
Under review as a conference paper at ICLR 2024

TWO-SHOT LEARNING OF CONTINUOUS INTERPOLA-
TION USING A CONCEPTOR-AIDED RECURRENT AU-
TOENCODER

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizing from only two time series towards unseen intermediate patterns
poses a significant challenge in representation learning. In this paper, we introduce
a novel representation learning algorithm, ”Conceptor-Aided Recurrent Autoen-
coder” (CARAE), which leverages a conceptor-based regularization to learn to
generate a continuous spectrum of intermediate temporal patterns while just being
trained on two distinct examples. Here, conceptors, a linear subspace characteriza-
tion of neuron activations, are employed to impose a low-dimensional geometrical
bottleneck on the neural dynamics. During training, CARAE assembles a continu-
ous and stable manifold between the two trained temporal patterns. Exploiting this
manifold in the inference, CARAE facilitates continuous and phase-aligned inter-
polation between temporal patterns that are not linked within the training data.
We demonstrate the effectiveness of the CARAE framework through comprehen-
sive experiments on temporal pattern generation tasks and the generation of novel
complex motion patterns based on the MoCap data set.

1 INTRODUCTION

Recurrent neural networks (RNNs) can capture complex temporal dependencies, making them an
attractive choice for storing, retrieving, and generating temporal patterns (Salehinejad et al., 2017;
Graves, 2013). As they process time series online, RNNs can avoid extensive buffering and hence
computational overhead (Orvieto et al., 2023). However, despite a few examples in the domain
of motor control for reinforcement learning scenarios (Merel et al., 2019b) and sketch drawing
tasks (Ha & Eck, 2017), representational learning in RNNs is less advanced than in their static
counterparts. Current RNN-based autoencoders struggle to capture long-range temporal concepts
(Higgins et al., 2016; Girin et al., 2020; Heess et al., 2017), especially when used in the few-shot
regime (Tran & Panangadan, 2022; Iwata & Kumagai, 2020). In that case, the challenge is to extract
meaningful features from sparse training data and to enable interpolation between different temporal
patterns, even those not encountered during training. Here, a critical point arises – formulating a
meaningful bottleneck for the compression of spatiotemporal patterns.

One natural challenge of dynamical representational learning that is also tackled by roboticists and
video game designers is the modeling of locomotion modeling (Song et al., 2021). For instance,
when given training data of different behaviors, such as walking and running, the challenge is to
compress to allow for meaningful interpolation (Chien & Wang, 2019). In motion modeling, one
desires visually appealing intermediaries, which is difficult due to various instabilities like falling
back to a fixed pose (Wang et al., 2017). In robotics and reinforcement learning, learning new skills
may be massively accelerated by re-using previous skills based on their interpolation (Merel et al.,
2019a).

Interestingly, despite the complexity and high dimensionality of locomotion patterns, they exhibit
strong temporal signatures like high-level simplicity and approximate periodicity. This observation
has spurred recent investigations into leveraging this temporal regularity. Traditional deep reinforce-
ment learning (deepRL) methods often overlook temporal patterns, relying heavily on static Multi-
Layer Perceptrons (MLPs). However, recent advancements have demonstrated the benefits of in-
corporating temporal priors to accelerate reinforcement learning of periodic-like behavior (Saanum

1

Under review as a conference paper at ICLR 2024

et al., 2023). Moreover, dynamical Variational Autoencoders (VAEs) have been designed to impose
temporal priors, emphasizing the simplicity of high-level actions in representation learning, as pro-
posed by Merel et al. (2019a). However, a gap remains in effectively introducing periodic inductive
biases into neural networks at the network level (Belcák & Wattenhofer, 2022).

Here, our research question arises: How to train a RNN to generate a continuum of temporal pat-
terns in a two-shot manner, e.g. by learning the motion patterns of walking and running and then
generating a continuous spectrum of intermediary patterns? We will address the limitations of cur-
rent RNN-based autoencoders by leveraging insights from a dynamical systems perspective. We
specifically tackle the challenge of few-shot learning scenarios, where only a limited set of exam-
ples is used during training. While the task of interpolating between walking and running has been
tackled in the deepRL setting to speed up learning (Merel et al., 2019b), we aim to develop and use
new criteria for judging the quality of the learned representations (Bengio et al., 2014).

In the following, we draw inspiration from recent findings in computational neuroscience which
indicate that low-dimensional dynamics play a key role in the brain. Exploiting computation in
low-dimensional subspaces yielded successful models for various cognitive processes (Vyas et al.,
2020). Dynamics that evolve on such low-dimensional subspaces can be also found within engi-
neered RNNs (Carroll, 2021) and are exploited in the framework of reservoir computing (RC). No-
tably, recent RC methods generated advances in the inter-/extrapolation and abstraction of temporal
patterns (Kim et al., 2021; Smith et al., 2022; Kong et al., 2023; Klos et al., 2020; Wyffels et al.,
2014). Hereby, Kim et al. (2021) propose a method where during inference generalization towards
close-by dynamics is achieved by training on several examples of a parametric pattern family.

Furthermore, (Jaeger, 2014) introduces a sophisticated control of low dimensional dynamics within
high dimensional RNNs using the conceptor framework. Conceptors harnesses low-dimensional
subspaces of RNNs to enable top-down control and dynamical mode switching through soft-
projection matrices. Interestingly, while this work was designed within the framework of RC, its
flexibility led to pioneering work in continual learning where it was combined with backpropaga-
tion to overcome catastrophic forgetting (He & Jaeger, 2018). Our research builds upon the insights
derived from the conceptor-based characterization of low-dimensional dynamics, offering unique
opportunities for designing bottlenecks in RNN-based autoencoders.

Our contributions are as follows. In section ??, we provide a conceptual analysis grounded in exam-
ples from the literature to highlight the challenge of generating stable intermediate representations
within RNNs. In section 3, we introduce our conceptor-based regularization yielding the CARAE
framework and provide a geometric interpretation of the low dimensional bottleneck that is enforced
on the RNN’s neural dynamics. In section 4, we demonstrate the acquired capabilities on a toy task
before we present continuous two-shot interpolation of motion patterns based on the MoCap motion
modeling dataset. In section 4.3, we benchmark the quality of the learned representation by showing
they can be used for robust feedback control.

2 OBJECTIVE AND ASSOCIATED CHALLENGES: FEW-SHOT TEMPORAL
INTERPOLATION WITH AN AUTONOMOUS DYNAMICAL SYSTEM

The overall goal of our work is to train temporal pattern generators that are able to learn from a
minimal number of temporal patterns and can then autonomously generate a continuous spectrum of
intermediate patterns. Accordingly, we will focus on discrete-time dynamical systems such as RNNs
that process data online by summarizing the past into a state. They can be generically described as
input-driven dynamical systems:

x(n+ 1) = F (x(n), u(n+ 1);θ) y(n) = Woutx(n) (1)

where F (. . .) is an element-wise applied nonlinear function, x(n) ∈ RN is the systems state, u(n) ∈
RM is the input signal, and θ is a set of hyperparameters. Such RNNs can learn to retrieve temporal
patterns in a supervised way by employing various learning frameworks such as reservoir computing
(RC), real-time recurrent learning (RTRL), and backpropagation through time (BPTT).

In addition to this input-driven mode, the RNN can also be run in autoregressive mode where the
RNN is decoupled from the external input signal and instead uses its own output:

x(n+ 1) = F (x(n), y(n);θ) y(n) = Woutx(n) (2)

2

Under review as a conference paper at ICLR 2024

This is similar to large language models where the output is fed back as input to the model. However,
the ability of RNNs to generalize to temporal patterns that were not present in the training data is
limited, especially in this autoregressive mode, and until now can only be overcome with excessive
amounts of training data. Hereby, we define four catastrophic scenarios that lead to an unwanted
breakdown of the system dynamics.

• Exploding dynamics: Within the autoregressive mode, stability of the dynamics is not
guaranteed and slight divergence from trained patterns can lead to continuously exploding
prediction (Lukoševičius et al., 2012). This kind of exploding dynamics led to the de-
velopment of the FORCE learning framework (Sussillo & Abbott, 2009) and noise-based
regularization mechanism (Estébanez et al., 2019).

• Interferences: In the context of learning, while being input-driven, it is possible for state
trajectories to intersect or cross each other. However, in the autonomous mode1, this cross-
ing leads to instabilities, as indicated in previous studies (Jaeger, 2014; Lu & Bassett, 2020).

• Side dynamics: Training a RNN on a few distinct temporal pattern yields a strong attrac-
tion towards these patterns. Initializing the RNN with intermediary examples and setting
it into the autoregressive mode yields a sudden fall back to the learned patterns as shown
in Fig. 1. Accordingly, intermediary dynamics are not supported by the RNN and these
side dynamics can often only be overcome with more training data within the intermediary
regime(Wyffels et al., 2014).

• Fixed point dynamics: Especially when employing control on RNNs to enforce interme-
diary states this can yield instabilities that cause the dynamics to collapse towards a fixed
point (Jaeger, 2014). Once converged into the fixed point, periodic dynamics cannot be
recovered as shown in Fig. 3 e) and g).

Figure 1: Illustration of the three largest principal components of the state space reverberations,
x(n), of the RNN trained with BPTT on sine wave pattern generation. a) Input driven state space for
four different frequencies of the input sine waves. The RNN was trained only on the patterns 1 and
4, shown in blue and green (both solid), respectively, the pattern 2 and 3 (dashed) are absent during
training. b) RNN is initialized with sine waves yielding to reverberation 2. Upon transitioning into
autoregressive mode, the RNN exhibits side dynamics that ultimately guide the neural dynamics to-
wards the trained pattern 1 (blue in a)). c) The trained RNN, initialized with pattern 3, demonstrates
side dynamics and a transition towards states aligning with the trained input pattern 4 (green in a)).

3 CONCEPTOR-AIDED RECURRENT AUTOENCODER

This section reviews the basics of the conceptor theory and its application to controlling RNNs
in the field of reservoir computing. A comprehensive review can be found in Jaeger (2014). We
then explain how the framework of conceptors can be combined with backpropagation to guide
representation learning in RNNs. Thereby, we are using conceptors during training to constrain the
variability of neural dynamics’ into a low dimensional geometry.

For the rest of the paper, we will focus on the following simple discrete-time RNN:

x(n+ 1) = (1− α)x(n) + α tanh(Wx(n)) +Winui(n) + b) (3)

1Here, autonomous mode refers to a dynamical system running in the autoregressive mode.

3

Under review as a conference paper at ICLR 2024

where W is the N × N internal connectivity matrix, Wout is the M × N output matrix, Win is
the N ×M input matrix, α is an N × 1 dimensional leakage vector that governs the update speed
of the state and b is a N × 1 bias vector. The RNN is fed with a discrete-time signal p(n), where
p(n) ∈ RM and n > 0. We will focus on data-sets of two discrete-time patterns u1(n) and u2(n) of
dimension M . These RNNs are known as Leaky Echo-State Networks in the reservoir computing
literature (Lukoševičius et al., 2012). Their corresponding autoregressive mode is defined by:

x(n+ 1) = (1− α)x(n) + α tanh(W ∗x(n)) + b) (4)

where W ∗ = W + WoutWin to regenerate the input signal in the autoregressive mode. Here,
the autoregressive mode is created by adding a low-rank component dim ≤ M to the internal
connectivity matrix used in the input-driven mode. Besides the here used RNN, in the appendix C,
we showcase the transfer of our method to the LSTM framework.

3.1 CONCEPTORS: CORE THEORY

Conceptors were initially designed to control RNNs with multiple stable and switchable dynamical
behaviors. The main challenge of this task is that, while moving the system from the input-driven
training in Eq. 1 to the autoregressive mode in Eq. 2, the system is prone to interferences between
the trained trajectories. To deal with top-down switchability of behaviors and interferences it was
proposed to insert a matrix conceptor C in the update equation to project and shield the dynamic:

x(n+ 1) = C[(1− α)x(n) + α tanh(Wx(n) + b)], (5)

where C is a soft-projection matrix that preserves some dynamical features of x and discards others.
C can be defined by an objective function when considering x as a random variable:

Ex∥Cx− x∥+ α−2∥C∥2fro (6)

where α is a control parameter called aperture. This objective function has a unique analytical
solution (Jaeger, 2014) given by:

C = R(R+ α−2I)−1 (7)

where R = Ex[x
Tx] is the N ×N correlation matrix of x and I is the N ×N identity matrix.

The findings presented by Jaeger (2014) can be better understood by examining the singular value
decomposition (SVD) of R. If we denote the SVD of R as R = UΣUT , then the SVD of C can be
represented as USUT , where the matrix’s singular values sk can be expressed as a function of the
singular values σk of R: sk = σk

(σk+α−2) ∈ 0, 1). Conceptors can be visualized as ellipsoids within
the state space as illustrated in Fig. 2, where the directions and lengths of their axes are determined
by the singular vectors and values. To put it simply, C is a soft projection matrix that operates on
the linear subspace containing the samples of x. For a vector x̃ in this subspace, C behaves like the
identity operator: Cx̃ ≈ x̃. When additional noise or interference ε orthogonal to the subspace is
introduced to x̃, C removes the noise: C(x̃+ ε) ≈ x̃.

3.2 CONCEPTORS FOR AUTOENCODING: CONSTRAINING THE VARIABILITY OF NEURAL
DYNAMICS GEOMETRY

Conceptors were initially developed for accessing a collection of discrete memories, employing one
conceptor per memory to exert top-down control over the dynamics (see Equation 5). We expand
their application to encompass a scenario involving a manifold of conceptors, with the discovery of
this manifold occurring during the training process.

We will first explain the idea behind the two-shot learning algorithm in plain words before we present
the equation of the conceptor regularizer. Driving the RNN with the two data sets respectively
generates two distinct conceptors, defining the low dimensional subspace that is characteristic for
each input pattern. During the training, we will measure the distance of the conceptors to each
other and using a regularization loss enforce them to become closer. Thereby, the network learns to
connect the input patterns within network space by generating a continuous manifold as later shown
in Fig. 5. After having reached a certain degree of closeness, during inference the network allows
to continuously interpolate along conceptor manifold that can be accessed using the continuously
interpolatable conceptor C(λ). This interpolation scheme is illustrated in Fig. 2.

4

Under review as a conference paper at ICLR 2024

Figure 2: Scheme of the conceptor-aided-recurrent-autoencoder. On the left side the network is
trained in the input driven mode with distinct temporal patterns blue and green and the conceptor
(visualized as an ellipsoid in the state space) is only used for computing the loss LC . After training,
the conceptor manifold encodes the two training patterns close to each other. In the inference (right
side), a linearly interpolated conceptor is plugged in, and the network generates in the autoregressive
mode novel intermediary patterns (red) that were not part of the training data.

During training the RNN with BPTT, we employ the conceptor-based constraint using the following
loss:

LC = β1∥C1 − C2∥2fro + β2(m1 −m2)
2 (8)

L = MSE(ŷ, y) + LC (9)

where Ci is the conceptor computed for pattern ui(n) and mi is the network’s mean activation
vector mi =

1
T

∑
t x(n) when the RNN is driven by pattern ui(n). The hyperparameters β1 and β2

balance the cost of reconstruction and the costs associated with the bottleneck. For both experiments
presented in the next section, we attached a ablation study of the (β1, β2) in the appendix B.

For clarity, we present the pseudocode of our algorithm in Alg. 1. More details on the implementa-
tion of the forward and backward pass, including a derivation of the gradients for all components of
the proposed loss function, can be found in Appendix G.

Algorithm 1 Backpropagation through time (BPTT) with conceptor-based regularisation

initialize RNN(W,Win,Wout, α, b)
for epoch = 1 to nepoch do

for ui in U = [u1, u2] do
create input and target ui, (yi = ui(n+ 1 :))
for n = 0 to N do

xi(n+ 1) = (1− α)xi(n) + α tanh(Wxi(n) +Winui(n+ 1) + b)
ŷi(n+ 1) = Woutxi(n+ 1)

end for
R = xT

i xi # compute correlation matrix
Ci = R(R+ α−2I)−1 # compute conceptor
mi = mean(xi)
reconstruction loss Lrec,i = MSE(ŷi, yi)

end for
conceptor loss LC = β1∥C1 − C2∥2fro + β2(m1 −m2)

2

Loss L =
∑2

i=0 Lrec,i + LC

compute gradient of L w.r.t. W,Win,Wout,α,b

update W,Win,Wout, α, b
end for

By employing the conceptor loss LC , we enforce the RNN to encode the two input patterns within
a close linear subspace of the network state space x(k). This additional constraint on the available
space in the RNN mirrors the concept of a latent space in autoencoder architectures. In situations
involving more than two samples, our architecture transforms a nonlinear manifold within the con-
ceptor space into a linear one, effectively introducing a constraint on the variability of the ellipsoids.

5

Under review as a conference paper at ICLR 2024

It’s worth noting that our architecture relies on two types of ”compressions”. The first type implicitly
assumes that each dynamic is confined to a low-dimensional subspace (within an ellipsoid smaller
than the entire subspace). The second type constrains the variation of these ellipsoids to a line within
the matrix space. This constraint is noteworthy as symmetric positive definite (SPD) matrices are
closed under typical matrix interpolation techniques (Feragen & Fuster, 2017). In the appendix F,
we give a short discussion of the usage of these metric within the CARAE framework.2

Finally, the system can be used in a generative mode by interpolating in conceptor space to control
the autoregressive dynamics in Eq. 5 via:

Cinterp(λ) = (1− λ)C1 + λC2 (10)

4 EXPERIMENTS

4.1 PATTERN GENERATION

Figure 3: Comparing the interpolation capabilities of an RNN trained on two sine waves with distinct
frequency using only the reconstruction loss (left column) and both the reconstruction + conceptor
loss (right column). a) Losses over training epochs using only the reconstruction loss Lrec. b)
Losses over epochs using the reconstruction loss (orange) and the conceptor loss (red). Sine wave
generation of the RNN in the autoregressive mode after different training epochs ([1,200,400,600],
color coded) for different interpolation parameter: c) and d) λ = 0.0, e) and f) λ = 0.33, g) and h)
λ = 0.66, i) and j) λ = 1.0

In the following, we demonstrate the mechanism of the introduced regularisation term on a pattern
generation task. Therefore, we have two distinct time series data sets u1(n),u2(n) which represent
sine waves with different periods T1 = 83.8, T2 = 27.9.

We first train a RNN on a one step ahead prediction only using the reconstruction loss given by the
MSE(y,ŷ) and BPTT. As shown in Fig. 3 a), as training progresses, the RNN reduces the recon-
struction loss Lrec on the two data sets. At several epochs we evaluate the autoregressive retrieval
abilities of the RNN by plugging in the conceptors C(λ = 0) and C(λ = 1). The RNN retrieves
the learned sine waves independently as shown in Fig. 3 c) and i). However, as we show in Fig. 3
panels e) and g), using the intermediate conceptors C(λ = 0.33) and C(λ = 0.66) to enforce inter-
mediate subspaces on the RNN its autoregressive prediction yields unwanted fixed point dynamics

2We also started to explore different geodesics associated with other metrics on the space of SPD matrices
(Feragen & Fuster, 2017). Whereas they could not fix the catastrophic fixed point dynamics on the vanilla RNN
shown in the left column of Fig. 3, in combination with the conceptor-based regularisation they can lead to
different interpolation paths. However, this goes beyond the aim of this work.

6

Under review as a conference paper at ICLR 2024

that converge rapidly. Additionally, we monitor in Fig. 3 a) the conceptor loss Lrec as defined 8 that
estimates the distance between the linear subspace of pattern 1 and 2 in the RNN. As we do not use
the conceptor loss in the training, the loss increases and saturates at a higher level. Accordingly,
the network encodes the two pattern in linear subspaces that are far from each other. During the
interpolation the RNN does not yield stable neural dynamics and hence the output of the network
converges to a fixed point.

In contrast, by applying the conceptor regularisation term during training with BPTT we enforce
closeness along the conceptor manifold. As shown in Fig. 3 b), we obtain that while reducing the
reconstruction loss L, the network is able to reduce the conceptor loss. While reducing the conceptor
loss, the RNN starts to generate better interpolations that exhibit intermediary frequencies that lie
in between the trained ones. After epoch 600, the network has learned to generalize towards sine
waves with untrained frequency. Guided by the plugged in interpolated conceptors, the network
can autonomously generate a continuous spectrum of frequencies while being trained on only two
different examples.

4.2 MOCAP MOTION MODELLING

Figure 4: Motion modelling based on the MoCap dataset. The RNN was trained on the temporal
patterns of running and walking. In the autoregressive mode it can retrieve both motions as shown
in a) and c). Due to enforcing the conceptor based bottleneck during training the RNN and by
plugging in a linerly interpolated conceptor it is able to generate intermediate pattern such as shown
in b). Each row depicts a single period of each motion pattern at the same sampling rate and with
equal horizontal spacing.

In the previous section 4.1, we have shown that based on the conceptor regularisation term a RNN
can learn continuous pattern generation while being only trained on two distinct examples. In the
following, we use our regularisation to learn more complex patterns based on the MoCap motion
capture data set. In particular, we select one example time series for walking (CMU 016 15) and one
for running (CMU 016 55) and preprocessed into normalized relative angles following the proce-
dure mentioned in (Jaeger, 2017). The input time series thereby contain 94 dimensions representing
the position and angle of the joints of the stick man. As in the previous example, we train our net-
work in the one step ahead prediction. By applying the conceptor-based regularisation as described
in 8 the network does not only learn to model the running and walking pattern in the autoregressive
mode as shown in Fig. a) and c). Furthermore, in the autoregressive mode we linearly interpolate
the plugged in conceptor to guide the RNN towards intermediate subspaces. By doing this, we can
generate a continuous spectrum of stable novel motion pattern that interpolate the features such as
frequency and posture between walking and running as shown in Fig. 4 panels b).

Thereby, as we show in Fig. 5, the loss of the reconstruction as well as the conceptor loss decrease
during training with the two motion patterns. By visualizing the first three principal components
of the networks state space in Fig. 5 b), we observe that with increasing training duration within
the RNN state space a continuous manifold emerge that connects the linear subspace of the training
examples.

7

Under review as a conference paper at ICLR 2024

Figure 5: Training a RNN with conceptor-based regularisation on the MoCap datasets for walking
(CMU 016 15) and running (CMU 016 55). a) The overall loss (blue 1), reconstruction loss (or-
ange) and the conceptor loss (red) over training epochs. b) Three first principal components of the
state space x and the output space y after different training epochs evaluated in the autoregressive
mode and plugging in linearly interpolated conceptors Cinterp(λ), λ ∈ [0, 1]. The walking and run-
ning patterns are highlighted in darker colors. For each epoch of the first row, the walking trajectory
corresponds to the horizontal trajectory, while in the second row, it corresponds to the trajectory on
the left side.

4.3 MOCAP MOTION MODELING CONTROL

We’ve seen that CARAE allows us to enforce intermediary dynamical behavior, and now we are con-
sidering how to control this intermediary behavior efficiently. In control theory, the aim is to reach a
target quickly, stably, and without bias. It’s usually very difficult to ensure this for high-dimensional
nonlinear systems because arbitrary things can happen when an input is injected. Fortunately, by
enforcing a line in control space, we designed a space where control could be ideally done. With
a simple gain control, we can check the suitability of the intermediary representation for control in
achieving a ”speed” control of the transition from walking to running behavior of the agent:

Cinterp(λctrl(n)) = (1− λctrl(n))Cwalk + λctrl(n)Crun (11)

λctrl(n) += g ·
Ttarget − Toutput

Twalk − Trun
(12)

where Ttarget is the target period we want to control and Toutput is the one currently outputted by
the RNN and heuristically estimated.

As we show in Fig. 6, a simple linear gain control on the conceptor line can reliably reach the inter-
mediary modes of behavior without bias and stabilize them. However, a simple linear interpolation
creates a bias and can lead to instabilities when asked to extrapolate beyond the observed periods
Fig. 6.b).

Notably, our investigation reveals a characteristic within the continuum of trajectories displayed in
Fig. 6: the preservation of phase. Here, even during rapid adjustments in speed, the agent maintains
phase continuity in its motion. We invite interested readers to explore the supplementary materials,
where we present a accompanying video on speed control, showcasing a clear visual presentation of
our findings.

8

Under review as a conference paper at ICLR 2024

Figure 6: Speed control of the RNN of the locomotion movement by acting on the conceptor line
abstracted during training for: a) a ramp target; b) a staircase target (blue) (b). The control is
performed by: (green) using linear interpolation λ ∈ [0, 1] of the two learned conceptors (walking
C1, running C2); (orange) applying a feedback control on the interpolation parameter λ.

5 CONCLUSION

In this paper, we discuss and show several reasons why dynamics of trained RNN tend to fail in
continuous pattern generation when trained in the few-shot and even more dramatic in the two-shot
regime. We then introduce a novel conceptor based-regularisation that generates a geometrical in-
terpretable low-dimensional bottleneck within the neural dynamics. In doing so, the regularisation
enforces closeness of the linear subspace of the training data. While increasing closeness during
training, we observe that within the state space of the network dynamics a continuous manifold
emerges. In the inference, running in the autoregressive mode and controlling the RNN along this
manifold allows for continuous and phase aligned interpolation. Furthermore, we investigate the ef-
ficiency of the learned representations by not only looking at the intermediary representation them-
selves but studying how controllable they are. Accordingly, we showcase motion speed control via
a conceptor during inference using a control loop to steer towards the learned representations. Thus,
the conceptor aided recurrent autoencoder becomes a continuously tunable pattern generator while
only two data sets containing two distinct temporal patterns are accessible during training. Further-
more, the CARAE framework can be extended to few-shot learning scenarios where more distinct
training data set are available, the loss function can be reformulated to include multiple conceptors,
each representing a distinct learned temporal pattern as described in the appendix E. This adaptation
enables CARAE to handle more complex interpolation scenarios, such as all-to-all interpolation or
alignment along a single dimension, or any k-dimensional space.

Our results highlight a novel direction in representational learning for time series pattern genera-
tion using autoregressive RNNs. By employing the conceptor framework, we enforce geometrical
priors that enforce a bottleneck on the neural dynamics during learning. We note that conceptors
allow to enforce a bottleneck on the space of trajectories directly. For a periodic signal, this allows
the bottleneck to be independent of the initial phase of the signal and the number of periods. This
criterion might be seen as analog of “disentangled representation”, a classical case study in static
autoencoder research. Additionally, we could implement the CARAE framework with various archi-
tecture as presented in the appendix C showcasing its general notion. Ongoing and future research
is devoted to pushing CARAE to the domain of reinforcement learning and control where agents are
embedded in a physical environment (Wagener et al., 2022).

REFERENCES

Peter Belcák and Roger Wattenhofer. Periodic Extrapolative Generalisation in Neural Networks,
September 2022. URL http://arxiv.org/abs/2209.10280. arXiv:2209.10280 [cs].

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and New
Perspectives, April 2014. URL http://arxiv.org/abs/1206.5538. arXiv:1206.5538
[cs].

9

http://arxiv.org/abs/2209.10280
http://arxiv.org/abs/1206.5538

Under review as a conference paper at ICLR 2024

TL Carroll. Low dimensional manifolds in reservoir computers. Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science, 31(4), 2021.

Jen-Tzung Chien and Chun-Wei Wang. Variational and hierarchical recurrent autoencoder. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3202–3206. IEEE, 2019.

Irene Estébanez, Ingo Fischer, and Miguel C Soriano. Constructive role of noise for high-quality
replication of chaotic attractor dynamics using a hardware-based reservoir computer. Physical
Review Applied, 12(3):034058, 2019.

Aasa Feragen and Andrea Fuster. Geometries and Interpolations for Symmetric Positive Definite
Matrices. In Thomas Schultz, Evren Özarslan, and Ingrid Hotz (eds.), Modeling, Analysis, and
Visualization of Anisotropy, pp. 85–113. Springer International Publishing, Cham, 2017. ISBN
978-3-319-61357-4 978-3-319-61358-1. doi: 10.1007/978-3-319-61358-1 5. URL http://
link.springer.com/10.1007/978-3-319-61358-1_5. Series Title: Mathematics
and Visualization.

Laurent Girin, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, and Xavier Alameda-
Pineda. Dynamical variational autoencoders: A comprehensive review. arXiv preprint
arXiv:2008.12595, 2020.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

Xu He and Herbert Jaeger. Overcoming Catastrophic Interference using Conceptor-Aided Back-
propagation. February 2018. URL https://openreview.net/forum?id=B1al7jg0b.

Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environ-
ments. arXiv preprint arXiv:1707.02286, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2016.

Guillaume Huguet, D. S. Magruder, Alexander Tong, Oluwadamilola Fasina, Manik Kuchroo, Guy
Wolf, and Smita Krishnaswamy. Manifold interpolating optimal-transport flows for trajectory
inference, 2022.

Tomoharu Iwata and Atsutoshi Kumagai. Few-shot learning for time-series forecasting. arXiv
preprint arXiv:2009.14379, 2020.

Herbert Jaeger. Controlling recurrent neural networks by conceptors. arXiv preprint
arXiv:1403.3369, 2014.

Herbert Jaeger. Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns.
Journal of Machine Learning Research, 18(13):1–43, 2017. ISSN 1533-7928. URL http:
//jmlr.org/papers/v18/15-449.html.

Jason Z Kim, Zhixin Lu, Erfan Nozari, George J Pappas, and Danielle S Bassett. Teaching recur-
rent neural networks to infer global temporal structure from local examples. Nature Machine
Intelligence, 3(4):316–323, 2021.

Christian Klos, Yaroslav Felipe Kalle Kossio, Sven Goedeke, Aditya Gilra, and Raoul-Martin
Memmesheimer. Dynamical learning of dynamics. Physical Review Letters, 125(8):088103,
2020.

Ling-Wei Kong, Yang Weng, Bryan Glaz, Mulugeta Haile, and Ying-Cheng Lai. Reservoir com-
puting as digital twins for nonlinear dynamical systems. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 33(3), 2023.

10

http://link.springer.com/10.1007/978-3-319-61358-1_5
http://link.springer.com/10.1007/978-3-319-61358-1_5
https://openreview.net/forum?id=B1al7jg0b
http://jmlr.org/papers/v18/15-449.html
http://jmlr.org/papers/v18/15-449.html

Under review as a conference paper at ICLR 2024

Zhixin Lu and Danielle S. Bassett. Invertible generalized synchronization: A putative mechanism
for implicit learning in neural systems. Chaos: An Interdisciplinary Journal of Nonlinear Science,
30(6):063133, June 2020. ISSN 1054-1500. doi: 10.1063/5.0004344. URL https://doi.
org/10.1063/5.0004344.

Mantas Lukoševičius, Herbert Jaeger, and Benjamin Schrauwen. Reservoir computing trends. KI-
Künstliche Intelligenz, 26:365–371, 2012.

Josh Merel, Matthew Botvinick, and Greg Wayne. Hierarchical motor control in mammals and
machines. Nature communications, 10(1):5489, 2019a.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid control,
January 2019b. URL http://arxiv.org/abs/1811.11711. arXiv:1811.11711 [cs].

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

Tankred Saanum, Noémi Éltető, Peter Dayan, Marcel Binz, and Eric Schulz. Reinforcement learning
with simple sequence priors. arXiv preprint arXiv:2305.17109, 2023.

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee. Recent ad-
vances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.

Lindsay M Smith, Jason Z Kim, Zhixin Lu, and Dani S Bassett. Learning continuous chaotic
attractors with a reservoir computer. Chaos: An Interdisciplinary Journal of Nonlinear Science,
32(1), 2022.

Seungmoon Song, Łukasz Kidziński, Xue Bin Peng, Carmichael Ong, Jennifer Hicks, Sergey
Levine, Christopher G Atkeson, and Scott L Delp. Deep reinforcement learning for modeling
human locomotion control in neuromechanical simulation. Journal of neuroengineering and re-
habilitation, 18:1–17, 2021.

David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic neural
networks. Neuron, 63(4):544–557, 2009.

Victor Tran and Anand Panangadan. Few-shot time-series forecasting with application for vehicular
traffic flow. In 2022 IEEE 23rd International Conference on Information Reuse and Integration
for Data Science (IRI), pp. 20–26. IEEE, 2022.

Saurabh Vyas, Matthew D. Golub, David Sussillo, and Krishna V. Shenoy. Computation Through
Neural Population Dynamics. Annual review of neuroscience, 43:249–275, July 2020. ISSN
0147-006X. doi: 10.1146/annurev-neuro-092619-094115. URL https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC7402639/.

Nolan Wagener, Andrey Kolobov, Felipe Vieira Frujeri, Ricky Loynd, Ching-An Cheng, and
Matthew Hausknecht. Mocapact: A multi-task dataset for simulated humanoid control. Advances
in Neural Information Processing Systems, 35:35418–35431, 2022.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. Advances in Neural Information Processing Systems, 30,
2017.

Francis Wyffels, Jiwen Li, Tim Waegeman, Benjamin Schrauwen, and Herbert Jaeger. Frequency
modulation of large oscillatory neural networks. Biological cybernetics, 108:145–157, 2014.

11

https://doi.org/10.1063/5.0004344
https://doi.org/10.1063/5.0004344
http://arxiv.org/abs/1811.11711
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402639/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402639/

Under review as a conference paper at ICLR 2024

A HYPERPARAMETERS OF EXPERIMENTS

Here, we present a table with the hyperparameters used for the two experiments 4.1 and 4.2. For the
experiments of speed control 4.3 we re-used the Mocap RNN described in the table and used a gain
g = 0.001.

Experiments Sine waves Mocap
size RNN (N) 512 500
input size (M) 1 94
output size (M) 1 94

Optimizer ADAM (default parameters) ADAM (default parameters)
Learning rate η 1e-3 0.01

β1 0.02 0.02
β2 0.002 0.1

aperture γ 10 10

Table 1: Parameters used in the experiments of sine wave interpolation and mocap motion modelling.

B QUANTITATIVE MEASURE OF INTERPOLATED TIME SERIES

Our primary objective is to develop an autoregressive recurrent neural network capable of learning
a continuum of temporal patterns from just two distinct data sets, such as walking and running,
and autonomously generating a range of intermediary patterns. Our approach aims to address the
challenge of two-shot learning in dynamical systems, particularly focusing on the generation of in-
termediate temporal patterns that are not explicitly present in the training data. To quantitatively
evaluate the efficacy of our method in inferring intermediary patterns P from two training data sets
A and B, we propose a similarity metric comprising two independent components. The first compo-
nent, the Jensen-Shannon divergence DJS , a symmetric index of dissimilarity between probability
distributions, is calculated as:

DJS(A,P) = 1/M

M∑
i=1

1

2
[KL(Ai∥Mi) +KL(Pi∥Mi)] with Mi =

1

2
(Ai + Pi)

It is defined as the average of the Kullback-Leibler (KL) divergences of each distribution against
their average, ensuring a bounded output between 0 (identical distributions) and 1 (maximally dif-
ferent distributions). This component quantifies the divergence in output state distributions between
the intermediary P (λ = 0.5) and the training sets A and B. Thereby it is calculated per state and
averaged across all M output nodes of the recurrent network and the target states. The second
component addresses temporal correlations, specifically the autocorrelation, which measures the
correlation of a signal with a delayed version of itself as a function of delay. This is essential to
capture temporal dependencies in the output states, complementing the state distribution analysis.
The autocorrelation difference Dacf thereby is computed via:

acf(A, τ) =

∣∣∣∣∣ 1K
K∑

n=1

ÃkÃk−τ

∣∣∣∣∣ with Ã = (A− µA)/σA

Dacf (A,P) =
1

T ∗M

M∑
i=1

T∑
τ=1

|acf(Ai, τ)− acf(Pi, τ)|

Both components, Dacf and DJS are normalized and ∈ [0, 1]. The sum of both components related
to both training sets and the inferred intermediate pattern constituting the final similarity metric
which we refer to as Jensen Shannon and Temporal Correlation difference Composite (JSTCC):

JSTCC =
1

4
(DJS(A,P) +DJS(B,P) +Dacf (A,P) +Dacf (B,P))

Thereby, a lower JSTCC value indicates a more effective combination of information from both
training sets, fulfilling our objective of achieving meaningful interpolation between the two training

12

Under review as a conference paper at ICLR 2024

Figure 7: a) Ablation study of the loss function hyperparameters β1 and β2 of the CARAE frame-
work evaluated using the Jensen-Shannon and temporal correlation difference composite (JSTCC)
for generating intermediary sine wave patterns. b) Ablation study of the loss function’s hyperparam-
eter for interpolation of the MoCap data set. In both the red cross marks the lowest JSTCC found
in the parameter range, respectively. The JSTCC is averaged over 5 random initial conditions of the
RNN

data sets. The minimum reachable value of JSTCC is thereby further depending on the similarity of
the two training data sets.

In the following, we study the ablation of the regularization parameters β1 and β2 for the sine wave
and the mocap interpolation tasks. We find clear dependence of the JSTCC metric regarding the
variation of the parameters that further differs between the two tasks. For the shown tasks, both
of the parameters β1 and β2 are important for yielding sufficiently interpolated solutions. Thereby,
we find that the loss term related to the mean of the activation (weighted by β2) in Eq. 21 in both
task can be chosen smaller than the loss related to the distance of the conceptors (weighted by β1).
By comparing the tasks, we observe that the sine wave interpolation requires less strong regular-
ization compared to the mocap data interpolation. While this could be related to the much more
complex temporal profile of the mocap data set time series, more research is needed to fully reveal
the relationship of the regularization parameters and the generated interpolation.

C EXTENDING CARAE TO OTHER ARCHITECTURES

In the following, we extend the CARAE framework towards the usage combined with a long-short
term memory (LSTM) cell. Thereby, the LSTM replaces the recurrent neural network as given in
Eq. 3. We implement LSTM cell mathematically described by the following set of equations:

i = σ(Wiix+Whih+ bhi) f = σ(Wifx+Whfh+ bhf)

g = tanh(Wigx+Whgh+ bhg) o = σ(Wiox+Whoh+ bho)

c′ = f ∗ c+ i ∗ g h′ = C(λ)(o ∗ tanh(c′))
y = Wouth

′

where x is the input, h is the output of the previous time step, and c is the memory. The conceptor
C(λ) is applied during the generation of the output state h of the LSTM cell. Accordingly, only
minimal changes are needed to adapt our framework towards the LSTM. We test the performance
of the LSTM on the intermediary pattern generation while relying on the proposed loss function Eq.
21 during training. In the inference, as shown in Fig. 8 c), we find that LSTM learns to generate
to interpolate between the two patterns given during training and reveals sine wave pattern at an
intermediary frequency. In Fig. 8 d), we further observe the learning as the loss function defined in
Eq. 21 reduces along the epoch while similar the JSTCC reduces at the same time.

Furthermore, we extend the CARAE framework towards a static feed-forward network. Therefore,
we employ a vanilla two-layer deep tanh network that is feed by a moving window with a context

13

Under review as a conference paper at ICLR 2024

length K along the time series. The equations of this model are given as follows:

x1 = C tanh(Winu+ b), x2 = tanh(W12x1 + b), y = Woutx2,

C =

{
1 during training
C(λ) during inference

Thereby, the conceptor is computed based on the activation of the neurons in the first layer along
the input sequence u(k). During inference, the conceptor acts as a linear projection on the first layer
activation onto a low-dimensional space before the states flow trough the second layer. We find that
the feed forward network with a context length of K = 20 inputs and running in an autoregressive
mode is able to interpolate the sine wave patterns based only on the two training as shown in Fig. 8
a). Similar to the LSTM-based CARAE discussed above, we find that loss and JSTCC reduce at the
same time along the training epoch.

Figure 8: a) Inferred time series at λ = 0.5 from a feed-forward neural network trained on two
distinct sine waves at different epochs (color-coded) using an adapted version of the CARAE frame-
work for non-recurrent networks. b) Loss over epochs and JSTCC measure applied on the inference
the feed-forward neural network. c) Inferred time series at λ = 0.5 from a LSTM network trained
on two distinct sine waves using the CARAE framework at different epochs (color-coded). d) Loss
over epochs and JSTCC measure applied on the inference the LSTM-based CARAE.

To summarize, in this section we transferred the ideas of CARAE framework towards two other
architecture, namely a LSTM-based CARAE and a static feed-forward network that relies on the
CARAE loss. Both architecture introduce the ability of generating intermediary pattern in a two-
shot learning regime. Thereby, we showcase the generality of the CARAE ideas beyond leaky-
integrator networks used in the main text and towards various deep learning frameworks that run in
an autoregressive mode.

D COMPARING CARAE TO CLASSICAL RECURRENT AUTO-ENCODER
(RAE)

In this section, we contrast our CARAE approach with traditional Recurrent Auto-Encoder (RAE).
In these architectures, an encoder RNN encodes the input time series u into a vector z(nencoder):

x(n+ 1) = RNNencoder(x(n), u(n))

z(nencoder) = W encodex(nencoder)

14

Under review as a conference paper at ICLR 2024

Figure 9: Sine waves auto-encoding with an RAE. a) Output of the encoder RNN (z(n)) for two
input sine waves with β = 0. b) Output of the decoder RNN for β = 0 and various values of λ
(color-coded). c) Output of the encoder RNN (z(n)) for two input sine waves with β = 1.. d) Output
of the decoder RNN for β = 1. and various values of λ (color-coded). For the decoding figures b)
and c), the two input sine waves used during training are displayed in transparent color. Also, the
system is only trained to decode for 100 steps; any steps after are out-of-distributions.

Figure 10: Principal components of the state of the RAE decoder when regenerating sine waves for
different values of λ. The vertical axis correspond to the different values of λ.

where nencoder is time steps indicating the end of the input, and RNNencoder is based on Eq. 4.
Then, a decoder RNN decodes (also based on Eq. 4) the vector to reconstruct the input.

x(n+ 1) = RNNdecoder(x(n), z(nencoder)

y(n) = W decoderx(n)

where the latent code z is sent as a constant input to bias the decoding to regenerate the input through
y.

15

Under review as a conference paper at ICLR 2024

Figure 11: Principal components of the state a) and output b) of the RAE decoder when regenerating
walking and running from Mocap data and its interpolation for different values of λ. β = 10.

We can compare this classical approach to the CARAE mechanism presented in the paper by adapt-
ing the loss function to:

LC = β∥z1 − z2∥2fro
L = MSE(ŷ, y) + LC

where z1 and z2 are the codes of the two examples in the two-shot learning task. At test time, we
interpolate the latent code by using:

zinterp(λ) = (1− λ)z1 + λz2

In an experiment analog to section 4.1 with sine waves, the RAE effectively encoded and decoded
inputs through a one-dimensional bottleneck (Fig. 9). Without further compression in the latent
space (β = 0), the system overfits the training data without learning the parametric family. Con-
versely, introducing compression reveals the reconstruction of the parametric family for about 50
initial steps. However, a notable limitation emerges as the interpolation quality deteriorates towards
the end of the decoding process, evident even before reaching the out-of-distribution segment. This
degradation suggests that the RAE architecture lacks the necessary inductive bias for learning peri-
odic patterns, as observed in the states of the decoder RNN (Fig. 10) which fail to exhibit periodic
cycle attractors. This limitation is further highlighted by the RAE’s inability to learn the periodic
aspect of a fast sine wave despite training on multiple successive periods.

The same qualitative effects of RAE are observed when applied to the Mocap two-shot learning task.
The RAE manages to regenerate approximately one period of walking or running behavior (Fig. 11
b)). The system’s failure to learn periodicity is again evident from the trajectory shapes in the state
of the decoder RNN (Fig. 11 a)).

In summary, while the RAE is capable of basic encoding and decoding functions, its architecture
shows significant limitations in learning and reproducing periodic patterns, as demonstrated in both
sine wave and Mocap data experiments. Thereby, it struggles with overcoming fixed point dynamics
as outlined in section 2. In contrast, our CARAE model, by specifying a bottleneck on the geometry
of the neural trajectories, is much more adapted to periodic pattern and overcomes the fixed point
dynamics at intermediary interpolation, rendering it a strong framework for locomotion data.

E EXTENDING CARAE TO MULTIDIMENSIONAL BOTTLENECKS AND MORE
THAN TWO TIME-SERIES.

While the focus of our work was on two-shot learning with a one-dimensional bottleneck we present
here how to extend CARAE to multidimensional bottlenecks and an arbitrary number of time-series.

16

Under review as a conference paper at ICLR 2024

1. Define a low-dimensional subspace: Select a metric on the space of matrices. Select 2m
orthogonal conceptor, where m is the desired dimension for the bottleneck.

2. Augment the loss with a projection cost: Augment the reconstruction with a loss that
penalizes when a conceptor is outside the low-dimensional subspace in conceptor space.

L =
∑

i∈Dtrain

MSE(yi, ŷi) + β||Ci − ProjC(Ci)||

where Dtrain is the training set and yi and Ci are the time series reconstructed and the
conceptor associated with the sample yi. ProjC() is the linear operator that projects a
matrix into the m−dimensional linear subspace of the conceptor space. An additional cost
could also be added to further compress by reducing the variance along the axes of the
m−dimensional subspace.

3. Train the system with the generalized cost function: Then the whole system can be
trained similarly to the two-shot setting.

Note that in this example, the latent conceptor space is defined at initialization and is not changing,
but we could also easily imagine backpropagating the conceptors that define it during training.

F EXPLORING SPD MATRIX INTERPOLATION TECHNIQUES DURING
INFERENCE

Figure 12: JSTCC metric for the inference of a CARAE trained on sine wave prediction for a
intermediary conceptor C(λ = 0.5). Four different interpolation techniques for symmetric positive
definite matrices are used to generate the intermediary conceptor (color-coded). The JSTCC is
averaged over 5 different random seeds.

The CARAE framework relies on the interpolation of two conceptors that are defined as symmetric
positive definite (SPD) matrices. For such SPD matrices there exist various forms of interpolation
that take two SPD matrices and convert them into another intermediary SPD matrix. In the main
text, we employ a linear distance measure of the conceptors for the CARAE loss function given
in Eq. 21 and in the inference a linear interpolation of the conceptor is used for the control of the
CARAE. The reason for this design decision, is the computational efficiency of both, the linear
distance and interpolation. Other metrics and techniques such as log-euclidean, affine invariant and
the shape and orientation rotation (SAOR) metric Feragen & Fuster (2017) rely on applying the
matrix exponential and matrix logarithm on the SPD matrices. This is not only computationally
much more extensive but further the computation of these metric can introduce instabilities that
might harm and even break the training process. Whereas, we therefore do not employ them during
the training, in this section, we evaluate their application in the inference and interpolation process.
Therefore, we train a CARAE model based on a leaky-recurrent neural network on two sine wave
pattern and evaluate the performance of the interpolation of the model during various time steps
along the training process using these four interpolation techniques. We obtain in Fig. 12, that while
optimizing the linear distance between the conceptors in the training, we obtain a decreasing JSTCC
during the linear, log-euclidean and SAOR interpolation technique. Whereas the SAOR reaches to
lowest JSTCC of all 4 techniques we obtain strong variances of the JSTCC of the SAOR technique

17

Under review as a conference paper at ICLR 2024

along the training, indicating is instabilities. After 200 epoch the linear interpolation saturates and
reaches with a small variance a low JSTCC level. The affine invariant interpolation technique overall
does not yield low JSTCC and the performance does not seem to be affected strongly be the training
of the CARAE.

In Fig. 13, we present the interpolated sine waves for the 4 different techniques at four different
epoch: a) 1 b) 40 c) 120 d) 200. We obtain, that the linear and log-euclidean interpolation techniques
improve the generalization of the CARAE with increasing training epoch as suggested by Fig. 12.
Interpreting the results of both figures, we suggest that based on the closeness of these techniques the
results appear similar whereas the linear interpolation seems to be slightly better which might be due
to the reliance on the linear loss function. The SAOR interpolation show promising results already
after 40 epoch as shown in Fig. 13 b), however further training does not improve the interpolation
using this technique. In contrast, the SOAR results in fixed point dynamics for longer training as
shown in Fig. 13 panel c) and d). This might be overcome by using the SOAR distance metric in
the training which as mentioned above might introduce mathematical instabilities and might be a
subject of further investigation. The affine invariant interpolation technique, as suggested by Fig.12,
yields to fixed point dynamics for all training epochs.

To summarize, in this section, we give a first evaluation of different interpolation techniques of SPD
matrices that could be used together with the CARAE framework. Here, we restrict the application
to the inference part only, while further research might use them in the loss function as well. Our
results indicate that the linear and log-euclidean interpolation technique yield quite similar results,
whereas the other two, SAOR and affine invariant technique suggest a diverging alignment related
to the linear distance based CARAE training.

Figure 13: Inference of intermediary patterns (λ = 0.5) for the sine wave task using different
interpolation techniques (color-coded) at 4 different epochs during the training: a) 1 b) 40 c) 120 d)
200)

G DERIVATION OF BACKPROPAGATION THROUGH TIME THROUGH
CONCEPTOR

For backpropagation through time through conceptor, we use a RNN in input-driven mode, as given
by Eq. 1 and 4.

18

Under review as a conference paper at ICLR 2024

G.1 FORWARD PASS: LOSS COMPUTATION

In our two-shot learning setup, we pass a mini-batch of two M -dimensional time series into the
network, un = [u0

n u1
n]

T ∈ R2×M , such that our forward pass is given by:
xn = (1− α)xn−1 + α tanh (Wxn−1 +Winun + b) (13)
yn = Woutxn + bout (14)

where xn ∈ R2×N is the mini-batch of state vectors, yn ∈ R2×M is the mini-batch of output vectors,
and n ∈ {1, . . . , T} indexes the sequence length. Note that weight matrices are batch-multiplied and
the bias vectors are broadcasted such that the addition is element-wise across the batch dimension.

After the forward pass, we use the collected state matrix for each of the two input patterns Xi =
[xi

1 . . . x
i
T]

T ∈ RT×N where T is the total sequence length of the input signals. We compute the
conceptor matrix Ci for each input pattern as:

Ri = XT
i Xi (15)

Ci = R

(
R+

1N

γ2

)−1

(16)

where Ri is the state correlation matrix, 1N is the N -dimensional identity matrix, γ is the aperture
of the conceptor, and −1 denotes the matrix inverse.

We further compute the RNNs mean activation vectors mi as:

mi =
1

T

T∑
k=1

xi
k (17)

We then compute the conceptor-based regularization terms for the loss function according to equa-
tions 8 and 9:

LC = β1∥C1 − C2∥2fro (18)

Lm = β2(m1 −m2)
2 (19)

where ∥.∥fro is the Frobenius matrix norm.

The reconstruction loss is computed as the mean squared error between the network output yin and
the ground truth ŷin, yielding the final loss function:

Ly =
1

2T

2∑
i=1

T∑
k=1

(yin − ŷin)
2 (20)

L = LC + Lm + Ly (21)

G.2 BACKWARD PASS: GRADIENT COMPUTATION

To update the weights and biases of the RNN, we need to compute the gradients with respect to the
output weights Wout, the output bias bout, the recurrent weights W , the recurrent bias b, and the
input weights Win. We decompose the gradient according to the loss decomposition shown in Eq.
21:

∂L

∂θ
=

∂LC

∂θ
+

∂Lm

∂θ
+

∂Ly

∂θ
(22)

Here we focus on the computation of the gradients for the novel loss components LC and Lm without
further deriving the gradients for Ly .

The gradient of the loss with respect to Wout simplifies to the gradient of the mean squared error
loss with respect to Wout because neither LC nor Lm depend on Wout:

∂L

∂Wout
=

∂LC

∂Wout︸ ︷︷ ︸
=0

+
∂Lm

∂Wout︸ ︷︷ ︸
=0

+
∂Ly

∂Wout
(23)

∂L

∂Wout
=

∂Ly

∂Wout
(24)

19

Under review as a conference paper at ICLR 2024

Analogously, the gradient of the loss with respect to bout simplifies to the gradient of the mean
squared error loss with respect to bout.

Clearly, the gradient of the loss with respect to W , b, and Win cannot be simplified in the same way.
We proceed to derive the gradient of the auxiliary loss term Lm with respect to W and note that the
derivation with respect to b and Win is analogous:

∂Lm

∂W
=

2∑
i=1

∂Lm

∂mi

∂mi

∂W
(25)

=

2∑
i=1

T∑
k=1

∂Lm

∂mi

∂mi

∂xi
k

∂xi
k

∂W
(26)

=

2∑
i=1

T∑
k=1

k∑
l=1

∂Lm

∂mi

∂mi

∂xi
k

∂xi
k

∂xi
l

∂xi
l

∂W
(27)

=

2∑
i=1

T∑
k=1

k∑
l=1

∂Lm

∂mi

∂mi

∂xi
k

 k∏
j=l+1

∂xi
j

∂xi
j−1

 ∂xi
l

∂W
(28)

The gradient of the conceptor loss LC with respect to W can be derived as:

∂LC

∂W
=

2∑
i=1

∂LC

∂Ci

∂Ci

∂W
(29)

=

2∑
i=1

T∑
k=1

∂LC

∂Ci

∂Ci

∂Ri

∂Ri

∂Xi

∂Xi

∂xi
k

∂xi
k

∂W
(30)

=

2∑
i=1

T∑
k=1

k∑
l=1

∂LC

∂Ci

∂Ci

∂Ri

∂Ri

∂Xi

∂Xi

∂xi
k

∂xi
k

∂xi
l

∂xi
l

∂W
(31)

=

2∑
i=1

T∑
k=1

k∑
l=1

∂LC

∂Ci

∂Ci

∂Ri

∂Ri

∂Xi

∂Xi

∂xi
k

 k∏
j=l+1

∂xi
j

∂xi
j−1

 ∂xi
l

∂W
(32)

where the derivation for Win and b is analogous.

Notably, in computing the term ∂Ci

∂Ri
, the gradient flows through a matrix inversion:

∂Ci

∂Ri
=

∂

∂Ri
Ri

(
Ri +

1N

γ2

)−1

(33)

As this is a derivative of a conceptor matrix Ci ∈ RN×N with respect to the correlation matrix
Ri ∈ RN×N , the resulting partial derivative is expressed as a four-dimensional tensor ∂Ci

∂Ri
∈

RN×N×N×N . This can be simplified to a matrix by computing the derivative of the scalar con-
ceptor loss directly, ∂LC

∂Ri
∈ RN×N .

H LYAPUNOV SPECTRUM OF CARAE VS. VANILLA RNN

To quantify the qualitative change of the dynamics within the trained RNNs either using the CARAE
framework or vanilla RNN with BPTT, we compute their Lyapunov spectrum. Conceptually, the
Lyapunov spectrum gauges the stability of trajectories along an attractor. The computation involves
the following steps: first, the generation of an orbit along the attractor of the RNN, x(n); second,
the evaluation of the Jacobian at each point along the orbit, J(x(n)); and finally, the evolution of
orbits of infinitesimal perturbations, pk(n), along the time-varying Jacobian as

ṗk(n) = J(x(n))pk(n) (34)
Along these orbits, the direction and magnitude of pk(n) change based on the linearly stable
and unstable directions of the Jacobian J(x(n)). To capture changes along the orthogonal direc-
tions, following each time step of evolution, we organize the perturbation vectors into a matrix

20

Under review as a conference paper at ICLR 2024

[p1(n), p2(n), . . . , pk(n)], and perform a orthonormalization based on the QR algorithm. Thus,
p̃1(n) eventually aligns with the least stable direction, p̃2(n) with the second least stable direction,
and p̃k(n) with the most stable direction. The rate of divergence or convergence along the perturba-
tion directions is given by the so-called Lyapunov exponents (LE).

Figure 14: Lyapunov Spectrum of a 500-neuron RNN trained on the MoCap dataset of running and
walking using the CARAE framework (blue) and a vanilla RNN (orange).

In Fig. 14, we show the LE spectrum of two differently trained RNNs: one trained in a vanilla BPTT
fashion and the other trained using our here introduced CARAE framework. We observe that, the
spectrum from the CARAE contains more LE close to zero. A LE close to zero hereby indicates
a direction in the state space in which the dynamics neither diverge nor converge. In Smith et al.
(2022) such LEs equal zero are connected to learned abstraction in RNNs. Whereas we can identify
a qualitative change in the Lyapunov spectra between the two training methods, more work is needed
to connect e.g. the direction of the emerging manifold in the CARAE framework shown in Fig. 5 b)
with the Lyapunov spectrum of the RNN.

I QUANTIFICATION OF INTERPOLATION SUCCESS FOR MOCAP

To quantify the interpolation success, we leverage the ideas of Huguet et al. (2022). After training we
query CARAE with an intermediary pattern, we infer the latent variable (for CARAE, a conceptor)
and then assess the capacity to continue the pattern.

For MoCaP, we used the pattern (CMU0 16 35), a jogging pattern, roughly an intermediary between
walking and running.

Details of the test: the pattern (CMU0 16 35) is entirely presented, corresponding roughly to two
periods of jogging (161 steps). After computing the conceptor, we continue the dynamic from the
last state of the cueing period and plug the conceptor into the RNN to use it generatively for 80 steps
(one period of jogging).

The lambda for the CARAE is obtained by projecting the conceptor inferred onto the conceptor line
defined by the walking and running conceptor.

To deal with the phase dependence of the MSE, we first phase align the generated pattern (by search-
ing for the MSE best match) to the ground-truth (pattern CMU 16 35). For the linear interpolation
baseline, we also search for the best phase alignment between walking and running before interpo-
lating.

The tests are done over 80 time steps (one periods of jogging)

We see in Fig. 15 that the CARAE is better than linear interpolation at matching the jogging pattern
for both metric mse and jstcc.

21

Under review as a conference paper at ICLR 2024

Figure 15: Quantitative measure of interpolation: we compare CARAE and a linear interpolation
baseline between walking and running to the intermediary patter of jogging. See text for details.

22

	Introduction
	Objective and associated challenges: Few-shot temporal interpolation with an autonomous dynamical system
	Conceptor-aided recurrent autoencoder
	Conceptors: core theory
	Conceptors for autoencoding: constraining the variability of neural dynamics geometry

	Experiments
	Pattern Generation
	MoCap motion modelling
	MoCap motion modeling control

	Conclusion
	Hyperparameters of experiments
	Quantitative measure of interpolated time series
	Extending CARAE to other architectures
	Comparing CARAE to classical Recurrent Auto-Encoder (RAE)
	Extending CARAE to multidimensional bottlenecks and more than two time-series.
	Exploring SPD matrix interpolation techniques during inference
	Derivation of Backpropagation Through Time Through Conceptor
	Forward pass: loss computation
	Backward pass: gradient computation

	Lyapunov spectrum of CARAE vs. vanilla RNN
	Quantification of interpolation success for MoCap

