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ABSTRACT

Despite improvements by length extrapolation, efficient attention and memory
modules, handling infinitely long documents without performance degradation dur-
ing extrapolation remains the ultimate challenge in long-text processing. To solve
this problem, we introduce a novel agent workflow, MEMAGENT, which processes
text in segments and updates memory through an overwrite strategy, addressing the
challenge of long-context task through enhanced memory management. We further
extend the DAPO algorithm to directly optimize memory ability in an end-to-end
fashion, facilitating training via independent-context multi-conversation genera-
tion. Experimental results demonstrate that MEMAGENT has superb long-context
capabilities, being able to extrapolate from an 8K context to a 3.5M QA task with
a performance loss of less than 10% and achieving over 95% on the 512K NIAH
test.
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Figure 1: Accuracy scores of RULER-HQA (Hsieh et al., 2024; Yang et al., 2018) . Even models that
employ long-context continual pretraining and extrapolation techniques fail to maintain consistent
performance. In contrast, MEMAGENT with RL only demonstrates marginal performance dropping.

1 INTRODUCTION

While having demonstrated impressive capabilities (OpenAI, 2024; DeepMind, 2024; XAI, 2024;
Anthropic, 2024; OpenAI, 2023), industry-level Large Language Model (LLM) systems (Anthropic,
2025; Li et al., 2025a; Liu et al., 2024; Yen et al., 2024) still face a critical challenge: how to handle
long contexts effectively - processing an entire book, executing a complex chain of reasoning over
many steps, or managing the long-term memory of an agent system - all these complex tasks can
generate overflowing text that quickly explodes the typical-size context window of current LLMs.

Existing approaches to long-context tasks are three-pronged. The first involves length extrapolation
methods by shifting the positional embeddings in order to extend the context window of the model (Su
et al., 2024; bloc97, 2023; Chen et al., 2023; Peng et al., 2023b; An et al., 2024), plus continued
pre-training (Liu et al., 2023; Xiong et al., 2023; Gao et al., 2025). Despite promising potential,
these methods often suffer from performance degradation and slow processing speed due to O(n2)
computational complexity when applied to extremely long text. The second school of methods
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Figure 2: MEMAGENT is inspired by the way humans process long documents. It divides the
document into multiple chunks and allows LLMs to process them iteratively, recording relevant
information in memory. Finally, LLMs generate answers based on the information stored in the
memory.

leverages sparse attention (Beltagy et al., 2020; Zhao et al., 2019; Xiao et al., 2023) and linear
attention mechanisms (Child et al., 2019; Katharopoulos et al., 2020) to reduce the complexity of
attention for more efficient processing of longer sequences. However, this typically requires training
from scratch, with inherent adversities such as linear attention facing difficulties in parallel training
or sparse attention depending on human-defined patterns. The last line of inquiry investigates context
compression (Jiang et al., 2023; Li et al., 2023; Behrouz et al., 2024; Zhang et al., 2024), which aims
to condense information in token-level or external-memory-plugin modules. Such approaches often
struggle with extrapolation, and require the integration of additional modules or context operations,
which ineluctably disrupts the standard generation process and hinders compatibility as well as
parallelization.

Hence, a successful LLM with strong long-context capabilities requires the trinity of: 1) processing
infinite length of text; 2) scaling without significant performance drop; and 3) efficient decoding
with linear complexity. To pursue this quest, we return to the basic intuition behind long-context
modeling (Miller et al., 1956; Hochreiter & Schmidhuber, 1997; Graves et al., 2014; Weston et al.,
2014). When humans process long-context information, we tend to abstract out the main revealing
conceptions to capture the essence of the whole text, often by making notes of critical details or using
short-handed stenograph to record the key points, while discarding redundant and irrelevant data. We
do not attempt to memorize every single fact or each small piece of information; instead, we focus
our intellectual energy on more important aspects of the task at hand. This selective attention not
only simplifies the process but also aids in tackling complex problems more efficiently.

Following this anthropocentric intuition, we propose a novel use of Reinforcement Learning (RL) to
equip LLMs with a dynamically updated fixed-length ‘memory’, as illustrated in Figure 2. During
inference, the LLM processes the input text segment-by-segment. As it reads each segment, the
model proactively and selectively updates the memory, which then contributes to the generation
of the final output after all relevant messages are aggregated and synergized in the memory. This
clever mechanism allows the LLM to flexibly handle arbitrary text lengths while maintaining a linear
time complexity during processing, since the length of the memory is fixed, which leads to a fixed
context window size for the model. This segment-based approach generates multiple outputs from
a single long-text input, requiring multiple rounds of memory updates and a final round for the
generation of the final response. Training this type of agent workflow, which enables dialogues across
multiple independent contexts, is still an unexplored territory in current LLM study. Existing systems
typically handle workflow trajectories via alternating tool calls or environment feedback by either
simply concatenating (Ouyang et al., 2025; Jin et al., 2025) them or using a sliding window (Feng
et al., 2025) approach, which lacks flexibility and scalability in practice. Our MEMAGENT approach,
instead, proposes that treats each context-independent conversation as an optimization objective.
Based on the DAPO (Yu et al., 2025) algorithm, we implement the Multi-Conv DAPO to optimize an
arbitrary agent workflow by verifiable outcome reward.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

q Policy 
Model 

o1,1 o1,2 … o1,c1

Context-Independent Conversations

o2,1 o2,2 … o2,c2

oG,1 oG,2 … oG,cG

…

Group of Conversations

Reference 
Model 

Rule-Based 
Verifier 

Group 
Normalization 

KL

q Policy 
Model 

Reference 
Model 

Rule-Based 
Verifier 

Group 
Normalization 

KL 𝒥clip

r1

r2

rG

…

o1

o2

oG

…

𝒥clip

A1

A2

AG

…
Frozen 
Model 

Trainable 
Model 

Take part in 
Adv. Compute 

GRPO

Multi-conv 
DAPO

A1

A2

AG

…

r1

r2

rG

…

Figure 3: Comparison between vanilla GRPO and Multi-Conv DAPO. During the rollout phase of
Multi-conv DAPO, each sample generates multiple conversations. The answer contained in the final
conversation is used to compute the reward and advantage, which are then employed to optimize all
preceding conversations.

In our experiments, an RL-trained model with a modest 8K context window (with a 1024-token
memory and a 5000-token document chunk) trained on 60K length documents exhibits consistently
superb capabilities for Question Answering (QA) tasks on documents of up to 3.5 million tokens,
without performance drop and with linear computation cost. This demonstratively showcases the
efficiency and scalability of our long-context memory approach.

Our major contributions are threefold:

• We introduce a novel approach that enables LLMs to process arbitrarily long inputs within
limited context window under linear time complexity during inference, overcoming a
significant bottleneck in long-context processing.

• We design an agent workflow to implement this mechanism and propose an end-to-end
training approach using the multi-conversation DAPO algorithm.

• We empirically demonstrate that our RL-trained method allows models to extrapolate to
vastly long documents with minimal performance degradation, pushing the boundaries of
what is currently achievable in long-context LLM systems.

2 METHODOLOGY

In this section, we describe the details of MEMAGENT approach for solving long-context tasks,
including the overall workflow (§ 2.1), Multi-conv RL algorithm for training MEMAGENT (§ 2.2)
and the formal modeling of our architecture(§ 2.3).

2.1 THE MEMAGENT WORKFLOW: RL-SHAPED MEMORY FOR UNBOUNDED CONTEXTS

As illustrated in Figure 2, MEMAGENT views an arbitrarily long document not as a monolithic block
but as a controlled stream of evidence. At every step, the model sees exactly two things: the next
chunk of text and a compact, fixed-length memory that summarizes everything deemed important so
far. Crucially, the memory is just a sequence of ordinary tokens inside the context window, so the
core generation process of the base LLM remains unchanged.

After reading a new chunk, the model overwrites the previous memory with an updated one. This
overwrite strategy seems almost too simple, yet it is precisely what enables the system to scale: be-
cause memory length never grows, the total compute per chunk staysO(1) and end-to-end complexity
is strictly linear to the number of chunks. We formulate the overwrite decision as a reinforcement

3
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Figure 4: The architecture and graphic model of MEMAGENT. The memory is modeled as a latent
memory variable, thereby enabling the decomposition of the autoregressive language model into
multiple steps of reading from and writing to the memory.

learning problem: the agent is rewarded for retaining information that will later prove useful and for
discarding distractors that would waste precious tokens. By optimizing this objective with our newly
introduced multi-conversation DAPO algorithm (detailed in § 2.2), the model learns to compress
aggressively while preserving answer-critical facts.

The workflow naturally decomposes inference into two modules. Within the Context-Processing
module the model iterates over chunks, updating memory with a prompt template (Table 5, top). Once
the stream is exhausted, a final Answer-Generation module is invoked (Table 5, bottom) where the
model consults only the problem statement and the memory to produce its boxed answer. Because
positional embeddings are never re-scaled or patched, the same tokenization and attention layout
apply in both modules, unlocking the model’s latent length-extrapolation capability without any
architectural modifications.

MEMAGENT therefore enjoys three benefits from this design: (1) Unlimited length: the document
can be millions of tokens because it is processed as a stream; (2) No performance cliff: RL
encourages the memory to retain exactly the information needed, yielding near-lossless extrapolation
(Figure 1); (3) Linear cost: a constant window size implies decoding time and memory consumption
grow linearly with input length (O(N)) (detailed in § B.) This renders a practical recipe for turning
any moderately context-sized LLM into an efficient long-context reasoner with minimal engineering
overhead.

2.2 TRAINING MEMAGENT WITH MULTI-CONV RL

By viewing memory update in context processing for answer-generation tasks as part of the policy to
be optimized by RL, we adopt the RLVR recipe (OpenAI, 2024; Guo et al., 2025; Seed et al., 2025) to
train MEMAGENT. We adopt DAPO (Yu et al., 2025), an efficient and effective algorithm refined from
Group Relative Policy Optimization (GRPO) (Shao et al., 2024), as our training algorithm. Due to the
nature of our MEMAGENT approach, which generates multiple context-independent conversations for
a single query as illustrated in Figure 2, we treat each conversation as an independent optimization
target. This approach necessitates an extension of the loss computation from the conventional
(group, token) structure to a new (group, conversation, token) dimensionality, as
shown in Figure 3.

Formally, the policy model πθold samples a group of G individual responses {oi,j}Gi=1 for an input
x. Let ni denote the number of generated conversations (oi,1, oi,2, ..., oi,ni) for a given sample
(qi, ai). oi,j further decomposes into token-level outputs (oi,j,1, oi,j,2, ..., oi,j,|oi,j |). The advantage
value is derived from the conversation that contains the final answer, then uniformly applied to all
conversations originating from the same sample, as shown in Eq 1. Following Dr. GRPO (Liu et al.,
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Table 1: Main experimental results comparing model performance across various context lengths. All
values represent accuracy (%).

Model Length
7K 14K 28K 56K 112K 224K 448K 896K 1.75M 3.5M

QwenLong-L1-32B 72.66 75.00 72.66 60.94 31.25 17.19 13.28 11.72 N/A N/A
Qwen2.5-Instruct-14B-1M 60.16 60.94 50.00 57.03 50.00 37.50 8.59 0.00 N/A N/A
Qwen2.5-Instruct-7B-1M 61.72 56.25 53.91 55.47 51.56 33.59 12.50 0.00 N/A N/A
DS-Distill-Qwen-32B 70.31 66.41 65.62 46.88 23.44 13.28 7.81 7.03 N/A N/A
DS-Distill-Qwen-14B 64.06 64.84 57.03 40.62 14.84 8.59 3.12 6.25 N/A N/A
DS-Distill-Qwen-7B 30.47 12.50 3.12 0.00 0.00 0.78 0.00 0.00 N/A N/A
Qwen2.5-Instruct-32B 69.53 64.84 60.16 51.56 44.53 21.88 14.06 7.03 N/A N/A
Qwen2.5-Instruct-14B 75.00 67.19 57.03 54.69 44.53 21.88 10.94 2.34 N/A N/A
Qwen2.5-Instruct-7B 52.34 57.03 51.56 44.53 32.81 13.28 6.25 1.56 N/A N/A
RL-MEMAGENT-14B 80.47 82.03 82.03 83.59 81.25 77.34 79.69 75.78 78.91 71.09
RL-MEMAGENT-7B 81.25 81.25 82.03 80.47 79.69 75.78 76.56 74.22 77.34 71.88

2025), we do not devide the advantage by the standard deviation. Eq 2 describes our loss function.

Âi,j,t = Ri −mean({Ri}Gi=1) (1)

JDAPO(θ) = E(q,a)∼D,{oi,j}Gi=1∼πθold (·|q, oi,j−1)[
1∑G

i=1

∑ni
j=1 |oi,j |

G∑
i=1

ni∑
j=1

|oi,j |∑
t=1

(
Ci,j,t − βDKL(πθ||πref

)]

where Ci,j,t =min
(
ri,j,t(θ)Âi,j,t, clip

(
ri,j,t(θ), 1− εlow, 1 + εhigh

)
Âi,j,t

)
ri,j,t(θ) =

πθ(oi,j,t | q, oi,j,<t)
πθold(oi,j,t | q, oi,j,<t)

.

(2)

Following the RLVR recipe (Guo et al., 2025; Jin et al., 2025; Yu et al., 2025), we train the model
with a final outcome reward computed by a rule-based verifier:

R(ŷ, y) = 1is equiv(y,ŷ) (3)

where ŷ is the predicted answer while y refers to the ground truth.

2.3 RETHINKING MEMAGENT FROM AUTOREGRESSIVE MODELING PERSPECTIVES

Tto get a deeper sense of the MEMAGENT design, we propose to re-think language-model factor-
ization in the following fashion. A standard autoregressive LLM factorizes the joint likelihood of a
sequence x1:N as p(x1:N ) =

∏N
n=1 p(xn | x1:n−1), implicitly assuming that every past token (or at

least its hidden state) must stay in the active context. This is what turns quadratic attention into the
long-context bottleneck.

MEMAGENT replaces the unbounded history with a fixed-length memory m ∈ VM , as shown in
Figure 4. The input text is streamed through the model in K contiguous chunks c1, . . . , cK (each
of length ≤ C). After chunk k is read, the model overwrites the panel with a new vector mk that
summarizes all evidence seen so far. Because |mk| =M is constant, both compute and memory per
step are O(C +M), yielding an overall linear complexity O(N).

Introducing the latent sequence m1:K−1 decomposes the original likelihood as

p(x1:N ) =
∑

m1:K−1

K∏
k=1

p(ck |mk−1)︸ ︷︷ ︸
read

p(mk | ck,mk−1)︸ ︷︷ ︸
write

, (4)

with base case m0 = ∅. Inside each chunk, we still run an ordinary transformer decoder, but
conditioned on a constant context window (ck,mk−1). The read path factorizes token-by-token,
p(ck |mk−1) =

∏kC
i=(k−1)C+1p(xi | x1:i−1,m

k−1), while the write path generates the next memory
in the same autoregressive fashion.
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Table 2: Model performance on LongBench-SUM. All values represent recall rates (%). Bold marks
the highest value and Underline marks the second highest value in each column.

Model
GOV REPORT QMSUM

ROUGE-1 ROUGE-2 ROUGE-L AVG ROUGE-1 ROUGE-2 ROUGE-L AVG
Qwen2.5-Instruct-32B 23.67 8.46 12.57 14.90 47.77 11.29 28.17 29.08
Qwen2.5-Instruct-14B 31.19 10.96 14.96 19.04 47.53 11.46 28.28 29.09
Qwen2.5-Instruct-7B 30.91 11.68 15.20 19.26 46.64 12.01 28.33 28.99

QwenLong-L1 27.60 8.20 13.07 16.29 39.44 8.24 23.56 23.74
Qwen2.5-Instruct-14B-1M 30.58 11.93 15.51 19.34 47.31 13.13 29.07 29.84
Qwen2.5-Instruct-7B-1M 31.02 11.47 15.30 19.26 46.72 12.33 28.66 29.24

DS-Distill-Qwen-32B 26.13 8.86 12.98 15.99 39.09 8.75 23.96 23.93
DS-Distill-Qwen-14B 28.24 9.72 13.78 17.25 41.25 8.95 25.00 25.07
DS-Distill-Qwen-7B 33.30 9.39 14.59 19.10 34.33 5.97 21.57 20.62

RL-MEMAGENT-14B 37.16 12.03 16.23 21.80 50.21 12.70 31.27 31.39
RL-MEMAGENT-7B 30.28 12.37 15.37 19.34 48.49 14.41 30.91 31.27

In our formulation, the model’s reading and writing operations over the context constitute an Markov
Decision Process(MDP) and the objective of RL is to optimize the final reward obtained by this
MDP. Therefore, MemAgent’s learning objective is to generate a read–write memory trajectory that
maximizes the reward, which corresponds to learning an optimal distribution over memory states
conditioned on the input context. This further theoretically illustrates the intrinsic unity between our
RL formulation and long-text modeling.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Training Details. To maintain compa-
rability with previous work, we choose
Qwen2.5-7B-Instruct and Qwen2.5-14B-
Instruct (Yang et al., 2024) as backbone
models. We implement the framework
for multi-conversation with independent
contexts based on verl (Sheng et al.,
2024).
We employ a two-stage curriculum RL
strategy:

Table 3: Model performance on LongBench-QA.

Method 2Wiki HQA MuSiQue NQA Qasper AVG
QwenLong-L1-32B 83.0 69.5 51.0 26.0 24.0 50.7
Qwen2.5-Instruct-14B-1M 70.5 65.5 35.0 22.0 22.0 43.0
Qwen2.5-Instruct-7B-1M 67.5 58.5 26.0 21.5 24.0 39.5

DS-Distill-Qwen-32B 83.5 69.0 47.5 24.0 21.0 49.0
DS-Distill-Qwen-14B 83.5 67.0 42.0 22.0 22.0 47.3
DS-Distill-Qwen-7B 47.0 31.5 7.5 4.0 17.5 21.5

Qwen2.5-Instruct-32B 68.5 66.0 37.0 24.5 22.5 43.7
Qwen2.5-Instruct-14B 67.0 63.5 39.0 20.0 20.5 42.0
Qwen2.5-Instruct-7B 52.5 59.0 24.0 19.0 19.0 34.7

MEMAGENT-14B 79.0 73.0 52.0 25.0 26.0 51.0
MEMAGENT-7B 74.0 69.5 47.0 21.5 29.0 48.2

1) stage I focuses on enabling the model to acquire fundamental memory capabilities; 2) stage II
trains the model to transfer these capabilities to more diverse contexts and challenging tasks. Specific
hyperparameters for training are detailed in § A.3.

During training, we intentionally limit the model to an 8K context window to demonstrate its
extrapolation capabilities. This 8K window is allocated as follows: 1024 tokens for the query, 5000
tokens for the context chunk, 1024 tokens for the memory, and 1024 tokens for the output, with the
remaining tokens reserved for the chat template.

Benchmarks. We conduct comprehensive evaluations on several long-text benchmarks to assess the
model’s capabilities across various text types and tasks.

1. RULER-HQA. This benchmark is created using the same synthetic method as in the first-
stage training data. It consists of tasks with a moderate information density and controllable
length, where the context distribution is close to natural language, serving as a quantitative
evaluation of extrapolation performance.

2. LongBench-QA. This benchmark is composed of NarrativeQA (Kočiskỳ et al., 2018),
Qasper (Dasigi et al., 2021), HotpotQA (Yang et al., 2018), 2WikiMultihopQA Yang et al.
(2018), and MuSiQue (Trivedi et al., 2022). The tasks are relatively short but have a high
information density, which severely tests the model’s flexible memory management. It also
evaluates the model’s ability to generalize its memory capabilities to various materials, such
as novels, news articles, and Wiki items.

6
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8K 16K 32K 64K 128K 256K 512K

RL-Memagent-14B
RL-Memagent-7B

MemAgent-32B w/o RL
MemAgent-14B w/o RL
MemAgent-7B w/o RL

QwenLong-L1-32B
Qwen2.5-Instruct-14B-1M
Qwen2.5-Instruct-7B-1M

DS-Distill-Qwen-32B
DS-Distill-Qwen-14B
DS-Distill-Qwen-7B

Qwen2.5-Instruct-32B
Qwen2.5-Instruct-14B
Qwen2.5-Instruct-7B

100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 99.22 100.00
100.00 100.00 100.00 97.66 96.09 96.09 96.88
100.00 96.09 98.44 96.88 95.31 95.31 88.28
98.44 97.66 96.09 98.44 95.31 95.31 92.19
100.00 100.00 100.00 100.00 88.28 42.97 21.88
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 89.06 42.97 21.88
100.00 100.00 100.00 98.44 84.38 40.62 21.09
73.44 27.34 8.59 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 89.06 42.97 21.88
100.00 100.00 100.00 100.00 89.06 42.97 21.88
85.16 38.28 21.09 25.00 11.72 9.38 3.12

NIAH-Level 1

8K 16K 32K 64K 128K 256K 512K

100.00 100.00 100.00 100.00 99.22 95.31 94.53
100.00 100.00 99.22 97.66 96.88 93.75 92.97
100.00 96.09 91.41 81.25 75.00 78.91 60.16
100.00 85.94 75.78 64.06 46.88 41.41 17.19
100.00 100.00 98.44 99.22 96.88 97.66 89.06
100.00 100.00 100.00 88.28 28.12 19.53 14.84
99.22 100.00 100.00 100.00 100.00 100.00 86.72
100.00 100.00 100.00 99.22 98.44 94.53 61.72
100.00 100.00 98.44 85.16 29.69 18.75 14.06
99.22 100.00 100.00 60.16 18.75 8.59 11.72
57.81 18.75 0.00 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 89.06 45.31 23.44
100.00 100.00 100.00 100.00 89.06 46.09 23.44
92.97 68.75 64.06 88.28 50.78 25.00 17.97

NIAH-Level 2

8K 16K 32K 64K 128K 256K 512K

RL-Memagent-14B
RL-Memagent-7B

MemAgent-32B w/o RL
MemAgent-14B w/o RL
MemAgent-7B w/o RL

QwenLong-L1-32B
Qwen2.5-Instruct-14B-1M
Qwen2.5-Instruct-7B-1M

DS-Distill-Qwen-32B
DS-Distill-Qwen-14B
DS-Distill-Qwen-7B

Qwen2.5-Instruct-32B
Qwen2.5-Instruct-14B
Qwen2.5-Instruct-7B

99.22 96.09 100.00 100.00 97.66 96.88 100.00
100.00 96.09 100.00 99.22 95.31 100.00 96.88
100.00 92.19 92.19 88.28 72.66 60.16 58.59
99.22 78.12 75.78 67.19 39.06 31.25 14.84
99.22 90.62 92.97 97.66 89.84 86.72 84.38
96.09 96.88 97.66 93.75 40.62 21.88 15.62
99.22 100.00 100.00 100.00 100.00 100.00 92.97
100.00 100.00 99.22 100.00 100.00 100.00 58.59
99.22 100.00 97.66 89.06 31.25 17.19 11.72
99.22 100.00 100.00 71.88 23.44 10.94 8.59
57.03 10.94 0.00 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 95.31 40.62 25.00
100.00 99.22 100.00 100.00 95.31 40.62 25.00
84.38 85.94 88.28 96.88 78.91 38.28 24.22

NIAH-Level 3

8K 16K 32K 64K 128K 256K 512K

99.74 98.70 100.00 100.00 98.96 97.40 98.18
100.00 98.70 99.74 98.96 97.40 97.66 96.62
100.00 96.09 94.53 89.06 81.25 78.39 71.88
99.74 86.72 83.33 76.04 60.42 55.99 40.10
99.22 96.09 95.83 98.44 94.01 93.23 88.54
98.70 98.96 99.22 94.01 52.34 28.13 17.45
99.48 100.00 100.00 100.00 100.00 100.00 93.23
100.00 100.00 99.74 99.74 99.48 98.18 73.44
99.74 100.00 98.70 91.41 50.00 26.30 15.89
99.48 100.00 100.00 76.83 42.19 20.05 13.80
62.76 19.01 2.86 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 91.14 42.97 23.44
100.00 99.74 100.00 100.00 91.14 43.23 23.44
87.50 64.32 57.81 70.05 47.14 24.22 15.10
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Figure 5: Performance heatmaps on NIAH benchmark across different context lengths.

3. NIAH. Needle in a haystack (NIAH) (Kamradt, 2023) is a series of extremely long synthetic
tasks with very low information density. To succeed, the model must identify key information
and maintain its integrity throughout a long process, thereby testing the robustness of
memory.

4. LongBench-SUM. We also adopt two long-context summay tasks, GovReport(Huang et al.,
2021) and QMSum(Zhong et al., 2021) from LongBench(Bai et al., 2024) to evaluate the
performance in different task category that is different from retrieval QA.

Baselines. We use DeepSeek-R1-Distill-Qwen (Guo et al., 2025), Qwen-2.5-Instruct-1M (Yang et al.,
2025) , Qwen-2.5-Instruct (Yang et al., 2024)and QwenLong-L1 (Wan et al., 2025) as baselines.
Their generation configurations are shown in Table 6, while MEMAGENT uses the same context
management as described previously in Training Details. We also compare MEMAGENT with other
agent method, detailed in § D.2.

3.2 MAIN RESULTS

RULER-HQA. The results are reported in Table 10. We conduct a comparative analysis of all
model performances with context lengths ranging from 7K to 896K. For MEMAGENT, we extend the
evaluation to ultra-long contexts of 1.75M and 3.5M to assess its extrapolation capabilities.

MEMAGENT exhibits remarkable length extrapolation capabilities with only marginal performance
decay as the input context-length increases. In contrast, baseline models show distinct failure
patterns. DS-Distill-Qwen series show rapid performance degradation. QwenLong-L1 maintains
reasonable performance within its training length but experiences substantial degradation afterward.
The Qwen2.5-Instruct-1M series maintains acceptable performance up to 112K tokens, but the
performance deteriorates to zero at 896K tokens, well before reaching their theoretical 1M token
capacity. This suggests that despite extended context windows, these models struggle with effective
information utilization in ultra-long contexts.

LongBench-QA. The results on the LongBench-QA benchmark are presented in Table 3. MEMA-
GENT demonstrates superior overall performance, outperforming larger long-context or reasoning
models. Reasoning models such as the DS-Distill families and the QwenLong model which are
trained on a complex dataset, exhibit strong performance. In contrast, the Qwen2.5-Instruct-1M series
shows limited improvement over its backbone model. This suggests that LongBench-QA emphasize
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Figure 6: Ablation result of RL training on
RULER-HQA.
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Figure 7: Ablation result of RL training on
Longbench-QA.

a deeper understanding of text rather than simple retrieval ability. The performance of MEMAGENT
demonstrates that the memory capabilities acquired through reinforcement learning are generalizable.

NIAH. We adopt three variants of NIAH from the RULER benchmark Hsieh et al. (2024) with
increasing difficulty across three levels. As depicted in Figure 5, the majority of baselines struggle to
maintain consistent performance even within a 128K context window, even Qwen2.5-Instruct-1M
also experience a performance drop at 512K. RL-MEMAGENT, despite suffering some performance
fluctuations, shows only a minimal performance loss of less than 5% at 512K. This robust performance
is particularly noteworthy given that the evaluation at 512K involves more than 100 turns of dialogue.

LongBench-SUM. We evaluate summary quality by the recall scores of ROUGE-{1,2,L}. RL-
MEMAGENT achieves SOTA on almost all metrics, demonstrating that the model has learned general
memory and context management capabilities, rather than abilities specific to the QA task.

3.3 ABLATION STUDY

3.3.1 RL TRAINING

To investigate the impact of reinforcement learning, we conduct ablation experiments. The results
of RULER-HQA and NIAH are presented in Figure 6 and Figure 5, respectively. MEMAGENT
without reinforcement learning training outperforms the backbone models; however, it still exhibits
a substantial decline in performance as the input length increases. The results of Longbench-QA,
shown in Figure 7, demonstrate that directly applying MEMAGENT leads to only marginal or even
negative improvements. In contrast, RL-MEMAGENT achieves significant improvements in both
evaluation scenarios, indicating reinforcement learning training is essential to develop generalizable
and robust memory abilities.

3.3.2 MEMORY LENGTH

Selecting an appropriate MEMAGENT setting involves certain trade-offs. A larger memory size allows
the model to store more useful information, but it also introduces challenges in memory management
and increases the likelihood of redundancy. Conversely situation may lead to insufficient storage
capacity, leaving the model without the necessary references.

To achieve a reasonable compression ratio while keeping the total context length within 8,192 tokens,
we set the default configuration of MEMAGENT to use a 1,024-token memory and context chunks of
5,000 tokens, based on preliminary validation results.

To investigate the effect of hyperparameter choices, we conduct an ablation study on memory length
ranging from 256 to 4096. The results presented in Figure 8 and Figure 9, showing that our chosen
configuration constitutes a reasonable sweet spot, and that MEMAGENT ’s performance is robust
over different memory size. We further examine the impact of varying the context size in § D.1 and
observe similar trends.
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8K 16K 32K 64K 128K 256K 512K

14B-m4096
14B-m2048
14B-m1024
14B-m512
14B-m256
7B-m4096
7B-m2048
7B-m1024
7B-m512
7B-m256

100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 99.22 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00

NIAH-Level 1

8K 16K 32K 64K 128K 256K 512K

100.00 100.00 100.00 99.22 99.22 99.22 100.00
99.22 100.00 100.00 100.00 99.22 99.22 100.00
100.00 100.00 100.00 100.00 99.22 95.31 94.53
100.00 100.00 100.00 98.44 96.88 93.75 90.62
100.00 100.00 99.22 98.44 86.72 92.19 88.28
100.00 100.00 100.00 100.00 96.88 93.75 96.09
100.00 100.00 100.00 97.66 94.53 93.75 96.09
100.00 100.00 99.22 97.66 96.88 93.75 92.97
100.00 100.00 97.66 96.88 95.31 91.41 89.84
99.22 100.00 97.66 93.75 93.75 90.62 91.41

NIAH-Level 2

8K 16K 32K 64K 128K 256K 512K
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14B-m256
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100.00 96.09 100.00 100.00 99.22 100.00 100.00
100.00 96.09 100.00 100.00 99.22 100.00 100.00
99.22 96.09 100.00 100.00 97.66 96.88 100.00
100.00 96.09 100.00 98.44 95.31 96.09 96.88
100.00 96.09 97.66 98.44 89.84 92.97 92.97
100.00 96.09 100.00 99.22 99.22 96.88 97.66
100.00 96.09 100.00 98.44 98.44 96.09 93.75
100.00 96.09 100.00 99.22 95.31 100.00 96.88
100.00 96.09 99.22 99.22 96.88 96.88 93.75
100.00 96.09 98.44 99.22 96.88 97.66 96.09

NIAH-Level 3

8K 16K 32K 64K 128K 256K 512K

100.00 98.70 100.00 99.74 99.48 99.74 100.00
99.74 98.70 100.00 100.00 99.48 99.74 100.00
99.74 98.70 100.00 100.00 98.96 97.40 98.18
100.00 98.70 100.00 98.96 97.40 96.61 95.83
100.00 98.70 98.96 98.96 92.19 95.05 93.75
100.00 98.70 100.00 99.74 98.70 96.88 97.92
100.00 98.70 100.00 98.70 97.66 96.61 96.61
100.00 98.70 99.74 98.96 97.40 97.66 96.62
100.00 98.70 98.96 98.70 97.40 96.10 94.53
99.74 98.70 98.70 97.66 96.88 96.09 95.83
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Figure 8: Ablation result of memory-length on NIAH
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Figure 9: Ablation result of memory-length on Longbench

3.3.3 CONTEXT DISTRIBUTION

Although our experiments show that MEMAGENT can effectively extrapolate to a length of 3.5M
tokens, we still wish to examine whether MEMAGENT is affected by issues such as information-
overwritten and the lost-in-the-middle phenomenon. Our hypothesis is that overcoming such problem
is a natural result of end-to-end optimization. During training, the model learns to preserve and track
critical information in order to maximize the final reward.

To validate this hypothesis, we carefully design a set of probing experiments based on RULER-HQA,
where the context is consist of some key information and many distractors. We divided the key
information into two groups and placed them at different positions within the context. We constructed
five settings: (0%, 100%), (20%, 80%), (40%, 60%), (0%, 20%), and (80%, 100%), where 0%
indicates the beginning of the context and 100% means the end of the context.

For example, in the (0%, 100%) case, the model sees one piece of key information at the very
beginning and the other only at the final memory update step. This represents one of the most
challenging scenarios for the information-overwritten problem. While (40%, 60%) may serve as a
challenging lost-in-the-middle setting.

The results shown in table 4 indicates that MemAgent remains consistently robust across all patterns
without exhibiting any catastrophic performance degradation. This strongly supports our hypothesis
that the general memory abilities acquired through trial and error are not tied to any particular context
pattern.

4 RELATED WORK

Long Context LLMs. Extrapolation methods for RoPE-based LLMs (Su et al., 2024), such as
NTK (bloc97, 2023), PI (Chen et al., 2023), YaRN (Peng et al., 2023b) and DCA (An et al., 2024),
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Table 4: Probe experiment results. Ctx. Dist. denotes the context distribution, where the two numbers
correspond to the relative positions of the two key-information groups within the entire context. 0% means the
beginning and 100% means the end. random indicates randomly shuffling all context items, consistent with the
setup in the main experiment. The other rows show the performance difference relative to random. All values
represent accuracy (%).

Model Ctx. Dist. Length
7K 14K 28K 56K 112K 224K 448K AVG

14B random 80.47 82.03 82.03 83.59 81.25 77.34 79.69 75.78
0% 20% +3.91 -3.91 +3.13 +1.57 0.00 +4.69 +3.90 +1.90
0% 100% +3.12 +0.78 +3.13 -3.12 +1.56 +7.82 +6.25 +2.79
20% 80% +0.78 -3.12 +2.35 +0.79 -3.13 +5.47 -3.13 0.00
40% 60% +1.56 +2.35 -2.34 -3.12 -1.56 +3.13 -0.78 -0.11
80% 100% -2.35 0.00 +1.56 +0.79 +3.13 0.00 +1.56 +0.67

7B random 81.25 81.25 82.03 80.47 79.69 75.78 76.56 79.58
0% 20% -1.56 -0.78 +3.13 +3.91 +3.12 +5.47 +3.13 +2.35
0% 100% +0.78 0.00 +2.35 +1.56 +3.90 +4.69 +2.35 +2.23
20% 80% -0.78 -0.78 +2.35 0.00 0.00 0.00 +3.13 +0.56
40% 60% 0.00 +1.56 +3.13 +0.78 -3.91 +3.13 +5.47 +1.45
80% 100% +1.56 0.00 +0.78 -0.78 +0.78 +4.69 0.00 +1.00

modify the components of positional embeddings, enabling the model to capture long-range semantic
dependencies. On the other hand, Linear attention mechanisms (Child et al., 2019; Katharopoulos
et al., 2020), Recurrent Neural Networks (RNNs) and State Space Models (SSMs) (Gu et al., 2021;
Gu & Dao, 2023; Peng et al., 2023a; De et al., 2024; Feng et al., 2024), sparse attention (Beltagy et al.,
2020; Zhao et al., 2019; Xiao et al., 2023; Yuan et al., 2025; Lu et al., 2025) focus on architecture
improvements. Chunk strategy have also been explored in long-context modeling (Li et al., 2025b;
Liao et al., 2025), while MEMAGENT aims to equip memory ability to any backbone model via
post-training with standard RL frameworks without heavily changing on architecture.

Memory Mechanism. The Long Short-Term Memory (LSTM) mechanism (Hochreiter & Schmid-
huber, 1997) achieved significant success in early NLP tasks, while Neural Turing Machines (Graves
et al., 2014) and Memory Networks (Weston et al., 2014) demonstrated how to equip neural networks
with memory. Existing memory mechanisms integrated to Transformer models are typically realized
by adding external memory modules (Martins et al., 2021; Wu et al., 2020; Behrouz et al., 2024;
Bulatov et al., 2023) or external database (Zhong et al., 2024; Lu et al., 2023; Modarressi et al., 2023).
Recently, retrieval-augmented memory agent (Fang et al., 2025; Chhikara et al., 2025; Zhou et al.,
2025) workflows have attracted the community’s attention. The diffrence between MEMAGENT and
other agent is that we use reinforcement learning to enable LLM itself the ability to memorize.

Reinforcement Learning for LLMs. In recent RL studies, the reward signals have gradually shifted
from human preferences (Ouyang et al., 2022) or reward models distilled from them (Bai et al.,
2022) to rule-based feedback, which has demonstrated great potential in enhancing model reasoning
capabilities (OpenAI, 2024; Guo et al., 2025; Qwen, 2024; DeepMind, 2024; Team et al., 2025)
with GAE (Schulman et al., 2018) based PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024)
training. Algorithmic enhancements (Hu, 2025; Yu et al., 2025; Liu et al., 2025) have mostly focused
on improving sustainability and efficiency of these algorithms. To further release the potential of RL,
recent works such as Search-R1 (Jin et al., 2025), Agent-R1 (Ouyang et al., 2025) and RAGEN (Wang
et al., 2025) have explored the training of tool-using agents based on multi-turn chat. GiGPO (Feng
et al., 2025) further investigates the use of multiple independent contexts in agent training.

5 CONCLUSION

In this paper, we introduce MEMAGENT, a novel long-context method that employs an RL-trained
memory module, which enables large language models (LLMs) to selectively record relevant in-
formation while disregarding extraneous details. Our experiments demonstrate that when trained
on 60K-length sequences, MEMAGENT exhibits remarkable extrapolation, extending its effective
context to 3.5M tokens with only 8K context. The model achieves state-of-the-art performance across
a diverse range of long-context tasks. Our ablation studies reveal the critical role of RL-based training
in achieving these results and how memory capacity influences performance across different task
types, providing key insights into the proposed memory mechanism. We hope that this work may
lay a strong foundation for developing more advanced memory architectures and training strategies,
thereby paving the way for significantly enhancing the long-context capabilities of LLMs.
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REPRODUCIBILITY STATEMENT

For reproducibility, we have provided the inplementation details in (§ A), including the prompt
template (§ A.1), pseudocode (§ A.2) and training recipe and algorithm hyperparameter (§ A.3) and
evaluation settings (§ A.4). The training and evaluation code, as well as the dataset and model weights,
will be available in open-source platforms.
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and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025a.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023.

Zhenyu Li, Yike Zhang, Tengyu Pan, Yutao Sun, Zhichao Duan, Junjie Fang, Rong Han, Zixuan Wang,
and Jianyong Wang. Focusllm: Precise understanding of long context by dynamic condensing. In
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 31087–31101, 2025b.

13

https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zihan Liao, Jun Wang, Hang Yu, Lingxiao Wei, Jianguo Li, and Wei Zhang. E2llm: Encoder
elongated large language models for long-context understanding and reasoning. In Proceedings of
the 2025 Conference on Empirical Methods in Natural Language Processing, pp. 19212–19241,
2025.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024.

Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of
rope-based extrapolation. arXiv preprint arXiv:2310.05209, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng Wu.
Memochat: Tuning llms to use memos for consistent long-range open-domain conversation. arXiv
preprint arXiv:2308.08239, 2023.

Pedro Henrique Martins, Zita Marinho, and André FT Martins. ∞-former: Infinite memory trans-
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A IMPLEMENTATION DETAILS

A.1 PROMPT TEMPLATE

You are presented with a problem, a section of an article that may contain the answer, and a previous
memory. Please read the section carefully and update the memory with new information that helps to answer
the problem, while retaining all relevant details from the previous memory.
<problem> {prompt} </problem>
<memory> {memory} </memory>
<section> {chunk} </section>
Updated memory:
You are presented with a problem and a previous memory. Please answer the problem based on the
previous memory and put the answer in \boxed {}.
<problem> {prompt} </problem>
<memory> {memory} </memory>
Your answer:

Table 5: Template of MEMAGENT for context processing (top part) and final answer generation
(bottom). Curly-brace placeholders {} will be replaced with actual content.

A.2 ALGORITHM

Algorithm 1 Multi-conv DAPO

Require: Policy model πθ, reference model πref (frozen), rule-based verifier V , dataset D, group
size G

1: while not converged do
2: Sample a prompt q ∼ D
3: for g = 1 to G do . Group of conversations for the same q
4: Initialize hg,0 ← [q]
5: for t = 1 to cg do . Context-independent conversation
6: Sample og,t ∼ πθ(· | hg,t−1)
7: hg,t ← hg,t−1 ‖ og,t
8: end for
9: yg ← og,cg . Final response used for scoring

10: r̂g ← V (q, yg) . Rule-based reward
11: dg ← KL

(
πθ(· | hg,cg ) ‖πref(· | hg,cg )

)
12: rg ← r̂g − βdg
13: end for
14: {Ag}Gg=1 ← GroupNorm({rg}Gg=1)
15: for g = 1 to G do

16: ρg ←
πθ(yg | hg,cg )
πθold(yg | hg,cg )

17: Jg ← min
(
ρgAg, clip(ρg, 1− εlow, 1 + εhigh)Ag

)
18: end for
19: Jclip ← 1

G

∑G
g=1 Jg

20: θ ← θ + η∇θJclip
21: end while

A.3 TRAINING

We use the DAPO algorithm for training, applying a KL factor of 1× 10−3 and disabling the entropy
loss. The AdamW optimizer is employed with a constant learning rate of 1× 10−6 and a linear warm-
up scheduler, with the wram-up step set to 20. We use a rollout batchsize of 256, with a group size of
16. Note that due to the multi-conversation feature of MEMAGENT, the actual mini-batchsize
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is not equal to rollout batchsize/16. We utilize off-policy training by fixing the ratio of the
sample batch size to the backpropagation batch size is set to 16.

We shift to stage II when stage I are fully converged, which takes about 400 steps. Here is the training
data recipe of each stage.

• Stage I We use 32,768 synthetic QA data instances, each approximately 32K tokens in length.
These are based on the HotpotQA (Yang et al., 2018) dataset and follow the RULER (Hsieh
et al., 2024) methodology, which involves embedding golden paragraphs (containing correct
answers) within extensive distractor content sampled from the same dataset.

• Stage II We use 2,560 training instances with a maximum length of 60K tokens. This set
consists of difficult, high-quality long-text QA data from DocQA-RL-1.6K (Wan et al.,
2025), mixed with data from the first stage.

Each training sample used in stage I is of 200 articles in HotpotQA, with an approximate total token
length of 28K. We thoroughly clean the dataset by filtering out questions where Qwen2.5-7B-Base or
Qwen2.5-7B-Instruct achieves 100 % Best-Of-2 score without given any context. These questions
likely represent common knowledge already internalized within the models’ memories. 80,000
samples from the HotpotQA training split are processed through this pipeline and approximately 50%
of the data are filtered out. We chose the frist 32,768 samples of processed data as our training set.

We then apply a similar approach to synthesize 128 samples from the HotpotQA validation set. For
extrapolation performance testing, we synthesize test sets with different context lengths using the
same pipeline. The number of wiki items ranges from 50 up to 6400, corresponding to context lengths
of approximately 7K to 3.5M tokens.

A.4 EVALUATION

We extract answers from the model outputs using regular expressions, and we prompt the model to
respond in the specified format. The chosen format is ’the answer is ANSWER.’

We employ the sub em score for all benchmarks. This means that an answer is considered correct if
it contains all the elements of the ground truth. When an answer consists of multiple parts and the
expected response should include all of them, the score corresponds to the proportion of correct parts
provided.

Before evaluating the answers, we normalize both the ground truth and the extracted responses.
For example, we remove definite articles, ignore case distinctions, and apply similar standard
normalization steps following previous work (Wan et al., 2025; Hsieh et al., 2024; Yen et al., 2024).

Table 6 shows the generation configurations of baseline models.

Table 6: Generation configurations of baseline models.

Model Context Length Input/Output Tokens
QwenLong-L1 (Wan et al., 2025) 128K 120,000 / 10,000
Qwen2.5-Instruct-1M Series (Yang et al., 2025) 1M 990,000 / 10,000
DeepSeek-R1-Distill-Qwen Series (Guo et al., 2025) 128K 120,000 / 10,000
Qwen2.5-Instruct Series(Yang et al., 2024) 128K 120,000 / 10,000

NIAH niah single {1,2,3} in RULER (Hsieh et al., 2024) benchmark are used in our test.
The yaml configuration of RULER are presented in 7. In level 1, the ”haystack” consists of repetitive
sentences, and the ”needle” is a seven-digit number associated with a magic word. For level 2,
the ”haystack” is composed of longer essays. Level 3 goes a step further than Level 2 where the
”needle” is a 36-character UUID string. Question and context are concated as the input of LLMs. We
omit the answer prefix provided in original RULER benchmark since it is not compatible with
MEMAGENT workflow.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

niah single 1:
task: niah
args:

type haystack: repeat
type needle k: words
type needle v: numbers
num needle k: 1
num needle v: 1
num needle q: 1

niah single 2:
task: niah
args:

type haystack: essay
type needle k: words
type needle v: numbers
num needle k: 1
num needle v: 1
num needle q: 1

niah single 3:
task: niah
args:

type haystack: essay
type needle k: words
type needle v: uuids
num needle k: 1
num needle v: 1
num needle q: 1

Table 7: Synthetic Configuration used for NIAH task.

B COMPUTATION COMPLEXITY

We adopt the floating-point operations (FLOP) estimator for the Qwen2Model from verl Sheng et al.
(2024) to compute the FLOP cost of both the baseline model and our proposed method. The results
are shown in Figure 10. The baseline model exhibits an O(n2) complexity, while MEMAGENT
achieves an O(n) complexity.

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Context Length
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Figure 10: Floating point operations across context lengths from 8K to 4M

For the baseline model, the number of tokens required to process is q + c+ o, where q represents the
length for the problem, c is the context length and o represents the output length.
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For MEMAGENT, total FLOP cost is the sum of the FLOPs from all stages. The detailed stages
involved are as follows:

• Initializing: In the first stage, the model processes an input consisting of q+ 200+ o, where
200 represents a constant added to prompt the model to follow the MEMAGENT workflow.

• Memory Updating: The number of repetitions is determined by k = d cN e, where c is the
variable component of the input. Each repetition requires an input of length q+200+N +o.

• Final Answering: The final stage processes an input of length q + 100 + o, which includes
the accumulated output from the previous steps.

We set q = 1024, o = 1024, N = 5000 and c is ranging from 8K to 4M to calculate the final result.

C CASE STUDY

To further illustrate the proposed memory mechanism in detail, we conduct a case study on a
generation trajectory of MEMAGENT-14B. The input question is: The director of the romantic
comedy ‘Big Stone Gap’ is based in what New York city? This a 2-hop question with the following
relevant Wikipedia entries:

1) Big Stone Gap is a 2014 American drama romantic comedy film written and directed by Adriana
Trigiani.

2) Adriana Trigiani is an Italian American best-selling author of sixteen books, television writer,
film director, and entrepreneur based in Greenwich Village, New York City.

In the first round, the model is presented with the entry Ghost, which refers to a production team also
based in New York. The model chooses to retain this potentially useful information for future use. In
the second round, no relevant context is provided; nevertheless, the model maintains its agent state,
demonstrating robustness against distraction. In the third round, both relevant entries are presented.
The model correctly identifies critical information and updates its memory accordingly, leading to the
correct answer: Greenwich Village, New York City. At this point, the reasoning process is complete.
In the remaining rounds, the model’s memory remains unchanged and is used to produce the final
response.

CHUNK1
...
Document 20: Ghost (production team)
Ghost is a Swedish record producing and songwriting team, composed of Ulf Lindström and
Johan Ekhé, based in New York City.
...

MEMORY1
The provided section does not contain any information about the director of the romantic
comedy ”Big Stone Gap” or their base in New York City. However, it does mention a
production team called ”Ghost” which is based in New York City. Since the problem is
specifically asking about the director of ”Big Stone Gap,” and there is no direct information
about the director in the given section, we cannot infer anything directly related to the problem
from the provided text.
Updated memory:

• Ghost is a Swedish record producing and songwriting team, composed of Ulf
Lindström and Johan Ekhé, based in New York City. They are perhaps best known
for writing and producing Swedish singer Robyn’s three first studio albums.

The problem remains unanswered based on the provided section. Additional information
would be needed to determine the director of ”Big Stone Gap” and their base in New York
City.
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CHUNK2
...(No relevant document)

MEMORY2
The provided section does not contain any information about the director of the roman-
tic comedy ”Big Stone Gap” or their base in New York City. 2 Therefore, the updated
memory remains unchanged with respect to the problem at hand. The memory still
notes that the Ghost record producing and songwriting team is based in New York City, but it
does not provide any information about the director of ”Big Stone Gap.”
Updated memory:

• Ghost is a Swedish record producing and songwriting team, composed of Ulf
Lindström and Johan Ekhé, based in New York City. They are perhaps best known
for writing and producing Swedish singer Robyn’s three first studio albums.

• The problem remains unanswered based on the provided section. Additional infor-
mation would be needed to determine the director of ”Big Stone Gap” and their base
in New York City.

CHUNK3
...
Document 81: Big Stone Gap (film)
Big Stone Gap is a 2014 American drama romantic comedy film written and directed by
Adriana Trigiani and produced by Donna Gigliotti for Altar Identity Studios, a subsidiary
of Media Society.
...
Document 96: Adriana Trigiani
Adriana Trigiani is an Italian American best-selling author of sixteen books, television
writer, film director, and entrepreneur based in Greenwich Village, New York City.
...

MEMORY3
Updated memory:

• Ghost is a Swedish record producing and songwriting team, composed of Ulf
Lindström and Johan Ekhé, based in New York City. They are perhaps best known
for writing and producing Swedish singer Robyn’s three first studio albums.

• Adriana Trigiani is an Italian American best-selling author of sixteen books, tele-
vision writer, film director, and entrepreneur based in Greenwich Village, New York
City. Trigiani has published a novel a year since 2000.

• Big Stone Gap is a 2014 American drama romantic comedy film written and
directed by Adriana Trigiani and produced by Donna Gigliotti for Altar Identity
Studios, a subsidiary of Media Society. Based on Trigiani’s 2000 best-selling novel
of the same name, the story is set in the actual Virginia town of Big Stone Gap circa
1970s. The film had its world premiere at the Virginia Film Festival on November 6,
2014.
The director of the romantic comedy ”Big Stone Gap” is Adriana Trigiani, who is
based in Greenwich Village, New York City.

This trajectory highlights several core capabilities learned by the memory agent: estimating potentially
relevant content from query keywords and storing it preemptively, immediately updating memory
upon encountering context that matches the query, and remaining unaffected by irrelevant information.
Notably, these memory behaviors are not the result of architectural attention mechanisms, but emerge
as text generation abilities reinforced through RL.
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D SUPPLEMENTARY EXPERIMENTS

D.1 ABLATION STUDY ON CONTEXT SIZE AND MEMORY SIZE

In this ablation experiments, we keep the total length of memory size + context chunk size constant,
and linearly adjusted the memory size. The goal is to control the total context length per conversation
turn. The results are shown in Table 8 and Table 9.

Table 8: Ablation result of memory-size and context-size on NIAH. All number indicates the
averaging score of level1l̃evel3

Method 8K 16K 32K 64K 128K 256K 512K
14B-m4096-c1928 100.00 99.22 98.70 97.66 98.96 99.22 97.92
14B-m3072-c2952 99.74 100.00 100.00 100.00 98.70 99.48 99.48
14B-m2048-c3976 99.74 99.48 99.48 100.00 100.00 97.13 97.66
14B-m1024-c5000 99.74 98.70 100.00 100.00 98.96 97.40 98.18

7B-m4096-c1928 100.00 99.22 98.44 96.35 98.96 98.18 97.14
7B-m3072-c2952 99.48 100.00 99.74 99.48 96.88 98.18 96.09
7B-m2048-c3976 99.74 99.48 99.48 99.48 98.96 94.53 94.53
7B-m1024-c5000 100.00 98.70 99.74 98.96 97.40 97.66 96.62

Table 9: Ablation result of memory-size and context-size on Longbench-QA

Method 2Wiki HQA MuSiQue NQA Qasper AVG
14B-m4096-c1928 74.5 72.5 48.5 21.5 25.5 48.5
14B-m3072-c2952 76.5 70.5 52.5 24.5 26.5 50.1
14B-m2048-c3976 74.5 71.5 49.5 23.0 27.0 49.1
14B-m1024-c5000 79.0 73.0 52.0 25.0 26.0 51.0

7B-m4096-c1928 70.0 66.0 45.5 19.0 26.0 45.3
7B-m3072-c2952 72.0 64.0 44.0 20.0 25.5 45.1
7B-m2048-c3976 75.0 69.0 43.5 23.0 26.0 47.3
7B-m1024-c5000 74.0 69.5 47.0 21.5 29.0 48.2

D.2 AGENT BASELINES

We compare MemAgent against an advanced memory-agent method, Mem0(Chhikara et al., 2025).
The Mem0 paper also reports that RAG methods using only top-1 or top-2 retrieval form strong and
stable baselines for memory-agent tasks. Therefore, we conduct extensive comparisons against RAG
agents under multiple configurations.

For Mem0, we use SOTA OpenAI models, GPT-5.1 and text-embedding-3-large as langugae model
and embedding model respectively and we follow the official GitHub repository for memory updating
and retrieval. Specifically, during memory creation, we split and processed the entire context in
5,000-token chunks; during retrieval, we selected the top 30 memories.

For RAG, we also use text-embedding-3-large as embedding model and configure it with various
chunk size and top-K value.

The results show that MEMAGENT outperforms these methods, demonstrating that end-to-end
RL–trained memory provides greater flexibility and coherence compared with retrieval-based strate-
gies.
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Table 10: Result versus RAG Agent in RULER-HQA with different top-K settings. We segment the
context based on natural semantic units, i.e., each wiki item was treated as a chunk.

Model Length
7K 14K 28K 56K 112K 224K 448K 896K 1.75M 3.5M

RAG + Qwen2.5-14B
K=2 57.03 54.69 51.56 54.69 53.12 50.00 52.34 49.22 48.44 48.44
K=4 66.41 67.19 68.75 67.19 66.41 64.06 66.41 64.84 60.94 59.38
K=6 72.66 75.78 75.78 74.22 69.53 71.88 73.44 67.19 65.62 66.41
K=8 78.12 78.91 77.34 81.25 76.56 78.12 77.34 74.22 70.31 64.84
RL-MEMAGENT-14B 80.47 82.03 82.03 83.59 81.25 77.34 79.69 75.78 78.91 71.09
RAG + Qwen2.5-7B
K=2 53.91 54.69 53.12 51.56 54.69 51.56 52.34 49.22 48.44 46.09
K=4 67.19 66.41 66.41 67.19 64.84 64.06 62.50 61.72 60.94 59.38
K=6 74.22 73.44 72.66 73.44 70.31 73.44 70.31 67.19 65.62 65.62
K=8 75.00 75.00 75.78 74.22 74.22 77.34 72.66 68.75 64.06 64.84
RL-MEMAGENT-7B 81.25 81.25 82.03 80.47 79.69 75.78 76.56 74.22 77.34 71.88

Table 11: Result versus RAG Agent in Longbench-QA with different top-K and Context size settings.
We segment the context using fixed-length chunks. For retrieval, we performed top-k matching using
cosine similarity scores.

Method 2Wiki HQA MuSiQue NQA Qasper AVG
Qwen2.5-14B + RAG
C=1024 K=2 51.50 56.50 26.50 15.00 23.50 28.83
C=1024 K=4 70.00 64.50 34.50 17.50 27.00 35.58
C=1024 K=6 71.50 64.00 41.00 19.00 27.50 37.17
C=1024 K=8 72.50 64.50 39.00 17.50 26.00 36.58
C=2048 K=2 58.50 61.50 33.50 13.50 25.50 32.08
C=2048 K=4 76.00 64.00 36.00 18.50 25.00 36.58
C=2048 K=6 73.00 67.50 41.50 21.00 26.50 38.25
C=2048 K=8 77.50 68.50 42.00 21.00 27.50 39.42
RL-MemAgent-14B 79.0 73.0 52.00 25.00 26.00 51.00
Qwen2.5-7B + RAG
C=1024 K=2 41.00 48.50 22.00 14.50 25.50 25.25
C=1024 K=4 49.00 56.50 28.00 17.00 28.50 29.83
C=1024 K=6 54.50 57.50 29.50 17.00 25.00 30.58
C=1024 K=8 50.50 59.00 29.50 18.00 25.00 30.33
C=2048 K=2 49.50 51.50 19.50 12.50 27.00 26.67
C=2048 K=4 50.50 53.00 26.00 17.00 25.50 28.67
C=2048 K=6 50.50 56.50 27.50 22.00 25.50 30.33
C=2048 K=8 50.50 58.00 25.50 21.00 27.00 30.33
RL-MemAgent-7B 74.00 69.50 47.00 21.50 29.00 48.20

E LLM USAGE

In this section, we report the usage of LLMs in this work. Some sentences in this manuscript are
drafted or refined by LLMs, but all text is finalized by human authors. In the experimental process,
LLMs assist with code completion, but they do not produce novel ideas or complete experiments.
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F FALIURE PATTERN STUDY

F.1 INFORMATION OVERWRITTEN

In this example, the model accumulates a large amount of irrelevant memories in the early stage
(Turn 60). When the crucial context appears, the model does capture the relevant information (Turn
289), but attempts to append it to the end (Turn 290), where it is truncated due to insufficient memory.
Later, the model proactively performs a summarization (Turn 317), which gives it more space to store
the second key piece of context (Turn 433). However, since the information from the first context has
already been lost, the model incorrectly relies on irrelevant information for reasoning and fails to
answer the question correctly.

Question: Where is the company that Sachin Warrier worked for as a software engineer
headquartered?
Relevant Information:
(shown in Turn 289) Tata Consultancy Services Limited (TCS): An Indian multinational
information technology (IT) service, consulting and business solutions company. It is a
subsidiary of the Tata Group, operates in 46 countries, and is headquartered in Mumbai,
Maharashtra.
(shown in Turn 433) Sachin Warrier: A playback singer and composer in the Malayalam
cinema industry from Kerala. He became notable with the song ”Muthuchippi Poloru” from
the film Thattathin Marayathu, made his debut with Malarvaadi Arts Club, and was once
working as a software engineer at Tata Consultancy Services in Kochi (later resigned to focus
on music). His latest work is as a composer for the movie Aanandam.
Answer: Mumbai

Memory Diff between Turn 59 and Turn 60
-The provided section does not contain any information about Sachin Warrier or his work as a software
engineer. Therefore, the updated memory remains unchanged with respect to Sachin Warrier. However,
it does provide information about Texas Monthly, which is headquartered in Downtown Austin, Texas.
Since the problem is specifically asking about a company where Sachin Warrier worked as a software
engineer, and no information about Sachin Warrier is provided, the updated memory remains as follows:
+The provided section does not contain any information about Sachin Warrier or his work as a software
engineer. However, it does provide information about Procter & Gamble, which is an American
consumer goods corporation headquartered in downtown Cincinnati, Ohio, United States of America.
Since the problem is specifically asking about a company where Sachin Warrier worked as a software
engineer, and no information about Sachin Warrier is provided, the updated memory remains as follows:

• Pizza Pizza Ltd. is a franchised Canadian pizza fast-food restaurant, with its headquarters in
Etobicoke, Toronto. Its restaurants are mainly in the province of Ontario. Other locations
operate in Quebec, Nova Scotia, and in western Canada. Franchises in western Canada are
mostly run through Alberta-based subsidiary Pizza 73, and in non-traditional locations such
as university campuses and movie theatres throughout Canada. It has over 500 locations,
including over 150 non-traditional locations.

• TI Automotive develops, manufactures, and supplies automotive fluid storage, carrying, and
delivery systems. The company has 23,000 employees at 120 locations in 29 countries,
and supplies all of the world’s major automobile manufacturers. TI Automotive serves
the automotive aftermarket through Bundy, Walbro, and Marwal brands. The company’s
headquarters are located in Oxford, UK, with Corporate Offices based in Auburn Hills,
Michigan. In 2015 TI Automotive was acquired by Bain Capital.
(...)

• -
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Memory Diff between Turn 282 and Turn 289
-The provided section does not contain any information about Sachin Warrier or the company he worked
for as a software engineer. Therefore, the updated memory remains as follows:
+The provided section contains information about Tata Consultancy Services Limited (TCS), which is
an Indian multinational information technology (IT) service, consulting and business solutions company.
It states that TCS is headquartered in Mumbai, Maharashtra.
+Updated memory:

• Cosmos (formerly Cosmos Tours) is a UK independent tour operator providing a range of
package holidays to the UK market. The tour operator is connected to the international Globus
Travel Group, founded in 1928, which remains family owned with headquarters in Lugano,
Switzerland. Under parent company Cosmos Tours Ltd, the tour operator offers holidays
through three brands: Cosmos, Archers Holidays and Avalon Waterways.

• L&F Jones Holdings Ltd is a company based in Westfield, Somerset, England, that includes a
convenience store chain, a wholesale food business, and a Best Western PLUS hotel. The
store chain comprises twelve shops in Somerset, Wiltshire, Dorset, South Gloucestershire,
and Bristol.
(...)

• Round Table Pizza is a large chain of pizza parlors in the western United States. The
company’s headquarters are located in Concord, California.

• Round Table Pizza is a large chain of pizza parlors in the western United States. The
company’s

• Anton Media Group, formerly Anton Community

Memory Diff between Turn 289 and Turn 290
-The provided section contains information about Tata Consultancy Services Limited (TCS), which is an
Indian multinational information technology (IT) service, consulting and business solutions company.
It states that TCS is headquartered in Mumbai, Maharashtra.
+The provided section does not contain any information about Sachin Warrier or Tata Consultancy
Services Limited (TCS). Therefore, the updated memory remains as follows:
-Updated memory:

• Cosmos (formerly Cosmos Tours) is a UK independent tour operator providing a range of
package holidays to the UK market. The tour operator is connected to the international Globus
Travel Group, founded in 1928, which remains family owned with headquarters in Lugano,
Switzerland. Under parent company Cosmos Tours Ltd, the tour operator offers holidays
through three brands: Cosmos, Archers Holidays and Avalon Waterways.

• L&F Jones Holdings Ltd is a company based in Westfield, Somerset, England, that includes a
convenience store chain, a wholesale food business, and a Best Western PLUS hotel. The
store chain comprises twelve shops in Somerset, Wiltshire, Dorset, South Gloucestershire,
and Bristol.
(...)

• Tata Consultancy Services Limited (TCS), an Indian multinational information technology (
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Memory Diff between Turn 316 and Turn 317
The provided section does not contain any information relevant to Sachin Warrier or Tata Consultancy
Services Limited (TCS). Therefore, the updated memory remains as follows:

• (formerly Cosmos Tours) is a UK independent tour operator providing a range of package
holidays to the UK market. The tour operator is connected to the international Globus
Travel Group, founded in 1928, which remains family owned with headquarters in Lugano,
Switzerland. Under parent company Cosmos Tours Ltd, the tour operator offers holidays
through three brands: Cosmos, Archers Holidays and Avalon Waterways.

• L&F Jones Holdings Ltd is a company based in Westfield, Somerset, England, that includes a
convenience store chain, a wholesale food business, and a Best Western PLUS hotel. The
store chain comprises twelve shops in Somerset, Wiltshire, Dorset, South Gloucestershire,
and Bristol.
(...)

• The company’s corporate headquarters is in Faridabad, Haryana, India.

• Diageo plc ( or ) is a British multinational alcoholic beverages company, with its headquarters
in London, England. It
(...)

Since the problem is specifically about the headquarters of the company Sachin Warrier worked for as
a software engineer, and the previous memory already states that Tata Consultancy Services Limited
(TCS) is headquartered in Faridabad, Haryana, India, the updated memory remains as follows:
- The company’s corporate headquarters is in Farid

Memory Diff between Turn 430 and Turn 433
-The provided section does not contain any information about Sachin Warrier or his employment as a
software engineer. Therefore, the updated memory remains as follows:
+The provided section contains information about Sachin Warrier, which is useful for answering the
problem. Specifically, it states:
+ Sachin Warrier is a playback singer and composer in the Malayalam cinema industry from
Kerala.
+ He was working as a software engineer in Tata Consultancy Services in Kochi.
+ Later he resigned from the job to concentrate more on music.

+However, the section does not provide the headquarters information for Tata Consultancy Services.
Given the previous memory, we know that the corporate headquarters of Tata Consultancy Services is
in Faridabad, Haryana, India. Therefore, the updated memory is as follows:

• The company’s corporate headquarters is in Faridabad, Haryana, India.

• SpaceX is an American aerospace manufacturer and space transport services company head-
quartered in Hawthorne, California.
(...)

• Sachin Warrier’s company headquarters information is still unknown from the given docu-
ments.

• Sachin Warrier was working as a software engineer in Tata Consultancy Services in Kochi.
Later he resigned from the job to concentrate more on music.

• AVG Technologies is a security software company headquartered in Amsterdam, Netherlands.
(...)

-The updated memory reflects that the headquarters of the companies mentioned are in Faridabad,
Haryana, India; Hawthorne, California; Amsterdam, Netherlands; Eagan, Minnesota; Pittsburgh,
Pennsylvania; and San Antonio, Texas. However, there is no information about the company Sachin
Warrier worked for as a software engineer. Therefore, the memory remains unchanged in terms of
Sachin Warrier’s company headquarters information.
+The updated memory confirms that Sachin Warrier worked as a software engineer for Tata Consultancy
Services in Kochi, and the headquarters of Tata Consultancy Services is in Faridabad, Haryana, India.
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F.2 MISSING CRITICAL INFORMATION

In this example, when the model encounters the first key piece of information (Turn 143), it fails to recognize it as
such because this is a multi-hop question and the prerequisite evidence has not yet been observed. Consequently,
even though the model becomes aware of the problem upon seeing the second piece of information (Turn 215),
it still fails to produce the correct final answer.

Question: who is the younger brother of The episode guest stars of The Hard Easy ?
Relevant Information:
(shown in Turn 143) Brian Doyle-Murray Brian Doyle-Murray (born Brian Murray, October 31, 1945) is
an American actor, voice artist, comedian and screenwriter. He is the older brother of actor/comedian
Bill Murray, and the two have acted together in several films...
(shown in Turn 215) The Hard Easy (Adventure Time) ”The Hard Easy” is the twenty-third episode...
The episode guest stars Brian Doyle-Murray as Prince Huge and Jonathan Katz as the Mud-
scamp elder.
Answer: Bill Murray

Memory Diff between Turn 142 and Turn 143
-The provided section does not contain any information related to ”The Hard Easy” or its guest stars.
Therefore, the updated memory remains as follows:
+The provided section does not contain any information related to ”The Hard Easy” or its guest
stars. However, it does provide information about Brian Doyle-Murray, who is the older brother of
actor/comedian Bill Murray. Since the problem is asking for the younger brother of the episode guest
stars of ”The Hard Easy,” and the memory does not contain any information about the guest stars of
”The Hard Easy,” the information about Brian Doyle-Murray and Bill Murray is not directly relevant to
the problem at hand.
+Therefore, the updated memory remains as follows:

• (...)

• Martin Lee Truex Jr. (born June 29, 1980) is an American championship professional stock
car racing driver. His younger brother, Ryan, is a champion in the K&N Pro Series East
division and currently races in the Camping World Truck Series.
(...)

Memory Diff between Turn 185 and Turn 215
-The provided section does not contain any information related to ”The Hard Easy” or its guest stars.
Therefore, the updated memory remains unchanged with respect to the problem at hand. The only
relevant piece of information is that the younger brother of Martin Lee Truex Jr. is Ryan Truex.
+The provided section contains information about ”The Hard Easy,” an episode of ”Adventure Time,”
which includes the guest stars Brian Doyle-Murray as Prince Huge and Jonathan Katz as the
Mudscamp elder. However, it does not provide any information about the younger brother of the
episode guest stars.
-Thus, the updated memory is as follows:
+The updated memory is as follows:

• ...

• Martin Lee Truex Jr. (born June 29, 1980) is an American championship professional stock
car racing driver. His younger brother, Ryan, is a champion in the K&N Pro Series East
division and currently races in the Camping World Truck Series. (...)

The younger brother of Martin Lee Truex Jr. is Ryan Truex.
+The provided section does not contain any information about the younger brother of the guest stars
of ”The Hard Easy.” Therefore, the updated memory remains unchanged with respect to the problem
at hand. The only relevant piece of information is that the younger brother of Martin Lee Truex Jr. is
Ryan Truex.
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F.3 PRIMACY BIAS

This example involves a primacy bias. The word country can refer either to a nation or to the countryside. The
model initially assumes it refers to a nation (Turn 1) and subsequently reinforces this belief when it encounters
additional information about countries (Turn 617). As a result, even though it eventually also attends to the truly
critical piece of information (Turn 728), it still fails to answer the question correctly.

Question: Brown State Fishing Lake is in a country that has a population of how many inhabitants ?
Relevant Information:
(shown in Turn 728) Brown County, Kansas Brown County (county code BR) is a county located in the
northeast portion of the U.S. state of Kansas. As of the 2010 census, the county population was 9,984.
Its county seat and most populous city is Hiawatha. Brown County is the location of the Kickapoo
Indian Reservation of Kansas, the majority of the Sac and Fox Reservation and the majority of the Iowa
Reservation of Kansas and Nebraska.
Answer: 9,984

Memory Diff between Turn 0 and Turn 1
-The provided section does not contain any information about the population of the country where
Brown State Fishing Lake is located. However, it does confirm that Brown State Fishing Lake is in
Brown County, Kansas in the United States.
+The provided section does not contain any information about the population of the United States or
any country. Therefore, the updated memory remains as follows:

• Brown State Fishing Lake is a protected area in Brown County, Kansas in the United States.

• The lake is 62 acres (0.25 km2) in area and up to 13 feet (4 m) deep. (...)

-Since the problem is asking for the population of the country where Brown State Fishing Lake is
located, and the only country mentioned in the text is the United States, we can infer that the question is
seeking the population of the United States. However, the text does not provide the exact population
number.
-Given the information available, the updated memory should reflect the following:
+Since the problem is seeking the population of the country where Brown State Fishing Lake is located,
and the only country mentioned is the United States, the updated memory reflects that the population of
the United States is the required information. However, the text does not provide the exact population
number. Therefore, the updated memory retains the above information without changes related to the
population.

Memory Diff between Turn 616 and Turn 617
-The provided section contains information about Kunming, a city in Yunnan Province, Southwest
China, which has a population of 6,626,000 as of 2014. However, this information is not directly related
to the problem at hand, which is about the population of the country where Brown State Fishing Lake is
located.
+... Since the problem is asking for the population of the country where Brown State Fishing Lake is
located, and we know that Brown State Fishing Lake is in Brown County, Kansas, in the United States,
we can infer that the population of the United States is the answer to the problem.

-The updated memory remains consistent with the previous information, but it now includes the new
information about Kunming:
+Updated memory:

• Brown State Fishing Lake is a protected area in Brown County, Kansas in the United States.

• The lake is 62 acres (0.25 km2) in area and up to 13 feet (4 m) deep. (...)

• Ruzhou, a city in Henan province, China, has more than 100,000 inhabitants. (...)

• As of 2018, the United States had a population of around 327,167,434.

+The problem is asking for the population of the country where Brown State Fishing Lake is located,
which is the United States. Therefore, the population of the United States is around 327,167,434 as of
2018.
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Memory Diff between Turn 654 and Turn 728
The provided section does not contain any information relevant to the problem at hand. Therefore, the
updated memory remains as follows:

• Brown State Fishing Lake is a protected area in Brown County, Kansas in the United States.
(...)

• Brown County, Kansas, as of the 2010 census, had a population of 9,984.
(...)

• As of 2018, the United States had a population of around 327,167,434.

The problem is asking for the population of the country where Brown State Fishing Lake is located,
which is the United States. Therefore, the population of the United States is around 327,167,434 as of
2018.
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