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Abstract

In this paper, we present the Directly Denoising
Diffusion Model (DDDM): a simple and generic
approach for generating realistic images with few-
step sampling, while multistep sampling is still
preserved for better performance. DDDMs re-
quire no delicately designed samplers nor distilla-
tion on pre-trained distillation models. DDDMs
train the diffusion model conditioned on an es-
timated target that was generated from previous
training iterations of its own. To generate im-
ages, samples generated from the previous time
step are also taken into consideration, guiding the
generation process iteratively. We further pro-
pose Pseudo-LPIPS, a novel metric loss that is
more robust to various values of hyperparame-
ter. Despite its simplicity, the proposed approach
can achieve strong performance in benchmark
datasets. Our model achieves FID scores of 2.57
and 2.33 on CIFAR-10 in one-step and two-step
sampling respectively, surpassing those obtained
from GANs and distillation-based models. By
extending the sampling to 1000 steps, we fur-
ther reduce FID score to 1.79, aligning with
state-of-the-art methods in the literature. Our
code is available at https://github.com/
TheLuoFengLab/DDDM.

1. Introduction
Diffusion models (DM) recently have attracted significant
attention for their exceptional ability to generate realistic
samples in recent years, DMs achieved impressive perfor-
mance in many fields, including image generation (Dhariwal
& Nichol, 2021; Nichol et al., 2021; Ramesh et al., 2022;
Saharia et al., 2022a; Rombach et al., 2022), video gener-
ation (Ho et al., 2022), inpainting (Rombach et al., 2022)
and super-resolution (Saharia et al., 2022b; Rombach et al.,
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2022). However, a remarkable drawback is their relatively
slow sampling speed, which poses challenges for practi-
cal applications. For instance, the vanilla method of DMs
(DDPM Ho et al. (2020), Score based models (Song et al.,
2020b)) takes hundreds to thousands of steps in sampling,
which is very time-consuming compared with one-step gen-
eration such as GAN-style models (Brock et al., 2018; Kar-
ras et al., 2020b), normalizing flow models (Kingma &
Dhariwal, 2018; Dinh et al., 2016), or consistency models
(Song et al., 2023; Song & Dhariwal, 2023). When directly
generating the image using DDPM, the accumulated distor-
tion leads to poor performance.

Many efforts to accelerate the sampling process of DM
have been proposed. Denoising Diffusion Implicit Models
(DDIM, Song et al. (2020a)) modified the diffusion process
into a non-Markovian format with a smaller number of func-
tion evaluations (NFE) to generate samples. Meanwhile, by
viewing the sampling process through the lens of ordinary
differential equation (ODE), Song et al. (2020b) developed
faster numerical solvers to reduce the NFE required for gen-
eration rapidly, thus speeding up the process significantly
(Zhang & Chen, 2022; Lu et al., 2022). Although these
solvers can achieve comparable results as thousands-of-step
samplers, the performance for single-step generation is still
not good. Furthermore, knowledge distillation-based meth-
ods (Luhman & Luhman, 2021) compress the information
learned by the thousands-step sampler into a one-step model,
which enables the one-step generation of samples. However,
the distillation-based models add computational overhead to
the training process as they require another pretrained diffu-
sion model (teacher model) and have potential architectural
constraints (Song & Dhariwal, 2023).

In this paper, we propose Directly Denoising Diffusion
Model (DDDM) that combines the efficiency of single-step
generation with the benefits of iterative sampling for im-
proved sample quality. DDDM employs a DDPM-style
noise scheduler and denoises under the probability flow
ODE framework. However, we solve the probability flow
ODE using a neural network only without using any ODE
solver. Our method enables the generation of data sam-
ples from random noise with high quality in just one step.
Moreover, DDDM can still allow multi-step sampling to
obtain better generation results. Furthermore, inspired by
Pseudo-Huber losses, we proposed pseudo Learned Percep-
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tual Image Patch Similarity (LPIPS) (Zhang et al., 2018),
which shows more robustness in our study.

In our experiments, we demonstrate the effectiveness of
DDDMs across various image datasets including CIFAR-10
(Krizhevsky et al., 2009), and ImageNet 64x64 (Deng et al.,
2009), and observe comparable results to current state-of-
the-art methods. Our model achieves FID scores of 2.57
and 2.33 on CIFAR-10 in one-step and two-step sampling
respectively. By extending the sampling to 1000 steps, we
further reduce FID score to 1.79.

Our contributions can be summarized as follows:

• We introduce the Directly Denoising Diffusion Models
(DDDM) that can obtain the performance for image
generation results that is comparable to current state-
of-the-art methods and can obtain better generation
results for multiple-step sampling.

• Our model provides a straightforward pass with much
fewer constraints and does not need ODE solvers.

• We proposed the Pseudo-LPIPS metric with increased
sensitivity when the loss gets smaller, which is more
robust.

2. Preliminary
2.1. Diffusion models

Inspired by non-equilibrium thermodynamics, diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2020b), present a generative framework that models
data from an unknown true distribution pdata(x). These mod-
els consist of two processes: a forward diffusion process
and a reverse denoising process.

The forward diffusion process is characterized by the grad-
ual introduction of noise into the original data, denoted as
x0, over a sequence of time steps from 0 to T . This pro-
cess is mathematically structured as a Markov chain, where
Gaussian noise is incrementally added to the data at each
step. At time step t, the distribution of xt condition on xt−1

can be expressed as:

q (xt | xt−1) = N (xt;
√
1− βtxt−1, βtI)

By the property of Markov chain, the distribution of xt

given x0 is described as (Ho et al., 2020):

q (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

))
where ᾱt =

∏t
s=1 (1− βs), q (xt | x0) is also known as

diffusion kernel.

The reverse denoising process aims to learn the inverse of
the forward diffusion. Starting from a random sample xT

with distribution p (xT ) = N (xT ;0, I), this sampled data
is then progressively denoised through a neural network that
parameterizes a conditional distribution q (xs | xt), where
s < t. This denoising process continues step by step, mov-
ing backward in time from step T towards step 0. The
sequence of denoising steps gradually reconstructs the data,
aiming to approximate the original data as closely as possi-
ble when the time step 0 is reached.

2.2. Stochastic Differential Equation Formulation

The discrete processes in DDPM can be linked to
continuous-time diffusion processes (Song et al., 2020a).
By obtaining a continuous approximation of the forward
discrete process, we can align it with a Stochastic Differ-
ential Equation (SDE) and consequently derive a reverse
continuous-time process that corresponds with the reverse
discrete process defined in diffusion models.

For the diffusion kernels {pβi (x | x0)}Ni=1 used in DDPM,
we have:

xi =
√

1− βixt−1 +
√
βtzt−1, zt−1 ∼ N (0, I),

where t = 1, · · · , T and βt can be approximated to an in-
finitesimal function β(t)∆t as T →∞, and βt sufficiently
small.

Applying Taylor expansion, the following can be derived:

xt ≈ xt−1 −
β(t)∆t

2
xt−1 +

√
β(t)∆tzi−1.

As the time increment ∆t → 0, the above discrete func-
tion transitions into the following Variance Preserving (VP)
Stochastic Differential Equation (SDE) (Song et al., 2020a):

dxt = −
1

2
β(t)xtdt+

√
β(t)dw,

where w is a Wiener process.

The reverse process for this VP SDE is defined as:

dxt =

(
−1

2
β(t)xt − β(t)∇x log q(xt)

)
dt+

√
β(t)dw

The Generative probability flow Ordinary Differential Equa-
tion (ODE), which is deterministic, can be expressed as:

dxt

dt
= −1

2
β(t) [xt −∇xt log qt (xt)] . (1)

By replacing ∇x log qt (xt) with a neural network based
estimation sθ (xt, t), Song et al. (2020b) obtained the neural
ODE:

dxt = −
1

2
β(t) [xt + sθ (xt, t)] dt

Advanced ODE solvers can be applied to solve the above
equations.
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Figure 1. An illustration of DDDM. For current training epoch n, our model takes noisy data xt and timestep t, as well as the estimated
target from previous epoch x

(n−1)
0 as inputs, predicts the new approximation x

(n)
0 , which will be utilized in the next training epoch.

Through such an iterative process, our approximated result moves gradually towards real data x0.

3. Directly Denosing Diffusion Models
Solving the probability flow (PF) ODE is equivalent to com-
puting the following integral:∫ 0

T
dxt

dt dt =
∫ 0

T
− 1

2β(t) [xt −∇xt
log qt (xt)] dt ⇐⇒

x0 = xT +
∫ 0

T
− 1

2β(t) [xt −∇xt
log qt (xt)] dt

where xT is initialized from a normal distribution N (0, I).

To generate samples from a DM, we propose Directly Denos-
ing Diffusion Models, an iterative process designed to refine
the estimation of x0. First, we define f (x0,xt, t) as the
solution of the PF ODE from initial time t to final time 0
(Appendix A.1):

f (x0,xt, t) := xt+

∫ 0

t

−1

2
β(s) [xs −∇xs log qs (xs)] ds

where xt is drawn from N (
√
ᾱtx0, (1− ᾱt) I). Subse-

quently, we introduce the function F (x0,xt, t) defined as:

F (x0,xt, t) :=

∫ 0

t

1

2
β(s) [xs −∇xs

log qs (xs)] ds

Thus, we have:

f (x0,xt, t) = xt − F (x0,xt, t) (2)

By approximate f , we can then recover the original image
x0. We define a neural network-parameterized function fθ,
which is employed to estimate the solution of the PF ODE
and thereby recover the original image state at time 0. The
predictive model is represented as:

fθ (x0,xt, t) = xt − Fθ (x0,xt, t) (3)

where Fθ is the neural network function parameterized by
the weights θ. To achieve a good recovery of the initial state
x0, fθ (x0,xt, t) ≈ f (x0,xt, t) need to be ensured.

3.1. Iterative solution

Eq. (3) shows that our neural network Fθ requires x0 as
input, which is not applicable during sample generation. To
unify the training and inference within the same framework,
we propose an iterative update rule to estimate the initial
state x0 in a dynamic system. This iterative process is
formally defined by the following update equation:

x
(n+1)
0 = xt − Fθ

(
x
(n)
0 ,xt, t

)
(4)

where x
(n)
0 denotes the estimated ground truth data x0 at

the n-th training epoch or n-th sampling iteration. Each
update refines this estimate in an attempt to converge to the
true initial state. To effectively quantify the discrepancy
between the n-th estimate x

(n)
0 and the true initial state x0

in the DDDM, we employ the following loss function.

Definition 3.1. The loss function of the DDDM at the n-th
iteration is defined as:

L(n)
DDDM(θ) :=Et∼U [1,T ][Ex0∼pdata (x0)

[Ext∼N (
√
ᾱtx0,(1−ᾱt)I)

[d(fθ(x
(n)
0 ,xt, t),x0)]]]

(5)

where U [1, T ] denotes a uniform distribution over the in-
teger set [1, 2, · · · , T ]. d(·, ·) is a metric function satisfies
that for all vectors x and y, d(x,y) ≥ 0 and d(x,y) = 0
if and only if x = y. Therefore, commonly used metrics
such as L1, L2 can be utilized. We will discuss our choice
of d(·, ·) in Section 4.

This definition encapsulates the expected discrepancy be-
tween the estimated state x

(n)
0 and the true initial state x0,

integrated over a probabilistic model of the data and the
time domain.
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Algorithm 1 Training

Input: image dataset D, T , model parameter θ
initialize x

(0)
0 ∼ N (0, I), epoch n← 0

repeat
Sample x0 ∼ D and t ∼ U [1, T ].
Sample ϵ ∼ N (0, I)
xt =

√
ᾱtx0 +

√
1− ᾱtϵ

x
(n+1)
0 ← xt − Fθ

(
x
(n)
0 ,xt, t

)
L(n+1)

DDDM(θ)← d
(
fθ

(
x
(n)
0 ,xt, t

)
,x0

)
θ ← θ − η∇θL (θ)
n← n+ 1

until convergence

Algorithm 2 Sampling

Input: T , trained model parameter θ, sampling step s

x
(0)
0 ∼ N (0, I), xT ∼ N (0, I)

for n = 0 to s− 1 do
x
(n+1)
0 ← xT − Fθ

(
x
(n)
0 ,xT , T

)
end for
Output: x(n+1)

0

Training. Each data sample x0 is chosen randomly from
the dataset, following the probability distribution pdata (x0).
This initial data point forms the basis for generating a
trajectory. Next, we randomly sample a timestep t ∼
U [1, T ], and obtain its noisy variant xt from distribution
N (
√
ᾱtx0, (1− ᾱt) I). we play the reparameterization

trick to rewrite xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

For current training epoch n, our model takes noisy data
xt and timestep t, as well as the corresponding estimated
target from previous epoch x(n−1)

0 as inputs, predicts a new
approximation x(n)0 , which will be utilized in the next train-
ing epoch for the same target sample. DDDM is trained by
minimizing the loss following Eq. 5. The full procedure of
training DDDM is summarized in Algorithm 1.

Sampling. The generation of samples is facilitated through
the use of a well-trained DDDM, denoted as fθ(·, ·). The
process begins by drawing from the initial Gaussian distri-
bution, where both x

(0)
0 and xT are sampled from N (0, I).

Subsequently, these noise vectors and embedding of T
are passed through the DDDM model to obtain xest

0 =

fθ

(
x
(0)
0 ,xT , T

)
. This approach is noteworthy for its ef-

ficiency, as it requires only a single forward pass through
the model. Our model also supports a multistep sampling
procedure for enhanced sample quality. Detail can be found
in Algorithm 2.

Here, we provide theoretical justifications for the conver-
gence of our method below.

Theorem 3.2. If the loss function L(n)
DDDM (θ)→ 0 as n→

∞, it can be shown that as n→∞,

sup
x0

(
fθ

(
x
(n)
0 ,xt, t

)
− f (x0,xt, t)

)
→ 0 (6)

Proof. As n→∞,L(n)
DDDM (θ)→ 0, we have

E
[
d
(
fθ

(
x
(n)
0 ,xt, t

)
,x0

)]
→ 0

According to the definition, we have

p (xt) > 0 for every xt and 1 ⩽ t ⩽ T . Therefore, we
have:

d
(
fθ

(
x
(n)
0 ,xt, t

)
,x0

)
→ 0

Because d(x,y) = 0 if and only if x = y, this indicates
that:

for any x0 sampled from pdata(x0),

fθ

(
x
(n)
0 ,xt, t

)
→ x0, as n→∞,

which implies:

sup
x0

d
(
fθ

(
x
(n)
0 ,xt, t

)
− f (x0,xt, t)

)
→ 0.

The following theorem draws inspiration from Proposition
3 in Kim et al. (2023), leading us to a similar conclusion.
Theorem 3.3. Suppose the following conditions are met:

(i) For all x,y ∈ RD, time t ∈ U [1, T ], xt ∼
N (
√
ᾱtx0, (1− ᾱt) I), yt ∼ N (

√
ᾱty0, (1− ᾱt) I), the

function fθ satisfies the uniform Lipschitz condition:

sup
θ
∥fθ (x,xt, t)− fθ (y,yt, t)∥2 ≤ L∥x− y∥2

where L is a Lipschitz constant.

(ii) There exists a non-negative function L(x) such that
for all x ∈ RD, time t ∈ U [1, T ] and xt ∼
N (
√
ᾱtx, (1− ᾱt) I), the function fθ is uniformly bounded

in θ :
sup
θ
∥fθ (x,xt, t)∥2 ≤ L(x) <∞.

If there exists a θ̃ such that the loss function LDDDM

(
θ̃
)
→

0 as the iteration number n becomes sufficiently large. Let
pθ̃(·) denote the pushforward distribution of pT induced by
fθ̃(·,xT , T ).

Then, under these conditions, the discrepancy between push-
forward distribution pθ̃(·) and the data distribution pdata (·)
measured in the uniform norm, converges to 0 as the number
of iterations n approaches infinity:

∥∥pθ̃(·)− pdata (·)
∥∥
∞ →

0 as iteration n→∞.
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(a) (b)

Figure 2. Ablation analysis for our proposed Pseudo-LPIPS metric. (a) While LPIPS and Pseudo-Huber perform closely, Pseudo-LPIPS
further reduces FID to under 5. (b) Pseudo-LPIPS outperforms LPIPS with various values of hyperparameter c, where c = 0.000069 is
the best. The y-axis for both figures is scaled logarithmically for better visualization.

Proof. Based on Theorem 3.2, let t = T we have that for
sufficiently large n,

sup
x0

∥∥∥fθ̃ (x(n)
0 ,xT , T

)
− f (x0,xT , T )

∥∥∥
2
→ 0

which implies that

fθ̃

(
x
(n)
0 ,xT , T

)
→ f (x0,xT , T )

when n is large enough. Then we conclude that the push-
forward distribution of xT , say pθ̃(·), converges in dis-
tribution to the data distribution pdata(·). Since for all
x,y ∈ RD, t ∼ U [1, T ], and θ,{fθ}θ is uniform Lipschitz
∥fθ (x,xt, t)− fθ (y,yt, t)∥2 ≤ L ∥x− y∥2 , {fθ}θ is
asymptotically uniformly equicontinuous (a.u.e.c.). Addi-
tionally, {fθ}θ is uniform bounded in θ̃. Thus, by the con-
verse of Scheffé’s theorem (Boos, 1985; Sweeting, 1986),
it suggests

∥∥pθ̃(·)− pdata (·)
∥∥
∞ → 0 as n sufficiently

large.

4. Psuedo LPIPS Metric
Assessment of image quality becomes increasingly crucial
in image generation. The Learned Perceptual Image Patch
Similarity (LPIPS, Zhang et al. (2018)) metric has been a
significant tool to help improve the quality of generated
images. However, the LPIPS is still not robust enough to
outliers in practice. Inspired by Song & Dhariwal (2023)
recent using the pseudo-Huber loss to significantly improve
the robustness of the training consistency model, we propose
a modified version of the LPIPS metric, defined as Pseudo-
LPIPS:

Pseudo-LPIPS =
√

LPIPS + c2 − c (7)

where c is an adjustable hyperparamter. Similar to the
Pseudo-Huber metric, the inclusion of the term c2 and the
subsequent square root transformation in the Pseudo-LPIPS
metric aim to provide a more balanced and perceptually con-
sistent measure. This approach mitigates the overemphasis
on larger errors and increases the sensitivity and accuracy
of the metric in discerning perceptual differences in images.

The merits of the Pseudo-LPIPS Metric are as follows:

• Enhanced Sensitivity to Perceptual Differences: The
modified metric is finely attuned to subtle perceptual
variances, often missed by traditional metrics. This
sensitivity is especially valuable in fields requiring
high-precision image quality, like medical imaging or
high-fidelity rendering.

• Balanced Error Emphasis: It provides a more equitable
emphasis across various error magnitudes, contrasting
the L2 norm’s tendency to disproportionately penalize
larger errors.

• Adaptability: The incorporation of the constant c al-
lows for flexibility, making the metric versatile for
different scenarios and datasets.

• Improved Robustness: The metric is more resilient
against outliers and anomalies due to the square root
transformation, addressing a common flaw in the
Pseudo-Huber loss.

When comparing this modified metric to the L2 norm and
pseudo-Huber loss, the Modified LPIPS aligns more closely
with human perceptual judgments. The L2 norm, while
simple in its mathematical form, often fails to accurately

5



Directly Denosing Diffusion Models

Table 1. Comparing the quality of unconditional samples on
CIFAR-10
Method NFE(↓)FID(↓)IS(↑)

Fast samplers & distillation for diffusion models
DDIM (Song et al., 2020a) 10 13.36
DPM-solver-fast (Lu et al., 2022) 10 4.70
3-DEIS (Zhang & Chen, 2022) 10 4.17
UniPC (Zhao et al., 2023) 10 3.87
DFNO (LPIPS) (Zheng et al., 2023) 1 3.78
2-Rectified Flow (Liu et al., 2022) 1 4.85 9.01
Knowledge Distillation (Luhman & Luhman, 2021) 1 9.36
TRACT (Berthelot et al., 2023) 1 3.78

2 3.32
Diff-Instruct (Luo et al., 2023) 1 4.53 9.89
CD (LPIPS) (Song et al., 2023) 1 3.55 9.48

2 2.93 9.75
Direct Generation
Score SDE (Song et al., 2020b) 2000 2.38 9.83
Score SDE (deep) (Song et al., 2020b) 2000 2.20 9.89
DDPM (Ho et al., 2020) 1000 3.17 9.46
LSGM (Vahdat et al., 2021) 147 2.10
PFGM (Xu et al., 2022) 110 2.35 9.68
EDM (Karras et al., 2022) 35 2.04 9.84
EDM-G++ (Kim et al., 2022) 35 1.77
NVAE (Vahdat & Kautz, 2020) 1 23.5 7.18
BigGAN (Brock et al., 2018) 1 14.7 9.22
StyleGAN2 (Karras et al., 2020a) 1 8.32 9.21
StyleGAN2-ADA (Karras et al., 2020b) 1 2.92 9.83
CT (LPIPS) (Song et al., 2023) 1 8.70 8.49

2 5.83 8.85
iCT (Song & Dhariwal, 2023) 1 2.83 9.54

2 2.46 9.80
iCT-deep (Song & Dhariwal, 2023) 1 2.51 9.76

2 2.24 9.89
DDDM(T=1000) 1 2.90 9.81

2 2.79 9.89
1000 1.87 9.94

DDDM(T=8000) 1 2.82 9.83
2 2.53 9.84

1000 1.74 9.93
DDDM-deep(T=1000) 1 2.57 9.91

2 2.33 9.91
1000 1.79 9.95

represent human vision. The Pseudo-Huber loss, although
attempting to merge the benefits of L1 and L2 norms, some-
times falls short in providing a balanced representation of
perceptual quality. The Pseudo-LPIPS, through its nuanced
formulation, effectively bridges these gaps, presenting a met-
ric that is both perceptually meaningful and mathematically
sound.

5. Experiments
To evaluate our method for image generation, we train sev-
eral DDDMs on CIFAR-10 (Krizhevsky et al., 2009) and
ImageNet 64x64 (Deng et al., 2009) and benchmark their
performance with competing methods in the literature. Re-
sults are compared according to Frechet Inception Distance
(FID, Heusel et al. (2017)), which is computed between
50K generated samples and the whole training set. We also
employ Inception Score (IS, Salimans et al. (2016)) and
Precision/Recall (Kynkäänniemi et al., 2019) to measure

Table 2. Comparing the quality of class-conditional samples on
ImageNet 64x64
Method NFE(↓)FID(↓)Prec.(↑)Rec.(↑)

Fast samplers & distillation for diffusion models
DDIM (Song et al., 2020a) 50 13.7 0.65 0.56

10 18.3 0.60 0.49
DPM solver (Lu et al., 2022) 10 7.93

20 3.42
DEIS (Zhang & Chen, 2022) 10 6.65

20 3.10
DFNO (LPIPS) (Zheng et al., 2023) 1 7.83 0.61
TRACT (Berthelot et al., 2023) 1 7.43

2 4.97
BOOT (Gu et al., 2023) 1 16.3 0.68 0.36
Diff-Instruct (Luo et al., 2023) 1 5.57
PD (LPIPS) (Song et al., 2023) 1 7.88 0.66 0.63

2 5.74 0.67 0.65
4 4.92 0.68 0.65

CD (LPIPS) (Song et al., 2023) 1 6.20 0.68 0.63
2 4.70 0.69 0.64
3 4.32 0.70 0.64

Direct Generation
RIN (Jabri et al., 2022) 1000 1.23
DDPM (Ho et al., 2020) 250 11.0 0.67 0.58
iDDPM (Nichol & Dhariwal, 2021) 250 2.92 0.74 0.62
ADM (Dhariwal & Nichol, 2021) 250 2.07 0.74 0.63
EDM (Karras et al., 2022) 511 1.36
BigGAN-deep (Brock et al., 2018) 1 4.06 0.79 0.48
CT (LPIPS) (Song et al., 2023) 1 13.0 0.71 0.47

2 11.1 0.69 0.56
iCT (Song & Dhariwal, 2023) 1 4.02 0.70 0.63

2 3.20 0.73 0.63
iCT-deep (Song & Dhariwal, 2023) 1 3.25 0.72 0.63

2 2.77 0.74 0.62
DDDM(T=1000) 1 4.21 0.71 0.64

2 3.53 0.73 0.64
1000 2.76 0.75 0.65

DDDM-deep(T=1000) 1 3.47 0.71 0.63
2 3.08 0.74 0.66

1000 2.11 0.73 0.67

sample quality.

5.1. Implementation Details

Architecture. We use the U-Net architecture from ADM
(Dhariwal & Nichol, 2021) for both datasets. For CIFAR-
10, we use a base channel dimension of 128, multiplied by
1,2,2,2 in 4 stages and 3 residual blocks per stage. Dropout
(Srivastava et al., 2014) of 0.3 is utilized for this task. For
ImageNet 64x64, we use a base channel dimension of 192,
multiplied by 1,2,3,4 in 4 stages and 3 residual blocks per
stage, which account for a total of 270M parameters. Follow-
ing ADM, we employ cross-attention modules not only at
the 16x16 resolution but also at the 8x8 resolution, through
which we incorporate the conditioning image x

(n)
0 into the

network. We also explore deeper variants of these architec-
tures by doubling the number of blocks at each resolution,
which we name DDDM-deep. All models on CIFAR-10
are unconditional, and all models on ImageNet 64x64 are
conditioned on class labels.

Other settings. We use Adam for all of our experiments.
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(a) one-step (b) two-step

Figure 3. One-step and two-step samples from DDDM-deep model trained on ImageNet 64x64

For CIFAR-10, we set T = 1000 for baseline model and
train the model for 1000 epochs with a constant learning
rate of 0.0002 and batch size of 1024. We also explore
models with larger T values and longer training epochs.
Details can be found in Table 3. For ImageNet 64×64, we
only investigate T = 1000 due to time constraints and train
the model for 520 epochs with a constant learning rate of
0.0001 and batch size of 1024. We use an exponential
moving average (EMA) of the weights during training with
a decay factor of 0.9999 for all the experiments. All models
are trained on 8 Nvidia A100 GPUs.

5.2. Ablations

In this section, we ablate various metrics employed in the
loss function. We evaluate the effectiveness of the proposed
Pseudo-LPIPS metric by training several models with vary-
ing c values and comparing the sample qualities with models
trained with L1, squared L2, LPIPS, and Pseudo-Huber on
CIFAR-10. As depicted by Figure 2a, Pseudo-LPIPS out-
performs L1 and squared L2 by a substantial margin. Given
the same value of c, Pseudo-LPIPS exhibits notably supe-
rior results compared to Pseudo-Huber metrics. Figure 2b
shows hyperparameter c in our proposed metric plays a sig-
nificant role in sample quality. When c = 0, Pseudo-LPIPS
degrades to LPIPS and it is clear that Pseudo-LPIPS consis-
tently outperforms LPIPS even when the value of c varies in
a relatively wide range. These findings collectively validate
the effectiveness and robustness of our proposed metrics.

T Epochs FID(one-step)

1000 1000 2.90
2000 2000 2.86
4000 4000 2.83
8000 8000 2.82

Table 3. DDDM with different training configurations on CI-
FAR10.

5.3. Comparison to SOTA

We compare our model against state-of-the-art generative
models on CIFAR-10 and ImageNet 64x64. Quantitative
results are summarized in Table 1 and Table 2. Our findings
reveal that DDDMs exceed previous distillation diffusion
models and methods that require advanced sampling proce-
dures in both one-step and two-step generation on CIFAR-10
and ImageNet 64x64, which breaks the reliance on the well-
pretrained diffusion models and simplifies the generation
workflow. Moreover, our model demonstrates performance
comparable to numerous leading generative models on both
datasets. Specifically, baseline DDDM obtains FIDs of 2.90
and 2.79 for one-step and two-step generation on CIFAR-
10, both results exceed that of StyleGAN2-ADA (Karras
et al., 2020b). With deeper architecture and 1000-step sam-
pling, DDDM-deep further reduces FID to 1.79, aligning
with state-of-the-art method (Kim et al., 2022). It is worth
noting that the leading few-step generation model iCT/iCT-
deep (Song & Dhariwal, 2023) is trained for 400k iterations,
while our approach delivers competitive FIDs and higher
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(a) one-step (b) two-step

Figure 4. One-step and two-step samples from DDDM-deep model trained on CIFAR-10

IS scores under fewer training iterations. With T = 8000
and trained for competitive epochs, DDDM achieves 2.82
and 1.74 on one-step and 1000-step generation respectively,
both setting state-of-the-art performance.
On the ImageNet 64x64 dataset, DDDM attains FID scores
of 4.21 and 3.53 for one-step and two-step generation, re-
spectively. We have observed that iCT/iCT-deeper achieves
superior results, benefitting from a 4x larger batch size and
1.6x more training iterations compared to our model. We
hypothesize that the observed performance gap may be at-
tributed to such computational resource disparities and sub-
optimal hyperparameters in our loss function. Despite these
limitations, DDDM showcases improved precision and re-
call compared to iCT, demonstrating enhanced diversity and
mode coverage while maintaining a similar model size.
The effectiveness of our iterative solution can also be clearly
demonstrated by Figure 5. Overall, the FID consistently
demonstrates a downward trend among different datasets
and architectures, though it is not strictly monotonically
decreasing with respect to the sampling steps.

6. Related Work
The foundational work in diffusion probabilistic models
(DPM) was initially conceptualized by Sohl-Dickstein et al.
in 2015, where a generative Markov chain is developed
to transfer the Gaussian distribution into the data distribu-
tion. Then Ho et al. (2020) developed denoising diffusion
probabilistic models (DDPM) and demonstrated their excep-
tional capabilities in image generation. By improving noise
schedule and variance taking into consideration, Nichol &

Figure 5. FID w.r.t inference iterations.

Dhariwal further enhanced these models in 2021, achieving
better log-likelihood scores and better FID scores. Song
et al. focused on optimizing the score-matching objective
and developed Noise Conditional Score Network (NCSN)
(Song & Ermon, 2020). Despite their different motivations,
DDPMs and NCSNs are closely related. Both DDPM and
NCSN require many steps to achieve good sample quality
and therefore have trouble generating high-quality samples
in a few iterations.

Many studies tried to reduce the sampling steps. DDIM
(Song et al., 2020a) has demonstrated effectiveness in
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few-step sampling, similar to the probability flow sampler.
Jolicoeur-Martineau et al. (2021) examine fast stochastic dif-
ferential equation integrators for reverse diffusion processes,
and Tzen & Raginsky (2019) explore unbiased samplers
conducive to fast, high-quality sampling. (Nichol & Dhari-
wal, 2021) and Kong & Ping (2021) describe methodologies
for adapting discrete-time diffusion models. Watson et al.
(2021) have proposed a dynamic programming algorithm
aimed at minimizing the number of timesteps required for a
diffusion model, optimizing for log-likelihood.

Several studies have also shown the effectiveness of training
diffusion models across continuous noise levels and subse-
quently tuning samplers post-training. Kingma et al. (2021)
involves adjusting the noise levels of a few-step discrete
time reverse diffusion process. San-Roman et al. (2021)
train a new network to estimate the noise level in noisy data,
demonstrating how this estimate can expedite sampling.

Modifications to the specifications of the diffusion model it-
self can also facilitate faster sampling. This includes altered
forward and reverse processes, as studied by Nachmani
et al. (2021) and Lam et al. (2021). Moreover, Consistency
models (Song et al., 2023) boost the sampling speed into a
single step, in both consistency distillation (CD) and consis-
tency training (CT). Later, by introducing several techniques,
the one-step generation reaches state-of-the-art FID scores
(Song & Dhariwal, 2023).

7. Discussion and Limitations
Since DDDM keeps track of x(n)

0 for each sample in the
dataset, there will be additional memory consumption dur-
ing training. Specifically, it requires extra 614MB for CI-
FAR10 and 29.5GB for ImageNet 64x64. Although it can be
halved by using FP16 data type, such memory requirement
might still be a challenge for larger dataset or dataset with
high-resolution images.

We also notice that there could be bias in evaluation since the
ImageNet is utilized in both LPIPS and Inception network
for FID. The accidental leakage of ImageNet features from
LPIPS may potentially lead to inflated FID scores. Other
evaluation metrics such as human evaluations are needed
to further validate our model. Furthermore, investigating
unbiased loss for DDDM presents an interesting avenue for
future research.

8. Conclusion
In conclusion, our presented DDDMs offer a straightfor-
ward and versatile approach to generating realistic images
with minimal sampling steps and also support the iterative
sampling process for better performance, eliminating the
need for intricately designed samplers or distillation on pre-

trained models. The core concept of our method involves
conditioning the diffusion model on an estimated target gen-
erated from the previous training iteration, and during image
generation, incorporating samples from previous timestep to
guide the iterative process. Additionally, the incorporation
of the proposed Pseudo-LPIPS enhances the robustness of
our model, showcasing its potential for broader applications
in other generative models. To further enhance the capabili-
ties of DDDM and unleash its potential, we aim to leverage
its strengths in a continuous-time setting.
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A. Appendix
A.1. Derivation of the definition of f (x0,xt, t)

Starting with Eq. (1) we find that the integration of xt from time t to 0 is given by:

∫ 0

t

dxs

ds
ds =

∫ 0

t

−1

2
β(s) [xs −∇xs

log qs (xs)] ds

Thus,

x0 − xt = −
∫ 0

t

1

2
β(s) [xs −∇xs

log qs (xs)] ds

Identifying the right-hand side of this equation as a function of (x0,xt, t) allows us to introduce the F(x0,xt, t). Conse-
quently, it can be reformulated as:

x0 − xt = −F (x0,xt, t) =⇒ x0 = xt − F (x0,xt, t) ,

leading to the definition:
f (x0,xt, t) = xt − F (x0,xt, t) .

In our case, f (x0,xt, t) = x0 (xt, t) suggests that x0 is a function of xt and t, but it is embedded within a larger function
f that equates to x0. This setup implies an implicit relationship between xt, t, and x0. In our implicit case, no direct
expression is present, and we often cannot isolate one of the variables on one side of the equation without involving the
others. Thus, it lets the neural network function estimate all the unstable parts.

In contrast, in DDPM, x0 is approximated as x̂0 =
(
xt −

√
1− ᾱtϵθ (xt, t)

)
/
√
ᾱt, presenting a partially explicit framework

for relating (xt, t) to x0. This equation, though it provides a method to estimate x0, highlights the potential for numerical
instability. The division by

√
ᾱt can amplify errors in estimating the noise ϵθ (xt, t), especially as ᾱt becomes small, which

is typical in the latter stages of the reverse process where the data is more significantly noised.
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B. Additional Samples
In this section, we provide additional samples from our models.

Figure 6. One-step samples from DDDM model trained on CIFAR-10
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Figure 7. Two-step samples from DDDM model trained on CIFAR-10
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Figure 8. 1000-step samples from DDDM model trained on CIFAR-10
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Figure 9. One-step samples from DDDM-deep model trained on CIFAR-10

16



Directly Denosing Diffusion Models

Figure 10. Two-step samples from DDDM-deep model trained on CIFAR-10
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Figure 11. 1000-step samples from DDDM-deep model trained on CIFAR-10
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Figure 12. one-step samples from DDDM model trained on ImageNet 64x64
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Figure 13. two-step samples from DDDM model trained on ImageNet 64x64
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Figure 14. 1000-step samples from DDDM model trained on ImageNet 64x64
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Figure 15. one-step samples from DDDM-deep model trained on ImageNet 64x64

22



Directly Denosing Diffusion Models

Figure 16. two-step samples from DDDM-deep model trained on ImageNet 64x64
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Figure 17. 1000-step samples from DDDM-deep model trained on ImageNet 64x64
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