. Both training
schemes use Adam optimizer with initial learning rate 10−3 and exponentially decay learning rate.

B.1 1D LINEAR SDE

We considered an 1D system (Ornstein-Uhlenbech process) dx = −0.2xdt+
√
0.4dw. Suppose the

state is at x− at t−1, then the analytical solution of p(x, t) is p(x, t) =
√

0.2
0.4π(1−e−0.4t) exp

(
−

0.2(x−x−e−0.2t)2

0.4(1−e−0.4t)

)
. To avoid the initial distribution of a delta function δ(x − x−), the initial dis-

tribution p0(x) = p(x, t = 1;x−1 = 1) is used. In this experiment, the input domain is:
x ∈ [−6, 6], t ∈ [1, 3]. p̂(x, t) and ê1(x, t) are 2 hidden layers and 32 neurons MLPs using Softplus
activation. Both neural networks initialize the weights using kaiming normal and 0.01 bias. The
baseline training scheme is used, i.e., randomly selected N0 = 500, Nr = 500 space-time points
are sampled at each epoch. The maximum training epochs for both p̂, ê1 are 2k. The weights of the
loss function in equation 47 are w0 = 1, wr = 1 and w∇r = 0. Training loss of p̂(x, t) and ê1(x, t)
are shown in Fig. 5a. The artificial ê2(x, t) constructed by perturbing the true e2(x, t) is shown in
Fig. 5b.
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(a) Training loss of p̂(x, t) and ê1(x, t).
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(b) e2(x, t) and ê2(x, t).

Figure 5: Training loss and synthesized ê2(x, t).
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B.2 1D NONLINEAR SDE

Firstly, the ”true” PDF p(x, t) is obtained by extensive Monte-Carlo simulation of the SDE at some
time instances using Euler Scheme; ∆t = 0.0005 s, ∆x = 0.06, and 109 samples. This Monte-
Carlo simulation took 100 hours on the MacBook Pro machine. The small time step and large
samples are necessary to create accurate probability densities. Secondly, the result in Fig. 3(a)-(d) is
obtained from p̂(x, t) using a 3 hidden layers 50 neurons Softplus activation MLP, and ê1(x, t) using
a 6 hidden layers 50 neurons Softplus activation MLP. Both neural networks initialize the weights
using kaiming normal and 0.01 bias. The training scheme employs adaptive sampling and residual
gradient loss, i.e., w0 = wr = w∇r = 1. At the beginning of training, N0 = 1000, Nr = 1000
space-time points are sampled from a uniform distribution. During training, 5 additional initial
samples and 5 residual samples are added every 100 epochs. The maximum epochs for training p̂
and ê1 are 15000 and 25000, respectively. Figure 6a and Fig. 6b show the space-time samples (as
blue dots) used during training. Figure 6c plots the training loss of p̂(x, t) and ê1(x, t); periodic
spikes exist due to the adaptive sampling.
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(c) training loss of p̂(x, t) and ê1(x, t).

Figure 6: Residuals and training loss of p̂(x, t) and ê1(x, t).
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The results in Fig. 3(e)-(f) are obtained by training on the Linux desktop with GPU. p̂(x, t) is a 5
hidden layer 50 neurons MLP using GeLU activation for the hidden layers and Softplus activation
for the final output (to ensure non-negative probability density). ê1(x, t) is a 5 hidden layer 50
neurons MLP using GeLU activation for the hidden layers. Both neural networks initialize the
weights using kaiming normal and 0.01 bias. The adaptive sampling and residual gradient loss are
employed (w0 = wr = w∇r = 1). At the beginning of training p̂(x, t), N0 = 500 and Nr = 600
space-time points are sampled uniformly, together with a deterministic set of 40 initial points and
1600 residual points from a uniform grid. One additional initial point and one residual point are
added during training of p̂(x, t). At the beginning of training ê1(x, t), N0 = 500 and Nr = 1000
space-time points are sampled uniformly, together with a deterministic set of 40 initial points and
1600 residual points from a uniform grid. One additional initial point and ten residual points are
added during training of ê1(x, t). Both neural networks have maximum 50000 training epochs. The
maximum training time of p̂(x, t) is 778 seconds; the maximum training time of ê1(x, t) is 49643
seconds. Below from Fig. 7 to Fig. 12, we report the first order temporal error bound results of all
the six trials, each using different random seed.
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Figure 7: First order temporal error bounds of GeLU neural networks, random seed= 0.
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Figure 8: First order temporal error bounds of GeLU neural networks, random seed= 1.

Lastly, we report the first order temporal error bound results if the neural networks are trained
without residual gradient regularization. In this training setting, the weights of the loss are set
to w0 = 1, wr = 2 and w∇r = 0, and the maximum training epochs are also 50000 for both
p̂ and ê1. Figure 13 compares the training results of using adaptive sampling and residual gra-
dient regularization (top row) vs only using adaptive sampling (bottom row). The former has
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Figure 9: First order temporal error bounds of GeLU neural networks, random seed= 2.
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Figure 10: First order temporal error bounds of GeLU neural networks, random seed= 3.

maxt eS(t) = 0.115,maxt α1(t) = 0.6, and the latter has maxt eS(t) = 0.158, α1(t) = 0.917.
In terms of learning time, the latter is faster; it takes 225 seconds for p̂(x, t) and 866 seconds for
ê1(x, t), while training using both residual gradient regularization and adaptive sampling is slower:
p̂(x, t) for 715 seconds and ê1(x, t) for 3868 seconds.
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Figure 11: First order temporal error bounds of GeLU neural networks, random seed= 4.
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Figure 12: First order temporal error bounds of GeLU neural networks, random seed= 5.
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Figure 13: Comparison of different training schemes. Top: adaptive sampling and residual gradient
regularization. Bottom: only adaptive sampling.
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B.3 1D SDE WITH STATE-DEPENDENT NOISE

We considered a 1D SDE with state-dependent noise (also known as geometric brownian motion)
dx = (ax)dt + (bx)dw, where x ∈ R is the state. The associated FP-PDE is ∂p

∂t + ∂[axp]
∂x −

1
2b

2 ∂2[x2p]
∂x2 = 0. By (Shreve et al., 2004), a special analytical solution of the FP-PDE exists if

x > 0: p(x, t) = 1/(bx
√
2πt) exp(−(log x

x− − νt)2/(2b2t)), where ν = a − b2

2 , and δ(x − x−)
is the initial delta distribution. Similar to 1D linear SDE, we let t0 = 1 such that p0(x) is not
a delta function (boundedness assumption). The input domain is x ∈ [90, 110], t ∈ [1, 6]; the
parameters are (a, b, x0) = (0.002, 0.01, 100). p̂(x, t) is a 5 hidden layers 32 neurons MLP using
Softplus activation. ê1(x, t) is a 5 hidden layers 64 neurons MLP using Softplus activation. Since
the state domain is large x ∈ [90, 100], p̂(x, t) and ê1(x, t) transform the state input to x̄ = (x −
100)/100, then pass x̄ to the first hidden layer. Both neural networks initialize the weights using
kaiming normal and 0.01 bias. The adaptive sampling and residual gradient loss is employed
during training, i.e., w0 = wr = w∇r = 1. At the beginning of training, N0 = 1000 initial
points are sampled, half of which are sampled from the initial Gaussian distribution, the others are
sampled from uniform distribution; Nr = 1000 residual space-time points are sampled from uniform
distribution. During training, one residual space-time point is added every 100 epochs. Figs. 14a
and 14b plot the solution, error, and the neural network approximations; p̂(x, t) and ê1(x, t) are
trained with 0.0045 loss for 30 seconds and 0.005 loss for 598 seconds, respectively. The first order
temporal error bound at t = {2.0, 4.0, 6.0} is illustrated in the solution and error spaces in Fig. 14c
and Fig. 14d, respectively. Again, eS(t) successfully constructs a tight temporal error bound if
α1(t) condition is satisfied. Figure 15a plots the training residuals of the neural network at specific
time instances; By Definition 1, we desire D[ê1(x, t)] → −D[p̂(x, t)]. Due to adaptive sampling,
periodic spikes are present in Fig. 15b as well.
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Figure 14: First order temporal error bound of the 1D SDE with state-dependent noise.
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Figure 15: Residuals and training loss of p̂(x, t) and ê1(x, t).
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B.4 NONLINEAR INVERTED PENDULUM

We considered an inverted pendulum system given by dx = f(x)dt + Bdw, where x =

[θ, θ̇]T ∈ R2 is the state, f(x) = [x2,− g
l sin(x1)]

T , g is the gravity acceleration, l is
the length of the inverted pendulum, B ∈ R2×2, and dw ∈ R2. The initial distribu-
tion is a multivariate Gaussian x0 ∼ N (µ0,Σ0). In this experiments, the input domain is
x1 ∈ [−3π,−3π], x2 ∈ [−3π,−3π], and t ∈ [0, 5]. The parameters are (g, l, B, µ0,Σ0) =
(9.8, 9.8, [0.5, 0.0; 0.0, 0.5], [0.5π, 0.0]T , [0.5, 0.0; 0.0, 0.5]). Similarly, p(x, t) is obtained by
Monte-Carlo simulation of the SDE at some time instances using Euler Scheme; ∆t = 0.01 s,
∆x1 = 0.3768,∆x2 = 0.3768, and 108 samples. This Monte-Carlo simulation took 13 hours on
the MacBook Pro machine. p̂(x, t) is a 5 hidden layers 32 neurons MLP using Softplus activation.
ê1(x, t) is a 7 hidden layers 32 neurons MLP using Softplus activation. Both neural networks ini-
tialize the weights using kaiming normal and 0.01 bias. Adaptive sampling and residual gradient
is used during training, again, w0 = wr = w∇r = 1. N0 = 500 initial points and Nr = 1500
residual space-time points are sampled uniformly at the beginning of training. Additional 5 initial
and 5 residual points are added every 100 epochs during training. Figure 16 plots the p(x, t) in the
first row, and the trained p̂(x, t) in the second row. The approximation error is plotted in the first
row in Fig. 17, while the second row shows the first error approximation ê1(x, t). Fig. 18 shows a
3d surface plot of the absolute errors |e(x, t)|, which are upper-bounded by the surface of the eS(t).
Figure 19 plots the training loss of p̂(x, t) and ê1(x, t).
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Figure 16: p(x, t) and p̂(x, t) at t = {1.0, 2.0, 3.0, 4.0, 5.0}.
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Figure 17: e(x, t) and ê1(x, t) at t = {1.0, 2.0, 3.0, 4.0, 5.0}.
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Figure 18: Absolute errors |e(x, t)| and first order temporal error bounds eS(t) (illustrated as the
green surface) at t = {1.0, 2.0, 3.0, 4.0, 5.0}.
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Figure 19: training loss of p̂(x, t) and ê1(x, t).
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B.5 1D HEAT EQUATION

We considered an one-dimensional heat equation ut−uxx = 0 with boundary condition, u(±1, t) =
0,∀t. Let t0 = 0, and the initial distribution u0(x) = − sin(πx). In this experiments, the input
domain is x ∈ [−1, 1], t ∈ [0, 1]. For this particular problem, analytical solution exists: u(x, t) =
− sin(πx) exp−π2t, which allows us to validate the first order temporal error bound using trained
û(x, t), ê1(x, t). û(x, t) is a 3 hidden layers 64 neurons MLP using Tanh activation. ê1(x, t) is a 5
hidden layers 100 neurons MLP using Tanh activation. Both neural networks initialize the weights
using xavier uniform and zero bias. The baseline training scheme (w0 = wr = 1) is used with
N0 = 500, Nr = 500 random samples at each epoch. Figure 21 show the residuals and training loss
of the neural networks. Again, we desire D[ê1(x, t)] → −D[û(x, t)] for good training.
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Figure 20: first order temporal error bound of 1D heat equation.
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Figure 21: Residuals and training loss of û(x, t) and ê1(x, t).
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B.6 HIGH-DIMENSIONAL ORNSTEIN-UHLENBECK

We considered the generalization of the 1D Ornstein-Uhlenbeck process to n-dimension with time-
varying dynamics: dx = (An(t)x)dt + Bndw, where x,w ∈ Rn, and the initial distribution is
multi-variate Gaussian p(x, 0) ∼ N (µn,Σn). For this system, the probability density functions over
time remains Gaussian p(x, t) ∼ N (µn(t),Σn(t)), but there is no close-form solution to µn(t) and
Σn(t) in general (Särkkä & Solin, 2019). Here, we use Euler forward numerical integration (0.0001
seconds time step) to obtain the ”true” PDF. The solution domain we tested is Ω = [−1, 1]n× [0, 1].

For the 3D OU, the dynamics is A3 =

[
0.3 0.0 0.0
0.0 0.3 0.0
−0.1 0.0 0.3

]
, B3 = diag([0.05, 0.05, 0.05]) and

the intial distribution is µ3 = [−0.2, 0.2, 0.0],Σ3 = diag([0.1, 0.1, 0.1]). For the 3D time-

varying OU, the dynamics is Ã3(t) =

[
0.3 0.0 0.0
0.0 0.3 0.0
−0.1 0.0 0.3

]
+ (e−t3)

[
0.0 0.5 0.0
0.0 0.0 0.5
0.0 −0.3 0.0

]
with

the same noise coupling and initial distribution as the 3D OU. For the 7D OU, the dynam-
ics is an almost diagonal A7 = diag([0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]) with A7[7, 1] =
−0.01, B7 = diag([0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]). The initial distribution is µ7 =
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],Σ7 = diag([0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12]). For the 10D
OU, the dynamics is an almost diagonal A10 = diag([0.05, ...0.05]) with A10[10, 1] = −0.01,
B10 = diag([0.05, ..., 0.05]). The initial distribution is zero mean µ10 = [0.0, ..., 0.0],Σ10 =

diag([0.11, ..., 0.11]). For the 10D time-varying OU, the dynamics is Ã10(t) = A10 +(e−t3)∆A10,
where ∆A10 is first initialing a zero 10 by 10 matrix, then setting ∆A10[1, 2] = 0.1,∆A10[2, 3] =
0.1, and ∆A10[10, 2] = −0.1. The noise coupling is the same as the 10D OU, the initial distribution
is µ̃10 = [−0.2, 0.1, 0.2, 0.05,−0.25, 0.22, 0.18,−0.12, 0.01, 0.04], and the covariance is the same
as well. For all the experiments (3D-10D), we use the same neural networks: p̂(x, t) and ê1(x, t) are
5 hidden layers 32 neurons MLP using GeLU activation; the final output of p̂ is passed into Softplus
to ensure non-negative value. Both neural networks initialize the weights using kaiming normal
and 0.0 bias. The adaptive sampling is employed during training, i.e., w0 = wr = 1. At the be-
ginning of training, N0 = Nr = 2000 points are sampled for p̂, and N0 = Nr = 300 points are
sampled for ê1. Additional 40 samples are added for both trainings if the loss of the current epoch
is smaller than 0.95 times the minimum loss. After training, we evaluate the results at uniform time
instances t = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For each time instances, the evaluated state points are
chosen by (1) a deterministic uniform grid (50 × 50 × 50) for the 3D cases, or (2) uniformly 107

samples at random for the 7D and 10D cases. Figs. 22- 26 report (i) the first order temporal error
bound eS(t) versus the maximum error maxx |e1(x, t)| for all time (normalized by maxx |p(x, t)|
as used in Table. 2), (ii) the condition α1(t) < 1, ∀t ∈ T , and (iii) the training history of p̂ and ê1.
Lastly, Figs. 27 and 28 visualize the PDF p(x, t), the PDF approximation p̂(x, t), the approximation
error e1(x, t), and the first error approximation ê1(x, t) as 3D contour plots for the 3D Time-varying
OU.
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(b) training loss of p̂(x, t) and ê1(x, t).

Figure 22: Results of the first-order temporal error bound of 3D OU.
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(b) training loss of p̂(x, t) and ê1(x, t).

Figure 23: Results of the first-order temporal error bound of 3D Time-varying OU.
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Figure 24: Results of the first-order temporal error bound of 7D OU.
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Figure 25: Results of the first-order temporal error bound of 10D OU.
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(b) training loss of p̂(x, t) and ê1(x, t).

Figure 26: Results of the first-order temporal error bound of 10D Time-varying OU.
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Figure 27: 3D Time-varying OU: PDF p and the neural network approximation p̂ for different t.
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Figure 28: 3D Time-varying OU: approximation error e1 and the neural network approximation ê1
for different t.
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