
Neural Column Generation for Capacitated Vehicle Routing

Behrouz Babaki 1, 2, Sanjay Dominik Jena 3, 4, Laurent Charlin 1, 2

1 HEC Montréal, 2 Mila, 3 Université de Québec à Montréal, 4 CIRRELT
behrouz.babaki@hec.ca, jena.sanjay-dominik@uqam.ca, laurent.charlin@hec.ca

Abstract

The column generation technique is essential for solving lin-
ear programs with an exponential number of variables. Many
important applications such as the vehicle routing problem
(VRP) now require it. However, in practice, getting column
generation to converge is challenging. It often ends up adding
too many columns. In this work, we frame the problem of se-
lecting which columns to add as one of sequential decision-
making. We propose a neural column generation architecture
that iteratively selects columns to be added to the problem.
The architecture, inspired by stabilization techniques, first
predicts the optimal duals. These predictions are then used to
obtain the columns to add. We show using VRP instances that
in this setting several machine learning models yield good
performance on the task and that our proposed architecture
learned using imitation learning outperforms a modern stabi-
lization technique.

1 Introduction
Column generation is widely regarded as an efficient tech-
nique for solving linear programming problems that have
an exponential number of variables. This has allowed for
solving many practically relevant large-scale linear integer
programs, such as cutting stock, vehicle routing and crew
scheduling, which require column generation for solving
their linear relaxation.

Column generation is based on the observation that only
a small subset of the variables are part of the optimal solu-
tion (i.e., have non-zero values). Therefore, in principle, it
is possible to find the optimal solution using a small sub-
set of columns. Column generation is an iterative procedure:
starting with a subset of columns, at each iteration, the tech-
nique decides which column(s) to add to the problem. The
procedure stops once the optimal solution is obtained.

Despite the theoretical guarantees of this procedure, in
practice, it is often difficult to efficiently converge to the op-
timal solution. In particular, unless special care is taken, the
vanilla version can add columns which do not serve the pur-
pose of reaching the optimal solution.

Several classes of methods have been proposed for al-
leviating this issue, including interior-point stabilization

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Rousseau, Gendreau, and Feillet 2007), which we are in-
spired by and compare to in our work.

We here take a different approach, which we call neural
column generation. We formulate column generation as se-
quential decision making and propose a neural architecture
to predict which column to add at each iteration. The model
first encodes the problem (i.e., its variables and constraints)
using a graphical neural network (Gasse et al. 2019). The
learned representations (of the rows) are combined with
instance-specific features and a differentiable optimization
layer then predicts the optimal duals. This exact optimiza-
tion layer guarantees the validity of the duals. In a final step,
the predicted duals are decoded as a distribution over all can-
didate variables. The model is trained to imitate an expert
that picks high-quality columns to add.

Trained on instances of the vehicle routing problem
(VRP), we demonstrate that this approach outperforms a
strong stabilization method (Rousseau, Gendreau, and Feil-
let 2007) in terms of number of columns added until con-
vergence. Further, we validate our design choices using an
ablation study and by comparing it to other neural architec-
tures. The main contributions of this paper are:

• Formulating column selection as a sequential decision
making problem, and proposing a neural architecture.

• The contributions of the architecture include a method
for dealing with an exponential number of actions, en-
suring the correctness of the learning-based method by
plugging exact optimization layers into the deep network.

• An empirical validation of the method on VRP instances.

2 Column Generation
We will demonstrate the column generation framework us-
ing the Capacitated Vehicle Routing Problem (CVRP) as an
example: Given the locations of N customers and one depot,
the customer demands di, i ∈ {1, . . . , N}, and vehicle ca-
pacity c, find a set of routes starting and ending at the depot
such that every customer is visited on some route, the sum
of demands of customers on each route does not exceed the
vehicle capacity, and the total travelled distance (i.e. the sum
of lengths of the routes) is minimized.

This problem can be formulated as an integer linear pro-
gram with an exponential number of variables (Desrochers,

Desrosiers, and Solomon 1992). Each variable in this formu-
lation corresponds to a subset of customers r ∈ {1, . . . , N}
that can form a valid route (i.e.

∑
i∈r di ≤ c). We call each

such subset a route, and denote the set of all routes by R. The
cost of route r, denoted by cr, is the length of the shortest
tour that visits all customers in r and the depot. Let the bi-
nary variable xr be 1 if route r is selected, and 0 otherwise.
Further, for every route r ∈ R and customer i ∈ {1, . . . , N},
let constant eir be 1 if i ∈ r and 0 otherwise. The CVRP can
be formulated as:

(I) : min
∑
r∈R

crxr (1)

s.t.
∑
r∈R

eirxr ≥ 1 ∀i ∈ {1, . . . , N} (2)

x ∈ {0, 1}|R|. (3)

Constraints (2) ensure that every customer is visited at
least once (even though in the optimal solution every cus-
tomer is visited exactly once, this constraint is formulated
as an inequality for practical reasons). In the rest of this pa-
per, we will deal with the problem of solving the linear re-
laxation of this formulation (denoted by problem P) where
constraint (3) is replaced by x ≥ 0. The integrality con-
straints can then be enforced through a branch-and-bound
procedure.

The exponential size of R makes it impossible to ex-
plicitly represent this formulation beyond certain number
of routes. Column generation is a procedure that iteratively
adds promising columns (i.e. routes in CVRP) until the prob-
lem is solved to optimality. For ease of exposition, we will
describe the working principle of column generation using
the dual formulation of problem P :

(D) : max
N∑
i=1

λi (4)

s.t.
N∑
i=1

eirλi ≤ cr ∀r ∈ R (5)

λ ≥ 0. (6)

In the dual formulation, variable λi represents the
marginal cost of serving customer i. Constraints (5) ensure
that for every route r, the sum of marginal costs of the cus-
tomers in that route does not exceed the cost of that route.
The column generation process is equivalent to generating
lazy cuts in the dual formulation. At each iteration, only a
subset of the constraints (5) (i.e. those corresponding to the
routes R′ ∈ R) is included in the dual formulation. After
solving this restricted problem (which we will call problem
D′), we verify if any of the excluded constrains are violated
by the obtained solution. If this is the case, (some of) the vi-
olated constraints are added to the formulation and the pro-
cess is repeated. Otherwise, the problem has been solved to
optimality.

Finding the most violated constraint in the dual formula-
tion requires exploring the exponential space of all possible

depot1

2 3

4

15

101010 10

10 10

λ′
1 = 10

λ′′
1 = 15

λ′
2 = 20

λ′′
2 = 15

λ′
3 = 20

λ′′
3 = 15

λ′
4 = 10

λ′′
4 = 15

Figure 1: The route (depot → 2 → 3 → depot) has re-
duced costs −5 with λ′ and 5 with λ′′. Figure adapted from
Rousseau, Gendreau, and Feillet (2007).

routes. This can be formulated as a combinatorial optimiza-
tion problem, called the pricing problem:

r̂ = argmin
r∈R

(cr −
∑
i∈r

λ̂i). (7)

where λ̂ is an optimal solution of D′. The degree of violation
of the constraint corresponding to route r (i.e. cr−

∑
i∈r λ̂i)

in the dual formulation is equal to the reduced cost of the
column corresponding to route r in the primal formulation.
In other words, the pricing problem finds the column with
the most negative reduced cost at each iteration of the col-
umn generation algorithm.

Problem D′ can have more than one optimal solution, and
the choice of this solution can affect the route obtained by
the pricing problem. This, in turn, can significantly influ-
ence the speed at which the column generation algorithm
converges. Consider the example presented in Figure 1,
where R′ =

{
{1, 2}, {3, 4}

}
. Given the optimal solution

λ′ = (10, 20, 20, 10), the route {2, 3} has a reduced cost of
−5 and might be added to D′, even though it is not likely
to be selected in the optimal solution of P . However, the
alternative optimal solution λ′′ = (15, 15, 15, 15) yields a
positive reduced cost of 5 for this route and does not add it
to D′.

2.1 Stabilization
The importance of choosing the right dual solution and its
effect on the convergence of the column generation algo-
rithm has been widely acknowledged, and different classes
of techniques have been developed to address this problem.
For a recent discussion on this topic, see Pessoa et al. (2018)
and references therein.

Our work is particularly inspired by the stabilization
method proposed by Rousseau, Gendreau, and Feillet
(2007). The authors directly tackle the issue that the re-
stricted dual problem tends to have several optimal solu-
tions, each of which may distribute differently the marginal
costs among the customers. Given that these extreme so-
lutions are sparse by definition, some customers may have
large dual values, while others may have zero dual values.
This, in turn, may result in a bad estimation of the marginal
costs of the customers. Instead of using a set of dual values
proposed by one of the optimal solutions to the restricted
dual problem, the stabilization method proposed by the au-
thors uses an interior point of the convex hull of the extreme

solutions to the restricted dual by averaging over a few of
them.

In this work, we follow the above intuition. However, in-
stead of averaging over a set of randomly chosen extreme
solutions, we aim at learning how to identify the extreme
point (represented by its simplex tableau) that provides op-
timal convergence within the column generation procedure.

3 Neural Column Generation

The column generation procedure can be framed as a se-
quential decision making problem. At each iteration, we are
faced with the task of choosing one of the columns to be in-
cluded in the restricted problem. Using a collection of prob-
lem instances, we aim at learning a policy that dictates which
column to pick. We formulate this problem as a Contextual
Markov Decision Process.

A Markov Decision Process (MDP) is a tuple ⟨S,A, p(s′ |
s, a), r(s, a), p0⟩ where S is the state space, A is the action
space, p(s′ | s, a) is the transition probability (s′, s ∈ S, a ∈
A), r(s, a) is the reward function, and p0 is the initial state
distribution.

A contextual Markov decision process is a family of
MDPs parameterized by a context z, where the state space,
action space, reward function and transition probabilities de-
pend on z (Sonnerat et al. 2021). We define z as the prop-
erties of a CVRP instance (vehicle capacity, demands and
locations of customers, etc.). The state st at iteration t of
the column generation procedure consists of all the informa-
tion presented in the final simplex tableau in that iteration1.
The most important components of the state are the columns
(routes), available within the restricted problem, and the dual
values (i.e. the optimal solution of the restricted dual prob-
lem). The action at is the next column to add to the restricted
problem. The transition function p(s′ | s, a) is deterministic
and is evaluated by adding the column corresponding to ac-
tion a to the restricted problem encoded in s and solving it.
Since our goal is to improve the convergence rate, we con-
sider a constant reward of −1. The process terminates when
there is no column with a negative reduced cost.

A policy πθ(at | st, z) is a probability distribution over
actions, conditioned on the state and context, and parame-
terized by a vector θ. Our goal is to learn this distribution,
that is, find the value for θ that maximizes the expected re-
ward across different contexts. We learn this policy by im-
itating an expert. This expert is assumed to know how to
select columns in a way that leads to fast convergence of the
column generation algorithm, but is potentially too expen-
sive to be used directly. We record the actions of the expert
by solving a collection of N problem instances using the ex-
pert policy. For every instance i, we record the context z(i).
Moreover, at every iteration t, we record the state st

(i) and
the action a∗t

(i) advised by the expert. We then learn the pol-
icy by minimizing the cross-entropy loss:

1Alternatively, we can formulate the task as an MDP where both
pieces of information are encoded in the state

L(θ) = −
N∑
i=1

Ti∑
t=1

log πθ(a
∗
t
(i) | st(i), z(i)) (8)

Minimizing this loss function is equivalent to maximizing
the likelihood of the expert actions.

3.1 Expert Policy
Our proposed method requires an expert that can choose
the right columns to make the column generation procedure
converge quickly. We will now present such an expert policy.
Recall that at each iteration, the vector of dual values λ′ (the
optimal solution of D′ obtained by the simplex algorithm) is
an estimate of λ∗, the optimal solution of D. Motivated by
this observation, from the space of optimal solutions of D′

we pick the λ′ that is closest to λ∗:

min
λ′

∥ λ′ − λ∗ ∥22 (9)

s.t.
N∑
i=1

λ′
i = Λ (10)

N∑
i=1

λ′
ieir ≤ ci ∀r ∈ R′ (11)

λ′ ≥ 0 (12)

where Λ is the optimal objective value of D′, and con-
straint (10) enforces the optimality of the solution. After
solving this problem, we provide these adjusted duals to the
pricer, and obtain a route a∗ which is used as the expert ac-
tion at this state.

Note that the expert requires access to λ∗, which means
that we needs to first solve the instance to optimality. After
solving a collection of instances offline and collecting the
expert actions, we can train the policy function πθ(at | st, z)
which is expressed as a deep neural network.

3.2 Policy Network
The policy function takes the context (a CVRP instance) and
the state (the final simplex tableau in an iteration) as in-
put, and returns a distribution over all columns (all feasible
routes). Expressing this function as a deep network raises a
number of challenges. First, this distribution is defined over
an exponential number of columns which can be enumer-
ated only for small instances. We should be able to use this
distribution without the need to explicitly represent it. Sec-
ond, the size of the context and state varies by instance and
iteration. Hence this function should accept variable-sized
inputs. Finally, this function should be aware of certain sym-
metries in the input. For example, permuting the columns of
the simplex tableau should not change the output, and after
swapping two constraints in the tableau the corresponding
output probabilities should be swapped.

A Distribution over Actions We address the first chal-
lenge by learning a mapping from st and z to a vector of
adjusted duals that is optimal wrt the restricted dual corre-
sponding to st. After learning this mapping, we use these

adjusted duals in the column generation procedure. At each
iteration, we provide st and z to this mapping and obtain the
adjusted duals. the pricer then takes the adjusted duals as in-
put and returns a column. The procedure terminates when
the reduced cost of the returned column is non-negative.
Note that the optimality of adjusted duals is essential for the
soundness of this approach.

Let us assume for now that there is a function fθ that maps
st and z to the optimal duals λ. We can turn this function
into a distribution over all columns (and the termination ac-
tion) and train it using the loss function of Equation 8. We
do this using instances for which the columns can be enu-
merated. For an instance with n columns, let us represent
column i and its cost by ei and ci, respectively. Given the
adjusted duals λ, the reduced cost of column i is ci − λei.

We denote the action of choosing column i by ei (i =
1, . . . , n), and choosing no column (i.e. terminating the pro-
cedure) by a0. Our goal is to define a probability distribu-
tion over a0, a1, . . . , an that depends on λ and gives higher
probability to columns with smaller reduced cost. More for-
mally, we require that for every pair of columns i and j,
P (ai) ≥ P (aj) iff ci − λei ≤ cj − λej . Moreover, the
action a0 should have the highest probability only if there
is no column with a negative reduced cost. We enforce this
by requiring that for every column i, P (a0) ≥ P (ai) iff
ci − λei ≥ 0. These requirements are met by the following
distribution:

P (a0) =
1

1 +
∑n

j=1 exp(λej − cj)
(13)

P (ai) =
exp(λei − ci)

1 +
∑n

j=1 exp(λej − cj)
(14)

This distribution is obtained by applying the softmax func-
tion to the vector (0,λe1 − c1, . . . ,λen − cn). Figure 2
depicts the mapping from st and z to this distribution. Next,
we will describe the architecture of fθ, the deep network that
maps st and z to the optimal duals λ.

Figure 2: The deep network fθ maps the context z and state
st to a vector of optimal duals λ which is then used for defin-
ing the policy πθ(at | st, z).

Representing the State We represent the state st as a bi-
partite graph G = (C,V, E) where C corresponds to con-
straints (customers), V corresponds to variables/columns
(routes), and (c, v) ∈ E iff variable v has a nonzero coeffi-
cient in constraint c. Other state information correspond ei-
ther to variables (e.g. cost, reduced cost) or constraints (e.g.

slack, dual value) and can be represented as features of the
nodes in V and C.

After encoding the state as a bipartite graph G = (C,V, E)
with node features ci ∈ RdC , i ∈ {1, . . . , |C|} and vi ∈
RdV , i ∈ {1, . . . , |V|}, we can apply the graph convolutional
layers on this graph and obtain the node embeddings c′i ∈
Rd′

C , i ∈ {1, . . . , |C|} and vi ∈ Rd′
V , i ∈ {1, . . . , |V|}. We

use a graph convolutional layer similar to the one introduced
by Gasse et al. (2019) to process this bipartite graph:

c′i = fC
(
ci ∥

∑
j:(i,j)∈E

gC(ci ∥ vj)
)

(15)

v′i = fV
(
vj ∥

∑
i:(i,j)∈E

gV(c
′
i ∥ vj)

)
(16)

where ∥ is the concatenation operator and fC , fV , gC and
gV are 2-layer perceptrons with ReLU activation functions.

By representing the state as a graph, states with different
sizes can be processed by the same model. Moreover, the
desired permutation invariance and equivariance properties
are maintained by the model.

Representing the Context We include the context z in
the model by adding extra information to the constraint em-
beddings c′i. Let us represent the properties of customer i
(e.g. location and demand) by the vector ĉi. After concate-
nating c′i and ĉi we obtain the feature vector c′′i . We can
also include global information (e.g. the vehicle capacity) in
this vector. We will then apply the set encoder layers to the
set of constraint features and obtain another set of features
c̄i, i ∈ {1, . . . , |C|}.

Self-Attention (Vaswani et al. 2017) is a mechanism
that maintains permutation equivariance, and has been
used in models that operate on sets (Lee et al. 2019) or
graphs (Velickovic et al. 2018). An attention layer takes n el-
ements xi ∈ Rdx , i ∈ {1, . . . , n} and outputs zi ∈ Rdz , i ∈
{1, . . . , n}, where each output is a weighted sum of linear
transformations of the input elements:

zi =

n∑
j=1

αij(xjW
V) (17)

where the weights are computed in terms of compatibility
scores eij :

αij =
exp eij∑n
k=1 exp eik

(18)

and the compatibility scores compare two input elements us-
ing a scaled dot product function:

eij =
(xiW

Q)(xjW
K)T√

dz
(19)

WQ,WK ,WV ∈ Rdx×dz are learnable parameters. Similar
to Transformers, we create encoder layers which consist of a
self-attention and a position-wise feedforward layer, where
each of these sublayers is accompanied by residual connec-
tions and is followed by layer normalization.

Generating the Optimal Duals Finally, we need to map
the feature vectors c̄i, i ∈ {1, . . . , |C|} to dual values λi that
are optimal wrt the restricted dual. The space of optimal du-
als can be represented by a set of linear constraints consist-
ing of the restricted dual and an optimality constraint, simi-
lar to constraints (10-12).

We create a mapping from c̄i vectors to an objective func-
tion over these constraints. By solving the resulting opti-
mization problem we obtain a vector of duals which is a
function of c̄i vectors, and also optimal wrt the restricted
dual problem. Assuming that c̄i ∈ Rk and denoting the jth
element of c̄i by c̄ij , we construct the vector q and matrix Q
as follows:

q = (c̄11, . . . , c̄|C|1) (20)

P =

c̄12 . . . c̄|C|2
.
c̄1k . . . c̄|C|k

 (21)

Q = P TP (22)
We then define 1

2λ
TQλ+ qTλ as the objective function

over the space of optimal duals, and create a quadratic op-
timization problem. This optimization problem is differen-
tiable wrt q and Q, and can be included as a layer in a deep
network.

Differentiable optimization layers are computational units
that not only solve an optimization problem, but also calcu-
late the gradient of its solution with respect to the problem
parameters. Such layers make it possible to include an opti-
mization step as part of a deep learning pipeline. We will use
the OptNet architecture of Amos and Kolter (2017) which
solves Quadratic Programming (QP) problems of the form:

minz
1

2
zTQz + qT z (23)

s.t. Az = b (24)
Gz ≤ h (25)

Assume that in the backward pass of the backpropagation
algorithm, we receive the vector ∂ℓ

∂z∗ ∈ Rn, D(.) creates
a diagonal matrix from a vector, and z∗, ν∗ and λ∗ are the
optimal primal and dual variables. OptNet first calculates:[

dz
dλ
dν

]
= −

Q GTD(λ∗) AT

G D(Gz∗ − h) 0
A 0 0

−1 (∂ℓ
∂z∗)

T

0
0

 (26)

using which then the gradients with respect to all problem
parameters are calculated. In this work, we will use the gra-
dients with respect to the coefficients of the objective func-
tion (i.e. Q and q):

∇Qℓ =
1

2
(dzz

T + zdTz) ∇qℓ = dz (27)

The coefficient matrices G in our examples are not always
full-rank, and this makes it impossible to perform the matrix
inversion in Equation 26. Hence we replace the inversion
opertion with pseudo-inversion. Figure 3 summarizes the ar-
chitecture of the policy network.

4 Experiments
In this section we show the effectiveness of the proposed ap-
proach by performing an empirical evaluation. We investi-
gate four research questions in our experiments: Q1 To what
extent the learned models improve the convergence of the
column generation algorithm?, Q2 How do different archi-
tectures compare in terms of loss and accuracy?, and Q3 To
what extent removing the differentiable optimization layer
affects the performance of the learned models?

We train and evaluate our approach using randomly-
generated CVRP instances. We generate the instances using
the method proposed in (Uchoa et al. 2017) with 21 cus-
tomers, a central depot, clustered customer positioning, and
a value of 6 for the r parameter (the desired average number
of customers in a route). In training, we need all valid routes
for an instance. Inspired by the dynamic programming al-
gorithm for solving the TSP, we developed algorithm 1 for
generating all valid routes for a CVRP instance.

Algorithm 1: Generating all routes for CVRP
1 function

GENERATEROUTES(n, distances, demands, capacity)
2 for i← 1, . . . , n do
3 path lenght[{i}, i]← distances[0, i]
4 Q.push[{i}]
5 routes← routes ∪ {i}
6 while !Q.empty() do
7 path← Q.pop()
8 d←

∑
i∈path demands[i]

9 for i← max(path) + 1 . . . n do
10 if demands[i] + d ≤ capacity then
11 next path← path \ {i}
12 Q.push(next path)
13 routes← routes ∪ {next path}
14 for u ∈ next path do
15 prefix← next path \ {u}
16 path length[next path, u]←

min
v∈prefix

(path length[prefix, v] +

distances[v, u])

17 for path ∈ routes do
18 route lengths[path]←

min
v∈path

path lengths[path, v] + distances[v, 0])

19 return route lenghts

We solve 350 training and 350 validation CVRPs us-
ing the expert policy described in section 3.1. Each train-
ing/validation instance corresponds to one iteration executed
according to the expert policy. For testing, we solve 1500
CVRP instances using different policies and recorded the
number of iterations. Since the IPS method is randomized
and the number of iterations can vary significantly, for this
method we take the average over 20 runs.

We train all models using Adam (Kingma and Ba 2015)
with an initial learning rate of 3 ∗ 1e− 4 and minibatches of

Figure 3: The architecture of policy network in neural column generation. The nodes ri and cj correspond to the routes and
customers (i.e. the columns and rows in the restricted problem), respectively.

size 32. After 10 epochs with no validation error improve-
ment the rate is divided by 5. The training stops after 20 such
epochs or after 12 hours of training, whichever happens first.
We train the models using a single thread of CPU using ma-
chines with Intel 6148 2.4 GHz processors with a memory
limit of 32 GB. The code and data used in these experiments
is publicly available online2.

To answer Q1, we compare the convergence of several
learned models with the Interior-point Stabilization (IPS)
method of Rousseau, Gendreau, and Feillet (2007). In or-
der to simplify the training, we assume that Q in the OptNet
objective is fixed to 0.001I and only learn the linear coeffi-
cients q. These coefficients are then fed into OptNet which
produces the probability distribution over the columns (the
last part of Figure 3). We compare the following methods for
learning q in our empirical evaluation:

• Baseline: learning a fixed q for all training instances, dis-
carding the state and context information.

• MLP: a model with a row-wise two-layer feed-forward
network, applied independently to each customer i with
qi as the output.

• SE: a set encoder with customer information as input and
q as output.

• GCN: a graph neural network with state information as
input, and q as output.

• GCN+SE: using both graph convolutional and set en-
coder layers, as depicted in Figure 3.

For the route nodes (used in the models GCN and
GCN+SE), we used a single feature, namely the cost of the
route. Initially, the customer nodes have a single feature in
the GCN+SE model, which is the original dual value given
by the simplex tableau. After receiving the embeddings of
customer nodes from the graph convolutional layers, they
are concatenated with the demands and locations of cus-
tomers, and the vehicle capacity (appended to the feature
vectors of all customers). In models Baseline, MLP, SE and

2https://github.com/Behrouz-Babaki/NCG4CVRP

IPS Baseline MLP SE GCN GCN+SE

#Wins 1 278 296 248 436 695
Ratio 1.581 1.239 1.211 1.232 1.17 1.12

Table 1: Comparing different policies in terms of number
of wins and the average ratio of number of iterations with
respect to the expert policy.

GCN, all customer features are provided in one feature vec-
tor.

Table 1 compares the convergence of different methods
on 1500 test instances. The first row (wins) shows the num-
ber of times that each method has the smallest number of
iterations. Moreover, for each instance and method, we di-
vide the number of iterations by that of the expert policy.
The second row shows the averages of these ratios over all
test instances. The results indicate that all learned models
outperform IPS. Among the learned models, GCN+SE sig-
nificantly dominates the other ones.

In order to answer Q2, in Table 2 we present the cross-
entropy loss of different models on the validation set. We
also present the top-k accuracy for different values of k,
which is the percentage of the times that the target column
appears in the k columns with the highest probability in the
distribution generated by each model. The learning curves
of different models are presented in Figure 4. These results
clearly indicate the advantage of the model GCN+SE over
the alternatives.

Finally, we answer Q3 by creating models which directly
predict the adjusted duals used by the expert policy. Both of
these models have architectures similar to GCN+SE, except
that the layers after set encoders are removed. In the MSE
model, the output of set encoders is used as predicted ad-
justed duals. This model is trained by minimizing the Mean
Squared Error (MSE) loss between the predicted and target
adjusted duals. Note that the dual vector predicted by this
model is not necessarily optimal. We address this problem in

Loss Top-k Accuracy

1 10 100 1000

Baseline 41.192 0.460 0.774 0.934 0.983
MLP 32.243 0.492 0.816 0.952 0.988
SE 28.271 0.519 0.840 0.961 0.989
GCN 28.007 0.521 0839 0.959 0.989
GCN+SE 21.955 0.575 0.881 0.969 0.990

Table 2: Cross-entropy loss and top-k accuracy for different
models.

0 25 50 75 100

20

40

60

MLP
train
validation

0 20 40 60 80 100

20

40

60

SE
train
validation

0 20 40 60

20

40

60

GCN
train
validation

0 20 40 60 80 100

20

40

60

GCN+SE
train
validation

Figure 4: Loss curves for different architectures. The verti-
cal and horizontal axes represent the cross-entropy loss and
number of iterations, respectively.

the KLD model, which learns to distribute the optimal ob-
jective among the customers. This distribution is obtained by
applying the softmax function to the output of set encoders.
This model is trained by minimizing the KL-divergence be-
tween the predicted distribution and the actual distribution
of total value among the target adjusted duals.

Table 3 shows the cross-entropy loss and top-k accuracy
for these two models. Comparing these values with those in
Table 2 shows that including the OptNet layer is essential
for obtaining a reasonable performance.

5 Conclusion and Future Work
In this paper we proposed and explored several architec-
tures for improving the convergence of the column genera-
tion algorithm using deep learning. The empirical evaluation
demonstrates the advantage of encoding the instance infor-
mation (using a set encoder), the routes currently included
in the problem (using a bipartite graph convolution layer),

Loss Top-k Accuracy

1 10 100 1000

MSE 139.549 0.083 0.297 0.651 0.910
KLD 167.104 0.061 0.236 0.595 0.898

Table 3: The effect of removing the differentiable optimiza-
tion layer on cross-entropy loss and top-k accuracy.

and end-to-end learning (using a differentiable optimization
layer).

Despite the advantages of the OptNet layer, it also turns
into a bottleneck in the learning pipeline and limits the
amount of training data that can be processed. First, it has
to solve a QP for every data instance at every forward pass.
Second, our implementation of OptNet can only use one cpu
thread, which severely harms the scalability of our approach.
An interesting direction for future work is removing the Opt-
Net layer and train networks with larger capacity using more
data.

In theory, column generation is presented as a method that
adds one column at each iteration. In practice, the pricer re-
turns a set of columns with small reduced cost (including
the smallest) and some or all of these columns are added to
the problem. Generalizing this work to such a procedure is
another direction for future work.

The convergence of a column generation algorithm de-
pends not only on the number of iterations, but also on the
time taken for solving the pricing problem at each iteration.
Incorporating the latter is another venue for future research.
Finally, it is know that algorithmic reasoning using graph
neural networks often does not generalize well to unseen
graph sizes. Studying and addressing this phenomenon is an-
other important direction for future study.

We presented neural column generation using VRP as an
application. However, the main principles of our approach
remain the same across many classes of problems. In or-
der to present this approach as a generic method that is ap-
plicable to all these problem classes, we need to introduce
a generic method for representing the instance properties,
wich opens another direction for follow-up work.

Acknowledgments
We are thankful to Loius-Matrin Rosseau, Maxime Gasse,
Prateek Gupta, Seyed Mehran Kazemi, Thibaut Vidal and
Giulia Zarpellon for enlightening discussions. We appre-
ciate the helpful comments of the anonymous reviewers.
This research was partially supported by IVADO, FRQNT,
NSERC, the CIFAR AI Chairs program, Calcul Québec and
Compute Canada.

References
Amos, B.; and Kolter, J. Z. 2017. OptNet: Differentiable
Optimization as a Layer in Neural Networks. In ICML, vol-
ume 70 of Proceedings of Machine Learning Research, 136–
145. PMLR.
Desrochers, M.; Desrosiers, J.; and Solomon, M. M. 1992. A
New Optimization Algorithm for the Vehicle Routing Prob-
lem with Time Windows. Oper. Res., 40(2): 342–354.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi,
A. 2019. Exact Combinatorial Optimization with Graph
Convolutional Neural Networks. In NeurIPS, 15554–15566.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In ICLR (Poster).
Lee, J.; Lee, Y.; Kim, J.; Kosiorek, A. R.; Choi, S.; and Teh,
Y. W. 2019. Set Transformer: A Framework for Attention-
based Permutation-Invariant Neural Networks. In ICML,

volume 97 of Proceedings of Machine Learning Research,
3744–3753. PMLR.
Pessoa, A. A.; Sadykov, R.; Uchoa, E.; and Vander-
beck, F. 2018. Automation and Combination of Linear-
Programming Based Stabilization Techniques in Column
Generation. INFORMS J. Comput., 30(2): 339–360.
Rousseau, L.; Gendreau, M.; and Feillet, D. 2007. Interior
point stabilization for column generation. Oper. Res. Lett.,
35(5): 660–668.
Sonnerat, N.; Wang, P.; Ktena, I.; Bartunov, S.; and Nair, V.
2021. Learning a Large Neighborhood Search Algorithm for
Mixed Integer Programs. CoRR, abs/2107.10201.
Uchoa, E.; Pecin, D.; Pessoa, A. A.; Poggi, M.; Vidal, T.;
and Subramanian, A. 2017. New benchmark instances for
the Capacitated Vehicle Routing Problem. Eur. J. Oper. Res.,
257(3): 845–858.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In NIPS, 5998–6008.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In ICLR
(Poster). OpenReview.net.

