Under review as a conference paper at ICLR 2025

ERROR BOUNDS FOR DEEP LEARNING-BASED UN-
CERTAINTY PROPAGATION IN SDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic differential equations are commonly used to describe the evolution of
stochastic processes. The uncertainty of such processes is best represented by the
probability density function (PDF), whose evolution is governed by the Fokker-
Planck partial differential equation (FP-PDE). However, it is generally infeasible
to solve the FP-PDE in closed form. In this work, we show that physics-informed
neural networks (PINNs) can be trained to approximate the solution PDF using
existing methods. The main contribution is the analysis of the approximation er-
ror: we develop a theory to construct an arbitrary tight error bound with PINNs.
In addition, we derive a practical error bound that can be efficiently constructed
with existing training methods. Finally, we explain that this error-bound theory
generalizes to approximate solutions of other linear PDEs. Several numerical ex-
periments are conducted to demonstrate and validate the proposed methods.

1 INTRODUCTION

Stochastic differential equations (SDEs) are widely used to model the evolution of stochastic pro-
cesses across various fields like sciences, engineering, economics, and finance. In many of these
applications, particularly in safety-critical domains, a key concern is understanding how uncertainty
of the process modeled by SDE propagates over space and time. This uncertainty is often repre-
sented by a probability density function (PDF) and is governed by the Fokker-Planck partial dif-
ferential equation (FP-PDE). However, solving the FP-PDE is generally computationally expensive
and prone to numerical errors, except in simple cases (Spencer & Bergman, 1993} |Drozdov & Mo-
rillo} [1996; Tabandeh et al.,[2022). Recent advancements suggest using deep-learning frameworks,
called physics-informed neural networks (PINNs), to approximate PDE solutions with notable suc-
cess (Sirignano & Spiliopoulos, 2018 [Lu et al. [2021). Despite their effectiveness, PINNs are still
subject to approximation errors, a crucial concern in safety-critical systems. In this work, we tackle
this challenge by developing a method to approximate the PDF of an SDE using PINNs and rigor-
ously bound the approximation error.

Recent works on using PINNs to approximate solutions to PDEs typically analyze approximation
errors in terms of total error, representing the cumulative error across all space and time (De Ryck
& Mishra, [2022bjaj [Mishra & Molinaro, |2023; [De Ryck et al.| [2024). While this approach may be
useful in some applications, it is less informative for SDEs and uncertainty propagation in stochastic
processes. Moreover, total error bounds are often overly loose, sometimes exceeding the actual
errors by several orders of magnitude. Crucially, these bounds do not provide insight into the worst-
case approximation error at specific time instances or within particular subsets of space, which
is essential in many stochastic systems. For example, in autonomous driving scenarios involving
pedestrian crossings, accurately prediction and bounding the probability of collision requires precise
reasoning over specific time instances and spatial regions. Loose over-approximations can lead to
undesirable behaviors, such as sudden braking.

In this work, we show how PINNs can be used to approximate PDFs of processes modeled by
SDEs and, more importantly, introduce a method for tightly bounding the approximation error as a
function of time and space. Our key insight is that the error is related to the residual of the FP-PDE
and is governed by the same equation. Thus, a second PINN can be used to learn the error, with
its own error also following the FP-PDE. This leads to a recursive formulation of error functions,
each of which can be approximated using a PINN. We establish sufficient training conditions under

Under review as a conference paper at ICLR 2025

which this series converges with a finite number of terms. Specifically, we prove that two PINNs
are enough to obtain arbitrarily tight error bounds. Additionally, we derive a more practical bound
requiring only one error PINN at the cost of losing arbitrary tightness, and provide a method to verify
its sufficient condition. Finally, we illustrate and validate these error bounds through experiments
on several SDEs, supporting our theoretical claims.

In short, the main contribution is five-fold:

» a method for approximating the PDF of processes modeled by SDEs using PINN,

* a novel approach to tightly bound the approximation error over time and space through a
recursive series of error functions learned by PINNG,

* a proof that this recursive process converges with only two PINNs needed for arbitrarily
tight bounds,

* the derivation of a more practical error bound requiring just one PINN, along with a method
to verify its sufficiency, and

* validation of the proposed error bounds through experiments on several SDEs.

1.1 RELATED WORK

Research on approximating solutions to PDEs using PINNs often focuses on estimating the total
error, which represents the cumulative error across all time and space. For instance, (Mishra &
Molinarol |2023)) provide an abstract upper bound on the total error, expressed in terms of training
error, the number of training samples, and constants related to the stability of PDEs. Their numerical
experiments reveal that this total error bound is loose, exceeding the actual errors by nearly three or-
ders of magnitude. Similarly, De Ryck & Mishral (2022a) consider FP-PDE equations deriving from
linear stochastic differential equations. They propose an abstract approach to bound the total error
in terms of training error and some constants related to the PDEs, but they do not present numerical
experiments. In another approach, (De Ryck & Mishra, [2022b)) propose a general framework to
derive different types of total error bounds for PINNs and operators, while (De Ryck et al.| [2024)
estimate the total error for Navier-Stokes PDEs. In contrast to these works, this work emphasizes
bounding the worst-case error at any specific time. This focus is particularly valuable in practical
applications of stochastic systems.

Error analysis is a well-established area focused on demonstrating the approximation capabilities
of neural networks. For example, Hornik| (1991) proves that a standard multi-layer feed-forward
neural network can approximate a target function such that the generalization is arbitrarily small.
Yarotsky| (2017 considers the worst-case error and shows that deep ReLU neural networks are
able to approximate universal functions in the Sobolev space. More recently, deep operator nets
(DeepONet) have been suggested to learn PDE operators, with (Lanthaler et al.||2022)) proving that
for every € > 0, there exists DeepONets such that the total error is smaller than e. While these
studies establish that the approximation error (whether in terms of average or worst-case) can be
made arbitrarily small, they do not address the critical question: what are the error bounds for a
given approximate solution? This is the central issue tackled by this work.

Error estimates have also been studied when neural networks are trained as surrogate models for
given target functions. For instance, Barron|(1994) derives the total error between given the training
configurations and the target function. More recently, |Yang et al.| (2022)) propose to estimate the
worst-case approximation error given the target function. A fundamental difference between our
work and these studies is that we do not have the target function or model.

Solving PDEs is a well-studied area with various established approaches. For the FP-PDE equation,
numerical methods, such as the finite elements method, have been employed (Spencer & Bergman,
1993). Additionally, |Chakravorty| (2006) uses Galerkin projection method for solution approxima-
tion. Recent works (Khoo et al.,2019;Song et al.,2023; [Lin & Ren, [2024) present numerical meth-
ods for approximating transition probability between two regions, which is also governed by the
FP-PDE. For general PDEs, |Zada et al.| (2021) propose an analytical method to obtain approximate
solutions based on optimal auxiliary function. While these studies demonstrate accurate approxima-
tions through posterior evaluation, they can be computationally expensive and often lack the ability
to quantify and bound the error. In contrast, our method for approximating solutions to the FP-PDE
using PINNs is computationally tractable and centers on constructing error bounds for them.

Under review as a conference paper at ICLR 2025

2 PROBLEM FORMULATION

The aim of this work is uncertainty propagation with quantified error bounds for continuous time
and space stochastic processes using deep neural networks. We specifically focus on stochastic
processes described by the following (possibly nonlinear) Stochastic Differential Equations (SDE),

da(t) = f(z(t), t)dt + g(z(t),t)dw(t), (1
where t € T' C Ry is time, () € X C R" is the state of the system at time ¢, and w(t) € R™
is a standard Brownian motion. For 2 = X x T, function f : 2 — R" represents the deterministic
evolution of the system, and function g : — R™*™ is a term that defines the coupling of the
noise. We assume that f(x,t) and g(z,t) are locally Lipschitz continuous in x, and denote the i-th
dimension of f and (j, k)-th element of g by f; and g;, respectively. The initial state =(0) is a
random variable distributed according to a given probability density function (PDF) py : X — R,
i.e., z(0) ~ pg. We assume that pg is bounded and sufficiently smootlﬂ

The solution to the SDE in equation [I] is a stochastic process & with a corresponding PDF p :
1 — Rx¢ over space and time, i.e., (t) ~ p(-,t) (@ksendal, 2003). PDF p is governed by the
Fokker-Planck (FP) partial differential equation (PDE):

8p x,t) "
+Za Vip(e, 1) Z axlaxj [ngw(w t>] 0, 2

z 1,5=1 k=1

and must satisfy the initial condition
p(z,0) = po(x) Vo e X. 3)
To simplify notation, we denote by D[] the differential operator associated with the FP-PDE:

1= 3 gt S

Then, equation 2] and equation [3]can be rewritten in a compact form as
Dlp(e,t)] =0, subjectto p(x,0) = po(x). 4)

Note that, since f and g are assumed to be locally Lipschitz continuous, the PDE in equation [4] is
well-posed, i.e., there exists a sufficiently smooth and unique solution p (Evans, [2022), (Karatzas &
Shreve, 2014, Ch. 5, Theorem 2.5).

Computation of p in closed form is generally not possible, and even numerical approaches are limited
to simple SDEs (Spencer & Bergman, 1993} Drozdov & Morillol (1996} [Tabandeh et al.| [2022). In
this work, we focus on using PINNs to approximate p, and crucially, we aim to formally bound the
resulting approximation error.

Problem 1 Given stochastic process x(t) described by the SDE in equation || a bounded subset
X' C X, and a time interval T, train a neural network p(z,t) that approximates p(z,t), and for
everyt € T construct ep : T — Rxq such that

sup |p(z,t) — p(x,t)| < ep(t). 5)
a:EX/

In our approach, we exploit the governing equation of p in equation 4 for both training for p and for
its error quantification. Specifically, we first show that existing methods for training PINNs to ap-
proximate solutions of PDEs can be adapted to approximate p well if the training loss is sufficiently
small. Then, we show that the resulting approximation error can be written as an infinite series of
approximate error functions, each of which satisfying a PDE similar to equation 4} This implies
that each error function itself can be approximated using a PINN. Then, we derive conditions, under
which only a finite number of such PINNSs is needed to obtain an error bound e g (t) with guarantees.

Remark 1 While we focus on p being a neural network, our method of deriving temporal error
bound ep(t) is not limited to neural networks and generalizes to any sufficiently smooth function p
that approximates the true solution p.

'at least twice continuously differentiable with respect to z.

Under review as a conference paper at ICLR 2025

3 APPROXIMATING PDF via PINN

Given the PDE in equation] as common in physics-informed deep learning, we approximate p by
learning a neural network p(z,t; 0), where 6 represents the parameters of the neural network. For
training, spatial-temporal data points {(xj,O)j}éy:(’l, {(xj,tj)j};y;l C Q, for some Ny, N, € N,
are sampled, and the loss function is derived from the governing physics in equation @] as £ =
woLoy + w,L,, where wg, w, € RT are the weights, and

No N,
1 R 1 .
Lo= - > llpo(es) = oz, 000113, Lr = 5= Y _IIDI(; 15 0)][15. (6)
j=1 T j=1

The loss function in equation[6|quantifies the deviation of the true and approximate solution in terms
of the boundary condition (L) and the infinitesimal variation over space and time (£,.) (Sirignano
& Spiliopoulos, 2018). The parameters of p(x, t; #) are learned by minimizing 6* = arg min L.

Assumption 1 p is assumed to be at least twice continuously differentiable with respect to x and
continuously differentiable with respect to t with bounded derivatives.

Assumption|[]is present because p is trained by the physics-informed loss in equation[6} in which the
second term L, requires the computation of the first and second derivatives with respect to time and
space, respectively. To satisfy Assumption[I] smooth activation functions (e.g., Tanh and Softplus)
can to be used in the architecture of p(x, t;6). For instance, this assumption is satisfied by a fully
connected NN with twice differentiable activation functions.

Our training approach for p follows existing methods to approximate PDE solutions using PINNss;
see Appendix [B|for more details. The key difference is that we provide error bounds on the approx-
imation error as detailed in the next section.

4 BOUNDING APPROXIMATION ERROR

In this section, we derive bounds for the approximation error e(x,t) := p(x,t) — p(x,t). We first
characterize e(x,t) as a series of approximate solutions to PDEs. Then, we show that, by training
just two PINNs under certain sufficient conditions, the series can be bounded, resulting in arbitrary
tight bound on e(z,¢). While these conditions are feasible, they may be challenging to verify in
practice. To that end, we finally introduce a more practical bound that requires training of only one
PINN, albeit at the cost of losing arbitrary tightness. All the proofs are provided in the appendix.

Note that FP-PDE operator D is a linear operator; hence, by applying it to e(x, t), we obtain:
Dle] = Dlp — p] = Dlp] — D[p].

As D[p] = 0, we can see that the error is essentially related to the residue of D[p]. Then, we can
define the governing PDE of e(z, t) as

Dle(x,t)] + D[p(z,t)] =0 subjectto e(x,0) = po(z) — p(x,0). (7

Hence, using a similar approach as in Section |3, a PINN can approximate e(x,t) in equation
Based on this, we can define the i-th error and its associated approximation in a recursive manner.

Definition 1 (i-th error and approximation) Let eq := p and éy := p. We define, for i > 1, the

i-th error to be e;(x,t) = e;—1(x,t) — é;_1(x, t), where each é; is a smooth, bounded function that
is constructed via a PINN that approximates e; governed by the recursive PDE (see Appendix[A.1):

Dlei(z,t)] + ZD[éj,l(:r,t)] =0 subjectto e;(x,0)=¢e;—1(x,0) —é&_1(x,0). (8)
j=1

By this construction, the approximation error e(x, t), for every choice of n > 0, is given by

e(z,t) = p(z,t) — p(x,t) = Z éi(z,t) + ent1(x,t).)
i=1

~

Under review as a conference paper at ICLR 2025

In the remainder of this section, we derive upper bounds for the right-hand side of equation 9]

First, we express how well é; approximates the i-th error e; by defining the relative approximation
factor «v;(t) as
maXxXgecx: |€i(xv t) - él(l', t)'

() = (10)

maxgex |€;(x,t)|
Recall from Def. |I|that e; — é; = e;+1. Hence, equation |10|can be written in a recursive form as

max |e;+1 (2, ¢)| = ai(t) max [&;(z, ¢)], (11)
which relates the unknown (¢ + 1)-th error to the i-th error approximation.

Remark 2 By the definition of o;(t) in equation[I0} it holds that o;(t) > 0 foralli > 1 and t € T.

Now let e} (t), & (t) denote the maximum of e;(x, t), é;(x,t) over subset X’ C X, respectively, i.e.,

e

i(t) = maxlei(z,?)], & (t) := max|éi(z,?)]. (12)

Recall that each é;(x,t) can be represented using a PINN. Hence, it is safe to assume that the
absolute value of its upper-bound over set X' is strictly greater than zero in finite-time training.

Assumption 2 Assume that, for all 1 < i <n, éf(t) > 0.
Then, the following lemma upper-bounds the approximation error e(z, t) using €} (¢).

Lemma 1 Consider the approximation error e(z,t) = p(x,t) — p(,t) in equation[9with n > 2,
and the upper-bounds ¢} (t) for 1 < i < n over set X' C X in equation[I2} Define ratio

i1 (t)

e
i1 (t) 1= 13
Then, under Assumption[Z] it holds that, Vx € X',
n m-—1 e n—2
e(z,t gé*t<1+ yie () + —H yﬁt). (14)
el <ei0(1+ 3 T+ 22 [T)
Next, we derive an upper- and lower-bound for the ratio y.+1 (¢) in equationusing a; ().
Lemma 2 [f the relative approximation factors «;(t) < 1 for all 2 < i < n, then
i—1(t i—1(t
al()g,yi <041() (15)

T+a(t) = =0 = 1 —q,(t)

Lemma [2] establishes the relationship between ratio i and relative approximation factors «; un-

der condition c; < 1. Intuitively, this condition holds when é; approximates e; reasonably well
(see equation [I0). Lastly, we show that under certain conditions on o and «, an ordering over
V2,73, ..,y 4 can be achieved.

Lemma3 If forallt € T,

0<aq(t) <1, (16a)
0 < as(t) <1—oai(t), (16b)
as(t)(1+ az(t)) < ar(t)?, (16¢)
then there exist feasible 0 < a;(t) < 1 for 2 < i < n such that
Yo () <) <L (a7)

Under review as a conference paper at ICLR 2025

The intuition behind Lemma [3]is that if é; and é; are trained to certain accuracy (satisfying Condi-
tions Wi then there exist feasible €3, €4, ..., é,_1 such that the ratios V3574, -+, YnzL are upper
bounded by 72 < 1. Specifically, Condition W on ¢ indicates that é; must be learned well enough
so that the magnitude of its maximum learning error is less than its own maximum magnitude (see
equation[I0). By fixing o1, Conditions 16¢c|on ap require €, to approximate eo more accurately
than the approximation of e; by é;. These conditions are feasible, i.e., they can be satisfied since
each PINN can be trained arbitrary well (Hornikl, 1991} [De Ryck et al.,[2021; Mertikopoulos et al.,
2020; Mishra & Molinaro, 2023). However, verifying them can be challenging. In Section 4.2 we
provide a method of checking for oy condition and derive a bound that only relies on this condition;
checking «y during training remains an open problem.

Finally, we can state our main result, which is a bound on the approximation error of p using Lem-
mas|[I}3] Specifically, the following theorem shows that the approximation error bound in LemmalT]
becomes a geometric series as n — oo under Conditions [I6} hence, solving Problem T}

Theorem 1 (Temporal error bound) Consider Problem [I| and two approximate error functions
é1(x,t), éx(z,t) constructed by Definition[I|that satisfy Conditions[16] Then,

ple.t) = 0] < elt) = 0 (——5): (18)

where é7(t) is defined in equatiOn and vz (t) = é5(t) /€1 (t).

The above theorem shows that temporal error bound eg(t) can be obtained by training only two
PINNG that approximate the first two errors e, e according to Def. [[Jand that satisfy Conditions
In fact, using these two PINN:S, it is possible to construct an arbitrary tight ep as stated below.

Theorem 2 (Temporal error bound of arbitrary tightness) Given Problem |l|and tolerance € €
(0, 00) on the error bound, a temporal error bound e (t) can be obtained by training two approxi-
mate error functions é1(x,t) and éx(x,t) through physics-informed learning such that

eB(t)—zHéa)gﬂe(x,tﬂ <e. (19)

The proof of Theorem [2{is based on the observation that vz — 0 when (i) é1(z,t) — e1(x,t) and
(i) éa(x,t) — es(,t). Then, according to equation[18] e (t) — €3 (¢), which itself €5 (t) — e (t)
under (i). Since, PINNs é; and és can be made arbitrary well, e can be arbitrary tight. This result
is important because it shows that arbitrary tightness can be achieved without the need for training
infinite number of PINNs, i.e., é;,,71 =1,2,...

Remark 3 The construction of eg(t) in Theorems I\ only requires the values of €{(t) and 2 (1)
which are obtained from the known functions é,(x,t), éx(x, t). Checking for oy and oy conditions

can be performed a posterior.

Remark 4 Given the approximate functions p and é1, temporal bound ep becomes tighter as the
approximation accuracy of é; increases. As éa — eo, ag — 0F. Also, as as — 0T, by equation
the upper bound of y 2 decreases, and consequently, ep becomes tighter by equation@

In the following subsections, we extend the result of Theorem [I] which is based on training n = 2
approximate error PINNS, to cases of n > 2 and n = 1 to bound error of p.

4.1 n-TH ORDER SPACE-TIME ERROR BOUND (n > 2)

Here, we derive a generalized error bound for e(x,t) with approximation error PINNs é;, where
i=1,...,nforn > 2. Note that an alternative way to express the error bound in Theorem [I]is as
an interval e(z,t) € [— ep(t), ep(t)], which is uniform over z for any ¢ € T. Below, we show
that, for n > 2, an error bound that depends on both space and time can be constructed.

Under review as a conference paper at ICLR 2025

Corollary 1 (Space-time Error Bound) Consider PINNs é;(x,t), i = 1,...,n, for some n > 2
trained per Def[l|such that o,y and o, satisfy Conditions[I6] and define the n-th order temporal

error bound to be)

n t — A% t -
63() enfl()(1—7n21 (t)
where €% _,(t) is defined in equation andy_n_(t) = €;,(t)/é;,_1(t). Then,

2

n—2 n

e(x,t) € [Z éi(z,t) — (1), i éi(z,t) +eB(t)]. (20)

i=1 i=1

This corollary shows that, even though 2-nd order error approximation is sufficient to obtain a tempo-
ral bound (Theorem|[I)), higher order approximations lead to more information, i.e., space in addition
to time, on the error bound.

4.2 FIRST ORDER TEMPORAL ERROR BOUND (n = 1)

We also present a temporal error bound by learning only the first error approximation function é;,
which removes the dependence on « at the cost of losing the arbitrary tightness property.

Corollary 2 (First order temporal error bound) Let é, be trained such that oy (t) < 1 for all
teT. Then
e)] < es(t) = 26(). @)

Note that, while the first-order error bound eg(¢) is at most twice larger than the arbitrary tight
error bound ep(¢) in Theorem m it has significant practical uses. Firstly, it only requires training of
one PINN, i.e., é;. Secondly, the condition a (¢) < 1 can be checked during training of é; using
properties of the FP-PDE as detailed below.

Checking «;(t) < 1 condition From the definition of () in equation [10] it suffices to bound
the unknown term |e; (z,t) — é;(z,t)| for all (x,t) € € to check for ;. We do this by using three
constants: two related to FP-PDE as introduced in (Mishra & Molinaro, [2023)), and one universal
constant from Sobolev embedding theorem (Mizuguchi et al., 2017)(Hunter & Nachtergaele, 2001,
Theorem 12.71). First, the stability constant C)g4, of the first error PDE (D[] + D[p]) is defined as

lex(z,t) = éx(z, t)] z < Cpacl(Dlea] + D[p]) — (D[éa] + Do)y,
where Z = W¥52 norm, Y = L® norm, 1 < $,q < oo, and k > 0. Note that since ey, é; and

(Dle1] + D[p)) — (Dlé1] + D[p]) = —(Dlé1] + D[p)) are bounde(ﬂ such constant Cj,q, exists for
k < 1. Second, the quadrature constant Cyqq > 0 is defined such that for some 8 > 0,

< CquadN_B7

/Q (D[él (z,)] + Dp(x, t)])dxdt - XN: w; <D[é1(xi, t:)] + Dlp(z:, ti)])

where {(z;,t;);}Y, € Qis a set of N quadrature points, and w; € R~ are weights according
to the quadrature rules. The procedure of deriving these universal constants for general PDEs with
bounded derivatives is shown in (Mishra & Molinarol [2023)). The third constant C,,,,pcq is defined as

ler(z, 1) = er(x, t)[[co < Cembedller(x,1) — ex(x, 1) w1

Constant Ceppeq eXists because e (z,t) — é1(x, t) is bounded (per Def. , and the first derivatives
of e1(z,t) and é; (z, t) are also bounded.

Proposition 1 (Checking o (t) < 1) Let x € R”, {(xi,t;):}Y., € Q be N space-time samples
based on quadrature rules, é1(x,t) be the first error approximation, and let €1 be the physics-
informed loss of é1(z,t) evaluated on the set {(x;,t;);}X_,. Then for some ¢ > 2 and 8 > 0,
aq(t) < 1forallt € T if

1

ming é5(t)

[Cembed (deeeT + CpaeC, . N j)} < 1. (22)

quad

2p, & are approximate functions with bounded derivatives

Under review as a conference paper at ICLR 2025

By Proposition [I] it is clear that as the training loss decreases (e — 0) with sufficiently large
number of samples (N — o0), the left-hand side of equation [22| goes to zero. Hence, condition
o < 1 can be satisfied by training with a sufficiently large dataset and small loss.

Remark 5 (Generalization to linear PDEs) While the presented approach focuses on SDEs and
training an approximate PDF p and bounding its error, the only essential requirement is that the
FP-PDE operator D is linear. Therefore, this approach naturally extends to all linear PDEs (linear
D) subject to initial and boundary conditions. We illustrate this in a case study in Sec. 3]

5 NUMERICAL EXPERIMENTS

We present illustrative experiments to demonstrate the proposed methods on ten systems listed in
Table [l The table indicates the method to obtain the frue solution. Note that the ‘1D Heat PDE’
system is an illustration of generalizability of our method to linear PDEs beyond SDEs. We also note
that these experiments are not an exhaustive study on hyperparameters or neural network architecture
but aim to showcase the efficacy of the error bounds using existing PINN training methods. All the
details on the system dynamics, hyperparameters, additional plots, etc. are provided in Appendix

Table 1: Systems dynamics with their initial conditions (I.C.) and true solution method. Computa-
tion time for Monte-carlo simulations are reported. The parameters for high-dimensional systems
(3D-10D) are provided in Appendix

System Dynamics I.C. True Solution

1D Linear SDE dz = —0.2zdt + v0.4dw Gaussian analytical

1D Nonlinear SDE dr = (—0.123 + 0.1z% 4+ 0.5z + 0.5)dt + 0.8dw N (—2,0.5%) Monte-Carlo (100 hrs)
1D State-dependent SDE dx = (0.002z)dt + (0.01z)dw Gaussian analytical

Inverted Pendulum SDE dz = [2 } dt + [0'5 0'0} dw N({0'571 {0'5 0'0}) Monte-Carlo (13 hrs)

"= | sin(ay) | Y 0.0 05| 00100 05 ‘

1D Heat PDE Up — Ugy = 0 —sin(mz) analytical

3D OU dz = (Asz)dt + Bsdw N(us, E3) Numerical integration
3D Time-varying OU dx = (A3(t)z)dt + Bzdw N (us, E3) Numerical integration
7D OU dz = (A7z)dt + Brdw N(p7,27) Numerical integration
10D OU dx = (Arpz)dt + Byodw N (110, 210) Numerical integration
10D Time-varying OU dz = (Ayo(t)z)dt + Biodw N (fi10, X10) Numerical integration

Our implementation is in Python and Pytorch, and the code is provided in the supplementary mate-
rial. All experiments are conducted on a MacBook Pro with Apple M2 processor and 24GB RAM,
excepts for the multiple trials on the ‘1D nonlinear SDE’, which was run on an AMD Ryzen 5
6-Core Processor with 32GB RAM and NVIDIA GeForce RTX 2060.

Table 2: Error bound results. Here, tfmm and ¢! . are the training times in seconds, g ==
max; (es(t)/ max, p(z,t)) and €g® := avg,(es(t)/ max, p(z,t)) are the maximum and average
of the first temporal error bound eg normalized by the true solution, Gap™" := min,((eg(t) —
e*(t))/ max, p(z,t)) and Gap™®* := max;((es(t) — e*(t))/ max, p(z,t)) are the minimum and
maximum gaps (over time) between the error bound and maximum error normalized by the true

solution, af*®* := max; a1 (t), and o}*" := varraq (t). Each row is the result of one random seed.
System ploss éploss b, ol el g® Gap™® Gap™™* o oy

1D Linear SDE 2e-3 2e-2 5 17 0.19 0.18 0.064 0.085 037 le3
1D Nonlinear SDE le-3 4e-3 718 3723 048 0.27 0.054 0214 0.60 6e-3
1D Nonlinear SDE (GPU, seed0) le-4 4e-3 345 4433 0.14 0.05 0.007 0.062 045 4e-3
1D State-dependent SDE Se-3 Se-3 31 598 0.24 0.14 0.026 0.130 043 6e-3
Inverted Pendulum SDE le-3 4e-2 1411 3576 0.25 0.16 0.015 0.132 0.75 3e-2
1D Heat PDE le-4 4e-5 41 156 135 103 0.002 49.10 040 5e-3
3D OU le-4 8-3 276 2017 0.05 0.04 0.015 0.029 020 2e4
3D Time-varying OU le-4 4e-3 338 2219 0.06 0.05 0.020 0.032 0.16 3e4
7D OU 2e-4 le-2 1018 2684 0.19 0.11 0.036 0.098 0.74 2e-2
10D OU le-4 le-2 1710 3670 0.20 0.15 0.067 0.119 0.68 5e-3
10D Time-varying OU le-4 6e-3 2835 13883 0.16 0.12 0.053 0.095 098 9e-3

For the 1D Nonlinear SDE on GPU, the variance of a1 over all six random seeds ¢ = {0, 1, ..., 5} is Vart,,agi) (t) = 0.11.

Under review as a conference paper at ICLR 2025

075%=15 &;=0.104 0212175, ¢,=0.067, es = 0.104
L 0501 — P h
S o2s| P ¢ 00— &]
es — & es
0.00 = 02
0-7516=2.0, &5=0.091 0172025 =009, e;=0.001
. 0.50 :
=025 ¢ 00
-0.1
0.00
0.7571=3.0,65=0.093 [t=3.0, e = 0.066, €5 = 0.093
w 0.50 01
& v 00
0.25 o1
0.00
-2 0 2 -2 0 2
X X
(a) p(z,t) and p(x, t) (b) e(x,t) and é;(z, t) (¢) p,pand es (d) e1,é1,ep and eg

Figure 1: True and approximate PDF solutions for the 1D Linear SDE with quantified error bounds.

0.13 N 03751 08 J— 0.14
012{ ° 0.350{ | T 07 / B AN 012 | o
011 0.325] | 06 1« \ — a(l+a)
010 o !) 1 0.10{ |

- e 0300] | 0.5 Ay \ /
009 —— 0275 1 04 008y | /

\ \ / \
0.08) % 0250 03 oos| \ "/
0.07 s 0.225 / 02 SN /
0.06 R) o1 0.04 S~
e 0.200 N
0.05 - 0.0l 0.02
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 To 15 20 25 30
t t t t
(a) error and bounds M a <1 C©as<1l—ag D a2(l+a2) <o

Figure 2: Error e and the first- and second-order temporal bounds eg, e, along with the training
conditions of a1 (¢) and a2 (t) in equationfor all t € T of the 1D Linear SDE.

Table [2| summarizes the results on all systems. Note that the smaller eg®* and e?g are, the tighter
error bounds are. Positive Gap™™ implies that the bound is valid, small Gap implies that the
bound is close to the true error, and the smaller o"® is, the better é; is trained. We also note
that the 1D Heat experiment shows large values of the normalized metrics e, e'®, and Gap™™®
because its true solution (used in the denominator) becomes extremely small at the final time.

max

In summary, Table|2|shows: (1) scalability: our framework is able to scale to 10-dimensional system,
(ii) stability: the variance on o1 over the time domain is small, showing the error bound’s applicabil-
ity for all time, (iii) training challenges: training of €; may encounter local minima due to random
initialization of neural networks, (iv) o condition: o < 1 is satisfied though it becomes increas-
ingly challenging to meet as dimensionality grows, and (v) error bound tightness: the error bounds
are tight across all dynamical systems. Below, we discuss individual systems in more details.

1D Linear SDE Figs. visualize the true and learned PDFs p and p and the true and learned
errors e and é1, respectively. PDFs p and p along with error bound eg(t) at t = 1.5, 2, 3 seconds
are shown in Fig. Observe that p is always within eg bound from p, validating the bound.
Fig.|1d|shows errors e and é; and compares bound eg(¢) with the arbitrary tight error bound e (t)
at the same time instances. As predicted, ep(t) is tighter than es(¢). We note that learning és is
challenging; hence, for illustration purposes of eg(t), we used é; = ea + J, where ¢ is a small
perturbation for this experiment. Fig. [2| provides a different visualization for eg(t) and ep(t) as
well as satisfaction of the a; and a5 conditions. Specifically, Fig. [2a validates that max, |e(x, t)| <
ep(t) < es(t)forallt € T. Note that eg(t) /e (t) is at most 1.63 < 2, as predicted by Corollary 2]

1D Nonlinear SDE Figs. [3ali3b| show the PDFs p and p and errors e and é;. The error bound
es(t) is illustrated in Figs.[3cH3d|in the solution and error spaces, respectively. Observe that the true
error is upper bounded, and the true PDF p lies within eg of approximate PDF p. Figs. show
a tighter eg(¢) by training neural networks (with more complicated activation functions) on GPU.
To illustrate that «; does in fact decrease with more training, we conducted multiple training trials
for this system. Fig. [3g] shows the obtained results, validating that o, does indeed decrease as the
training loss of the é; (x,t) decreases, as predicted by Proposition |1} Note that one trial (out of six
trials) failed to train é; that satisfies cvy (¢) < 1 for some ¢, as seen in Fig.[9]in Appendix [B.2]

Under review as a conference paper at ICLR 2025

(@) p(,t) and p(z, 1)

(b) e1(z,t) and é1(x, t)

%101 x10~
t: 1.0, 650089 1.0t 1.0, a2 0.454
—r : — e
~p | @ 00— b1
e e:
S -1.0 °
x10-1 XT0-T
t: 3.0, es: 0.11 t:3.0,a,: 06

© 00— |

%1071

x10~ "

t:5.0,es: 0.115

25

t: 5.0, ay: 0.447

=50 -25 0.0
X

(C) pyﬁ, €s

5.0 -5.0 -25 0.0 25 5.0
x

(d) €1, éla €s

- - x10-2
t: 1.0, e5:,0.01 P 1.0[t 1.0, @ 0.108 seed0
w 0509 [\ F; ?1 seedl
& 905 o 0-0'—ﬁ/—\ """" e1 7| seed2
&s -1.0 €s 1 seed3
0.00 10 seed4
t: 3.0, es: 0.017 25 X}%’; — - seeds
 0.50 t: 3.0, a;: 0.45] :.,:
£ 0.5 o 00— N\ =
O
£
0.00 -2.5
t: 5.0, es: 0.034 5.0 %102
. 0.50 *UTt: 5.0, a;: 0.307 100
o
%0.25 . o
0.00
=5.0 =25 0.0 25 5.0 >0 55 35 0o 25 50 10° 10 10° 07 107 1073
X X é, training loss

(e) p(z,t) and p(x, t) (f) e1(x,t) and é1 (z, t) (g) a1 vs training loss

Figure 3: Visualization of the results for 1D Nonlinear SDE. (a)-(d) illustrate error bound eg, and
(e)-(f) show one (seed0) of the multiple training trials on GPU, (g) o}*** is plotted vs € loss.

t=3.0, a1 =0.26, es =0.022

—
0.00 0.01
Colorbar for e; and é;

0.0
Colorbar for p and p

0.1

Figure 4: First order temporal error bound of the 2D inverted pendulum at ¢ = 3. At the right: the
approximation error e is bounded by the green 3D surface eg constructed by é;.

Others Fig. [visualizes error bound eg for the 2D inverted pendulum at a given time, showing
eg for multi-dimensional systems. See Appendices [B.3}[B.€|for results of other systems.

6 CONCLUSION

We introduced a physics-informed learning method to approximate the PDF of an SDE and bound
its error using a series of recursive error functions learned with PINNs. We proved that only a finite
number of recursive steps are required to bound the error, with two error terms being sufficient to
achieve arbitrarily tight bounds at any time instance. We also developed a more efficient approach
by constructing a first order temporal error bound using just one error function, which reduces com-
putation, provides clear termination criteria, and yields bounds at most twice as loose as the tightest
ones. This method was validated on several non-Gaussian dynamical systems. In our implementa-
tion, we trained the solution and error functions separately but hypothesize that jointly training them
could improve performance and reliability. Future work will explore this joint training approach.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

All the results can be reproduced via the supplemental zip file. There are two folders in the zip
file: (1) pinn_pde-release-2025ICLR , and (2) pinn_pde-release-2025ICLR_GPU. The former folder
containes the main results that are built on the Macbook Pro. The latter folder includes the results
that are built using the Linux desktop. Both folders contain a README.md file that explains the
steps of building and running the python codes. Python virtual environments are used to manage
the required packages; they are listed in the requirements.txt file. It is recommended that the exact
same packages with same versions are installed for reproducibility purpose. The pre-trained neural
networks used to generate the results of this paper are provided. One can use these pre-trained
neural networks to reproduce the plots by passing the ——train= 0 argument. The code are designed
to use the same random seeds, so one can also train the exact same neural networks by passing the
——train= 1 argument, assuming that the required packages are installed successfully.

11

Under review as a conference paper at ICLR 2025

REFERENCES

Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Machine
learning, 14:115-133, 1994.

Suman Chakravorty. A homotopic galerkin approach to the solution of the fokker-planck-
kolmogorov equation. In 2006 American Control Conference, pp. 6—pp. IEEE, 2006.

Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed neural networks (pinns)
approximating kolmogorov pdes. Advances in Computational Mathematics, 48(6):79, 2022a.

Tim De Ryck and Siddhartha Mishra. Generic bounds on the approximation error for physics-
informed (and) operator learning. Advances in Neural Information Processing Systems, 35:
10945-10958, 2022b.

Tim De Ryck, Samuel Lanthaler, and Siddhartha Mishra. On the approximation of functions by tanh
neural networks. Neural Networks, 143:732-750, 2021.

Tim De Ryck, Ameya D Jagtap, and Siddhartha Mishra. Error estimates for physics-informed neural
networks approximating the navier—stokes equations. IMA Journal of Numerical Analysis, 44(1):
83-119, 2024.

AN Drozdov and M Morillo. Solution of nonlinear fokker-planck equations. Physical Review E, 54
(1):931, 1996.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251-257, 1991.

John K Hunter and Bruno Nachtergaele. Applied analysis. World Scientific Publishing Company,
2001.

JToannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113.
springer, 2014.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving for high-dimensional committor functions
using artificial neural networks. Research in the Mathematical Sciences, 6:1-13, 2019.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deeponets: A
deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applica-
tions, 6(1):tnac001, 2022.

Bo Lin and Weiqing Ren. Deep learning method for computing committor functions with adaptive
sampling. arXiv preprint arXiv:2404.06206, 2024.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208-228, 2021.

Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher. On the almost sure conver-
gence of stochastic gradient descent in non-convex problems. Advances in Neural Information
Processing Systems, 33:1117-1128, 2020.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
neural networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1-43, 2023.

Makoto Mizuguchi, Kazuaki Tanaka, Kouta Sekine, and Shin’ichi Oishi. Estimation of sobolev
embedding constant on a domain dividable into bounded convex domains. Journal of inequalities
and applications, 2017:1-18, 2017.

Bernt Bksendal. Stochastic differential equations. Springer, 2003.
Simo Siarkkd and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge

University Press, 2019.

12

Under review as a conference paper at ICLR 2025

Steven E Shreve et al. Stochastic calculus for finance II: Continuous-time models, volume 11.
Springer, 2004.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339-1364, 2018.

Zezheng Song, Maria K Cameron, and Haizhao Yang. A finite expression method for solving high-
dimensional committor problems. arXiv preprint arXiv:2306.12268, 2023.

BF Spencer and LA Bergman. On the numerical solution of the fokker-planck equation for nonlinear
stochastic systems. Nonlinear Dynamics, 4:357-372, 1993.

Armin Tabandeh, Neetesh Sharma, Leandro Iannacone, and Paolo Gardoni. Numerical solution of
the fokker—planck equation using physics-based mixture models. Computer Methods in Applied
Mechanics and Engineering, 399:115424, 2022.

Yejiang Yang, Tao Wang, Jefferson P Woolard, and Weiming Xiang. Guaranteed approximation
error estimation of neural networks and model modification. Neural Networks, 151:61-69, 2022.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103-114, 2017.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

Laiq Zada, Rashid Nawaz, Kottakkaran Sooppy Nisar, Muhammad Tahir, Mehmet Yavuz, Mo-
hammed KA Kaabar, and Francisco Martinez. New approximate-analytical solutions to partial
differential equations via auxiliary function method. Partial Differential Equations in Applied
Mathematics, 4:100045, 2021.

A PROOFS

A.1 DERIVATION OF DEFINITION 1]

Denote e(x,t) := e1(z,t) = p(x,t) — p(z, t) as the first error and initialize e (z, t) := p(z,t) and
éo(x,t) = p(x,t). Then, Eq. equation [7|becomes Definition 1 for i = 1:
Dlei(z,t)] + D[éo(z,t)] = 0, subjectto eq(z,0) = eg(x,0) — éo(x,0).

For i = 2, we define ex(x, t) := e1(x, t)—é1(x,t) and obtain D[es(xz,t)] = Dle1(z, t)]—Dlé1 (z, t)]
(because D[] is a linear operator). Since é; # e, we have

D[él] + D[éo] =T 7£ 0.
Hence, we have the recursive PDE for ¢ = 2 (omitting = and ¢ for simplicity of presentation):

2

Dleg] = Dle]—Dlé1] = (—Dléo))—(~Dléo)+r1) = —r1 => Dlea)+r1 := Dlea]+»_DIé;j 1] =

j=1

The derivation recursively follows for 7 > 2.

A.2 PROOF OF LEMMA[I]

Proof 1 From Deﬁnition we have that, for all v € X',

(o) =)] = |32 0) + enia ()| < Do)+ lema (o)

n n
< Z ax|6,(x t)] +max\en+1 x,t)] Z x,t) + e, ().
i=1 i=1

13

0.

Under review as a conference paper at ICLR 2025

From the definition of yi+1 in equation@ we obtain (omitting t for simplicity of presentation)

. . és e e e
[ple,) =l)| < & (1+ 224+ 2 2 22
€1 & €1 €1
Ak e*
=€ [1 Tz ey o+ (2 vm) F (278 - Yem ey Ziﬂ)}
n
e é, e*+1
= e [1 +yz 2y + o+ (23 v F (278 - e éZ: Z;)}
:é*[l—i— 2 + Y2 3+~--+(2 3 n)—‘r(2 3 —1ez+1)}
1 T2 T2 V25V 7373 3 e
A.3 PROOF OF LEMMA[Z]
Proof 2 From Deﬁnitionm we have, for i > 0,
ei(x,t) = é;(z,t) + e;p1(x, t). (23)
By taking the maximum on the absolute value of equation[23] we get
max |e;(z,t)| < max |é;(x,t)| + max|e;+1(x,t)|. (24)
x x x
Similarly, from equation 23] we obtain
éi(x,t) = e;(x,t) —ejy1(x, t) =
max |é;(z,t)] < max|e;(x,t)] + max |e;41(z,t)|. (25)
x xr x

Now take 2 < i < n, and suppose the corresponding «;(t) < 1. Then, we can write the two
inequalities in Eqs. equation and equation with the definition of €} (t) in equation and the
expression in equation[I1]as

;-1 ()€1 () < & (t) + ai(t)é; (t)
- - o (26)
& (t) < aima ()i (1) + i(t)é; (2).
By rearranging equation we obtain the lower and upper bounds of ~y . (t):
aal®) G0 _ el o 27)

T+og(t) = e () 710 =T au(t)
which is well defined because the denominator €;_, = ey, _5 > 0 by Assumption@ and the (RHS)
ofequation@is always > the (LHS) ofequationifO < ai(t) <lforall2 <i<n.

A.4 PROOF OF LEMMA 3]

Proof 3 For simplicity of presentation, we omit writing the dependent variable t. Assume the con-
ditions in equation [I6] are satisfied; then it is true that 0 < oy < 1. Since both oy, s < 1, by
Lemmal2|and Condition equation[I6b] we obtain

72 <

<1,
1—0[2

proving the RHS of equation|[I7]

For the LHS of equation[I7} let o;; < v for all 2 < i < n. Since oy < 1, then by Lemmal2} we have
i1 Aj—1 a2

P < < < . 28

7"'*1_1—041'_1—0(2_1—0(2 (28)

What remains is to show that RHS of equation@ is < 2. From Condition equation we have

az(l+ az) < af (29)
< Oq(l — 042), 30)
where equation[30\holds by Condition equation[I6b] From equation[30} we obtain

a2 aq
< .
1—ay 14+ ay
By combining Egs. equation 28 and equation[31} we have

ryiil 1+ as

€1y

<7%,2<z’<n.

14

Under review as a conference paper at ICLR 2025

A.5 PROOF OF THEOREM/I]

Proof 4 Take n — oo for Lemmall| and train é, and é such that the sufficient conditions of equa-
tion@are met, therefore, Y3, 7vs,...,Yu=1 <72 <1by LemmaE| Then we have
n—2

Ak . e*
<& lim (1 +y2+727s + o+ [V%’Y% "7"‘2%77/11} + [V%W% = BZED
=¢é* li 1 o GZ-H
=é] ngrolo(tyz+yzys o0t [Wﬂg Vi éZ_J + [7%7% o= é;_lb
Ak 1e 2 n—2 n—2 é;kL n—26:+1
<él lim (14+7y24+72 4+ "+ |78 “= + 172 73
n— oo 1 1 1 1 6:;_1 1 *

(32)

The first term in equation [32) forms a geometric series, and the second term in equation [32]is zero
as n goes to infinity, because €3, ¢y _1,€,, €}, are bounded by construction and €;,_y > 0 by
Assumption[J] Hence,

e, 1) (e,)] < €5 (7= ()

A.6 PROOF OF THEOREM 2]

Proof 5 We omit the time variable t in this proof for readability. By Definition [I} the maximum
approximation error max, |e1(x,-)| := ej. Using the relations of é1 = e1 — ea, & < e] + €3, the
error bound in Theorem([I|can be upper-bounded by

1 1
—et(—) < (et e (—). 34
°s 6’1(1—652 é{>_<61+€2)<1—é2/é’1‘) 34)

Hence, the gap between ep and the maximum approximation error €] is upper-bounded by

1 1
—ei <ei(—m - 1)+ (=)-
en 61_61<1_é2/é>{ +i(r—am (35)

Now suppose é, approximates ey sufficiently well such that ex(x,t) = ey (x,t) —é1(x, t) := §(z,t),
where 6(x,t) denotes a sufficiently small function for all (xz,t) € . Furthermore, suppose éo
approximates es sufficiently well such that és(x,t) — ea(x,t) = 6(x,t) for all (z,t) € Q. Define
0% := max, |d(x,)|, then é5 — 0%, and §* — 0 .as é(x,t) — 0 for all (x,t) € Q. Consequently,
the RHS of equation |33} at the limit, becomes

SR e N [e’f(ﬁ —1)+ eﬁ(ﬁz/é;ﬂ
= S0 [6’1‘(1_;/@; ~1)+ 5*(1_(51*/é>;ﬂ =0 (36)

Lastly, for every € € (0, 00), take 6* to be smaller than ¢, then the proof is completed.

15

Under review as a conference paper at ICLR 2025

A.7 PROOF OF COROLLARY]

Proof 6 The proof is a natural extension to that of theorem[I} Assume m > 1 be a finite integer. By
Definition[l} we have

n

p(z,t) — p(x,t) = hmz éi(x,t) + ent1(x,t)
i=1

i
m—1 n
-X e t)+n1Ln;O(Zéi(z £) + ens (@ t))
- m—1 o n
= Pl) = plet) = 3 &et) = Jim (i_zméxx,t) +enta(2,1))
m—1 n
= Iplet) = (@) = 3 w0l = tim (3 &)+ ensae0))]
et -
= lple.0) = plat) = 3 &) < lim _Zm 1 (.1) + € (3,8)
<00+ Fhy+ E e S
:nli_{xéoéfn(l—&—'y%—l—'Y%v%+...+'y%’y%. Y Z*ﬂ) 37)

n

Under the same condition in lemma (3| but now impose on oy, (t) and ou,11(t) such that 0 <
m(t) < land 0 < apmi1(t) <1 — am(t), ame1 () (1 + my1(t)) < a2, (). Then ymia (t) < 1

is greater than all the other 7y m-> (1), Tmis (t),.... Thus, equatton is bounded by
m—+41

m—1

p(,t) = plast) = Y éulw)] < Jim &, () (14 7ass 42+ +50d 495t 25
2 o T
= [éfn(t) li_>m (1 + Ymis —l—’ymﬂ +- —i—w@)} + [ém() hm 1 ()58 (t)} (38)

Since €7, (t) is bounded, Ymt1 < 1, and 3,1 < amy1 < 1, the first term in equatlon Eforms a
geometric series, and the second term goes to zero. Hence .equation[38 becomes

Ip(x,t) — pla, 1) - __ Gl)] < &, “)(ﬁ) -
e L |
bt =0l) €[S éient) =0 (7) 2 a0+ 807 o))

(39)

Now take n = m + 1, then the proof is completed.

A.8 PROOF OF COROLLARY 2]

Proof 7 Foreveryt € R>q, let 0 < a1 (t) < 1. Suppose there exists a "virtual” éy(z,t) such that
éa(x,t) = ea(x,t) for all (x,t) € Q ; this implies that the third error e3(x,t) is zero. Hence, the
series in equation[9 becomes finite

Ip(z,t) — p(x,)] < E(t) +é5(t) +0
— & (1) (1 +2 (t)). (40)

Under review as a conference paper at ICLR 2025

By the virtual é = eq, and the relation e5 = «1€], we have
max |éz(x,t)| = max|ea(z,t)|
x x
= &(t) = €5 = a1 (t)é1 ()
= 72 (1) = o (b). (41)

. . . e
Combined Y2 =0 with equation we prove that

Ipla,t) = ()] < & (1+73(1))

=&l (1 + Oél(t))
< e)1 +1) = 265 (0). 42)

It is clear that es(t) is not arbitrary tight because of the constant 2.

A.9 PROOF OF PROPOSITION[I]

Proof 8 Let x € R"™. By (Mishra & Molinaro, 2023\ theorem 2.6), we know

. 3 =8
Eq = H61 — 61||W1.,q < deeé‘T + deecq N, 43)

quad
where Cpge > 0 are the stability estimates of the first error PDE associated with the W% norm,
q > 2, and Cyyaq, S > 0 are the constants according to the quadrature sampling points. For
expression simplicity, denote eo := ey — é1. Since e1(x,t) and é1(x,t) are bounded, we know there
exists a universal embedding constant Ceppeq (Mizuguchi et al.| |2017) such that

le2(@, t)| < Cempealle2(@, t)|lwr.a. (44)
Hence, we have
: =8
|€2 ($7 t)‘ < Cembed (deeET + deecqquadN a) (45)
Using the definition of o (t) := %é)(gﬂt)l, we obtain
1

max, |es(x,t)]

<
o (t) < min, é5(t)
1 1 -8
< a o).
b fwloner Ouch). o

17

Under review as a conference paper at ICLR 2025

B ADDITIONAL RESULTS OF NUMERICAL EXPERIMENTS

Here, we report training details and additional results of the numerical experiments. The baseline
training scheme is done by randomly selecting space-time points at every training epoch. The other
training scheme employs adaptive sampling and residual gradient loss suggested by (Lu et al.,[2021)
and (Yu et al., 2022). Adaptive sampling exploits the infinite training data property of physics-
informed learning by automatically adding the space-time points whose residual values are large.
Residual gradient loss is an additional physics-informed loss term that regularizes the change of
residual with respect to space and time; it has been shown to stabilize and accelerate the training.
We consider this regularization because the residual of p, i.e. D[p), is used as inputs to the subsequent
training of é;. For completeness, we implement a normalized loss function based on equation [§]to
train é; for all 7 > 0:

L =wyly +w.L, +wv,Lyvr, N = mea%(/ le;(zg, 0)]

N N,
1 Gl 0) = ei(,0) o _ Vol(T) <~ | Dléi(x, t;)] +ri(w),t5) 0
£O - N() ZJ: ” N ”27 Er = Nr ZJ: ” N ”27
_ VoUT) Q5 o (Dlei (s,)] + 7l £) 1o
Lo =52 I9(N)13,)

J
where Vol(T') is the duration of the time interval, L, is the loss term of residual gradient, and N\ is

a normalization constant. The baseline training has no regularization, i.e., wy, = 0. Both training
schemes use Adam optimizer with initial learning rate 10~ and exponentially decay learning rate.

B.1 1D LINEAR SDE

We considered an 1D system (Ornstein-Uhlenbech process) dx = —0.2xdt 4 /0.4dw. Suppose the
state is at =~ at t_1, then the analytical solution of p(z,t) is p(x,t) = , /W exp (—

O Sy). To avoid the initial distribution of a delta function d(w — 2~), the initial dis-
tribution po(x) = p(x,t = 1l;x_; = 1) is used. In this experiment, the input domain is:
x € [—6,6],t € [1,3]. p(x,t) and é;(x, t) are 2 hidden layers and 32 neurons MLPs using Softplus
activation. Both neural networks initialize the weights using kaiming_normal_ and 0.01 bias. The
baseline training scheme is used, i.e., randomly selected Ny = 500, V,, = 500 space-time points
are sampled at each epoch. The maximum training epochs for both p, é; are 2k. The weights of the
loss function in equation47|are wy = 1, w, = 1 and wy, = 0. Training loss of p(z,¢) and &, (z,t)
are shown in Fig. The artificial é2(x, t) constructed by perturbing the true ex(z, t) is shown in

Fig.[5b

0.0050 0.010 =20
— e
0.0025 0.005 - &
0 250 500 750 1000 1250 1500 1750 2000 3
0.000 -
0.14 -0.005

0 500 1000 1500 2000 2500 3000 3500 4000

(2) Training loss of p(x, t) and é1 (z, t). (b) ea(z,t) and é2(x, t).

Figure 5: Training loss and synthesized é5(z, t).

18

Under review as a conference paper at ICLR 2025

B.2 1D NONLINEAR SDE

Firstly, the "true” PDF p(z, t) is obtained by extensive Monte-Carlo simulation of the SDE at some
time instances using Euler Scheme; At = 0.0005 s, Az = 0.06, and 10° samples. This Monte-
Carlo simulation took 100 hours on the MacBook Pro machine. The small time step and large
samples are necessary to create accurate probability densities. Secondly, the result in Fig. [3(a)-(d) is
obtained from p(z, ¢) using a 3 hidden layers 50 neurons Softplus activation MLP, and é; (z, t) using
a 6 hidden layers 50 neurons Softplus activation MLP. Both neural networks initialize the weights
using kaiming _normal_and 0.01 bias. The training scheme employs adaptive sampling and residual
gradient loss, i.e., wyg = w, = wy, = 1. At the beginning of training, Ny = 1000, N, = 1000
space-time points are sampled from a uniform distribution. During training, 5 additional initial
samples and 5 residual samples are added every 100 epochs. The maximum epochs for training p
and ¢é; are 15000 and 25000, respectively. Figure [6a] and Fig. [6b] show the space-time samples (as
blue dots) used during training. Figure |6¢| plots the training loss of p(x,t) and é;(z,t); periodic
spikes exist due to the adaptive sampling.

sample points

@ (Dlp(z,)])* (b) (Dlex(z,t)] + Dlp(x, 1)])?

0.012 A

0.010 1

o
o
S
@
!

0.006 -

train loss: p

0.004

0.002 4

0 2000 4000 6000 8000 10000 12000 14000

0.040

0.035 1

0.030 1

0.025 A

o
o
N
S}

train loss: é;

0.015 1

0.010 -

0.005 1

T T T T T
0 5000 10000 15000 20000
epochs

(c) training loss of p(x, t) and é; (z, t).

Figure 6: Residuals and training loss of p(z,t) and é; (z, t).

19

Under review as a conference paper at ICLR 2025

The results in Fig. B[e)-(f) are obtained by training on the Linux desktop with GPU. p(z,t) is a 5
hidden layer 50 neurons MLP using GeL.U activation for the hidden layers and Softplus activation
for the final output (to ensure non-negative probability density). é;(x,t) is a 5 hidden layer 50
neurons MLP using GeLU activation for the hidden layers. Both neural networks initialize the
weights using kaiming_normal_ and 0.01 bias. The adaptive sampling and residual gradient loss are
employed (wg = w, = wy, = 1). At the beginning of training p(z,t), Ny = 500 and N,. = 600
space-time points are sampled uniformly, together with a deterministic set of 40 initial points and
1600 residual points from a uniform grid. One additional initial point and one residual point are
added during training of p(z,t). At the beginning of training é; (x,t), No = 500 and N,. = 1000
space-time points are sampled uniformly, together with a deterministic set of 40 initial points and
1600 residual points from a uniform grid. One additional initial point and ten residual points are
added during training of é; (x, t). Both neural networks have maximum 50000 training epochs. The
maximum training time of p(z,t) is 778 seconds; the maximum training time of é;(x,t) is 49643
seconds. Below from Fig.[/|to Fig. we report the first order temporal error bound results of all
the six trials, each using different random seed.

05 e 0om ; IRy 0.010 [0S EToTm e 30,0, 0453
0.6 — P | o6 s
- B 0.005 b §
w E 4 5 e A
504 s 04 2 0.000 —\/¥ 77777 °4 000 . RN
e & el
0.2 0.2 ~0.005 001
-0.010
0.0 0.0
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50
t: 1.0, es: 0.01 t: 4.0, es: 0.026 0.010 {t: 1.0, a3 : 0.108] t: 4.0, a,: 0.348]
0.6 0.6 0.02
i 0.4 0.4 £ 0.000 == 0.00 g
& w et
0.2 0.24 -0.005
-0.02
0.0 0.0 —0.010
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50
70 000 5000 70 0 035 S0 e 0507
0.6 0.6
0.005
w 0.4 0.4]
e £ 0000
0.2 0.2 ~0.005
0.0 0.0
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50
X X X M
(a) p(z,t) and p(z, t) (b) e(x,t) and é1 (z, t).

Figure 7: First order temporal error bounds of GeLU neural networks, random seed= 0.

05 e 00iT v 3050003 0.010 [FoE @017 = T30, 063
0.6 P o6 —ea
b 0.005 —--- & 00051 A
w 4 4 5 e
504 s 04 2 0.000 4 0.000 =y,
5 £ —\/\/- .
0.2 0.2 —0.005 ~0.005
-0.010
0.0 0.0
-50 -2.5 00 25 50 -5.0 -2.5 00 25 50 -5 0 5 -5 0 5
05 001T 0.5 005 0010 I
0.6 0.6
0.005
w 0.44 0.44 s
& £ o000
0.2 0.2 ~0.005
-0.010
0.0 0.0
-50 -2.5 00 25 50 -5.0 -2.5 00 25 50
20,2 0.008 5050015
0.6 0.6 0.005
w 0.44 0.44 s
e £ 0000
0.2 0.2 0,005
0.0 0.0
-50 -25 00 25 50 -5.0 -2.5 00 25 50 -5 0 5 -5 0 H
x x x x
(@) p(z,t) and p(z, t) (b) e(x,t) and é;1 (z, t).

Figure 8: First order temporal error bounds of GeLU neural networks, random seed= 1.

Lastly, we report the first order temporal error bound results if the neural networks are trained
without residual gradient regularization. In this training setting, the weights of the loss are set
to wp = 1,w, = 2 and wy, = 0, and the maximum training epochs are also 50000 for both
p and é;. Figure [13| compares the training results of using adaptive sampling and residual gra-
dient regularization (top row) vs only using adaptive sampling (bottom row). The former has

20

Under review as a conference paper at ICLR 2025

t: 0.5, es: 0.003 t: 3.0, es: 0.014 t: 0.5, a;: 0.499] t: 3.0,a,: 126
0.6 — P | o6 0.002 el 001
e 4 1 = __\/L
4 il 5 i e. A
% 04 es | 04 g 0.000 +—— f N— 4 000 e
2 & \/ V%
0.2 0.2
-0.002 ~0.01
0.0 0.0 ————————— ———————
=50 -25 0.0 25 5.0 =50 -25 0.0 2.5 5.0 -5.0 -25 00 25 5.0 =50 =25 00 25 5.0
1050003 0.5 0016 FT0 @ 05 BRI
0.6 0.6 0.002
w 0.4 0.4 s
5 £ o000 »—\m
0.2 0.2
-0.002 -0.01
0.0 0.0
=50 -25 0.0 25 5.0 =5.0 =25 0.0 2.5 5.0 =50 -25 00 25 5.0 =50 -25 00 25 5.0
2.0, 657 0.008 (5.0, 657 0,019 20, 0. 1.038 0.02 {7750, - 1017
0.6 0.6 0.005
w 0.4 0.4+ 5
s £ o000
0.2 0.2 0005
0.0 0.0 —0.02
-5.0 =25 0.0 25 5.0 -5.0 =25 0.0 25 5.0 -5.0 =25 0.0 25 5.0 -5.0 =25 0.0 25 5.0
x x x x
(a) p(x,t) and p(z, t) (b) e(z,t) and é;(x, t).

Figure 9: First order temporal error bounds of GeLU neural networks, random seed= 2.

05 e 0007 LTS 05 @ 0ed] 30,6, 0501
0.6 — P | 064 0.005) 0.01
-3 == & A
w 4 4 H e R\
504 e 04 2 0.000 —W— >4 0.00 = =
&
0.2 024
-0.005 ~o001
0.0 0.0
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50
IO 000 F0e 00 0.0050 {ET0.a 70312 ERERTRIE
0.6 0.6
0.0025 0.01 A
§0-4* 0.4 £ 0.0000 = ——=—— 0.00 ~ N
& 3 N
0.2 0.2 -0.0025 ~0.01
0.0 0.0 —0.0050
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50
70 e 000 F50e 000 0.0050 {EZ0.a 7 108 FS0a 07
0.6 0.6
0.0025
& 047 041 £ 0.0000
o w
0.2 0.2 -0.0025
00 0.0 ~0.0050
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50
X X X X
(a) p(z,t) and p(z, t) (b) e(x,t) and é1 (z, t).

Figure 10: First order temporal error bounds of GeLU neural networks, random seed= 3.

max; eg(t) = 0.115, max; g (t) = 0.6, and the latter has max; eg(t) = 0.158, a1 (t) = 0.917.
In terms of learning time, the latter is faster; it takes 225 seconds for p(z, t) and 866 seconds for
é1(z,t), while training using both residual gradient regularization and adaptive sampling is slower:
p(x, t) for 715 seconds and é; (x, t) for 3868 seconds.

21

Under review as a conference paper at ICLR 2025

Figure 11: First order temporal error bounds of GeL'U neural networks, random seed= 4.

Figure 12: First order temporal error bounds of GeLU neural networks, random seed= 5.

05 2 0005 (EEIE
0.6 P 106
- b
04 es | 0.4
0.2 02 N
0.0 0.0
-6 -4 -2 0 2 a4 -6 -4 -2 0 2 4
10,5 0005 40,25 0013
06 06
04 04
0.0 0.0
-6 -4 -2 0 2 a4 -6 -4 -2 0 2 4
[20,5 0007 50,6, 0017
06 06
04 04
0.2 0.2 /\/\
0.0 0.0
-6 -4 -2 0 2 a4 -6 -4 -2 0 2 4
x x

(a) p(z, t) and p(z, t)

o5 e 00 (EECATRLEED
0.6 P os
-
04 es | 04
0.0 0.0
%6 -4 -2 0 2 4 %6 -4 -2 0 2 4
[Toe 00 EREATRCED
06 06
04 04
02 02 /\,\
0.0 0.0
-6 -4 -2 0 2 4 % -4 -2 0 2 4
PO I B R — X) p e e —
06 06
04 04
0.2 0.2 /\/\
0.0 0.0
-6 -4 -2 0 2 4 %6 -4 -2 0 2 4 6

(@) p(,t) and p(z,1)

22

Error

Error

Error

Error

Error

YD) 505, 075

0.005 1 e | 0010

0.000

~0.005
-6 -4 —2 0 2 4 % -4 -2 0 2 4 6
0w 075 70 5, 0759

0.005

0.000 ﬂ/—_\?

—0.005 -o0o1

0.02

— e
0.01 é

es
0.00

-0.01

-0.02

0.02

0.02
ODOW_—— nonj/‘-/‘\»—
-1 -0.02 I
-0.02
-6 -4 -2 0 2 4 - -4 -2 0 2 4
2050457 50,0, 0569)
0.02 0.02

-6 -4 -2 0 2 a4

% -4 -2 0 2 4

70,6, 0673]

50,5 0673

% -4 -2 0 2 4

(b) e(z,t) and é;(x, t).

[05 5 0177

30,5, 0.477]

-6 -4 -2 0 2 4

-6 -4 -2 0 2 4

[10 5 0379

T 70,3, 0.407]

(b) e(x,t) and é;1 (z, t).

Under review as a conference paper at ICLR 2025

x10~1
t: 1.0, e5:/0.089
W 5.0 - °F
e 1 J N p
€s
0.0
x10~%
t: 3.0,es: 0.11
L 5.0
o
o

5.0

0.0

5.0

0.0

5.0

0.0

Figure 13: Comparison of different training schemes. Top: adaptive sampling and residual gradient

x10~1

t: 5.0, es: 0.115

-50 -25 00 25 5.0

X

(@) p(z,t) and p(x, t)
x107!

1.0
o 0.0

-1.0

1.0
o 0.0
-1.0

1.0
o 0.09
-1.0

-5.0 -25 0.0 25
X

(b) e(x,t) and &1 (x, t).
x10°t

5.0

t: 1.0, es: 0,07

1.0 1.0, ay: 0.237

- P
——————— p 0.0
es
-1.0
x1071
t: 3.0,es: 0.1 1.0
0.01
-1.0
x10~!

t: 5.0, es: 0.158

2.0

0.07

-2.0

-5.0 -25 0.0 2.5 5.0
X

(d) p(z, t) and p(z, t)

-50 -25 00 25

(e) e(x,t) and é1(x, t).

regularization. Bottom: only adaptive sampling.

23

(®) (D[p(, t)])?

Under review as a conference paper at ICLR 2025

B.3 1D SDE WITH STATE-DEPENDENT NOISE

We considered a 1D SDE with state-dependent noise (also known as geometric brownian motion)
dx = (ax)dt + (bx)dw, where z € R is the state. The associated FP-PDE is % + % -

%bQ% = 0. By (Shreve et all [2004), a special analytical solution of the FP-PDE exists if

x> 0: p(x,t) = 1/(bav2nt) exp(—(log = — vt)?/(2b%t)), where v = a — %, and 6(z —x7)
is the initial delta distribution. Similar to 1D linear SDE, we let t; = 1 such that py(z) is not
a delta function (boundedness assumption). The input domain is = € [90,110],¢ € [1,6]; the
parameters are (a, b, z9) = (0.002,0.01,100). p(z,t) is a 5 hidden layers 32 neurons MLP using
Softplus activation. &, (x,t) is a 5 hidden layers 64 neurons MLP using Softplus activation. Since
the state domain is large = € [90,100], p(«x,t) and é;(x,t) transform the state input to T = (x —
100)/100, then pass Z to the first hidden layer. Both neural networks initialize the weights using
kaiming normal_ and 0.01 bias. The adaptive sampling and residual gradient loss is employed
during training, i.e., wy = w, = wy, = 1. At the beginning of training, Ny = 1000 initial
points are sampled, half of which are sampled from the initial Gaussian distribution, the others are
sampled from uniform distribution; /V,, = 1000 residual space-time points are sampled from uniform
distribution. During training, one residual space-time point is added every 100 epochs. Figs. [I4a]
and plot the solution, error, and the neural network approximations; p(z,t) and é;(z,t) are
trained with 0.0045 loss for 30 seconds and 0.005 loss for 598 seconds, respectively. The first order
temporal error bound at ¢t = {2.0, 4.0, 6.0} is illustrated in the solution and error spaces in Fig.[14c
and Fig. respectively. Again, eg(t) successfully constructs a tight temporal error bound if
a1 (t) condition is satisfied. Figure plots the training residuals of the neural network at specific
time instances; By Definition [1} we desire D[é; (z,t)] — —D[p(z,t)]. Due to adaptive sampling,
periodic spikes are present in Fig. [I5b|as well.

041t-2.0, es = 0.042 0.05{t:2.0, @;:0.17 .

. — G
02 es CooEEE e

2 96 100 104 108
t=4.0, es=0.025 t:4.0,a,:0.29
2

2 % 160 102 108
0.02]t6.0.01:0.43

0.
041t=6.0, es = 0.02

(@) p(z,t) and p(z, t) (b) e1(z,t) and é1(x, t) ©) p,p,es (d) e1, é1,es

Figure 14: First order temporal error bound of the 1D SDE with state-dependent noise.

0.005

0.000

~0.005

train loss: p

90.0 925 95.0 97.5 1000 1025 1050 107.5 110.0

0.005 . 0.014
0.000 s — 0 200 400 600 800

~0.005

0.04 4
90.0 925 95.0 97.5 1000 1025 1050 107.5 110.0

0.005

train loss: é;

0.000

-0.005

90.0 925 950 975 1000 1025 1050 1075 110.0 o 500 1000 1500 2000 2500 3000 3500 4000
x epochs

(a) D[é1(x,t)] vs =D[p(z, t)] (b) training loss of p(x, t) and é;1 (z, t).

Figure 15: Residuals and training loss of p(z, t) and é; (x, t).

24

Under review as a conference paper at ICLR 2025

B.4 NONLINEAR INVERTED PENDULUM

We considered an inverted pendulum system given by dz = f(x)dt + Bdw, where z =
0,07 € R?is the state, f(z) = [z, —%sin(z1)]T, g is the gravity acceleration, [is
the length of the inverted pendulum, B € R?*2, and dw € R2? The initial distribu-
tion is a multivariate Gaussian xg ~ AN (uo,Xo). In this experiments, the input domain is
x1 € [-3m,—37],zo € [-3m,—3n], and t € [0,5]. The parameters are (g,l, B, 1o, %0) =
(9.8,9.8,[0.5,0.0;0.0,0.5], [0.57,0.0]7, [0.5,0.0;0.0,0.5]). Similarly, p(x,t) is obtained by
Monte-Carlo simulation of the SDE at some time instances using Euler Scheme; At = 0.01 s,
Azxq = 0.3768, Azy = 0.3768, and 108 samples. This Monte-Carlo simulation took 13 hours on
the MacBook Pro machine. p(z,t) is a 5 hidden layers 32 neurons MLP using Softplus activation.
é1(x,t) is a 7 hidden layers 32 neurons MLP using Softplus activation. Both neural networks ini-
tialize the weights using kaiming _normal_ and 0.01 bias. Adaptive sampling and residual gradient
is used during training, again, wy = w, = wy, = 1. Ny = 500 initial points and N,, = 1500
residual space-time points are sampled uniformly at the beginning of training. Additional 5 initial
and 5 residual points are added every 100 epochs during training. Figure |16| plots the p(x, t) in the
first row, and the trained p(x,t) in the second row. The approximation error is plotted in the first
row in Fig. while the second row shows the first error approximation é; (x, t). Fig.[18|shows a
3d surface plot of the absolute errors |e(x, t)|, which are upper-bounded by the surface of the eg(¢).
Figure[19|plots the training loss of p(z,) and é; (x, t).

[} 0.200

t=4.0 t=5.0
5 5 t0.175
0 0
L 0.150
-5 -5
L 0.125
-5 0 5 -5 0 5

- 0.100

- 0.075
5 5
0 0 - 0.050
-5 -5
|- 0.025
-5 0 5 -5 0 5
[} 6

- 0.000

5
3 0

-5

3 0

Figure 16: p(z,t) and p(x,t) att = {1.0, 2.0, 3.0,4.0,5.0}.

25

Under review as a conference paper at ICLR 2025

r 0.0125
t=2.0
r 0.0100
r 0.0075
- 0.0050
-5 0 5
- 0.0025
ay=0.43
- 0.0000
I —0.0025
| —0.0050
-5 0 5
6
Figure 17: e(x,t) and é;(x,t) att = {1.0, 2.0, 3.0,4.0,5.0}.
t=1.0, es = 0.008 t=2.0, es=0.014 t=3.0, e5 = 0.022
/ﬁi‘\\\ 0.020
0.015__
s
0.010™
0.005
0.000
10
-10 0
0 0
6 10 10 6 10 10 6 10 ~10

t=4.0, es = 0.022 t=5.0, es = 0.018
0.015_
T
0,010~

0.005 0.005

0.000 0.000

10 10
-10 0 -10 0
0 ® 0 ®
6 10 —10 o 10 —10

Figure 18: Absolute errors |e(z,t)| and first order temporal error bounds eg(t) (illustrated as the
green surface) at t = {1.0, 2.0, 3.0,4.0,5.0}.

26

Under review as a conference paper at ICLR 2025

Q.

train loss:

train los

0.005 A

0.004 -

o
o
S
w
)

0.002 A

0.001 A

0

2000 4000 6000 8000 10000 12000

14000

0.25 A
0.20 A
0.15 A
0.10

0.05 -

0

2000 4000 6000 8000 10000 12000
epochs

Figure 19: training loss of p(x, t) and é; (x, t).

27

14000

Under review as a conference paper at ICLR 2025

B.5 1D HEAT EQUATION

We considered an one-dimensional heat equation u; — i, = 0 with boundary condition, u(+1,t) =
0,Vt. Let typ = 0, and the initial distribution uo(x) = —sin(rz). In this experiments, the input
domain is 2 € [—1,1],t € [0, 1]. For this particular problem, analytical solution exists: u(z,t) =
—sin(wx) exp’“%, which allows us to validate the first order temporal error bound using trained
a(x,t),é1(x,t). u(z,t) is a 3 hidden layers 64 neurons MLP using Tanh activation. é;(z,t) isa 5
hidden layers 100 neurons MLP using Tanh activation. Both neural networks initialize the weights
using xavier_uniform_ and zero bias. The baseline training scheme (wg = w, = 1) is used with
Ny = 500, N, = 500 random samples at each epoch. Figure[21]show the residuals and training loss
of the neural networks. Again, we desire D[é; (x,t)] — —D][u(x, t)] for good training.

%1071 x10-3
t: 0,27es<.0.0077

02 057 0.10T
. — e
00l T———— &

-5.0 es

x10-3
5.01¢: 0.6, @y 0.072

x10~2
05 1.0{t: 1.0, es: 0.0073

%103
t: 1.0, a5 0.192

x0 0200 . x0 0200 _ .
Mo 65 00 05 1o -10 -05 00 05 1.0
x x
() u(z,t) and u(zx,t) (b) e(z,t) and é;(x, t) (¢) u, i, and eg (d) e, é1 and eg

Figure 20: first order temporal error bound of 1D heat equation.

0.0010

0.0008

0.0006

train loss: p

-100 -075 -050 -025 000 025 05 075 100 0.0004

0.0002

0 2000 4000 6000 8000 10000

0.00030

-1.00 -0.75 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 _ 0.00025

£ 0.00020
E 0.00015
0.00010
— 0.00005

-100 -075 -050 -0.25 000 025 050 075 100 o 2000 2000 6000 8000 10000

x epochs
(a) D[éi(z,t)] vs —=D[p(z,)] (b) training loss of 4(z, t) and é;(x, t).

Figure 21: Residuals and training loss of @(z, t) and é; (z, t).

28

Under review as a conference paper at ICLR 2025

B.6 HIGH-DIMENSIONAL ORNSTEIN-UHLENBECK

We considered the generalization of the 1D Ornstein-Uhlenbeck process to n-dimension with time-
varying dynamics: dx = (A,(t)z)dt + Bydw, where z,w € R"™, and the initial distribution is
multi-variate Gaussian p(z,0) ~ N (., 35,). For this system, the probability density functions over
time remains Gaussian p(z,t) ~ N (u,(t), X, (%)), but there is no close-form solution to 1, () and
3, (t) in general (Sérkkéd & Solin, 2019). Here, we use Euler forward numerical integration (0.0001

seconds time step) to obtain the “true” PDF. The solution domain we tested is = [—1, 1]™ x [0, 1].
0.3 0.0 0.0
For the 3D OU, the dynamics is A3 = | 0.0 0.3 0.0(, By = diag([0.05,0.05,0.05]) and
-0.1 0.0 0.3
the intial distribution is p3 = [-0.2,0.2,0.0],X3 = diag(][0.1,0.1,0.1]). For the 3D time-
~ 0.3 0.0 0.0 , [0.0 05 0.0
varying OU, the dynamics is As(t) = | 0.0 0.3 0.0 + (¢7*)|0.0 0.0 0.5 with
-0.1 0.0 0.3 0.0 —0.3 0.0

the same noise coupling and initial distribution as the 3D OU. For the 7D OU, the dynam-
ics is an almost diagonal A7 = diag([0.05,0.05,0.05,0.05,0.05,0.05,0.05]) with A7[7,1] =
—0.01, B; = diag(]0.05,0.05,0.05,0.05,0.05,0.05,0.05]). The initial distribution is p; =
0.0,0.0,0.0,0.0,0.0,0.0,0.0], %7 = diag([0.12,0.12,0.12,0.12,0.12,0.12,0.12]). For the 10D
OU, the dynamics is an almost diagonal A;y = diag([0.05,...0.05]) with A;0[10,1] = —0.01,
By = diag([0.05,...,0.05]). The initial distribution is zero mean p19 = [0.0,...,0.0],%19 =
diag([0.11, ...,0.11]). For the 10D time-varying OU, the dynamics is A1o(t) = Ao + (e=*)A Ay,
where A Ay is first initialing a zero 10 by 10 matrix, then setting AA;0[1,2] = 0.1, AA4;0[2,3] =
0.1, and AA;0[10,2] = —0.1. The noise coupling is the same as the 10D OU, the initial distribution
is fi0 = [—0.2,0.1,0.2,0.05, —0.25,0.22,0.18, —0.12,0.01, 0.04], and the covariance is the same
as well. For all the experiments (3D-10D), we use the same neural networks: p(x,t) and é; (z, t) are
5 hidden layers 32 neurons MLP using GeL U activation; the final output of p is passed into Softplus
to ensure non-negative value. Both neural networks initialize the weights using kaiming normal
and 0.0 bias. The adaptive sampling is employed during training, i.e., wy = w, = 1. At the be-
ginning of training, Ny = N, = 2000 points are sampled for p, and Ny = N, = 300 points are
sampled for é;. Additional 40 samples are added for both trainings if the loss of the current epoch
is smaller than 0.95 times the minimum loss. After training, we evaluate the results at uniform time
instances ¢ = {0.0,0.2,0.4,0.6,0.8,1.0}. For each time instances, the evaluated state points are
chosen by (1) a deterministic uniform grid (50 x 50 x 50) for the 3D cases, or (2) uniformly 107
samples at random for the 7D and 10D cases. Figs. 22} [26]report (i) the first order temporal error
bound eg(t) versus the maximum error max, |ej(x,t)| for all time (normalized by max, |p(z,t)|
as used in Table. , (ii) the condition «v1 (t) < 1, Vt € T, and (iii) the training history of p and é;.
Lastly, Figs.[27]and [28]visualize the PDF p(z, t), the PDF approximation j(z, t), the approximation
error e (x, t), and the first error approximation & (x, t) as 3D contour plots for the 3D Time-varying
Oou.

0.06

—— es (normalized)

0.051 —— max|e;| (normalized) 0.0008 4

0.0006 +

0.0004 4
0.02 /_/ 0.0002 4

error (normalized)
train loss: p

0.0 0.2 0.4 0.6 0.8 1.0 0 2000 4000 6000 8000 10000
t epochs

(a) es(t) vs maxg |e(z,t)| and o (t) (b) training loss of p(z, t) and é:1(z,).

Figure 22: Results of the first-order temporal error bound of 3D OU.

29

Under review as a conference paper at ICLR 2025

o
°
a

error (normalized)
s o o o
S & © ©
3 8 & &
train loss: p

—— es (normalized)
. 0.0008
—— max|e;| (normalized)
@ 0.0006 4
0.0004
0.0002

0.0 0.2 0.4 0.6 0.8 1.0 0 200 400 600 800 1000 1200
0.16
0.04 4
0.15
@ 0,03
0.14 @
g S
0.13 E 0.02 1
0.12
0.01 4
0.11
0.0 0.2 0.4 0.6 0.8 1.0 0 2000 4000 6000 8000 10000
t epochs
(a) es(t) vs maxg |e(z, t)| and o (t) (b) training loss of p(x, t) and é:1 (z, t).

Figure 23: Results of the first-order temporal error bound of 3D Time-varying OU.

0.00200
02001 —— es (normalized)
. 0.00175
_0175{ —— max|e;| (normalized)
K] 0.00150
o150 @
g # 0.00125
Eonzs s
2 <
< 0100 £ 0.00100
3 0.075 0.00075
0.050 0.00050
0.025 0.00025
0.0 0.2 0.4 0.6 08 1.0 0 250 500 750 1000 1250 1500 1750 2000
07 0.10
06 5 008
o a
& £ 0.06
05 c
g
~ 0.04
0.4
0.02
03
0.0 0.2 0.4 0.6 08 1.0 0 2000 4000 6000 8000 10000
t epochs
(a) es(t) vs maxg |e(z,t)] and o (t) (b) training loss of p(z, t) and é:1 (z, t).

Figure 24: Results of the first-order temporal error bound of 7D OU.

0.2001 —— es (normalized) 0.00104
—~0175{ —— max|e;| (normalized)
g «a 0.0008 1
£ 0.150 P
2 a
E K
5 0.125 < 0.0006 4
= [
% 0100 0.0004 4
0.075 /\//
0.0002 4
0.050

0.0 0.2 0.4 0.6 0.8 1.0 0 250 500 750 1000 1250 1500 1750 2000

0.08 4

0.02 1

a
° s o o
& o o o
g 5 8 &

train loss: &1

s o °

s o o

2 8 s

0.0 0.2 0.4 0.6 0.8 1.0 0 2000 4000 6000 8000 10000
t epochs

(a) es(t) vs maxg |e(z,t)| and aq (t) (b) training loss of p(x, t) and é1 (z,).

Figure 25: Results of the first-order temporal error bound of 10D OU.

30

Under review as a conference paper at ICLR 2025

0.16 .
—— es (normalized)
5 %11 — maxley| (normalized) 0.0008 1
£o12 @
® @ 4
o010 g 0:0006
s
g =
< s
5008 = 0.0004 1
s
0.06 /J\
0.04 0.0002
00 02 0.4 06 08 10 500 1000 1500 2000 2500
1.00
0.95 0.05 1
090 .
‘@ 0.04 4
0.85 a
5 4
N € 0.039
0.80 H
0.75 0.02
070 0014
0.0 0.2 0.4 0.6 0.8 1.0 5000 10000 15000 20000 25000 30000
t epochs

(a) es(t) vs max, |e(z, t)| and aq (¢)

(b) training loss of p(z, t) and é:(x, t).

Figure 26: Results of the first-order temporal error bound of 10D Time-varying OU.

»
>
by
15
05
'
N
x3
0%
o5
/?, q
s °
N 8§ o
o o
x2 o ~, x1
o o
PO
(@)patt=0.0
?
>
hY
is
05
'
o
x3
o®
os
PhY
kY Z
0
s X
N o
x2 5 S x1
B N
PN

(c)patt=1.0

Figure 27: 3D Time-varying OU: PDF p and the neural network approximation p for different ¢.

31

4
2
1
15
05
1
o
0°
05
3 z
° 0,
° s N
° 0
x2 s N x1
o %
AN
(b) patt =0.0
4
2
T
15
0%
1
o
o
05
s
g 7
o 9
° s N
° 0
x2 S ~ x1
o o
AN

(dpatt=1.0

Under review as a conference paper at ICLR 2025

1674
1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688 o &
1689

1690 lm
1691

1692 N
1693
1694 \
1695 . o o
1696 »‘ s

1697

1698

1699 (a)ey att = 0.0 (b)éyatt =0.0
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712 (c)eyatt=1.0 (déjatt=1.0
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

-0.01

er é

Iu 03

0.01
-0.01

-0.03

Figure 28: 3D Time-varying OU: approximation error e; and the neural network approximation é;
for different ¢.

32

	Introduction
	Related Work

	Problem Formulation
	Approximating PDF via PINN
	Bounding Approximation Error
	n-th Order Space-time Error Bound (n > 2)
	First Order Temporal Error Bound (n=1)

	Numerical Experiments
	Conclusion
	Proofs
	Derivation of Definition 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Proposition 1

	Additional Results of Numerical Experiments
	1D Linear SDE
	1D Nonlinear SDE
	1D SDE with State-dependent Noise
	Nonlinear Inverted Pendulum
	1D Heat Equation
	High-Dimensional Ornstein-Uhlenbeck

