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ABSTRACT

We formalize hallucinations in generative models as failures to link an estimate to
any plausible cause. Under this interpretation, we show that even loss-minimizing
optimal estimators still hallucinate. We confirm this with a general high probability
lower bound on hallucinate rate for generic data distributions. This reframes halluci-
nation as structural misalignment between loss minimization and human-acceptable
outputs, and hence estimation errors induced by miscalibration. Experiments on
coin aggregation, open-ended QA, and text-to-image support our theory.

1 INTRODUCTION

Hallucination in generative model refers to a model generating confident yet unsupported or non-
factual outputs. This failure undermines user trust, safety, and the practical utility of AI systems. It
becomes a critical concern in modern machine learning with the widespread deployment of large-scale
generative models across language, vision, and multimodal domains (Ji et al., 2023; Liu et al., 2024;
Bai et al., 2024; Kalai et al., 2025). To address it, we must understand why models hallucinate at a
fundamental level. In this work, we formalize hallucination as an attribution failure: the estimated
prediction does not align with any plausible input cause under standard loss-minimizing training.
From this perspective, we prove hallucination persists even for Bayes-optimal estimators.

Prior theory attributes hallucination to resource limits, sparse data, or computational hardness. Xu
et al. (2024) study hallucination as the mismatch between a model’s computed function and the
ground-truth function. They prove that any polynomial-time language model hallucinates on some
tasks due to computational limits. Kalai & Vempala (2024) show that even a calibrated model
hallucinates on rare “singleton” facts. They lower bound the hallucination rate by the frequency
(redundancy) of these facts in the training data. Banerjee et al. (2024) study hallucination through
Gödel’s first incompleteness theorem. They argue that no finite dataset captures all valid inferences,
so hallucination persists regardless of model or data scale. Taken together, these results frame
hallucination as a byproduct of constraints rather than a structural feature of estimation.

In contrast, we posit that hallucination is not only a symptom of modeling limitations but also a
structural phenomenon of estimation itself. Our key insight is that hallucinations may still persist even
for Bayes-optimal estimators with unlimited capacity that minimize the true training loss. In other
words, a model with infinite power, trained without resource constraints, still outputs implausible
content. The crux is a misalignment between the model’s objective and human expectations. A
loss-minimizing model is optimized to produce the average outcome, whereas a human evaluator
expects a specific plausible outcome (typically, one of the modes of the true distribution).

This reframes hallucination as structural misalignment. Hallucination is a manifestation of estimation
errors induced by miscalibration. To be concrete, under expected standard loss, the Bayes-optimal
predictor for a target distribution A(X) given the input X is the conditional expectation

A∗(X) = E[A(X)],

which minimizes the expected error by construction. If the true conditional distribution Pr[A(X)] =
Pr[A(x) | X = x] is multimodel1, then A⋆(X) average across all those possible outcomes and may
fall in a low-probability region. It matches none of the plausible modes. The estimate minimizes error
yet fails to align with any realistic ground-truth outcome. Thus even an optimal estimator may produce
outputs that no human would recognize as valid or plausible. We deem this is a fundamental source of
hallucination in generative models. To this end, we formalize this into δ-hallucination: an estimator’s

1For instance, an open-ended question that has several distinct correct answers.
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output that lies outside a δ-neighborhood of every plausible outcome (please see Section 3 for precise
definitions.) This reframing shows hallucination as a consequence of the objective misalignment,
rather than just a lack of model capacity or data.

Contributions. Our contributions are as follows.

• New Formulation for Hallucination Fundamental Source. We characterize hallucination
phenomena in generative models by introducing δ-hallucination. This interprets hallucination as
outputs that fail to match any plausible human-acceptable outcome. The formulation provides a
rigorous and measurable way to analyze hallucination in generative models.

• Hallucination of Optimal Estimators. We prove that loss-minimizing optimal estimators still
δ-hallucination. We extend the result to near-optimal estimators, to multiple inputs, and to inputs
with hinted latent variables. These results confirm hallucination as a fundamental source rooted in
the estimation process itself.

• Fundamental Limits of Hallucination. We derive a general lower bound on the probability of
δ-hallucination under mild distribution assumptions. This bound reaffirms that hallucinations
persist at a non-zero rate. This establishes a fundamental limit that prevents eliminating the source
of hallucinations through larger models or datasets.

• Experiment Validation. We validate our theory through controlled experiments on coin-flipping
aggregation, open-ended QA, and text-to-image generation. The results demonstrate that mini-
mizing loss does not remove hallucination. The persistence across both synthetic and real-world
settings confirms hallucination as a structural feature of estimation and a fundamental source of
model misalignment.

Organization. Section 3 defines hallucination as δ-hallucination. Section 4 demonstrates halluci-
nation of optimal estimators. Section 5 provides a lower bound on the probability of hallucination.
Section 6 details experiment results.

Related Work. We defer related work discusssion to Appendix A due to page limits.

2 PRELIMINARIES

Notations. In this work, fY (·) denotes the probability density function over the randomness of Y .
EY [T ] denotes the expectation of a random variable T over Y . [N ] denotes the set: {1, 2, · · · , N}.
∥ · ∥2 denotes 2-norm. We use ∥ · ∥2 as the square root of the square sum of all entries. For a column
vector v, we use vi to denote its i-th entry from the top. For a matrix M , we use Mr,c to denote its
entry at r-th row and c-th column. We write M:,c and Mr,: to denote its c-th column and r-th row,
respectively. We use 1a to denote an indicator that is 1 when a happens and 0 otherwise.

Expected Quadratic Loss. We define expected quadratic loss as follows.

Definition 2.1 (Expected Quadratic Loss). Let X be an input, let A(X) be a random target output
associated with X , and let A(X) be an estimator for A(X). Define the expected quadratic loss of the
estimator A(X) with respect to the true output A(X) as:

ℓA(A
∗(X)) := E

[
∥A∗(X)−A(X)∥22

]
.

In other words, ℓA(A∗(X)) is the expected squared ℓ2 error between the estimate and the actual
outcome. This quantity serves as the objective that an optimal estimator would minimize (e.g., the
Bayes-optimal estimator minimizes the expected quadratic loss by construction).

Remark 2.1. We use the ℓ2 loss in the main text for clarity of exposition. In Appendix D, we show
that all results remain valid under the cross-entropy loss, which is the standard training objective for
generative models in self-supervised learning. This extension is natural because cross-entropy is a
proper scoring rule: its Bayes-optimal solution is the true conditional distribution P (Y |X), so the
same structural arguments for δ-hallucination continue to apply.

We use the expected quadratic loss to formalize the objective minimized by an optimal estimator.

Lipschitzness. We define Lipschitzness in 2-norm as follows.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 2.2 (Lipschitzness). We say a function g is L-Lipschitz (with respect to the ℓ2-norm) if
there exists a constant L > 0 such that for all inputs x and y in its domain

∥g(x)− g(y)∥2 ≤ L∥x− y∥2.

We use Lipschitzness to impose a regularity condition on the estimator. This condition ensures that
small changes in the input lead to at most L-scaled changes in the output. In our analyses, we assume
Lipschitzness as a smoothness property that rules out estimators with abrupt or unstable behavior.

Latent Variable Z. In the context of self-supervised learning, we represent the output of the model
as a probability distribution (Devlin et al., 2019; Radford et al., 2021). Specifically, when an estimator
outputs contextual factors such as speaker attitude or intended audience, we may categorize the
possible outputs based on the specific factors they exhibit. Then, we see different categories (which
are sub-distributions in the original target distribution) as conditional distributions under different
states of a latent variable Z. We illustrate the concept of this latent variable Z in Figure 1.

Open-Ended Question : What do you think of raining days? 

Language Model

They make me feel peaceful. They make my clothes wet.

Positive Emotional Att itude Negative Emotional Att itude 

Text- to- Image Model

Caption/Prompt :  a cute pet animal 

Image of an Animal

Animal Type

Figure 1: Examples of Latent Variable Z. For an open-ended question or prompt X , the latent
variable Z may be the emotional attitude or categories in the target distribution.

3 δ-HALLUCINATION

We present our definition of δ-hallucination as the gap between objective optimized by the model and
the underlying causes of variation (Z). That is, conditioning on the state of Z changes the distribution
of the output. We begin by defining the relation between input X and latent variable Z as follows.

Definition 3.1 (Data Distribution and Latent Variable). Let X ∈ Rdx denote the input, and let
A(X) ∈ Rda denote a random variable representing the target output associated with X , where dx
and da are the input and output dimensions. Let Z be a latent variable associated with X , and let
{Zi}i∈[N ] denote its possible states. The conditional output random variable given Zi is

A(X;Zi) := A(X) | {Z = Zi},

which represents the target output distribution of X under latent state Zi. If probability densities
exist, the conditional density is

fA(X;Zi)(a) :=
fA(X),Z(a, Zi)

Pr[Z = Zi]
,

where fA(X),Z is the joint density of (A(X), Z).

Remark 3.1. A(X) in Definition 3.1 defines the data distribution, but we also view it as the real
distribution in this paper. Intuitively, Z indexes hidden causes that resolve ambiguity in the output.
A(X;Zi) isolates the distribution of valid outputs when the hidden cause equals Zi. The marginal
A(X) mixes these conditional laws with weights Pr[Z = Zi], so multi-modality in A(X) arises from
variation over Z.

Key Insight. While minimizing the loss on the whole data distribution is critical for model estima-
tions, it is also important to

max
i∈[N ]

{ fA(X;Zi)(A
∗(X))},

3
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Text- to- Image Model
Generate an image 

of an animal

Output 1: The generated image 

consistent with the ?cat? category 

(90% cat; 10% dog)

Output 2: The generated image is 

more ambiguous, f itting both ?cat? and 

?dog? (70% cat; 70% dog)

Figure 2: An Example of Our Key Insight. Suppose the open-ended question is to generate a picture
of an animal. Then the output with 90% of conditional probability under the category of cat and a
10% of conditional probability under the category of dogs is considered better than the output which
has a 70% of probability density under the category of cat and 70% under the category of dog.

which is the maximum probability density of the estimate A∗(X) under Z = Zi. This reflects that a
good estimate aligns with at least one plausible underlying state rather than consistent with all. We
give an example in Figure 2 to illustrate the interpretation.

Formally, we present the above insight as δ-hallucination.

Definition 3.2 (δ-Hallucination). Let X be an input and Z a latent variable associated with X taking
values in {Zi}i∈[N ]. Fix a tolerance parameter δ ∈ (0, 1], and let A∗ be an estimator of X . We say
that A∗ δ-hallucinates at X if, for every i ∈ [N ],

f(A(X;Zi) = A∗(X)) ≤ δ, i ∈ [N ],

where fA(X;Zi) denotes the probability mass function (in the discrete case) or probability density
function (in the continuous case) of A(X;Zi).

That is, for every possible latent state, the probability of producing the estimated output A∗(X) does
not exceed δ. In other words, Definition 3.2 implies that δ-hallucination is a generated answer that
has low calculated loss but is unlikely to belong to any state or class of possible outputs.
Remark 3.2. Intuitively, δ-hallucination occurs when the estimator A∗(X) outputs a value that
has low likelihood under every plausible latent state of Z. In such a case, the prediction fail to be
attributed to any genuine cause consistent with the data distribution. This captures the idea that
hallucination arises not merely from error, but from producing an output that fails to align with any
valid mode of the underlying conditional distributions.

4 OPTIMAL ESTIMATOR STILL HALLUCINATES

We establish the existence of δ-hallucination. We begin with the single-input case, showing that
even an optimal estimator minimizing loss may δ-hallucinate, and that this extends to semi-optimal
estimators within ϵ of the optimum. We then extend the result to the multi-input setting. Finally, we
consider the practical case where the model receives hints about hidden influences in the input, and
show that hallucination exists under standard regularity conditions.

δ-Hallucination Under a Single Input. We show that even an loss-minimizing optimal estimator
may output an answer that δ-hallucinates by Definition 3.2.

Theorem 4.1 (Existence of δ-Hallucination Under Single Input). For an input X , there exists
infinitely many distributions of A(X) and Z such that for an estimator A∗ that minimizes the
expected quadratic loss defined in Definition 2.1 over A(X), it is bound to δ-hallucinate at X .

Proof. See Appendix C.1 for detailed proof.

We further demonstrate the existence of δ-hallucination on semi-optimal estimators.

Theorem 4.2 (Existence of δ-Hallucination on Semi-Optimal Estimators under Single Input). For
an input X , there exists infinitely many distributions of A(X) and Z such that if an estimator A′ is
within a distance of ϵ to the optimal estimator A∗, which writes as

∥A′(X)−A∗(X)∥2 ≤ ϵ,

4
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then A′(X) is bound to δ-hallucinate.

Proof. See Appendix C.3 for detailed proof.

δ-Hallucination under Multiple Inputs. When considering a collection of inputs, our definition
applies to each input individually. We describe the δ-hallucination under multiple inputs as follows.

Corollary 4.2.1 (Existence of δ-Hallucination under Multiple Inputs). For a set of input Xj , j ∈ [S],
there exists infinitely many distributions of A(Xj) and Z such that any estimator minimizing the
expected quadratic loss defined in Definition 2.1 is bound to δ-hallucinate at X .

Proof. See Corollary C.1.1 for detailed proof.

δ-Hallucination with Hinted Latent Variables. In practical situations, the model receives hints
about hidden influences in the input. We define this hint as a tilt upon the input X as follows.

Definition 4.1 (Effect of Latent Variable on Input). For an input X , let A(X) be its target distribution.
For a latent variable Z associated with X , let Zi denote the states of this latent variable, and let δi
denote a hint for the state Zi for all i ∈ [N ], which satisfies

A(X + δi) = A(X;Z = Zi), i ∈ [N ].

This means the target distribution of the tilted input is the posterior distribution when knowing
Z = Zi.

Based on Definition 4.1, we show δ-hallucination exists for tilted input under Lipschitzness regularity
condition as follows.

Theorem 4.3 (Existence of δ-Hallucination at Tilted Input). Let Bδ denote the bound of all hints
δi, i ∈ [N ], defined as

Bδ := sup
i∈[N ]

∥δi∥2.

For an L-Lipschitz estimator A∗ satisfying Definition 2.2, there exists infinitely many distributions of
A(X;Z) such that δ-Hallucination happens on all X + δi. That is, A∗(X + δi) does not fall into the
region where fA(X;Zi) ≥ δ for any i ∈ [N ] by Definition 3.1.

Proof. See Appendix C.4 for detailed proof.

Thus, we show that hallucination is intrinsic to the probabilistic structure of estimation, across optimal
and near-optimal estimators, multiple inputs, and even when the answers’ directions are hinted.

5 HALLUCINATION PROBABILITY LOWER BOUND

We extend our result beyond existence of δ-hallucination in Section 5 and provide a lower bound on
the probability of hallucination for optimal estimators satisfying certain conditions.

We begin with the definition of means and variances for the variables of interest.

Definition 5.1 (Means and Variances). Let {Zi}i∈[N ] denote the possible states of the latent variable
Z, with probabilities pi := Pr[Z = Zi]. For each i ∈ [N ], define the conditional mean

µi := E[A(X;Zi)].

We regard µi as a realization of a random variable distributed according to dµi . Let µd
i := Edµ

i
[µi]

and σd
i := Vardµ

i
[µi] denote the mean and variance of this distribution, respectively. Let dµ denote

the joint distribution of (µ1, . . . , µN ). We write µd := Edµ [µ1, . . . , µN ] for its mean vector and
σd := E[

∑N
i=1(µi − µd

i )
2] as sum of variance.

We then provide the following assumptions applied to µi and dµi in Definition 5.1. In particular, we
assume that the conditional means align around a common value and that the joint distributions of
these conditional means are mutually independent.

5
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Assumption 5.1. We impose the following conditions on the distributions defined in Definition 5.1:
1. Identical means: There exists a constant µ0 ∈ R such that µd

i = µ0, for all i ∈ [N ].
2. Independence: The distributions {dµi }Ni=1 are mutually independent.
We now characterize hallucination events in terms of output regions that correspond to high (> δ)
conditional probability under each latent state.

Definition 5.2 (High Conditional Density Regions). We define Uδ
i to be

Uδ
i := {a | f(a;Zi) > δ},

which is the region with posterior probability of Z = Zi larger than δ.

Remark 5.1. By Definition 5.2, δ-hallucination of A∗(X) is equivalent to

A∗(X) /∈ Uδ
i , i ∈ [N ].

Remark 5.2. We highlight the relationship between Highest Conditional Density Regions (HCDRs)
and the classical Highest Density Regions (HDRs) (Caprio et al., 2024; Dahl et al., 2024). When the
latent variable Z has only a single state, δ-hallucination reduces to the event that the target distribution
falls outside the HDR of a given mass, where the mass corresponds to a density threshold δ. When
Z has multiple states, we generalize this idea by introducing HCDRs, which capture high-density
regions conditioned on each latent state. See Appendix B for definitions and a detailed discussion.

We then define the following spheres covering Uδ
i in Definition 5.2. Specifically, we enclose each U δ

i
within the smallest possible sphere centered at the corresponding mean µi.

Definition 5.3 (Minimal Covering Spheres). For each i ∈ [N ], let U δ
i ⊂ Rda denote the δ-high

density region associated with state Zi. Define Bδ
i (r) as the closed Euclidean ball of radius r centered

at µi. The minimal covering radius is

ri := inf
ri∈R+

{U δ
i ⊂ Bδ

i (ri)}.

Thus Bδ
i (ri) is the smallest sphere centered at µi that contains Uδ

i . Finally, define the uniform
covering radius

r = max
i∈[N ]

{ri}.

Remark 5.3. Geometrically, ri measures the worst-case deviation of the δ-high density region U δ
i

from its center µi. In other words, it is the maximum distance one must travel from µi to reach any
point in U δ

i . The uniform covering radius r then gives a single bound that applies across all latent
states, capturing the largest such deviation. This interpretation is useful for intuition: ri quantifies
how “spread out” the high-density region is around its mean, while r aggregates the largest of these
spreads across all i.

With definitions and assumptions established, we now derive a lower bound on the probability of
hallucination for any optimal estimator.

Theorem 5.1 (Hallucination Probability Lower Bound). Let (A(X), Z) satisfy Assumption 5.1. For
each i ∈ [N ], let µi, σ

d
i be as in Definition 5.1, let µ0 be as in Assumption 5.1, and let rx be as in

Definition 5.3. Define

d := (

N∑
j=1

p2jσ
d
j )

1/2, θi(α) :=
(αd+ rx)

2

σd
i

, α > 1, and Kµ
i :=

(E[(µi − µ0)
2])2

E[(µi − µ0)4]
.

If for every i ∈ [N ] there exists αi > 1 such that θi(αi) ≤ 1, then

P δ
H >

N∏
i=1

(PiK
µ
i ),

where P δ
H denotes the probability that the optimal estimator A∗ δ-hallucinates at X (equivalently,

A∗(X) /∈ Uδ
i for all i ∈ [N ], with Uδ

i as in Definition 5.3).

6
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Proof. See Appendix C.5 for detailed proof.

6 EXPERIMENTS

We validate our interpretations and claims with three complementary experiments. In particular, we
first provide a synthetic coin-flipping problem (Section 6.1) where it demonstrates that models trained
purely with likelihood objectives shows persistent δ-hallucination. We then extend these insights to
large-scale LLM (Section 6.2) and text-to-image generation (Section 6.2) settings. Both experiments
validate our claim that a loss-minimizing optimal estimator δ-hallucinates.

6.1 SYNTHETIC COIN FLIPPING PROBLEM

Objective. We evaluate our claim that minimizing loss may not increase the conditional probability
of estimated output with respect to input labels as in Theorem 4.1.

Experiment Design. We design a controlled experiment based on the classical coin-flipping problem.
We choose a subset of coins from a collection of coins (each with a distinct probability of landing
heads), flip them, and record the total number of heads observed. The model receives the labels of
the chosen coins as input. We then train the model to predict the recorded total. These labels do not
explicitly reveal the head probabilities, and thus act as latent hints rather than explicit supervision.

Data. We generate 2N coins, each with a unique head probability, and perform M flips to construct
the dataset. We consider N = 2, 3, and 5, with M ranging from 20000 to 40000.

Model Architecture. We adopt an 8-layer transformer with 64 hidden dimensions and 256 feed-
forward dimensions for this experiment.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.15

0.20

0.25
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Train Loss (mean)
Train Loss (min-max)
Average Probability (mean)
Average Probability (min-max)

(a) N = 2

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
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0.3

0.4
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0.6
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Train Loss (mean)
Train Loss (min-max)
Average Probability (mean)
Average Probability (min-max)

(b) N = 3

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.2

0.4

0.6

0.8

1.0
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lu
e

Train Loss (mean)
Train Loss (min-max)
Average Probability (mean)
Average Probability (min-max)

(c) N = 5

Figure 3: We conducted 5 rounds of experiments on each of N = 2, 3 and 5. The results show that training
loss does not correlate with the conditional probability of the model estimation with respect to input labels. This
aligns with our theoretical result in Theorem 4.1.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Resemblance vs. Epochs
Qwen1.5-1.8B-Chat
Qwen2.5-7B-Instruct

Figure 4: Resemblance vs. Epochs. We fine-tune
Qwen1.5-1.8B-Chat and Qwen2.5-7B-Instruct for 2,
3, and 4 epochs and test the answers’ resemblance to
commonly incorrect answers in TruthfulQA. We re-
peat this process for 2 random seeds. Results validate
that hallucination persists even as the model mini-
mizes its predictive objective.

Results. As shown in Figure 3, we observe that
the descent of training losses does not correlate
with the rise or drop of the conditional probabil-
ity of the estimations generated on the validation
set. This result aligns with our theoretical claim
that minimizing the loss does not necessarily
maximize the conditional probability (of a latent
state) of the estimate.

6.2 OPEN-ENDED TEXT QUESTIONS

Objective. We evaluate hallucination in the
LLM models by measruing the resemblance
of model output to the commonly incorrect an-
swers in TruthfulQA (Lin et al., 2021).

Experiment Design. We fine-tune pretrained
language models on a dataset of open-ended
questions and compare their outputs to those of
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the original models. We measure the the model’s tendency to resemble the commonly incorrect
answers in TruthfulQA (Lin et al., 2021). We use Gestalt Pattern Matching (difflib in Python) to
measure resemblance.

Data. We use GPT5, Gemini 2.5 Flash, and DeepSeek R1 to generate a dataset of 300 open-ended
questions with 2 possible answers. This forms a dataset of 600 question-answer pairs.

Table 1: Resemblance of Fine-Tuned Models’ An-
swers to Commonly Incorrect Answers in Truth-
fulQA. Each model is fine-tuned for 2, 3, and 4 epochs
with 2 random seeds. The resemblance does not de-
crease with training, validating that hallucination per-
sists in loss-minimizing optimal models.

Epochs Qwen1.5-1.8B-Chat Qwen2.5-7B-Instruct
Seed 1 Seed 2 Seed 1 Seed 2

Original 0.1975 – 0.1868 –
2 0.2338 0.2431 0.2043 0.1997
3 0.2338 0.2486 0.2123 0.2028
4 0.2450 0.2539 0.2173 0.2099

Model Architecture. We fine-tune Qwen1.5-
1.8B-Chat and Qwen2.5-7B-Instruct on our
open-ended question dataset using LLaMA-
Factory with LoRA adapters.

Results. As shown in Figure 4 and Table 1,
both models show a consistent increase in resem-
blance over additional fine-tuning epochs. The
results reveal that, though we fine-tune the mod-
els to obtain low predictive loss, both models be-
come more aligned with commonly incorrect an-
swers. This pattern is consistent across all seeds
as shown in Table 1. The finding supports our
theoretical claim that loss minimization alone is
insufficient to eliminate δ-hallucination.

6.3 OPEN-ENDED TEXT-TO-IMAGE

Objective. We evaluate hallucination in a text-to-image setting where we detect generated samples
falling outside a calibrated HCDR as in Definition C.2 and Remark 5.2.

Experiment Design. We first construct HCDR from real AFHQ cat and dog images. We begin by
extracting fixed CLIP embeddings from the images, which are then normalized, reduced in dimension
via PCA, and standardized through z-scoring. For each class (cats, dogs), we fit a Gaussian Mixture
Model (GMM) on an 80% training split of the preprocessed embeddings to learn what cat or dog
features look like. We then use the remaining 20% testing data to obtain log-densities and compute a
class-specific threshold at the 10% percentile. This threshold corresponds to a cutoff such that the
top 90% of the testing images are included in the HDR for each class (See Figure 7 of Appendix B
for a visualization of HDR for cats and dogs). In other words, a new embedding is considered to lie
outside of HDR or a specific class if its log-likelihood under that class’s GMM exceeds the threshold.
Finally, to form HCDR, we take the union of the per-class HDRs: a generated embedding is inside
the HCDR if it lies in at least one class HDR, and outside otherwise.

We then fine-tune a text-to-image generative model, with the text encoder frozen, on the training
dataset for the model to mainly learn the image distribution (target). We evaluate the portion of
generated images outside of HCDR for given prompts.
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Figure 5: Hallucination Rate and Training Loss. We
plot hallucination rate (green, left axis) and training loss
(blue, right axis) over epochs. While the training loss
decreases, the hallucination rate does not converge and
often fluctuates, showing that hallucination persists even
as the model minimizes its predictive objective.

Data. We use Animal Faces-HQ (AFHQ) (Choi
et al., 2020). We extract 5558 cat images and
5139 dog images. Each is 512 by 512 pixels. We
construct 3 prompts for evaluation: "a realistic
photo of a friendly dog", "a fluffy cat sitting on
a sofa", and "a cute pet animal".

Model Architecture. We use CLIP ViT-B/32
model model to extract image CLIP embeddings.
For generation, we fine-tune the UNet compo-
nent of Stable Diffusion v1.5, while keeping the
text encoder and VAE frozen.

Results. As shown in Figure 5, as we fine-tune
the model, the training loss decreases, indicat-
ing that the model captures the distribution of
the dataset, yet hallucination rate do not con-
verge. It supports our theoretical claim that loss
minimization alone is insufficient to eliminate δ-hallucination.
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6.3.1 ABLATION STUDY ON PROMPTS

We further conduct studies on 3 types of prompts for the text-to-image generative model: one targeting
the cat category ("a fluffy cat sitting on a soft"), one targeting the dog category ("a realistic photo of a
friendly dog"), and one mixed prompt (“a cute pet animal”). We evaluate the hallucination rate for
each prompt across training epochs. As shown in Figure 6, our results consistently show that, even
under a loss-minimizing estimator, hallucinations persist and do not converge to zero. This indicates
that even when prompts hint information about target category, hallucinations may still occur.
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Figure 6: Prompts Analysis. We create 3 types of prompts and evaluate their hallucination rate respectively.
All plots show even a loss-minimizing estimator hallucinates.

7 CONCLUSION

In this work, we reframed hallucination in generative models as a fundamental misalignment between
standard loss-based training objectives and human expectations. Under this view, we formalized
δ-hallucination to capture when an estimator’s output fails to match any plausible real-world outcome
(Section 3). Crucially, we showed that no amount of model capacity or data can eliminate halluci-
nations: even an ideal Bayes-optimal estimator (one minimizing the true expected loss) may still
generate implausible predictions on inputs with inherently diverse correct answers (Section 4). We
derived general lower bounds on how frequently such hallucinations must occur for broad classes of
target distributions (Section 5), and validated these predictions with both synthetic and real-world
experiments (Section 5). Taken together, our findings establish that hallucination is a structural
property of the estimation process itself rather than just a symptom of limited models or datasets.

Limitations. While our theory offers a new perspective on hallucinations, it has a few limitations.
The current lower bound for δ-hallucination is relatively loose and relies on certain assumptions,
leaving room for tighter bounds under more relaxed conditions. Additionally, our analysis focused on
a general estimator. Examining specific model families or tasks might yield stronger guarantees or
further insight into when and how hallucinations arise.

Implications and Future Work. By identifying hallucination as arising from the core training
objective, our results imply that simply scaling up model size or dataset coverage is insufficient
to eliminate the problem. Effective mitigation may require rethinking generative model training,
with objectives explicitly aligned to human standards of correctness. In practice, this could mean
favoring more mode-seeking behavior —generating high-probability, consistent outputs — rather
than minimizing average error across all possible outcomes. Future training methods may need to
incorporate constraints or decision-theoretic criteria that push models to commit to a single plausible
answer instead of blending incompatible modes. Several concrete directions follow from our findings:

• Alternative Loss Functions. Extend our theoretical framework to other loss functions to investigate
how the choice of training objective influences hallucination rates.

• Alignment-Oriented Training Schemes. Design practical strategies that scale our insights, such
as HDR-guided sampling or mixed-objective fine-tuning that explicitly penalizes implausible
outputs.

• Multimodal and Structured Outputs. Generalize the analysis to multimodal and structured tasks,
where the space of valid outputs is richer, to uncover new alignment strategies tailored to complex
domains.

In summary, treating hallucination as a structural phenomenon calls for a shift away from naive
average-case error minimization and toward objectives that explicitly prefer outputs aligned with one
of the true modes, thereby better matching human standards of reliability.

9
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IMPACT STATEMENT

By the theoretical nature of this work, we do not anticipate any negative social impact.

LLM USAGE DISCLOSURE

We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
identify potential missing related work. All technical content, proofs, experiments, and results are
original contributions by the authors.

A RELATED WORKS

Hallucinations in generative models have been studied from both theoretical and empirical perspec-
tives. Prior theory frames them as inevitable outcomes of practical limits: finite parameters, sparse
data, or computational hardness. (Xu et al., 2024) prove that any polynomial-time language model
hallucinates on certain tasks. Kalai & Vempala (2024) show that even a calibrated model hallucinates
at a rate tied to the fraction of “singleton” facts that appear only once in the training set. Banerjee
et al. (2024) argue that no finite dataset or architecture covers all valid inferences, ensuring a nonzero
hallucination rate regardless of scale. These works treat hallucination not as a flaw in estimation
itself, but as an artifact of underfitting caused by resource and computational limits. More recently,
Kalai et al. (2025) propose that hallucination stems from mismatches between predictive likelihood
training, incomplete coverage, and reinforcement learning, suggesting hallucinations persist even
with scale and motivating deeper foundational study.

Recent empirical research has delivered taxonomies, benchmarks, and mitigation techniques for
hallucinations in generative models. Huang et al. (2025) survey intrinsic and extrinsic hallucinations,
and review detection and mitigation methods. Ji et al. (2023) provide a broad overview of metrics and
task-specific phenomena across summarization, dialogue, and machine translation. Zhang et al. (2023)
analyze detection and explanation methods. Li et al. (2024) conduct a factuality study, introducing a
new benchmark and evaluating detection, sources, and mitigation. Farquhar et al. (2024) propose
entropy-based uncertainty estimators to detect confabulations. In contrast to viewing hallucinations
only as limitations, Jiang et al. (2024) explore their creative potential. A notable work by Aithal et al.
(2024) analyzes hallucinations in diffusion models and attributes them to mode interpolation, where
samples fall into regions not supported by training data. Their empirical observations support our
theoretical findings by linking artifacts beyond data support to interpolation between nearby modes
(corresponding to regions with low conditional probability density under any latent state in our work).

Building on prior work, we propose a new interpretation of hallucination: it arises from a gap
between model training objectives and human criteria. Estimation fails when outputs do not align
with any plausible human-perceptive category. We formalize this gap as δ-hallucination and prove
that even loss-minimizing optimal estimators produce outputs with low conditional probability under
every category. We derive a general lower bound on the probability of δ-hallucination and validate
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our claims with empirical studies. These results establish hallucination as a structural feature of
estimation itself, not a flaw of model size, data coverage, or specific queries.

B HIGHEST CONDITIONAL DENSITY REGIONS

Highest Density Regions. (Hyndman, 1996) popularize the concept of Highest Density Regions
(HDRs) as the smallest-volume set containing a given probability mass He provided practical
algorithms for computing and visualizing HDRs for univariate and multivariate densities, showing
their advantages over equal-tailed intervals in revealing multi-modal structure. (Samworth & Wand,
2010) developed a rigorous asymptotic theory for kernel-based HDR estimation, deriving uniform-
in-bandwidth risk approximations and proposing optimal bandwidth selectors that minimize HDR
estimation error. (Haselsteiner et al., 2017) introduced the idea of using HDRs to define environmental-
contours—termed highest-density contours—in engineering design, demonstrating that HDR-based
contours yield more compact, interpretable regions for multimodal environmental distributions.

In a concrete example, we build calibration datasets for the categories of cats and dogs in AFHQ
dataset (Choi et al., 2020) and estimate their log-densities under GMM model as shown in Figure 7.

Figure 7: An Example of HDR. We shown an example of HDR for the class of cats and dogs. Dashed vertical
lines mark the HDR thresholds at the 10% quantile. Samples to the right of the threshold belong to the most
probable 10% of the calibration distribution for that class. Samples to the left of the threshold are deemed
outside the HDR and treated as potential hallucinations.

Highest Conditional Density Regions. We emphasize a connection between Highest Conditional
Density Regions and HDRs. Specifically, when the latent variable Z only has one latent state, the
δ-hallucination in this special occasion is the expectation of the target distribution falling out of
the HDRs of a certain mass that induces a density bound of δ. We then extend this concept to the
distributions correlated with a latent variable with more than one states. Namely, we introduce the
concept of Highest Conditional Density Regions (HCDRs) and define it as follows.

Definition B.1 (Highest Conditional Density Regions). Let d be a distribution and Z a latent variable
correlated with d. Let di denote the conditional probability of d when knowing Z = Zi, here
Zi, i ∈ [N ] is one of the N states of Z. This explicitly writes as

di = d | {Z = Zi}.

We define the Highest Conditional Density Regions SM as the smallest region on which the integral
of di is M .

Figure 8 shows the difference of HCDR and HDR.
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Figure 8: An Example of HCDR vs. HDR. We show the difference between HCDR and HDR for a mixture of
two normal distributions. The blue region denotes HDR, whereas the green and blue region together denote
HCDR. δ denotes the bound of the HDR (10%), and δ1 (5%) denotes the bound for the conditional probabilities.
Though HDR is encapsulated in HCDR in this example, HDR might contain regions outside HCDR in other
cases, meaning HCDR is not simply an expansion of HDR.

C PROOFS OF MAIN TEXT

C.1 PROOF OF THEOREM 4.1

To prove the existence of δ-hallucination, we state the following lemma.

Lemma C.1. The estimator A∗(X) that minimizes the expected quadratic loss over A(X) is

A∗(X) = EA(X)[A(X)].

Proof. As defined in Definition 2.1, for A∗(X), the loss over A(X) is

ℓA(X)(A
∗(X)) = EA(X)[∥A∗(X)− a∥22]

=

∫
a∈A

∥A∗(X)− a∥22 · fA(X)(a)da, (C.1)

where A is the output domain of A(X) (the set of all possible outputs). By our notation defined in
Section 2, fA(X) is the probability density function of A(X).

Now, for an A∗ that minimizes the loss at X . We have its gradient at A(X) to be 0da (da is the output
dimension as in Definition 3.1).

∇ℓA(X)(A
∗(X)) = 0.

Combine the above equation with (C.1) we have

∇(

∫
a∈A

∥A∗(X)− a∥22 · fA(X)(a)da) = 0. (C.2)

Since the ∇ here denotes the gradient of A∗(X), we have

∇(

∫
a∈A

∥A∗(X)− a∥22 · fA(X)(a)da)

14
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=

∫
a∈A

∇∥A∗(X)− a∥22 · fA(X)(a)da

=

∫
a∈A

∇(∥A∗(X)∥22 − 2A∗(X)⊤a) · fA(X)(a)da
(
∥A(X)∥22 is erased when taking the gradient

)
=

∫
a∈A

(2A∗(X)− 2a) · fA(X)(a)da

= 2

∫
a∈A

A∗(X) · fA(X)(a)da− 2

∫
a∈A

A(X) · fA(X)(a)da

= 2A∗(X)− 2

∫
a∈A

a · fA(X)(a)da.
(
By

∫
A fA(X)(a)da = 1

)
Combine the above result with (C.2), we have

2A∗(X)− 2

∫
a∈A

A(X) · fA(X)(a)da = 0.

Thus A∗ is

A∗(X) =

∫
a∈A

a · fA(X)(a)da = E[A(X)]. (C.3)

This completes the proof.

Theorem C.1 (Existence of δ-Hallucination under Single Input; Theorem 4.1 Restate). For an
input X , there exists infinitely many distributions of A(X) and Z such that for an estimator A∗

that minimizes the expected quadratic loss defined in Definition 2.1 over A(X), it is bound to
δ-hallucinate at X .

Proof. By Lemma C.1, we have

A∗(X) = EA(X)[A(X)].

We now construct a wide range of distribution of A(X) and Z that satisfies

f(A∗(X);Z) ≤ δ.

Let N (number of latent states) be any positive number. Then, let A(X;Zi), i ∈ [N − 1] be a normal
distribution of the form

fA(X;Zi)(a) := (2π)
−da

2 det(Σi)
− 1

2 exp

(
−1

2
(X − µi)

⊤Σ−1
i (X − µi)

)
.

By the requirements of normal distributions, Σi are positive-definite matrices in Rda×da , and µi are
da-dimensional vectors.

This is also denoted as

A(X;Zi) ∼ N (µi,Σi),

where N (µi,Σi) denotes a normal distribution of mean µi and covariance matrix Σi by convention.

Then, define µi to satisfy

fA(X;Zi)(0da
) = (2π)

−da
2 det(Σi)

− 1
2 exp

(
−1

2
µ⊤
i Σ

−1
i µi

)
≤ δ

For any δ > 0, this µi always exists. We give the following example.

µi = mi1da
,
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where mi is √
−2 ln(δ)− ln(det(Σi))

1⊤da
Σi1da

.
(
δ ∈ (0, 1]

)
The probability density is

fA(X;Zi)(0da
) = (2π)

−da
2 det(Σi)

− 1
2 exp

(
−1

2
µ⊤
i Σ

−1
i µi

)
= (2π)

−da
2 det(Σi)

− 1
2 exp

(
−1

2
m2

i 1
⊤
da
Σi1da

)
= (2π)

−da
2 det(Σi)

− 1
2 exp

(
−1

2

−2 ln(δ)− ln(det(Σi))

1⊤da
Σi1da

· 1⊤da
Σi1da

)

= (2π)
−da

2 det(Σi)
− 1

2 exp

(
ln(δ) +

1

2
ln(det(Σi))

)
= (2π)

−da
2 det(Σi)

− 1
2 · det(Σi)

1
2 δ

= (2π)
−da

2 δ

≤ δ. (C.4)

This means our definition of µi is valid.

For simplicity, let pi denote Pr[Z = Zi]:

pi := Pr[Z = Zi].

Now, define A(X;ZN ) to be

A(X;ZN ) ∼ N (−
∑

i∈[N−1]

pi
pn

µi,ΣN ). (C.5)

Let µN denote −
∑

i∈[N−1] pi/pn · µi.

Let mN ∈ R be

mN := δ−
2
da .

Then let ΣN be defined as

ΣN :=
1

mN
· Ida

,

which is positive definite.

This means

Σ−1
N = mN · Ida

is also positive definite.

Thus we have

exp

(
−1

2
µ⊤
NΣ−1

N µN

)
≤ exp(0) = 1.

Then along with (C.5) we have

fA(X;ZN )(0da) = (2π)
−da

2 det(ΣN )
− 1

2 exp

(
−1

2
µ⊤
NΣ−1

N µN

)
≤ det(ΣN )

− 1
2
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= (mda

N )−
1
2

= δ−
2
da

·−da
2

= δ. (C.6)

Recall in (C.3) we have proven A∗ to be the expectation of A. This means for the distribution A(X)
we’ve constructed here, we have

A∗(X) = E[A(X)]

= EZ [EA[A(X;Z)]]

=

N∑
i=1

Pr[Z = Zi]E[A(X;Zi)]

=

N∑
i=1

piµi

=

N−1∑
i=1

piµi + pNµN

=

N−1∑
i=1

piµi + pN (−
N−1∑
i=1

pi
pN

µi)

= 0.

Combining the fact of A∗(X) = 0 with (C.4) and (C.6) satisfies the condition of δ-hallucination
defined in Definition 3.2. This completes the proof.

C.2 PROOF OF COROLLARY 4.2.1

Corollary C.1.1 (Existence of δ-Hallucination under Multiple Inputs; Corollary 4.2.1 Restate). For
a set of input Xj , j ∈ [S], there exists infinitely many distributions of A(Xj) and Z such that any
estimator minimizing the expected quadratic loss defined in Definition 2.1 is bound to δ-hallucinate
at X .

Proof. Construct every A(xj) according to the construction of Appendix C.1. This makes every
A∗(Xj), j ∈ [S] to fall out of the non-hallucinating region. This completes the proof.

C.3 PROOF OF APPENDIX C.3

Theorem C.2 (Existence of δ-Hallucination on Semi-Optimal Estimators Under Single Input; Theo-
rem 4.2 Restate). For an input X , there exists infinitely many distributions of A(X) and Z such that
if an estimator A′ is within a distance of ϵ to the optimal estimator A∗, which writes as

∥A′(X)−A∗(X)∥2 ≤ ϵ,

then A′(X) is bound to δ-hallucinate.

Proof. By Lemma C.1, we have

A∗(X) = EA(X)[A(X)].

Thus we have

∥A′(X)− E[A(X)]∥2 ≤ ϵ. (C.7)

Let N be any even number in N+.
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Construct

A(X;Zi) ∼ N (µi, Ida
).

Let E[A(X)] =
∑N

i=1 piµi be 0. Here pi = Pr[Z = Zi]. Then by (C.7), we have

∥A′(X)− 0∥2 ≤ ϵ.

Let v0 denote A′. The probability of v0 in A(X;Zi) is

(2π)
−da

2 exp

(
−1

2
(v0 − µi)

⊤(v0 − µi)

)
= (2π)

−da
2 exp

(
−1

2
∥v0 − µi∥22

)
.

Set ∥µi∥2 ≥
√
−2 ln δ + ϵ, we have

(2π)
−da

2 exp

(
−1

2
∥v0 − µi∥22

)
≤ exp

(
−1

2
∥v0 − µi∥22

)
≤ exp

(
−1

2
(∥v0 − µi∥2 − ∥v0∥2)2

)
≤ exp

(
−1

2
(
√
−2 ln δ + ϵ− ϵ)2

)
≤ δ.

Finally, let

µi = −pN−i

pi
µN−i.

(
N has been set to be even

)
This ensures

∑N
i=1 piµi to be 0.

The last constraint can coexist with ∥µi∥2 ≥
√
−2 ln δ + ϵ in infinitely many constructions of

µi, i ∈ [N ] (e.g., µi = C · i(N − i)(
√
−2 ln δ + ϵ)/pN−i · 1da

for any C > 1). This completes the
proof.

C.4 PROOF OF THEOREM 4.3

Theorem C.3 (Existence of δ-Hallucination at Tilted Input; Theorem 4.3 Restate). Let Bδ denote
the bound of all hints δi, i ∈ [N ], defined as

Bδ := sup
i∈[N ]

∥δi∥2.

For an L-Lipschitz estimator A∗ satisfying Definition 2.2, there exists infinitely many distributions of
A(X;Z) such that δ-Hallucination happens on all X + δi. That is, A∗(X + δi) does not fall into the
region where fA(X;Zi) ≥ δ for any i ∈ [N ] by Definition 3.1.

Proof. Let A(X;Zi) be a normal distribution with a mean of µi and a covariance matrix of Σi.
Construct

∑N
i=1 piµi = 0da

, where pi = Pr[Z = Zi].

Because A∗ is L-Lipschitz, we have

∥A∗(X + δi)−A∗(X)∥2 ≤ L∥X + δi −X∥2 = L∥δi∥2 ≤ LBδ. (C.8)

See LBδ as ϵ, and A∗(X + δi) as different A′ in Theorem 4.2. Apply Theorem 4.2 to every
A(X + δi). Thus, there are infinitely many distributions for A∗(X + δi) to δ-hallucinate over A(X).
This completes the proof.
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C.5 PROOF OF THEOREM 5.1

To prove Theorem 5.1, we state the following definitions amd assumptions.

We begin with the definition of means and variances for the variables of interest.

Definition C.1 (Means and Variances; Definition 5.1 Restate). Let {Zi}i∈[N ] denote the possible
states of the latent variable Z, with probabilities pi := Pr[Z = Zi]. For each i ∈ [N ], define the
conditional mean

µi := E[A(X;Zi)].

We regard µi as a realization of a random variable distributed according to dµi . Let µd
i := Edµ

i
[µi]

and σd
i := Vardµ

i
[µi] denote the mean and variance of this distribution, respectively. Let dµ denote

the joint distribution of (µ1, . . . , µN ). We write µd := Edµ [µ1, . . . , µN ] for its mean vector and
σd := E[

∑N
i=1(µi − µd

i )
2] as sum of variance.

We then provide the following assumptions applied to µi and dµi in Definition C.1. In particular, we
assume that the conditional means align around a common value and that the joint distributions of
these conditional means are mutually independent.

Assumption C.1. We impose the following conditions on the distributions defined in Definition C.1:
1. Identical means: There exists a constant µ0 ∈ R such that µd

i = µ0, for all i ∈ [N ].
2. Independence: The distributions {dµi }Ni=1 are mutually independent.

We now characterize hallucination events in terms of output regions that correspond to high (> δ)
conditional probability under each latent state.

Definition C.2 (High Conditional Density Regions; Definition 5.2 Restate). We define U δ
i to be

Uδ
i := {a | f(a;Zi) > δ},

which is the region with posterior probability of Z = Zi larger than δ.

Remark C.1 (Remark 5.2 Restate). By Definition C.2, δ-hallucination of A∗(X) is equivalent to

A∗(X) /∈ Uδ
i , i ∈ [N ].

We then define the following spheres covering Uδ
i in Definition C.2. Specifically, we enclose each

Uδ
i within the smallest possible sphere centered at the corresponding mean µi.

Definition C.3 (Minimal Covering Spheres; Definition 5.3 Restate). For each i ∈ [N ], let U δ
i ⊂ Rda

denote the δ-high density region associated with state Zi. Define Bδ
i (r) as the closed Euclidean ball

of radius r centered at µi. The minimal covering radius is

ri := inf
ri∈R+

{U δ
i ⊂ Bδ

i (ri)}.

Thus Bδ
i (ri) is the smallest sphere centered at µi that contains Uδ

i . Finally, define the uniform
covering radius

r = max
i∈[N ]

{ri}.

Next, we state the following axillary lemmas.

Lemma C.2 (Paley-Zygmund Inequality). For any non-negative random variable T and any θ ∈ [0, 1],
we have

Pr[T > θ · E[T ]] ≥ (1− θ)2
(E[Z])2

E[Z2]
.
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Lemma C.3 (Chebyshev Inequality). For any random variable T , we have

Pr[|T − E[T ]| ≥ a] ≤ Var[T ]

a2
, for all constant a,

where Var[T ] is the variance of T .

Lemma C.4 (Cauchy Ineqaulity). For any n ∈ N+ along with two sets of variables x1, x2, · · · , xn

and y1, y2, · · · , yn, they satisfy

(

n∑
i=1

xiyi)
2 ≤ (

n∑
i=1

x2
i )(

n∑
i=1

y2i ).

By Lemma C.3 and Lemma C.4, we derive a bound for the probability of distances between the loss
minimizing estimator and the mean of dµ defined in Definition C.1 which is µ0 by Assumption C.1
as follows.

Lemma C.5 (Probability Upper Bound of Distance between A∗(X) and µ0 in Assumption C.1). Let
A∗ be the optimal estimator over A. Then for any d1 > 0 we have

Pr
[
∥µ0 −A∗(X)∥22 ≥ d21

]
≤

(
∑N

i=1 p
2
i )σ

d

d21
.

Proof. By Lemma C.3, we have

Pr
[
(A∗(X)− µ0)

2 ≥ d21
]
≤ E[(A∗(X)− µ0)

2]

d21

=
E[(
∑N

i=1 piµi − µ0)
2]

d21

=
E[[
∑N

i=1 pi(µi − µ0)]
2]

d21

≤
E[(
∑N

i=1 p
2
i )[
∑N

i=1(µi − µ0)
2]]

d21

(
By Lemma C.4

)
=

(
∑N

i=1 p
2
i )E[

∑N
i=1(µi − µ0)

2]

d21

=
(
∑N

i=1 p
2
i )σ

d

d21
.

This completes the proof.

In addition, by Lemma C.2, we derive a lower bound of the probability of distances between µi

defined in Definition C.1 and µ0 defined in Assumption C.1.

Lemma C.6 (Lower Bound on the Probability of Distance between µi in Definition C.1 and µ0 in
Assumption C.1). For i ∈ [N ], let µi and µ0 be as defined in Definition C.1 and Assumption C.1.
We have, for any θ ∈ [0, 1],

Pr
[
∥µi − µ0∥22 ≥ θσd

i

]
≥ (1− θ)2Kµ

i .

Proof. Because ∥µi−µ0∥22 ≥ 0, by Lemma C.2, set T in Lemma C.2 to be ∥µi−µ0∥22, and we have

Pr
[
∥µi − µ0∥22 ≥ θE[∥µi − µ0∥22]

]
≥ (1− θ)2

E[(µi − µ0)
2]2

E[∥µi − µ0∥42]
= (1− θ)2Kµ

i .

Combining with

E[∥µi − µ0∥22] = σd
i ,
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we have

Pr
[
∥µi − µ0∥22 ≥ θσd

i

]
≥ (1− θ)2Kµ

i .

This completes the proof.

Therefore, by Lemma C.5 and Lemma C.6, combined with Definition C.3, we prove the lower bound
of the probability of hallucination.

Theorem C.4 (Hallucination Probability Lower Bound; Theorem 5.1 Restate). Let (A(X), Z) satisfy
Assumption 5.1. For each i ∈ [N ], let µi, σ

d
i be as in Definition 5.1, let µ0 be as in Assumption 5.1,

and let rx be as in Definition 5.3. Define

d := (

N∑
j=1

p2jσ
d
j )

1/2, θi(α) :=
(αd+ rx)

2

σd
i

, α > 1, and Kµ
i :=

(E[(µi − µ0)
2])2

E[(µi − µ0)4]
.

If for every i ∈ [N ] there exists αi > 1 such that θi(αi) ≤ 1, then

P δ
H >

N∏
i=1

(PiK
µ
i ),

where P δ
H denotes the probability that the optimal estimator A∗ δ-hallucinates at X (equivalently,

A∗(X) /∈ Uδ
i for all i ∈ [N ], with Uδ

i as in Definition 5.3).

Proof. By Lemma C.5, for every i ∈ [N ], we have

Pr
[
∥µ0 −A∗(X)∥22 ≥ d2i

]
≤

(
∑N

i=1 p
2
i )σ

d

d2i
.

This means

Pr
[
∥µ0 −A∗(X)∥22 ≤ d21

]
≥ 1−

(
∑N

i=1 p
2
i )σ

d

d21
. (C.9)

By Lemma C.6, we have, for every i ∈ [n]

Pr
[
∥µi − µ0∥22 ≥ θiσ

d
i

]
≥ (1− θi)

2Kµ
i . (C.10)

Then, Definition C.3, the probability for A∗ to fall out of the region with a conditioned probability of
A(X;Zi) no less than δ is at least

Pr
[
A∗(X) /∈ U δ

i

]
≥ Pr

[
A∗(X) /∈ Bδ

i (ri)
]

≥ Pr[∥A∗(X)− µ0∥2 ≤ di] · Pr[∥µi − µ0∥2 ≥ di + rx]

≥ (1−
(
∑N

i=1 p
2
i )σ

d

d2i
)((1− θi)

2Kµ
i )

(
By (C.9) and (C.10)

)
= (1− 1

α2
i

)(1− θi)
2Kµ

i .

Set αi to maximize

(1− 1

α2
i

)(1− θi)
2,

which is equivalent to maximizing Pi.

Then we have

Pr
[
A∗(X) /∈ U δ

i

]
≥ PiK

µ
i .

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Given dµi , i ∈ [N ] are independent to each other, we have

Pr
[
A∗(X) /∈ Uδ

i , i ∈ [N ]
]
≥

N∏
i=1

PiK
µ
i .

The left-hand side is equivalent to P δ
h (see Definition C.2 and Remark C.1).

This completes the proof.

D DERIVATION TO CROSS-ENTROPY LOSS

In this section, we derive the cross-entropy loss version of our results in Section 4.

Definition D.1 (Cross-Entropy Loss). For an input X and an according possible output a ∈ A,
given a target probability density qaX ∈ [0, 1]C and a model-estimated distribution pX ∈ [0, 1]C over
C classes, let qaX(t) and pX(t) denote their t-th entry respectively. The cross-entropy loss at X is
defined as

L(qaX , pX) = −
∑
t∈[C]

qaX(t) log pX(t),

where qaX(t) ≥ 0,
∑

t∈[C] q
a
X(t) = 1, pX(t) ≥ 0, and

∑
t∈[C] pX(t) = 1.

We define the total loss at X as the expectation of loss over A at all a, that is

Ea(L(qaX , pX)).

Comparing to the notation in Section 4, the predictor A∗ at input X outputs the predicted probabilities
A∗(X), which can be noted here as

[A∗(X)](t) := pX(t), t ∈ [C],

We now prove the existence of δ-hallucination under cross-entropy loss.

Theorem D.1 (Existence of δ-Hallucination under Cross-Entropy Loss). For an input X , there exists
infinitely many target distributions A(X) such that the A∗ minimizing the cross-entropy loss defined
in Definition D.1 at X δ-hallucinates.

Proof. We first calculate the loss minimizing A∗ at X .

Ea(L(qaX , pX))

=

∫
A
p(a)[−

∑
t∈[C]

qaX(t) log pX(t)]da

=
∑
t∈[C]

(− log pX(t))[

∫
A
qaX(t)da]

=
∑
t∈[C]

(− log pX(t))Eaq
a
X(t).

Thus by Gibbs Inequality, we have the loss minimizing pX(t) of Ea(L(qaX , pX)) is

pX(t) = Eaq
a
X(t), t ∈ [C].

We then construct the latents that induce the δ-hallucination at X .

Define the probability distribution under each Zi as

A(qaX |Z = Zi) ∼ N (qi, d), i ∈ [N ],

in which qi is

qi(t) := e
(C)
t ,
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and

d ≤ − N − 1

N ln(δ2)
.

Then let P (Zi) = 1/N , we have pX equals

pX :=

∑N
i=1 e

(C)
i

N
.

Then

P (px|Z = Zi)

=
1√
2πd

exp

(
− (pX − qi)

2

2d

)
=

1√
2πd

exp

(
−N − 1

2dN

)
≤ 1√

−2π N−1
N ln(δ2)

exp

(
− N − 1

−2 N−1
N ln(δ2)N

)

≤ 1√
−π 1

ln(δ2)

δ2

2

≤
δ2 ln

(
δ−1
)

√
2π

≤ δ2(δ−1 − 1)√
2π

≤ δ,

for every i.

This completes the proof.
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