

000 001 002 003 ARE HALLUCINATIONS BAD ESTIMATIONS? 004 005 006 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

We formalize hallucinations in generative models as failures to link an estimate to any plausible cause. Under this interpretation, we show that even loss-minimizing optimal estimators still hallucinate. We confirm this with a general high probability lower bound on hallucinate rate for generic data distributions. This reframes hallucination as structural misalignment between loss minimization and human-acceptable outputs, and hence estimation errors induced by miscalibration. Experiments on coin aggregation, open-ended QA, and text-to-image support our theory.

1 INTRODUCTION

Hallucination in generative model refers to a model generating confident yet unsupported or non-factual outputs. This failure undermines user trust, safety, and the practical utility of AI systems. It becomes a critical concern in modern machine learning with the widespread deployment of large-scale generative models across language, vision, and multimodal domains (Ji et al., 2023; Liu et al., 2024; Bai et al., 2024; Kalai et al., 2025). To address it, we must understand why models hallucinate at a fundamental level. In this work, we formalize hallucination as an attribution failure: the *estimated prediction* does not align with any *plausible input cause* under standard loss-minimizing training. From this perspective, we prove hallucination persists even for Bayes-optimal estimators.

Prior theory attributes hallucination to resource limits, sparse data, or computational hardness. Xu et al. (2024) study hallucination as the mismatch between a model’s computed function and the ground-truth function. They prove that any polynomial-time language model hallucinates on some tasks due to computational limits. Kalai & Vempala (2024) show that even a calibrated model hallucinates on rare “singleton” facts. They lower bound the hallucination rate by the frequency (redundancy) of these facts in the training data. Banerjee et al. (2024) study hallucination through Gödel’s first incompleteness theorem. They argue that no finite dataset captures all valid inferences, so hallucination persists regardless of model or data scale. Taken together, these results frame hallucination as a byproduct of constraints rather than a structural feature of estimation.

In contrast, we posit that hallucination is not only a symptom of modeling limitations but also a structural phenomenon of estimation itself. Our key insight is that hallucinations may still persist even for Bayes-optimal estimators with unlimited capacity that minimize the true training loss. In other words, a model with infinite power, trained without resource constraints, still outputs implausible content. The crux is a misalignment between the model’s objective and human expectations. A loss-minimizing model is optimized to produce the average outcome, whereas a human evaluator expects a specific plausible outcome (typically, one of the modes of the true distribution).

This reframes hallucination as *structural misalignment*. Hallucination is a manifestation of estimation errors induced by miscalibration. To be concrete, under expected standard loss, the Bayes-optimal predictor for a target distribution $A(X)$ given the input X is the conditional expectation

$$A^*(X) = \mathbb{E}[A(X)],$$

which minimizes the expected error by construction. If the true conditional distribution $\Pr[A(X)] = \Pr[A(x) | X = x]$ is multimodel¹, then $A^*(X)$ average across all those possible outcomes and may fall in a low-probability region. It matches none of the plausible modes. The estimate minimizes error yet fails to align with any realistic ground-truth outcome. Thus even an optimal estimator may produce outputs that no human would recognize as valid or plausible. We deem this is a fundamental source of hallucination in generative models. To this end, we formalize this into δ -*hallucination*: an estimator’s

¹For instance, an open-ended question that has several distinct correct answers.

054 output that lies outside a δ -neighborhood of every plausible outcome (please see [Section 3](#) for precise
 055 definitions.) This reframing shows hallucination as a consequence of the objective misalignment,
 056 rather than just a lack of model capacity or data.

057 **Contributions.** Our contributions are as follows.
 058

- 059 • **New Formulation for Hallucination Fundamental Source.** We characterize hallucination
 060 phenomena in generative models by introducing δ -hallucination. This interprets hallucination as
 061 outputs that fail to match any plausible human-acceptable outcome. The formulation provides a
 062 rigorous and measurable way to analyze hallucination in generative models.
- 063 • **Hallucination of Optimal Estimators.** We prove that loss-minimizing optimal estimators still
 064 δ -hallucination. We extend the result to near-optimal estimators, to multiple inputs, and to inputs
 065 with hinted latent variables. These results confirm hallucination as a fundamental source rooted in
 066 the estimation process itself.
- 067 • **Fundamental Limits of Hallucination.** We derive a general lower bound on the probability of
 068 δ -hallucination under mild distribution assumptions. This bound reaffirms that hallucinations
 069 persist at a non-zero rate. This establishes a fundamental limit that prevents eliminating the source
 070 of hallucinations through larger models or datasets.
- 071 • **Experiment Validation.** We validate our theory through controlled experiments on coin-flipping
 072 aggregation, open-ended QA, and text-to-image generation. The results demonstrate that mini-
 073 mizing loss does not remove hallucination. The persistence across both synthetic and real-world
 074 settings confirms hallucination as a structural feature of estimation and a fundamental source of
 075 model misalignment.

076 **Organization.** [Section 3](#) defines hallucination as δ -hallucination. [Section 4](#) demonstrates halluci-
 077 nation of optimal estimators. [Section 5](#) provides a lower bound on the probability of hallucination.
 078 [Section 6](#) details experiment results.

079 **Related Work.** We defer related work discussion to [Appendix A](#) due to page limits.
 080

082 2 PRELIMINARIES

084 **Notations.** In this work, $f_Y(\cdot)$ denotes the probability density function over the randomness of Y .
 085 $\mathbb{E}_Y[T]$ denotes the expectation of a random variable T over Y . $[N]$ denotes the set: $\{1, 2, \dots, N\}$.
 086 $\|\cdot\|_2$ denotes 2-norm. We use $\|\cdot\|_2$ as the square root of the square sum of all entries. For a column
 087 vector v , we use v_i to denote its i -th entry from the top. For a matrix M , we use $M_{r,c}$ to denote its
 088 entry at r -th row and c -th column. We write $M_{:,c}$ and $M_{r,:}$ to denote its c -th column and r -th row,
 089 respectively. We use 1_a to denote an indicator that is 1 when a happens and 0 otherwise.

090 **Expected Quadratic Loss.** We define expected quadratic loss as follows.

091 **Definition 2.1** (Expected Quadratic Loss). Let X be an input, let $A(X)$ be a random target output
 092 associated with X , and let $A^*(X)$ be an estimator for $A(X)$. Define the expected quadratic loss of the
 093 estimator $A^*(X)$ with respect to the true output $A(X)$ as:

$$095 \ell_A(A^*(X)) := \mathbb{E}[\|A^*(X) - A(X)\|_2^2].$$

097 In other words, $\ell_A(A^*(X))$ is the expected squared ℓ_2 error between the estimate and the actual
 098 outcome. This quantity serves as the objective that an optimal estimator would minimize (e.g., the
 099 Bayes-optimal estimator minimizes the expected quadratic loss by construction).

100 **Remark 2.1.** We use the ℓ_2 loss in the main text for clarity of exposition. In [Appendix D](#), we show
 101 that all results remain valid under the cross-entropy loss, which is the standard training objective for
 102 generative models in self-supervised learning. This extension is natural because cross-entropy is a
 103 *proper scoring rule*: its Bayes-optimal solution is the true conditional distribution $P(Y|X)$, so the
 104 same structural arguments for δ -hallucination continue to apply.

105 We use the expected quadratic loss to formalize the objective minimized by an optimal estimator.
 106

107 **Lipschitzness.** We define Lipschitzness in 2-norm as follows.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Definition 2.2 (Lipschitzness). We say a function g is L -Lipschitz (with respect to the ℓ_2 -norm) if there exists a constant $L > 0$ such that for all inputs x and y in its domain

$$\|g(x) - g(y)\|_2 \leq L\|x - y\|_2.$$

We use Lipschitzness to impose a regularity condition on the estimator. This condition ensures that small changes in the input lead to at most L -scaled changes in the output. In our analyses, we assume Lipschitzness as a smoothness property that rules out estimators with abrupt or unstable behavior.

Latent Variable Z . In the context of self-supervised learning, we represent the output of the model as a probability distribution (Devlin et al., 2019; Radford et al., 2021). Specifically, when an estimator outputs contextual factors such as speaker attitude or intended audience, we may categorize the possible outputs based on the specific factors they exhibit. Then, we see different categories (which are sub-distributions in the original target distribution) as conditional distributions under different states of a latent variable Z . We illustrate the concept of this latent variable Z in Figure 1.

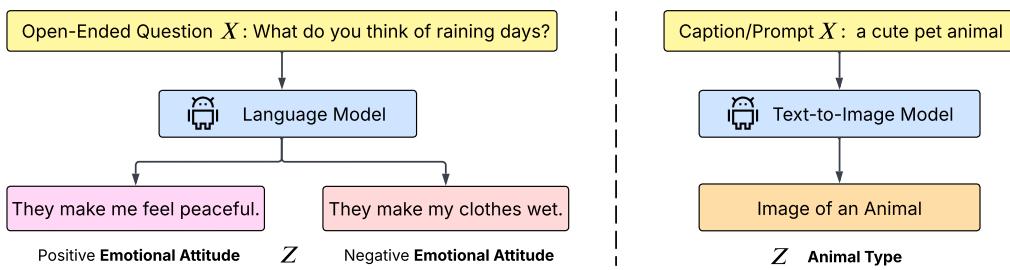


Figure 1: **Examples of Latent Variable Z .** For an open-ended question or prompt X , the latent variable Z may be the emotional attitude or categories in the target distribution.

3 δ -HALLUCINATION

We present our definition of δ -hallucination as the gap between objective optimized by the model and the underlying causes of variation (Z). That is, conditioning on the state of Z changes the distribution of the output. We begin by defining the relation between input X and latent variable Z as follows.

Definition 3.1 (Data Distribution and Latent Variable). Let $X \in \mathbb{R}^{d_x}$ denote the input, and let $A(X) \in \mathbb{R}^{d_a}$ denote a random variable representing the target output associated with X , where d_x and d_a are the input and output dimensions. Let Z be a latent variable associated with X , and let $\{Z_i\}_{i \in [N]}$ denote its possible states. The conditional output random variable given Z_i is

$$A(X; Z_i) := A(X) \mid \{Z = Z_i\},$$

which represents the target output distribution of X under latent state Z_i . If probability densities exist, the conditional density is

$$f_{A(X; Z_i)}(a) := \frac{f_{A(X), Z}(a, Z_i)}{\Pr[Z = Z_i]},$$

where $f_{A(X), Z}$ is the joint density of $(A(X), Z)$.

Remark 3.1. $A(X)$ in Definition 3.1 defines the data distribution, but we also view it as the real distribution in this paper. Intuitively, Z indexes hidden causes that resolve ambiguity in the output. $A(X; Z_i)$ isolates the distribution of valid outputs when the hidden cause equals Z_i . The marginal $A(X)$ mixes these conditional laws with weights $\Pr[Z = Z_i]$, so multi-modality in $A(X)$ arises from variation over Z .

Key Insight. While minimizing the loss on the whole data distribution is critical for model estimations, it is *also important to*

$$\max_{i \in [N]} \{ f_{A(X; Z_i)}(A^*(X)) \},$$

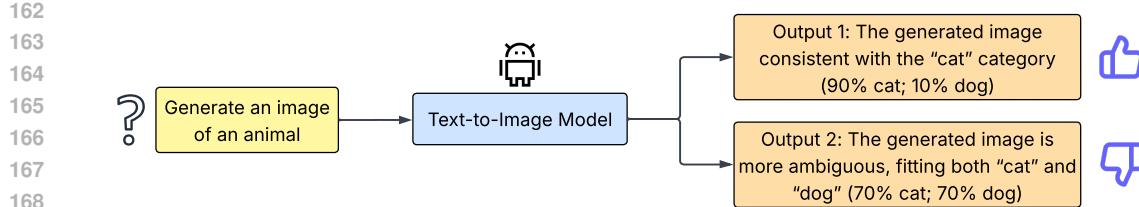


Figure 2: **An Example of Our Key Insight.** Suppose the open-ended question is to generate a picture of an animal. Then the output with 90% of conditional probability under the category of cat and a 10% of conditional probability under the category of dogs is considered better than the output which has a 70% of probability density under the category of cat and 70% under the category of dog.

which is the maximum probability density of the estimate $A^*(X)$ under $Z = Z_i$. This reflects that a good estimate aligns with at least one plausible underlying state rather than consistent with all. We give an example in Figure 2 to illustrate the interpretation.

Formally, we present the above insight as δ -hallucination.

Definition 3.2 (δ -Hallucination). Let X be an input and Z a latent variable associated with X taking values in $\{Z_i\}_{i \in [N]}$. Fix a tolerance parameter $\delta \in (0, 1]$, and let A^* be an estimator of X . We say that A^* δ -hallucinates at X if, for every $i \in [N]$,

$$f(A(X; Z_i) = A^*(X)) \leq \delta, \quad i \in [N],$$

where $f_{A(X; Z_i)}$ denotes the probability mass function (in the discrete case) or probability density function (in the continuous case) of $A(X; Z_i)$.

That is, for every possible latent state, the probability of producing the estimated output $A^*(X)$ does not exceed δ . In other words, Definition 3.2 implies that δ -hallucination is a generated answer that has low calculated loss but is unlikely to belong to any state or class of possible outputs.

Remark 3.2. Intuitively, δ -hallucination occurs when the estimator $A^*(X)$ outputs a value that has low likelihood under *every* plausible latent state of Z . In such a case, the prediction fail to be attributed to any genuine cause consistent with the data distribution. This captures the idea that hallucination arises not merely from error, but from producing an output that fails to align with any valid mode of the underlying conditional distributions.

4 OPTIMAL ESTIMATOR STILL HALLUCINATES

We establish the existence of δ -hallucination. We begin with the single-input case, showing that even an optimal estimator minimizing loss may δ -hallucinate, and that this extends to semi-optimal estimators within ϵ of the optimum. We then extend the result to the multi-input setting. Finally, we consider the practical case where the model receives hints about hidden influences in the input, and show that hallucination exists under standard regularity conditions.

δ -Hallucination Under a Single Input. We show that even an loss-minimizing optimal estimator may output an answer that δ -hallucinates by Definition 3.2.

Theorem 4.1 (Existence of δ -Hallucination Under Single Input). For an input X , there exists infinitely many distributions of $A(X)$ and Z such that for an estimator A^* that minimizes the expected quadratic loss defined in Definition 2.1 over $A(X)$, it is bound to δ -hallucinate at X .

Proof. See Appendix C.1 for detailed proof. \square

We further demonstrate the existence of δ -hallucination on semi-optimal estimators.

Theorem 4.2 (Existence of δ -Hallucination on Semi-Optimal Estimators under Single Input). For an input X , there exists infinitely many distributions of $A(X)$ and Z such that if an estimator A' is within a distance of ϵ to the optimal estimator A^* , which writes as

$$\|A'(X) - A^*(X)\|_2 \leq \epsilon,$$

216 then $A'(X)$ is bound to δ -hallucinate.
 217

218 *Proof.* See [Appendix C.3](#) for detailed proof. \square
 219

220 **δ -Hallucination under Multiple Inputs.** When considering a collection of inputs, our definition
 221 applies to each input individually. We describe the δ -hallucination under multiple inputs as follows.
 222

223 **Corollary 4.2.1** (Existence of δ -Hallucination under Multiple Inputs). For a set of input $X_j, j \in [S]$,
 224 there exists infinitely many distributions of $A(X_j)$ and Z such that any estimator minimizing the
 225 expected quadratic loss defined in [Definition 2.1](#) is bound to δ -hallucinate at X .
 226

227 *Proof.* See [Corollary C.1.1](#) for detailed proof. \square
 228

229 **δ -Hallucination with Hinted Latent Variables.** In practical situations, the model receives hints
 230 about hidden influences in the input. We define this hint as a tilt upon the input X as follows.
 231

232 **Definition 4.1** (Effect of Latent Variable on Input). For an input X , let $A(X)$ be its target distribution.
 233 For a latent variable Z associated with X , let Z_i denote the states of this latent variable, and let δ_i
 234 denote a hint for the state Z_i for all $i \in [N]$, which satisfies
 235

$$A(X + \delta_i) = A(X; Z = Z_i), \quad i \in [N].$$

236 This means the target distribution of the tilted input is the posterior distribution when knowing
 237 $Z = Z_i$.
 238

239 Based on [Definition 4.1](#), we show δ -hallucination exists for tilted input under Lipschitzness regularity
 240 condition as follows.
 241

242 **Theorem 4.3** (Existence of δ -Hallucination at Tilted Input). Let B_δ denote the bound of all hints
 243 $\delta_i, i \in [N]$, defined as
 244

$$B_\delta := \sup_{i \in [N]} \|\delta_i\|_2.$$

245 For an L -Lipschitz estimator A^* satisfying [Definition 2.2](#), there exists infinitely many distributions of
 246 $A(X; Z)$ such that δ -Hallucination happens on all $X + \delta_i$. That is, $A^*(X + \delta_i)$ does not fall into the
 247 region where $f_{A(X; Z_i)} \geq \delta$ for any $i \in [N]$ by [Definition 3.1](#).
 248

249 *Proof.* See [Appendix C.4](#) for detailed proof. \square
 250

251 Thus, we show that hallucination is intrinsic to the probabilistic structure of estimation, across optimal
 252 and near-optimal estimators, multiple inputs, and even when the answers' directions are hinted.
 253

5 HALLUCINATION PROBABILITY LOWER BOUND

254 We extend our result beyond existence of δ -hallucination in [Section 5](#) and provide a lower bound on
 255 the probability of hallucination for optimal estimators satisfying certain conditions.
 256

257 We begin with the definition of means and variances for the variables of interest.
 258

259 **Definition 5.1** (Means and Variances). Let $\{Z_i\}_{i \in [N]}$ denote the possible states of the latent variable
 260 Z , with probabilities $p_i := \Pr[Z = Z_i]$. For each $i \in [N]$, define the conditional mean
 261

$$\mu_i := \mathbb{E}[A(X; Z_i)].$$

262 We regard μ_i as a realization of a random variable distributed according to d_i^μ . Let $\mu_i^d := \mathbb{E}_{d_i^\mu}[\mu_i]$
 263 and $\sigma_i^d := \text{Var}_{d_i^\mu}[\mu_i]$ denote the mean and variance of this distribution, respectively. Let d^μ denote
 264 the joint distribution of (μ_1, \dots, μ_N) . We write $\mu^d := \mathbb{E}_{d^\mu}[\mu_1, \dots, \mu_N]$ for its mean vector and
 265 $\sigma^d := \mathbb{E}[\sum_{i=1}^N (\mu_i - \mu_i^d)^2]$ as sum of variance.
 266

267 We then provide the following assumptions applied to μ_i and d_i^μ in [Definition 5.1](#). In particular, we
 268 assume that the conditional means align around a common value and that the joint distributions of
 269 these conditional means are mutually independent.
 270

270 **Assumption 5.1.** We impose the following conditions on the distributions defined in [Definition 5.1](#):
 271 1. *Identical means*: There exists a constant $\mu_0 \in \mathbb{R}$ such that $\mu_i^d = \mu_0$, for all $i \in [N]$.
 272 2. *Independence*: The distributions $\{d_i^\mu\}_{i=1}^N$ are mutually independent.

274 We now characterize hallucination events in terms of output regions that correspond to high ($> \delta$)
 275 conditional probability under each latent state.

276 **Definition 5.2** (High Conditional Density Regions). We define U_i^δ to be
 277

$$U_i^\delta := \{a \mid f(a; Z_i) > \delta\},$$

279 which is the region with posterior probability of $Z = Z_i$ larger than δ .
 280

281 **Remark 5.1.** By [Definition 5.2](#), δ -hallucination of $A^*(X)$ is equivalent to

$$A^*(X) \notin U_i^\delta, \quad i \in [N].$$

284 **Remark 5.2.** We highlight the relationship between Highest Conditional Density Regions (HCDRs)
 285 and the classical Highest Density Regions (HDRs) ([Caprio et al., 2024](#); [Dahl et al., 2024](#)). When the
 286 latent variable Z has only a *single* state, δ -hallucination reduces to the event that the target distribution
 287 falls outside the HDR of a given mass, where the mass corresponds to a density threshold δ . When
 288 Z has *multiple* states, we generalize this idea by introducing HCDRs, which capture high-density
 289 regions conditioned on each latent state. See [Appendix B](#) for definitions and a detailed discussion.
 290

291 We then define the following spheres covering U_i^δ in [Definition 5.2](#). Specifically, we enclose each U_i^δ
 292 within the smallest possible sphere centered at the corresponding mean μ_i .
 293

294 **Definition 5.3** (Minimal Covering Spheres). For each $i \in [N]$, let $U_i^\delta \subset \mathbb{R}^{d_a}$ denote the δ -high
 295 density region associated with state Z_i . Define $B_i^\delta(r)$ as the closed Euclidean ball of radius r centered
 296 at μ_i . The minimal covering radius is
 297

$$r_i := \inf_{r_i \in \mathbb{R}^+} \{U_i^\delta \subset B_i^\delta(r_i)\}.$$

298 Thus $B_i^\delta(r_i)$ is the smallest sphere centered at μ_i that contains U_i^δ . Finally, define the uniform
 299 covering radius
 300

$$r = \max_{i \in [N]} \{r_i\}.$$

302 **Remark 5.3.** Geometrically, r_i measures the worst-case deviation of the δ -high density region U_i^δ
 303 from its center μ_i . In other words, it is the maximum distance one must travel from μ_i to reach any
 304 point in U_i^δ . The uniform covering radius r then gives a single bound that applies across all latent
 305 states, capturing the largest such deviation. This interpretation is useful for intuition: r_i quantifies
 306 how “spread out” the high-density region is around its mean, while r aggregates the largest of these
 307 spreads across all i .
 308

309 With definitions and assumptions established, we now derive a lower bound on the probability of
 310 hallucination for any optimal estimator.

311 **Theorem 5.1** (Hallucination Probability Lower Bound). Let $(A(X), Z)$ satisfy [Assumption 5.1](#). For
 312 each $i \in [N]$, let μ_i, σ_i^d be as in [Definition 5.1](#), let μ_0 be as in [Assumption 5.1](#), and let r_x be as in
 313 [Definition 5.3](#). Define

$$d := \left(\sum_{j=1}^N p_j^2 \sigma_j^d \right)^{1/2}, \quad \theta_i(\alpha) := \frac{(\alpha d + r_x)^2}{\sigma_i^d}, \quad \alpha > 1, \quad \text{and} \quad K_i^\mu := \frac{(\mathbb{E}[(\mu_i - \mu_0)^2])^2}{\mathbb{E}[(\mu_i - \mu_0)^4]}.$$

317 If for every $i \in [N]$ there exists $\alpha_i > 1$ such that $\theta_i(\alpha_i) \leq 1$, then
 318

$$P_H^\delta > \prod_{i=1}^N (P_i K_i^\mu),$$

322 where P_H^δ denotes the probability that the optimal estimator A^* δ -hallucinates at X (equivalently,
 323 $A^*(X) \notin U_i^\delta$ for all $i \in [N]$, with U_i^δ as in [Definition 5.3](#)).

324 *Proof.* See [Appendix C.5](#) for detailed proof. □

326 6 EXPERIMENTS

328 We validate our interpretations and claims with three complementary experiments. In particular, we
 329 first provide a synthetic coin-flipping problem ([Section 6.1](#)) where it demonstrates that models trained
 330 purely with likelihood objectives shows persistent δ -hallucination. We then extend these insights to
 331 large-scale LLM ([Section 6.2](#)) and text-to-image generation ([Section 6.2](#)) settings. Both experiments
 332 validate our claim that a loss-minimizing optimal estimator δ -hallucinates.

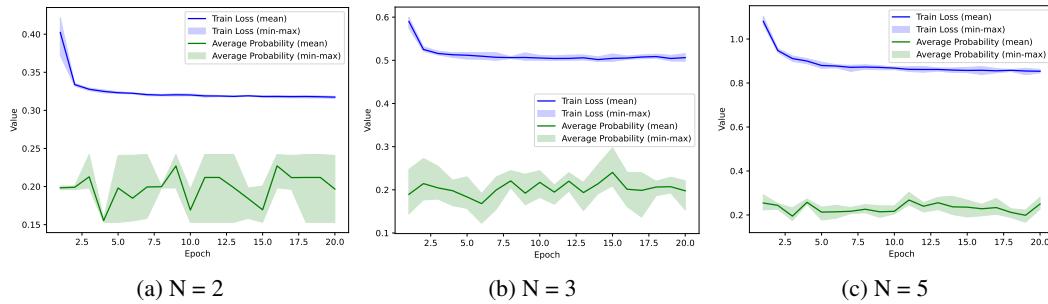
334 6.1 SYNTHETIC COIN FLIPPING PROBLEM

335 **Objective.** We evaluate our claim that minimizing loss may not increase the conditional probability
 336 of estimated output with respect to input labels as in [Theorem 4.1](#).

338 **Experiment Design.** We design a controlled experiment based on the classical coin-flipping problem.
 339 We choose a subset of coins from a collection of coins (each with a distinct probability of landing
 340 heads), flip them, and record the total number of heads observed. The model receives the labels of
 341 the chosen coins as input. We then train the model to predict the recorded total. These labels do not
 342 explicitly reveal the head probabilities, and thus act as latent hints rather than explicit supervision.

343 **Data.** We generate $2N$ coins, each with a unique head probability, and perform M flips to construct
 344 the dataset. We consider $N = 2, 3$, and 5 , with M ranging from 20000 to 40000.

345 **Model Architecture.** We adopt an 8-layer transformer with 64 hidden dimensions and 256 feed-
 346 forward dimensions for this experiment.



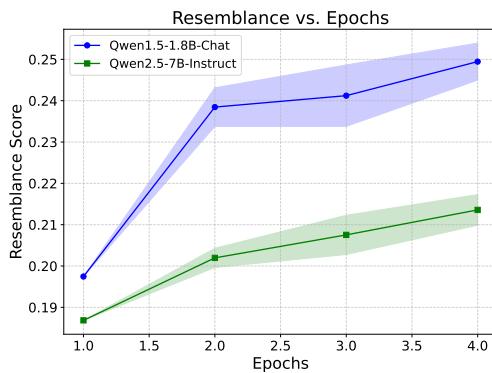
358 Figure 3: We conducted 5 rounds of experiments on each of $N = 2, 3$ and 5 . The results show that training
 359 loss does not correlate with the conditional probability of the model estimation with respect to input labels. This
 360 aligns with our theoretical result in [Theorem 4.1](#).

362 **Results.** As shown in [Figure 3](#), we observe that
 363 the descent of training losses does not correlate
 364 with the rise or drop of the conditional probabili-
 365 ty of the estimations generated on the validation
 366 set. This result aligns with our theoretical claim
 367 that minimizing the loss does not necessarily
 368 maximize the conditional probability (of a latent
 369 state) of the estimate.

370 6.2 OPEN-ENDED TEXT QUESTIONS

372 **Objective.** We evaluate hallucination in the
 373 LLM models by measuring the resemblance
 374 of model output to the commonly incorrect an-
 375 swers in TruthfulQA ([Lin et al., 2021](#)).

376 **Experiment Design.** We fine-tune pretrained
 377 language models on a dataset of open-ended
 378 questions and compare their outputs to those of



379 **Figure 4: Resemblance vs. Epochs.** We fine-tune
 380 Qwen1.5-1.8B-Chat and Qwen2.5-7B-Instruct for 2,
 381 3, and 4 epochs and test the answers' resemblance to
 382 commonly incorrect answers in TruthfulQA. We re-
 383 peat this process for 2 random seeds. Results validate
 384 that hallucination persists even as the model mini-
 385 mizes its predictive objective.

378 the original models. We measure the the model’s tendency to resemble the commonly incorrect
 379 answers in TruthfulQA (Lin et al., 2021). We use Gestalt Pattern Matching (difflib in Python) to
 380 measure resemblance.

381 **Data.** We use GPT5, Gemini 2.5 Flash, and DeepSeek R1 to generate a dataset of 300 open-ended
 382 questions with 2 possible answers. This forms a dataset of 600 question-answer pairs.

384 **Model Architecture.** We fine-tune Qwen1.5-
 385 1.8B-Chat and Qwen2.5-7B-Instruct on our
 386 open-ended question dataset using LLaMA-
 387 Factory with LoRA adapters.

388 **Results.** As shown in Figure 4 and Table 1,
 389 both models show a consistent increase in resem-
 390 blance over additional fine-tuning epochs. The
 391 results reveal that, though we fine-tune the mod-
 392 els to obtain low predictive loss, both models be-
 393 come more aligned with commonly incorrect an-
 394 swers. This pattern is consistent across all seeds
 395 as shown in Table 1. The finding supports our
 396 theoretical claim that loss minimization alone is
 397 insufficient to eliminate δ -hallucination.

398 6.3 OPEN-ENDED TEXT-TO-IMAGE

400 **Objective.** We evaluate hallucination in a text-to-image setting where we detect generated samples
 401 falling outside a calibrated HCDR as in Definition C.2 and Remark 5.2.

402 **Experiment Design.** We first construct HCDR from real AFHQ cat and dog images. We begin by
 403 extracting fixed CLIP embeddings from the images, which are then normalized, reduced in dimension
 404 via PCA, and standardized through z-scoring. For each class (cats, dogs), we fit a Gaussian Mixture
 405 Model (GMM) on an 80% training split of the preprocessed embeddings to learn what cat or dog
 406 features look like. We then use the remaining 20% testing data to obtain log-densities and compute a
 407 class-specific threshold at the 10% percentile. This threshold corresponds to a cutoff such that the
 408 top 90% of the testing images are included in the HCDR for each class (See Figure 7 of Appendix B
 409 for a visualization of HCDR for cats and dogs). In other words, a new embedding is considered to lie
 410 outside of HCDR or a specific class if its log-likelihood under that class’s GMM exceeds the threshold.
 411 Finally, to form HCDR, we take the union of the per-class HCDRs: a generated embedding is inside
 412 the HCDR if it lies in at least one class HCDR, and outside otherwise.

413 We then fine-tune a text-to-image generative model, with the text encoder frozen, on the training
 414 dataset for the model to mainly learn the image distribution (target). We evaluate the portion of
 415 generated images outside of HCDR for given prompts.

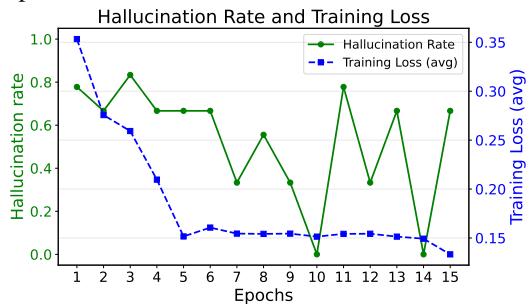
416 **Data.** We use Animal Faces-HQ (AFHQ) (Choi
 417 et al., 2020). We extract 5558 cat images and
 418 5139 dog images. Each is 512 by 512 pixels. We
 419 construct 3 prompts for evaluation: "a realistic
 420 photo of a friendly dog", "a fluffy cat sitting on
 421 a sofa", and "a cute pet animal".

422 **Model Architecture.** We use CLIP ViT-B/32
 423 model model to extract image CLIP embeddings.
 424 For generation, we fine-tune the UNet compo-
 425 nent of Stable Diffusion v1.5, while keeping the
 426 text encoder and VAE frozen.

427 **Results.** As shown in Figure 5, as we fine-tune
 428 the model, the training loss decreases, indicat-
 429 ing that the model captures the distribution of
 430 the dataset, yet hallucination rate do not con-
 431 verge. It supports our theoretical claim that loss
 minimization alone is insufficient to eliminate δ -hallucination.

384 **Table 1: Resemblance of Fine-Tuned Models’ An-
 385 swers to Commonly Incorrect Answers in Truth-
 386 fulQA.** Each model is fine-tuned for 2, 3, and 4 epochs
 387 with 2 random seeds. The resemblance does not de-
 388 crease with training, validating that hallucination per-
 389 sists in loss-minimizing optimal models.

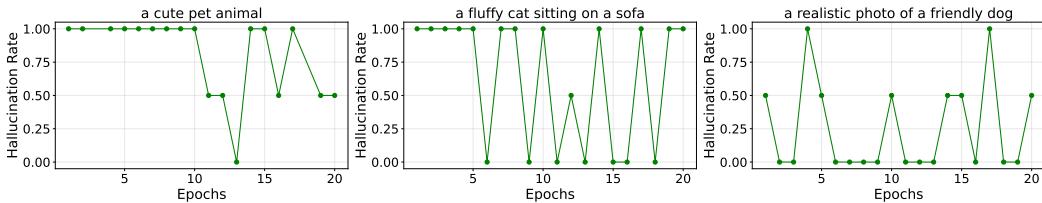
Epochs	Qwen1.5-1.8B-Chat		Qwen2.5-7B-Instruct	
	Seed 1	Seed 2	Seed 1	Seed 2
Original	0.1975	–	0.1868	–
2	0.2338	0.2431	0.2043	0.1997
3	0.2338	0.2486	0.2123	0.2028
4	0.2450	0.2539	0.2173	0.2099



427 **Figure 5: Hallucination Rate and Training Loss.** We
 428 plot hallucination rate (green, left axis) and training loss
 429 (blue, right axis) over epochs. While the training loss
 430 decreases, the hallucination rate does not converge and
 431 often fluctuates, showing that hallucination persists even
 as the model minimizes its predictive objective.

432 6.3.1 ABLATION STUDY ON PROMPTS
433

434 We further conduct studies on 3 types of prompts for the text-to-image generative model: one targeting
435 the cat category ("a fluffy cat sitting on a soft"), one targeting the dog category ("a realistic photo of a
436 friendly dog"), and one mixed prompt ("a cute pet animal"). We evaluate the hallucination rate for
437 each prompt across training epochs. As shown in [Figure 6](#), our results consistently show that, even
438 under a loss-minimizing estimator, hallucinations persist and do not converge to zero. This indicates
439 that even when prompts hint information about target category, hallucinations may still occur.



440
441 [Figure 6: Prompts Analysis.](#) We create 3 types of prompts and evaluate their hallucination rate respectively.
442 All plots show even a loss-minimizing estimator hallucinates.
443
444

450 7 CONCLUSION
451

452 In this work, we reframed hallucination in generative models as a fundamental misalignment between
453 standard loss-based training objectives and human expectations. Under this view, we formalized
454 δ -hallucination to capture when an estimator's output fails to match any plausible real-world outcome
455 ([Section 3](#)). Crucially, we showed that no amount of model capacity or data can eliminate hallucinations:
456 even an ideal Bayes-optimal estimator (one minimizing the true expected loss) may still
457 generate implausible predictions on inputs with inherently diverse correct answers ([Section 4](#)). We
458 derived general lower bounds on how frequently such hallucinations must occur for broad classes of
459 target distributions ([Section 5](#)), and validated these predictions with both synthetic and real-world
460 experiments ([Section 5](#)). Taken together, our findings establish that hallucination is a structural
461 property of the estimation process itself rather than just a symptom of limited models or datasets.

462 **Limitations.** While our theory offers a new perspective on hallucinations, it has a few limitations.
463 The current lower bound for δ -hallucination is relatively loose and relies on certain assumptions,
464 leaving room for tighter bounds under more relaxed conditions. Additionally, our analysis focused on
465 a general estimator. Examining specific model families or tasks might yield stronger guarantees or
466 further insight into when and how hallucinations arise.

467 **Implications and Future Work.** By identifying hallucination as arising from the core training
468 objective, our results imply that simply scaling up model size or dataset coverage is insufficient
469 to eliminate the problem. Effective mitigation may require rethinking generative model training,
470 with objectives explicitly aligned to human standards of correctness. In practice, this could mean
471 favoring more *mode-seeking* behavior —generating high-probability, consistent outputs — rather
472 than minimizing average error across all possible outcomes. Future training methods may need to
473 incorporate constraints or decision-theoretic criteria that push models to commit to a single plausible
474 answer instead of blending incompatible modes. Several concrete directions follow from our findings:

- 475 • **Alternative Loss Functions.** Extend our theoretical framework to other loss functions to investigate
476 how the choice of training objective influences hallucination rates.
- 477 • **Alignment-Oriented Training Schemes.** Design practical strategies that scale our insights, such
478 as HDR-guided sampling or mixed-objective fine-tuning that explicitly penalizes implausible
479 outputs.
- 480 • **Multimodal and Structured Outputs.** Generalize the analysis to multimodal and structured tasks,
481 where the space of valid outputs is richer, to uncover new alignment strategies tailored to complex
482 domains.

483 In summary, treating hallucination as a structural phenomenon calls for a shift away from naive
484 average-case error minimization and toward objectives that explicitly prefer outputs aligned with one
485 of the true modes, thereby better matching human standards of reliability.

486 ETHIC STATEMENT
487488 This paper does not involve human subjects, personally identifiable data, or sensitive applications.
489 We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
490 of this research comply with the principles of fairness, transparency, and integrity.491 REPRODUCIBILITY STATEMENT
492493 We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
494 and complete proofs in the appendix. The main text states each theorem clearly and refers to
495 the detailed proofs. For experiments, we describe model architectures, datasets, preprocessing
496 steps, hyperparameters, and training details in the main text. Code and scripts are provided in the
497 supplementary materials to replicate the empirical results.
498499 REFERENCES
500501 Sumukh K Aithal, Pratyush Maini, Zachary Lipton, and J Zico Kolter. Understanding hallucinations
502 in diffusion models through mode interpolation. *Advances in Neural Information Processing
503 Systems*, 37:134614–134644, 2024.504 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
505 Hallucination of multimodal large language models: A survey. *arXiv preprint arXiv:2404.18930*,
506 2024.507 Sourav Banerjee, Ayushi Agarwal, and Saloni Singla. Llms will always hallucinate, and we need to
508 live with this. *arXiv preprint arXiv:2409.05746*, 2024.509 Michele Caprio, David Stutz, Shuo Li, and Arnaud Doucet. Conformalized credal regions for
510 classification with ambiguous ground truth. *arXiv preprint arXiv:2411.04852*, 2024.511 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
512 for multiple domains. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
513 Recognition*, 2020.514 Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E Ho. Large legal fictions: Profiling legal
515 hallucinations in large language models. *Journal of Legal Analysis*, 16(1):64–93, 2024.516 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
517 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
518 the North American chapter of the association for computational linguistics: human language
519 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.520 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
521 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.522 Andreas F Haselsteiner, Jan-Hendrik Ohlendorf, Werner Wosniok, and Klaus-Dieter Thoben. Deriving
523 environmental contours from highest density regions. *Coastal Engineering*, 123:42–51, 2017.524 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
525 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
526 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information
527 Systems*, 43(2):1–55, 2025.528 Rob J Hyndman. Computing and graphing highest density regions. *The American Statistician*, 50(2):
529 120–126, 1996.530 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
531 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
532 computing surveys*, 55(12):1–38, 2023.533 Xuhui Jiang, Yuxing Tian, Fengrui Hua, Chengjin Xu, Yuanzhuo Wang, and Jian Guo. A survey on
534 large language model hallucination via a creativity perspective. *arXiv preprint arXiv:2402.06647*,
535 2024.

540 Adam Tauman Kalai and Santosh S Vempala. Calibrated language models must hallucinate. In
 541 *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pp. 160–171, 2024.
 542

543 Adam Tauman Kalai, Ofir Nachum, Santosh S Vempala, and Edwin Zhang. Why language models
 544 hallucinate. *arXiv preprint arXiv:2509.04664*, 2025.

545 Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
 546 The dawn after the dark: An empirical study on factuality hallucination in large language models.
 547 *arXiv preprint arXiv:2401.03205*, 2024.

548

549 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 550 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

551 Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
 552 Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. *arXiv
 553 preprint arXiv:2402.00253*, 2024.

554

555 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 556 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 557 models from natural language supervision. In *International conference on machine learning*, pp.
 558 8748–8763. PMLR, 2021.

559

560 RJ Samworth and MP Wand. Asymptotics and optimal bandwidth selection for highest density region
 561 estimation. 2010.

562

563 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 564 large language models. *arXiv preprint arXiv:2401.11817*, 2024.

565

566 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
 567 Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
 568 language models. *arXiv preprint arXiv:2309.01219*, 2023.

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 Appendix

595	A Related Works	12
596	B Highest Conditional Density Regions	13
597	C Proofs of Main Text	14
601	C.1 Proof of Theorem 4.1	14
602	C.2 Proof of Corollary 4.2.1	17
603	C.3 Proof of Appendix C.3	17
604	C.4 Proof of Theorem 4.3	18
605	C.5 Proof of Theorem 5.1	19
606		
607	D Derivation to Cross-Entropy Loss	22

609 IMPACT STATEMENT

611 By the theoretical nature of this work, we do not anticipate any negative social impact.

613 LLM USAGE DISCLOSURE

615 We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
 616 and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
 617 identify potential missing related work. All technical content, proofs, experiments, and results are
 618 original contributions by the authors.

620 A RELATED WORKS

622 Hallucinations in generative models have been studied from both theoretical and empirical perspectives.
 623 Prior theory frames them as inevitable outcomes of practical limits: finite parameters, sparse
 624 data, or computational hardness. (Xu et al., 2024) prove that any polynomial-time language model
 625 hallucinates on certain tasks. Kalai & Vempala (2024) show that even a calibrated model hallucinates
 626 at a rate tied to the fraction of “singleton” facts that appear only once in the training set. Banerjee
 627 et al. (2024) argue that no finite dataset or architecture covers all valid inferences, ensuring a nonzero
 628 hallucination rate regardless of scale. These works treat hallucination not as a flaw in estimation
 629 itself, but as an artifact of underfitting caused by resource and computational limits. More recently,
 630 Kalai et al. (2025) propose that hallucination stems from mismatches between predictive likelihood
 631 training, incomplete coverage, and reinforcement learning, suggesting hallucinations persist even
 632 with scale and motivating deeper foundational study.

633 Recent empirical research has delivered taxonomies, benchmarks, and mitigation techniques for
 634 hallucinations in generative models. Huang et al. (2025) survey intrinsic and extrinsic hallucinations,
 635 and review detection and mitigation methods. Ji et al. (2023) provide a broad overview of metrics and
 636 task-specific phenomena across summarization, dialogue, and machine translation. Zhang et al. (2023)
 637 analyze detection and explanation methods. Li et al. (2024) conduct a factuality study, introducing a
 638 new benchmark and evaluating detection, sources, and mitigation. Farquhar et al. (2024) propose
 639 entropy-based uncertainty estimators to detect confabulations. In contrast to viewing hallucinations
 640 only as limitations, Jiang et al. (2024) explore their creative potential. A notable work by Aithal et al.
 641 (2024) analyzes hallucinations in diffusion models and attributes them to mode interpolation, where
 642 samples fall into regions not supported by training data. Their empirical observations support our
 643 theoretical findings by linking artifacts beyond data support to interpolation between nearby modes
 (corresponding to regions with low conditional probability density under any latent state in our work).

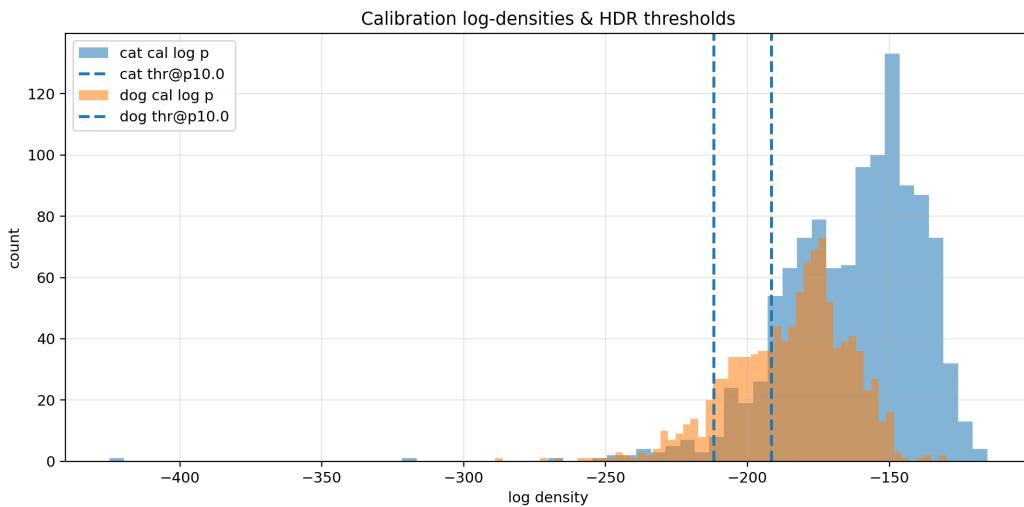
644 Building on prior work, we propose a new interpretation of hallucination: it arises from a gap
 645 between model training objectives and human criteria. Estimation fails when outputs do not align
 646 with any plausible human-perceptive category. We formalize this gap as δ -hallucination and prove
 647 that even loss-minimizing optimal estimators produce outputs with low conditional probability under
 every category. We derive a general lower bound on the probability of δ -hallucination and validate

648 our claims with empirical studies. These results establish hallucination as a structural feature of
 649 estimation itself, not a flaw of model size, data coverage, or specific queries.
 650

652 B HIGHEST CONDITIONAL DENSITY REGIONS

654 **Highest Density Regions.** (Hyndman, 1996) popularize the concept of Highest Density Regions
 655 (HDRs) as the smallest-volume set containing a given probability mass. He provided practical
 656 algorithms for computing and visualizing HDRs for univariate and multivariate densities, showing
 657 their advantages over equal-tailed intervals in revealing multi-modal structure. (Samworth & Wand,
 658 2010) developed a rigorous asymptotic theory for kernel-based HDR estimation, deriving uniform-
 659 in-bandwidth risk approximations and proposing optimal bandwidth selectors that minimize HDR
 660 estimation error. (Haselsteiner et al., 2017) introduced the idea of using HDRs to define environmental-
 661 contours—termed highest-density contours—in engineering design, demonstrating that HDR-based
 662 contours yield more compact, interpretable regions for multimodal environmental distributions.

663 In a concrete example, we build calibration datasets for the categories of cats and dogs in AFHQ
 664 dataset (Choi et al., 2020) and estimate their log-densities under GMM model as shown in Figure 7.
 665



666
 667 **Figure 7: An Example of HDR.** We show an example of HDR for the class of cats and dogs. Dashed vertical
 668 lines mark the HDR thresholds at the 10% quantile. Samples to the right of the threshold belong to the most
 669 probable 10% of the calibration distribution for that class. Samples to the left of the threshold are deemed
 670 outside the HDR and treated as potential hallucinations.
 671

672 **Highest Conditional Density Regions.** We emphasize a connection between Highest Conditional
 673 Density Regions and HDRs. Specifically, when the latent variable Z only has *one* latent state, the
 674 δ -hallucination in this special occasion is the expectation of the target distribution falling out of
 675 the HDRs of a certain mass that induces a density bound of δ . We then extend this concept to the
 676 distributions correlated with a latent variable with *more than one* states. Namely, we introduce the
 677 concept of Highest Conditional Density Regions (HCDRs) and define it as follows.
 678

679 **Definition B.1** (Highest Conditional Density Regions). Let d be a distribution and Z a latent variable
 680 correlated with d . Let d_i denote the conditional probability of d when knowing $Z = Z_i$, here
 681 $Z_i, i \in [N]$ is one of the N states of Z . This explicitly writes as
 682

$$683 d_i = d | \{Z = Z_i\}.$$

684 We define the Highest Conditional Density Regions S_M as the smallest region on which the integral
 685 of d_i is M .
 686

687 **Figure 8** shows the difference of HCDR and HDR.
 688

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

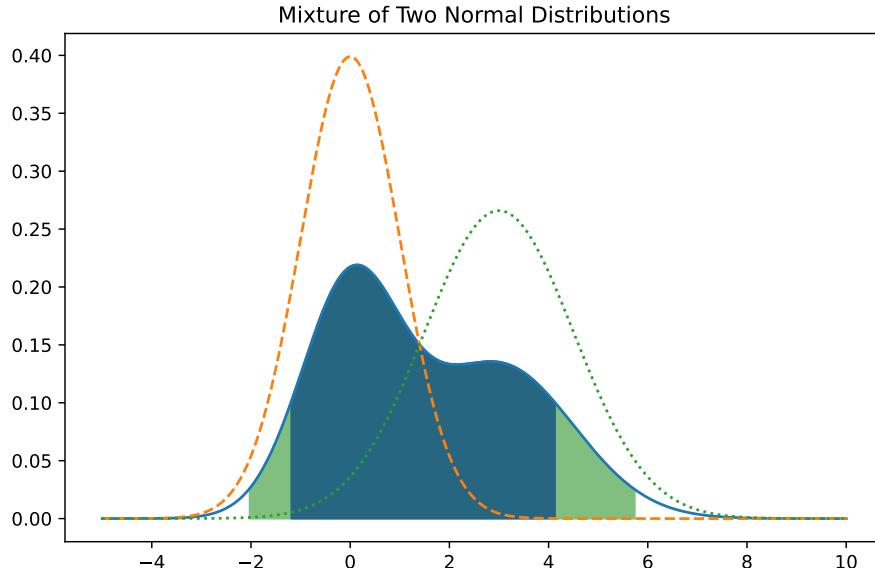


Figure 8: **An Example of HCDR vs. HDR.** We show the difference between HCDR and HDR for a mixture of two normal distributions. The blue region denotes HDR, whereas the green and blue region together denote HCDR. δ denotes the bound of the HDR (10%), and δ_1 (5%) denotes the bound for the conditional probabilities. Though HDR is encapsulated in HCDR in this example, HDR might contain regions outside HCDR in other cases, meaning HCDR is not simply an expansion of HDR.

C PROOFS OF MAIN TEXT

C.1 PROOF OF THEOREM 4.1

To prove the existence of δ -hallucination, we state the following lemma.

Lemma C.1. The estimator $A^*(X)$ that minimizes the expected quadratic loss over $A(X)$ is

$$A^*(X) = \mathbb{E}_{A(X)}[A(X)].$$

Proof. As defined in [Definition 2.1](#), for $A^*(X)$, the loss over $A(X)$ is

$$\begin{aligned} \ell_{A(X)}(A^*(X)) &= \mathbb{E}_{A(X)}[\|A^*(X) - a\|_2^2] \\ &= \int_{a \in \mathcal{A}} \|A^*(X) - a\|_2^2 \cdot f_{A(X)}(a) da, \end{aligned} \quad (\text{C.1})$$

where \mathcal{A} is the output domain of $A(X)$ (the set of all possible outputs). By our notation defined in [Section 2](#), $f_{A(X)}$ is the probability density function of $A(X)$.

Now, for an A^* that minimizes the loss at X . We have its gradient at $A(X)$ to be 0_{d_a} (d_a is the output dimension as in [Definition 3.1](#)).

$$\nabla \ell_{A(X)}(A^*(X)) = 0.$$

Combine the above equation with [\(C.1\)](#) we have

$$\nabla \left(\int_{a \in \mathcal{A}} \|A^*(X) - a\|_2^2 \cdot f_{A(X)}(a) da \right) = 0. \quad (\text{C.2})$$

Since the ∇ here denotes the gradient of $A^*(X)$, we have

$$\nabla \left(\int_{a \in \mathcal{A}} \|A^*(X) - a\|_2^2 \cdot f_{A(X)}(a) da \right)$$

$$\begin{aligned}
&= \int_{a \in \mathcal{A}} \nabla \|A^*(X) - a\|_2^2 \cdot f_{A(X)}(a) da \\
&= \int_{a \in \mathcal{A}} \nabla (\|A^*(X)\|_2^2 - 2A^*(X)^\top a) \cdot f_{A(X)}(a) da \quad (\|A(X)\|_2^2 \text{ is erased when taking the gradient}) \\
&= \int_{a \in \mathcal{A}} (2A^*(X) - 2a) \cdot f_{A(X)}(a) da \\
&= 2 \int_{a \in \mathcal{A}} A^*(X) \cdot f_{A(X)}(a) da - 2 \int_{a \in \mathcal{A}} A(X) \cdot f_{A(X)}(a) da \\
&= 2A^*(X) - 2 \int_{a \in \mathcal{A}} a \cdot f_{A(X)}(a) da. \quad (\text{By } \int_{\mathcal{A}} f_{A(X)}(a) da = 1)
\end{aligned}$$

Combine the above result with (C.2), we have

$$2A^*(X) - 2 \int_{a \in \mathcal{A}} A(X) \cdot f_{A(X)}(a) da = 0.$$

Thus A^* is

$$A^*(X) = \int_{a \in \mathcal{A}} a \cdot f_{A(X)}(a) da = \mathbb{E}[A(X)]. \quad (\text{C.3})$$

This completes the proof. \square

Theorem C.1 (Existence of δ -Hallucination under Single Input; [Theorem 4.1 Restate](#)). For an input X , there exists infinitely many distributions of $A(X)$ and Z such that for an estimator A^* that minimizes the expected quadratic loss defined in [Definition 2.1](#) over $A(X)$, it is bound to δ -hallucinate at X .

Proof. By [Lemma C.1](#), we have

$$A^*(X) = \mathbb{E}_{A(X)}[A(X)].$$

We now construct a wide range of distribution of $A(X)$ and Z that satisfies

$$f(A^*(X); Z) \leq \delta.$$

Let N (number of latent states) be any positive number. Then, let $A(X; Z_i), i \in [N - 1]$ be a normal distribution of the form

$$f_{A(X; Z_i)}(a) := (2\pi)^{-\frac{d_a}{2}} \det(\Sigma_i)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(X - \mu_i)^\top \Sigma_i^{-1}(X - \mu_i)\right).$$

By the requirements of normal distributions, Σ_i are positive-definite matrices in $\mathbb{R}^{d_a \times d_a}$, and μ_i are d_a -dimensional vectors.

This is also denoted as

$$A(X; Z_i) \sim \mathcal{N}(\mu_i, \Sigma_i),$$

where $\mathcal{N}(\mu_i, \Sigma_i)$ denotes a normal distribution of mean μ_i and covariance matrix Σ_i by convention.

Then, define μ_i to satisfy

$$f_{A(X; Z_i)}(0_{d_a}) = (2\pi)^{-\frac{d_a}{2}} \det(\Sigma_i)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mu_i^\top \Sigma_i^{-1}\mu_i\right) \leq \delta$$

For any $\delta > 0$, this μ_i always exists. We give the following example.

$$\mu_i = m_i 1_{d_a},$$

810 where m_i is
 811

$$812 \quad 813 \quad 814 \quad \sqrt{\frac{-2 \ln(\delta) - \ln(\det(\Sigma_i))}{1_{d_a}^\top \Sigma_i 1_{d_a}}}. \quad (\delta \in (0, 1])$$

815 The probability density is
 816

$$817 \quad 818 \quad 819 \quad 820 \quad 821 \quad 822 \quad 823 \quad 824 \quad 825 \quad 826 \quad 827 \quad 828 \quad 829 \quad 830 \quad f_{A(X; Z_i)}(0_{d_a}) = (2\pi)^{\frac{-d_a}{2}} \det(\Sigma_i)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \mu_i^\top \Sigma_i^{-1} \mu_i\right) \\ = (2\pi)^{\frac{-d_a}{2}} \det(\Sigma_i)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} m_i^2 1_{d_a}^\top \Sigma_i 1_{d_a}\right) \\ = (2\pi)^{\frac{-d_a}{2}} \det(\Sigma_i)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{-2 \ln(\delta) - \ln(\det(\Sigma_i))}{1_{d_a}^\top \Sigma_i 1_{d_a}} \cdot 1_{d_a}^\top \Sigma_i 1_{d_a}\right) \\ = (2\pi)^{\frac{-d_a}{2}} \det(\Sigma_i)^{-\frac{1}{2}} \exp\left(\ln(\delta) + \frac{1}{2} \ln(\det(\Sigma_i))\right) \\ = (2\pi)^{\frac{-d_a}{2}} \det(\Sigma_i)^{-\frac{1}{2}} \cdot \det(\Sigma_i)^{\frac{1}{2}} \delta \\ = (2\pi)^{\frac{-d_a}{2}} \delta \\ \leq \delta. \quad (C.4)$$

831 This means our definition of μ_i is valid.
 832

833 For simplicity, let p_i denote $\Pr[Z = Z_i]$:

$$834 \quad 835 \quad p_i := \Pr[Z = Z_i].$$

836 Now, define $A(X; Z_N)$ to be
 837

$$838 \quad 839 \quad A(X; Z_N) \sim \mathcal{N}\left(-\sum_{i \in [N-1]} \frac{p_i}{p_n} \mu_i, \Sigma_N\right). \quad (C.5)$$

840 Let μ_N denote $-\sum_{i \in [N-1]} p_i/p_n \cdot \mu_i$.
 841

842 Let $m_N \in \mathbb{R}$ be
 843

$$844 \quad 845 \quad m_N := \delta^{-\frac{2}{d_a}}.$$

846 Then let Σ_N be defined as
 847

$$848 \quad 849 \quad \Sigma_N := \frac{1}{m_N} \cdot I_{d_a},$$

850 which is positive definite.
 851

852 This means
 853

$$\Sigma_N^{-1} = m_N \cdot I_{d_a}$$

854 is also positive definite.
 855

856 Thus we have
 857

$$858 \quad \exp\left(-\frac{1}{2} \mu_N^\top \Sigma_N^{-1} \mu_N\right) \leq \exp(0) = 1.$$

859 Then along with (C.5) we have
 860

$$861 \quad 862 \quad 863 \quad f_{A(X; Z_N)}(0_{d_a}) = (2\pi)^{\frac{-d_a}{2}} \det(\Sigma_N)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \mu_N^\top \Sigma_N^{-1} \mu_N\right) \\ \leq \det(\Sigma_N)^{-\frac{1}{2}}$$

$$\begin{aligned}
&= (m_N^{d_a})^{-\frac{1}{2}} \\
&= \delta^{-\frac{2}{d_a} \cdot \frac{-d_a}{2}} \\
&= \delta.
\end{aligned} \tag{C.6}$$

Recall in (C.3) we have proven A^* to be the expectation of A . This means for the distribution $A(X)$ we've constructed here, we have

$$\begin{aligned}
A^*(X) &= \mathbb{E}[A(X)] \\
&= \mathbb{E}_Z[\mathbb{E}_A[A(X; Z)]] \\
&= \sum_{i=1}^N \Pr[Z = Z_i] \mathbb{E}[A(X; Z_i)] \\
&= \sum_{i=1}^N p_i \mu_i \\
&= \sum_{i=1}^{N-1} p_i \mu_i + p_N \mu_N \\
&= \sum_{i=1}^{N-1} p_i \mu_i + p_N \left(-\sum_{i=1}^{N-1} \frac{p_i}{p_N} \mu_i \right) \\
&= 0.
\end{aligned}$$

Combining the fact of $A^*(X) = 0$ with (C.4) and (C.6) satisfies the condition of δ -hallucination defined in [Definition 3.2](#). This completes the proof. \square

C.2 PROOF OF [COROLLARY 4.2.1](#)

Corollary C.1.1 (Existence of δ -Hallucination under Multiple Inputs; [Corollary 4.2.1](#) Restate). For a set of input $X_j, j \in [S]$, there exists infinitely many distributions of $A(X_j)$ and Z such that any estimator minimizing the expected quadratic loss defined in [Definition 2.1](#) is bound to δ -hallucinate at X .

Proof. Construct every $A(x_j)$ according to the construction of [Appendix C.1](#). This makes every $A^*(X_j), j \in [S]$ to fall out of the non-hallucinating region. This completes the proof. \square

C.3 PROOF OF [APPENDIX C.3](#)

Theorem C.2 (Existence of δ -Hallucination on Semi-Optimal Estimators Under Single Input; [Theorem 4.2](#) Restate). For an input X , there exists infinitely many distributions of $A(X)$ and Z such that if an estimator A' is within a distance of ϵ to the optimal estimator A^* , which writes as

$$\|A'(X) - A^*(X)\|_2 \leq \epsilon,$$

then $A'(X)$ is bound to δ -hallucinate.

Proof. By [Lemma C.1](#), we have

$$A^*(X) = \mathbb{E}_{A(X)}[A(X)].$$

Thus we have

$$\|A'(X) - \mathbb{E}[A(X)]\|_2 \leq \epsilon. \tag{C.7}$$

Let N be any *even* number in N^+ .

918 Construct

919
920
$$A(X; Z_i) \sim \mathcal{N}(\mu_i, I_{d_a}).$$

921
922 Let $\mathbb{E}[A(X)] = \sum_{i=1}^N p_i \mu_i$ be 0. Here $p_i = \Pr[Z = Z_i]$. Then by (C.7), we have

923
924
$$\|A'(X) - 0\|_2 \leq \epsilon.$$

925 Let v_0 denote A' . The probability of v_0 in $A(X; Z_i)$ is

926
927
$$(2\pi)^{\frac{-d_a}{2}} \exp\left(-\frac{1}{2}(v_0 - \mu_i)^\top (v_0 - \mu_i)\right) = (2\pi)^{\frac{-d_a}{2}} \exp\left(-\frac{1}{2}\|v_0 - \mu_i\|_2^2\right).$$

930 Set $\|\mu_i\|_2 \geq \sqrt{-2 \ln \delta} + \epsilon$, we have

931
932
$$\begin{aligned} (2\pi)^{\frac{-d_a}{2}} \exp\left(-\frac{1}{2}\|v_0 - \mu_i\|_2^2\right) &\leq \exp\left(-\frac{1}{2}\|v_0 - \mu_i\|_2^2\right) \\ 933 &\leq \exp\left(-\frac{1}{2}(\|v_0 - \mu_i\|_2 - \|v_0\|_2)^2\right) \\ 934 &\leq \exp\left(-\frac{1}{2}(\sqrt{-2 \ln \delta} + \epsilon - \epsilon)^2\right) \\ 935 &\leq \delta. \end{aligned}$$

936 Finally, let

937
938
$$\mu_i = -\frac{p_{N-i}}{p_i} \mu_{N-i}. \quad (N \text{ has been set to be even})$$

939 This ensures $\sum_{i=1}^N p_i \mu_i$ to be 0.940 The last constraint can coexist with $\|\mu_i\|_2 \geq \sqrt{-2 \ln \delta} + \epsilon$ in infinitely many constructions of
941 $\mu_i, i \in [N]$ (e.g., $\mu_i = C \cdot i(N-i)(\sqrt{-2 \ln \delta} + \epsilon)/p_{N-i} \cdot 1_{d_a}$ for any $C > 1$). This completes the
942 proof. □943
944 C.4 PROOF OF THEOREM 4.3945
946 **Theorem C.3** (Existence of δ -Hallucination at Tilted Input; Theorem 4.3 Restate). Let B_δ denote
947 the bound of all hints $\delta_i, i \in [N]$, defined as

948
949
$$B_\delta := \sup_{i \in [N]} \|\delta_i\|_2.$$

950 For an L -Lipschitz estimator A^* satisfying Definition 2.2, there exists infinitely many distributions of
951 $A(X; Z)$ such that δ -Hallucination happens on all $X + \delta_i$. That is, $A^*(X + \delta_i)$ does not fall into the
952 region where $f_{A(X; Z_i)} \geq \delta$ for any $i \in [N]$ by Definition 3.1. □953
954 *Proof.* Let $A(X; Z_i)$ be a normal distribution with a mean of μ_i and a covariance matrix of Σ_i .
955 Construct $\sum_{i=1}^N p_i \mu_i = 0_{d_a}$, where $p_i = \Pr[Z = Z_i]$.956 Because A^* is L -Lipschitz, we have

957
958
$$\|A^*(X + \delta_i) - A^*(X)\|_2 \leq L\|X + \delta_i - X\|_2 = L\|\delta_i\|_2 \leq LB_\delta. \quad (\text{C.8})$$

959 See LB_δ as ϵ , and $A^*(X + \delta_i)$ as different A' in Theorem 4.2. Apply Theorem 4.2 to every
960 $A(X + \delta_i)$. Thus, there are infinitely many distributions for $A^*(X + \delta_i)$ to δ -hallucinate over $A(X)$.
961 This completes the proof. □

972 C.5 PROOF OF THEOREM 5.1
973974 To prove [Theorem 5.1](#), we state the following definitions and assumptions.
975976 We begin with the definition of means and variances for the variables of interest.
977978 **Definition C.1** (Means and Variances; [Definition 5.1](#) Restate). Let $\{Z_i\}_{i \in [N]}$ denote the possible
979 states of the latent variable Z , with probabilities $p_i := \Pr[Z = Z_i]$. For each $i \in [N]$, define the
980 conditional mean
981

982
$$\mu_i := \mathbb{E}[A(X; Z_i)].$$

983

984 We regard μ_i as a realization of a random variable distributed according to d_i^μ . Let $\mu_i^d := \mathbb{E}_{d_i^\mu}[\mu_i]$
985 and $\sigma_i^d := \text{Var}_{d_i^\mu}[\mu_i]$ denote the mean and variance of this distribution, respectively. Let d^μ denote
986 the joint distribution of (μ_1, \dots, μ_N) . We write $\mu^d := \mathbb{E}_{d^\mu}[\mu_1, \dots, \mu_N]$ for its mean vector and
987 $\sigma^d := \mathbb{E}[\sum_{i=1}^N (\mu_i - \mu_i^d)^2]$ as sum of variance.
988989 We then provide the following assumptions applied to μ_i and d_i^μ in [Definition C.1](#). In particular, we
990 assume that the conditional means align around a common value and that the joint distributions of
991 these conditional means are mutually independent.
992993 **Assumption C.1.** We impose the following conditions on the distributions defined in [Definition C.1](#):994 1. *Identical means*: There exists a constant $\mu_0 \in \mathbb{R}$ such that $\mu_i^d = \mu_0$, for all $i \in [N]$.
995 2. *Independence*: The distributions $\{d_i^\mu\}_{i=1}^N$ are mutually independent.
996997 We now characterize hallucination events in terms of output regions that correspond to high ($> \delta$)
998 conditional probability under each latent state.
9991000 **Definition C.2** (High Conditional Density Regions; [Definition 5.2](#) Restate). We define U_i^δ to be
1001

1002
$$U_i^\delta := \{a \mid f(a; Z_i) > \delta\},$$

1003

1004 which is the region with posterior probability of $Z = Z_i$ larger than δ .
10051006 **Remark C.1** ([Remark 5.2](#) Restate). By [Definition C.2](#), δ -hallucination of $A^*(X)$ is equivalent to
1007

1008
$$A^*(X) \notin U_i^\delta, \quad i \in [N].$$

1009

1010 We then define the following spheres covering U_i^δ in [Definition C.2](#). Specifically, we enclose each
1011 U_i^δ within the smallest possible sphere centered at the corresponding mean μ_i .
10121013 **Definition C.3** (Minimal Covering Spheres; [Definition 5.3](#) Restate). For each $i \in [N]$, let $U_i^\delta \subset \mathbb{R}^{d_a}$
1014 denote the δ -high density region associated with state Z_i . Define $B_i^\delta(r)$ as the closed Euclidean ball
1015 of radius r centered at μ_i . The minimal covering radius is
1016

1017
$$r_i := \inf_{r_i \in \mathbb{R}^+} \{U_i^\delta \subset B_i^\delta(r_i)\}.$$

1018

1019 Thus $B_i^\delta(r_i)$ is the smallest sphere centered at μ_i that contains U_i^δ . Finally, define the uniform
1020 covering radius
1021

1022
$$r = \max_{i \in [N]} \{r_i\}.$$

1023

1024 Next, we state the following auxiliary lemmas.
10251026 **Lemma C.2** (Paley-Zygmund Inequality). For any non-negative random variable T and any $\theta \in [0, 1]$,
1027 we have
1028

1029
$$\Pr[T > \theta \cdot \mathbb{E}[T]] \geq (1 - \theta)^2 \frac{(\mathbb{E}[Z])^2}{\mathbb{E}[Z^2]}.$$

1030

1026
1027**Lemma C.3** (Chebyshev Inequality). For any random variable T , we have1028
1029
1030
1031

$$\Pr[|T - \mathbb{E}[T]| \geq a] \leq \frac{\text{Var}[T]}{a^2}, \quad \text{for all constant } a,$$

where $\text{Var}[T]$ is the variance of T .1032
1033
1034**Lemma C.4** (Cauchy Inequality). For any $n \in \mathbb{N}^+$ along with two sets of variables x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n , they satisfy1035
1036
1037

$$(\sum_{i=1}^n x_i y_i)^2 \leq (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2).$$

1038
1039
1040By **Lemma C.3** and **Lemma C.4**, we derive a bound for the probability of distances between the loss minimizing estimator and the mean of d^μ defined in **Definition C.1** which is μ_0 by **Assumption C.1** as follows.1041
1042
1043**Lemma C.5** (Probability Upper Bound of Distance between $A^*(X)$ and μ_0 in **Assumption C.1**). Let A^* be the optimal estimator over A . Then for any $d_1 > 0$ we have1044
1045
1046

$$\Pr[\|\mu_0 - A^*(X)\|_2^2 \geq d_1^2] \leq \frac{(\sum_{i=1}^N p_i^2) \sigma^d}{d_1^2}.$$

1047

Proof. By **Lemma C.3**, we have1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

$$\begin{aligned} \Pr[(A^*(X) - \mu_0)^2 \geq d_1^2] &\leq \frac{\mathbb{E}[(A^*(X) - \mu_0)^2]}{d_1^2} \\ &= \frac{\mathbb{E}[(\sum_{i=1}^N p_i \mu_i - \mu_0)^2]}{d_1^2} \\ &= \frac{\mathbb{E}[(\sum_{i=1}^N p_i (\mu_i - \mu_0))^2]}{d_1^2} \\ &\leq \frac{\mathbb{E}[(\sum_{i=1}^N p_i^2) (\sum_{i=1}^N (\mu_i - \mu_0)^2)]}{d_1^2} \quad (\text{By Lemma C.4}) \\ &= \frac{(\sum_{i=1}^N p_i^2) \mathbb{E}[\sum_{i=1}^N (\mu_i - \mu_0)^2]}{d_1^2} \\ &= \frac{(\sum_{i=1}^N p_i^2) \sigma^d}{d_1^2}. \end{aligned}$$

1064
1065This completes the proof. \square 1066
1067In addition, by **Lemma C.2**, we derive a lower bound of the probability of distances between μ_i defined in **Definition C.1** and μ_0 defined in **Assumption C.1**.1068
1069
1070
1071
1072
1073**Lemma C.6** (Lower Bound on the Probability of Distance between μ_i in **Definition C.1** and μ_0 in **Assumption C.1**). For $i \in [N]$, let μ_i and μ_0 be as defined in **Definition C.1** and **Assumption C.1**. We have, for any $\theta \in [0, 1]$,

$$\Pr[\|\mu_i - \mu_0\|_2^2 \geq \theta \sigma_i^d] \geq (1 - \theta)^2 K_i^\mu.$$

1074
1075*Proof.* Because $\|\mu_i - \mu_0\|_2^2 \geq 0$, by **Lemma C.2**, set T in **Lemma C.2** to be $\|\mu_i - \mu_0\|_2^2$, and we have1076
1077

$$\Pr[\|\mu_i - \mu_0\|_2^2 \geq \theta \mathbb{E}[\|\mu_i - \mu_0\|_2^2]] \geq (1 - \theta)^2 \frac{\mathbb{E}[(\mu_i - \mu_0)^2]^2}{\mathbb{E}[\|\mu_i - \mu_0\|_2^4]} = (1 - \theta)^2 K_i^\mu.$$

1078
1079

Combining with

$$\mathbb{E}[\|\mu_i - \mu_0\|_2^2] = \sigma_i^d,$$

1080 we have

$$1082 \Pr[\|\mu_i - \mu_0\|_2^2 \geq \theta\sigma_i^d] \geq (1 - \theta)^2 K_i^\mu.$$

1084 This completes the proof. \square

1085 Therefore, by [Lemma C.5](#) and [Lemma C.6](#), combined with [Definition C.3](#), we prove the lower bound
1086 of the probability of hallucination.

1088 **Theorem C.4** (Hallucination Probability Lower Bound; [Theorem 5.1](#) Restate). Let $(A(X), Z)$ satisfy
1089 [Assumption 5.1](#). For each $i \in [N]$, let μ_i, σ_i^d be as in [Definition 5.1](#), let μ_0 be as in [Assumption 5.1](#),
1090 and let r_x be as in [Definition 5.3](#). Define

$$1092 d := \left(\sum_{j=1}^N p_j^2 \sigma_j^d \right)^{1/2}, \quad \theta_i(\alpha) := \frac{(\alpha d + r_x)^2}{\sigma_i^d}, \quad \alpha > 1, \quad \text{and} \quad K_i^\mu := \frac{(\mathbb{E}[(\mu_i - \mu_0)^2])^2}{\mathbb{E}[(\mu_i - \mu_0)^4]}.$$

1095 If for every $i \in [N]$ there exists $\alpha_i > 1$ such that $\theta_i(\alpha_i) \leq 1$, then

$$1097 P_H^\delta > \prod_{i=1}^N (P_i K_i^\mu),$$

1100 where P_H^δ denotes the probability that the optimal estimator A^* δ -hallucinates at X (equivalently,
1101 $A^*(X) \notin U_i^\delta$ for all $i \in [N]$, with U_i^δ as in [Definition 5.3](#)).

1103 *Proof.* By [Lemma C.5](#), for every $i \in [N]$, we have

$$1105 \Pr[\|\mu_0 - A^*(X)\|_2^2 \geq d_i^2] \leq \frac{(\sum_{i=1}^N p_i^2) \sigma^d}{d_i^2}.$$

1107 This means

$$1109 \Pr[\|\mu_0 - A^*(X)\|_2^2 \leq d_1^2] \geq 1 - \frac{(\sum_{i=1}^N p_i^2) \sigma^d}{d_1^2}. \quad (\text{C.9})$$

1112 By [Lemma C.6](#), we have, for every $i \in [n]$

$$1114 \Pr[\|\mu_i - \mu_0\|_2^2 \geq \theta_i \sigma_i^d] \geq (1 - \theta_i)^2 K_i^\mu. \quad (\text{C.10})$$

1116 Then, [Definition C.3](#), the probability for A^* to fall out of the region with a conditioned probability of
1117 $A(X; Z_i)$ no less than δ is at least

$$\begin{aligned} 1118 \Pr[A^*(X) \notin U_i^\delta] &\geq \Pr[A^*(X) \notin B_i^\delta(r_i)] \\ 1119 &\geq \Pr[\|A^*(X) - \mu_0\|_2 \leq d_i] \cdot \Pr[\|\mu_i - \mu_0\|_2 \geq d_i + r_x] \\ 1120 &\geq (1 - \frac{(\sum_{i=1}^N p_i^2) \sigma^d}{d_i^2}) ((1 - \theta_i)^2 K_i^\mu) \quad (\text{By (C.9) and (C.10)}) \\ 1121 &= (1 - \frac{1}{\alpha_i^2}) (1 - \theta_i)^2 K_i^\mu. \end{aligned}$$

1126 Set α_i to maximize

$$1128 (1 - \frac{1}{\alpha_i^2}) (1 - \theta_i)^2,$$

1130 which is equivalent to maximizing P_i .

1132 Then we have

$$1133 \Pr[A^*(X) \notin U_i^\delta] \geq P_i K_i^\mu.$$

1134 Given $d_i^\mu, i \in [N]$ are independent to each other, we have
 1135

1136
$$\Pr\left[A^*(X) \notin U_i^\delta, i \in [N]\right] \geq \prod_{i=1}^N P_i K_i^\mu.$$

 1138

1139 The left-hand side is equivalent to P_h^δ (see [Definition C.2](#) and [Remark C.1](#)).
 1140

1141 This completes the proof. \square
 1142

1143 D DERIVATION TO CROSS-ENTROPY LOSS

1144 In this section, we derive the cross-entropy loss version of our results in [Section 4](#).
 1145

1146 **Definition D.1** (Cross-Entropy Loss). For an input X and an according possible output $a \in \mathcal{A}$,
 1147 given a target probability density $q_X^a \in [0, 1]^C$ and a model-estimated distribution $p_X \in [0, 1]^C$ over
 1148 C classes, let $q_X^a(t)$ and $p_X(t)$ denote their t -th entry respectively. The cross-entropy loss at X is
 1149 defined as

1150
$$\mathcal{L}(q_X^a, p_X) = - \sum_{t \in [C]} q_X^a(t) \log p_X(t),$$

 1151
 1152

1153 where $q_X^a(t) \geq 0$, $\sum_{t \in [C]} q_X^a(t) = 1$, $p_X(t) \geq 0$, and $\sum_{t \in [C]} p_X(t) = 1$.
 1154

1155 We define the total loss at X as the expectation of loss over \mathcal{A} at all a , that is
 1156

$$E_a(\mathcal{L}(q_X^a, p_X)).$$

1157 Comparing to the notation in [Section 4](#), the predictor A^* at input X outputs the predicted probabilities
 1158 $A^*(X)$, which can be noted here as
 1159

$$[A^*(X)](t) := p_X(t), t \in [C],$$

1160 We now prove the existence of δ -hallucination under cross-entropy loss.
 1161

1162 **Theorem D.1** (Existence of δ -Hallucination under Cross-Entropy Loss). For an input X , there exists
 1163 infinitely many target distributions $A(X)$ such that the A^* minimizing the cross-entropy loss defined
 1164 in [Definition D.1](#) at X δ -hallucinates.
 1165

1166 *Proof.* We first calculate the loss minimizing A^* at X .
 1167

1168
$$E_a(\mathcal{L}(q_X^a, p_X))$$

 1169
 1170 $= \int_{\mathcal{A}} p(a) \left[- \sum_{t \in [C]} q_X^a(t) \log p_X(t) \right] da$
 1171
 1172 $= \sum_{t \in [C]} (-\log p_X(t)) \left[\int_{\mathcal{A}} q_X^a(t) da \right]$
 1173
 1174 $= \sum_{t \in [C]} (-\log p_X(t)) E_a q_X^a(t).$
 1175
 1176

1177 Thus by Gibbs Inequality, we have the loss minimizing $p_X(t)$ of $E_a(\mathcal{L}(q_X^a, p_X))$ is
 1178

$$p_X(t) = E_a q_X^a(t), t \in [C].$$

1181 We then construct the latents that induce the δ -hallucination at X .
 1182

1183 Define the probability distribution under each Z_i as
 1184

$$A(q_X^a | Z = Z_i) \sim \mathcal{N}(q_i, d), i \in [N],$$

1185 in which q_i is
 1186

$$q_i(t) := e_t^{(C)},$$

1188 and

$$1190 \quad d \leq -\frac{N-1}{N \ln(\delta^2)}. \\ 1191$$

1192 Then let $P(Z_i) = 1/N$, we have p_X equals

$$1194 \quad p_X := \frac{\sum_{i=1}^N e_i^{(C)}}{N}. \\ 1195 \\ 1196$$

1197 Then

$$1199 \quad P(p_x | Z = Z_i) \\ 1200 \quad = \frac{1}{\sqrt{2\pi d}} \exp\left(-\frac{(p_X - q_i)^2}{2d}\right) \\ 1201 \\ 1202 \quad = \frac{1}{\sqrt{2\pi d}} \exp\left(-\frac{N-1}{2dN}\right) \\ 1203 \\ 1204 \quad \leq \frac{1}{\sqrt{-2\pi \frac{N-1}{N \ln(\delta^2)}}} \exp\left(-\frac{N-1}{-2 \frac{N-1}{N \ln(\delta^2)} N}\right) \\ 1205 \\ 1206 \\ 1207 \quad \leq \frac{1}{\sqrt{-\pi \frac{1}{\ln(\delta^2)}}} \frac{\delta^2}{2} \\ 1208 \\ 1209 \quad \leq \frac{\delta^2 \ln(\delta^{-1})}{\sqrt{2\pi}} \\ 1210 \\ 1211 \quad \leq \frac{\delta^2(\delta^{-1} - 1)}{\sqrt{2\pi}} \\ 1212 \\ 1213 \quad \leq \delta, \\ 1214 \\ 1215 \\ 1216$$

1217 for every i .

1218 This completes the proof. □

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241