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Abstract

Multi-omics data capture complex biomolecular
interactions and provide insights into metabolism
and disease. However, missing modalities hinder
integrative analysis across heterogeneous omics.
To address this, we present MOIRA (Multi-Omics
Integration with Robustness to Absent modali-
ties), an early integration method enabling ro-
bust learning from incomplete omics data via rep-
resentation alignment and adaptive aggregation.
MOIRA leverages all samples, including those
with missing modalities, by projecting each omics
dataset onto a shared embedding space where a
learnable weighting mechanism fuses them. Eval-
uated on the Religious Order Study and Mem-
ory and Aging Project (ROSMAP) dataset for
Alzheimer’s Disease (AD), MOIRA outperformed
existing approaches, and further ablation studies
confirmed modality-wise contributions. Feature
importance analysis revealed AD-related biomark-
ers consistent with prior literature, highlighting
the biological relevance of our approach.

1. Introduction
Multi-omics integrates genome, transcriptome, proteome,
metabolome, and epigenome to provide a comprehensive
view of biological systems. This holistic approach is vital
for capturing biological complexity (Skelly et al., 2019),
which is crucial for diseases like AD whose pathogenesis
spans multiple layers. Recent advances in large-scale data
generation and multi-modal learning have made such inte-
gration increasingly feasible and effective (Oh et al., 2021).
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However, challenges persist, particularly missing modalities,
which are common due to diverse experimental protocols
and limited sample availability (Flores et al., 2023; Ballard
et al., 2024). This can lead to modality collapse during data
integration without careful design (Javaloy et al., 2022).

MOGONET (Wang et al., 2021b) was the first to curate
and release ROSMAP dataset (Pérez-González et al., 2024)
for AD prediction in machine learning field, establishing
a benchmark widely adopted by subsequent studies. How-
ever, these studies were limited to omics modalities with
relatively complete data, neglecting important sources such
as proteomics (Bai et al., 2021), and discarded samples with
missing data even within the selected modalities.

In this study, we propose MOIRA, a novel method for phe-
notype prediction that accommodates missing modalities.
We evaluate our approach on the ROSMAP dataset, which
includes multi-omics data from AD patients and is charac-
terized by a high degree of modality incompleteness. Our
model effectively leverages incomplete multi-modal pro-
files and significantly outperforms prior methods on the AD
prediction task. Furthermore, utilizing multi-omics data fa-
cilitates the effective discovery of biomarkers (Jeong et al.,
2023). To this end, we identify relevant biomarkers using in-
tegrated gradients (IG) (Sundararajan et al., 2017), yielding
results consistent with findings in the existing literature.

2. Materials and Methods
2.1. Data

We used ROSMAP, a widely employed dataset in AD re-
search. The dataset combines clinical, pathological and
multi-omics measurements from aging individuals. These
modalities—mRNA expression, DNA methylation (METH),
microRNA (miRNA) expression, tandem mass tag (TMT)
intensity and HD4 metabolite quantification—are all derived
from post-mortem brain tissue, resulting in heterogeneous
coverage and only 86 of 748 (11%) samples having com-
plete data across all five modalities (Figure 1A).

To train and evaluate our model, we focused on consensus
cognitive diagnosis (CogDX), performing binary classifi-
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Figure 1. Overview of the ROSMAP dataset and the model architecture of MOIRA. A) Samples span multiple data modalities, with
label:4 corresponding to AD and label:1 to normal controls (NC). Notably, only 86 (first column) samples contain complete data across all
modalities. B) Distribution of samples by CogDX label, with majority categorized as label 1, 2, or 4. C) Model architecture. MOIRA
consists of three phases: Encoders, Aggregator, and Predictor. Each modality-specific Encoder transforms heterogeneous input data into
embedding vectors of a unified dimensionality. These embeddings are then integrated by the Aggregator into a single representation.
Finally, the Predictor infers the class label based on this aggregated embedding. To address the challenge of missing modalities, the
model is trained to align the embeddings from individual modalities, thereby reducing information loss and enhancing robustness.

cation between label:4 (AD) and label:1 (no cognitive im-
pairment), consistent with MOGONET (Wang et al., 2021b)
and related studies. These two labels dominate the class
distribution in the ROSMAP dataset (Figure 1B), making
the binary classification task a practical simplification that
effectively addresses the AD prediction problem.

Table 1. Number of features and samples in the ROSMAP dataset.

mRNA METH miRNA TMT HD4

# features 55,889 23,788 309 5,211 390
# samples 630 740 521 400 514

Given the variable feature dimensionality in each omics
modality (Table 1), we adopted MOGONET’s feature se-
lection protocol. For each data type, we ranked features
by their ANOVA F-scores on the training set and retained
the top 200. This mitigates overfitting and prevents fail-
ure to capture important signals due to high dimensionality
(Huang et al., 2022b), thereby improving model training.

2.2. Model

We introduce MOIRA for multi-omics integration that ro-
bustly handles missing modalities and mitigates modality
collapse. The architecture comprises three main compo-
nents: Encoders, Aggregator, and Predictor (Figure 1C).

Encoders Each modality m is processed by a dedicated
Encoder f (m), a two-layer MLP with LeakyReLU and
dropout. Given input x(m)

i for sample i, it generates an
embedding:

z
(m)
i = f (m)(x

(m)
i ) ∈ Rd

Aggregator These modality-specific embeddings are then
passed to the Aggregator, which integrates them into a uni-
fied representation via a weighted sum.

zagg
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∑
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α
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i z
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Here, Mi is the set of observed modalities for sample i;
absent modalities have masked weights w(m)

i = 0, ensur-
ing that the softmax excludes them and reallocates their
contribution among the present modalities.

Predictor The resulting aggregated embedding zagg
i is

then passed to the Predictor g(·), also a two-layer MLP
with LeakyReLU and dropout, which produces the final
output probability.

ŷi = g(zagg
i )
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The prediction loss is computed using cross-entropy.

Lpred = −
∑
i

yi · log(ŷi)

To promote learning from individual modalities, we apply
the same Predictor to each modality-specific embedding
and compute an auxiliary loss.

Laux = −
∑

m∈Mi

∑
i

yi · log(g(z(m)
i ))

To prevent modality collapse and encourage alignment
across modalities, we adopt a CLIP-style contrastive
loss (Radford et al., 2021). For each modality pair (m,n),
the directional contrastive loss is defined

L(m→n)
CLIP = − 1

N

N∑
i=1

log
exp(sim(z

(m)
i , z

(n)
i )/τ)∑N

j=1 exp(sim(z
(m)
i , z

(n)
j )/τ)

,

with cosine similarity sim(a, b) = a⊤b
∥a∥∥b∥ and temperature

τ . The full contrastive loss sums over all valid pairs.

LCLIP =
∑
m,n

(
L(m→n)

CLIP + L(n→m)
CLIP

)

Finally, the total training objective combines all loss terms.

Ltotal = Lpred + Laux + LCLIP

3. Results
To evaluate the effectiveness of our method, we conducted
experiments on the ROSMAP dataset, incorporating all sam-
ples with any available data modality. We used the same
test split as MOGONET and related studies to ensure fair
comparison. In all experiments, each encoder was paired
with a decoder and pre-trained as part of an autoencoder
until convergence using early stopping (patience = 30). Em-
bedding dimensions were set to 300, with a dropout rate of
0.5. We used the Adam optimizer with a learning rate of
0.0001 and weight decay of 0.001, training for 200 epochs.
All metrics were averaged over 30 independent runs.

Figure 2. Performance comparison on AD prediction task.

Outperforms SOTA methods in AD prediction Figure 2
compares the prediction accuracy of MOIRA with existing
methods (Wang et al., 2021b; Rajadhyaksha & Chitkara,
2023; Zhong et al., 2023; Zheng et al., 2023; Wang et al.,
2024b; Zhang et al., 2024; Tao et al., 2024; Cong et al.,
2024; Liang et al., 2024; Wang et al., 2024a; Zhao et al.,
2024; Yao et al., 2024; Luo et al., 2024; Kumar et al.) on
the ROSMAP dataset. Our model achieved an accuracy of
0.920, significantly outperforming prior approaches. This
gain arises from our ability to utilize incomplete data; unlike
other models confined to 391 complete samples, it expands
the usable set to 784 by incorporating partial modalities.

Table 2. Ablation studies using different combinations of data
modalities and loss terms. Trimodal (i.e. mRNA+METH+miRNA)
union (∪) excludes only the additional modalities (TMT, HD4),
while the intersection (∩) further removes samples missing any of
the remnant three. Minus (–) indicates silenced modality or loss.

Accuracy Precision AUROC AUPRC

Full model 0.920 0.972 0.922 0.914
Trimodal (∪) 0.875 0.904 0.876 0.846
Trimodal (∩) 0.867 0.874 0.867 0.826

–mRNA 0.814 0.817 0.813 0.765
–METH 0.907 0.943 0.908 0.890
–miRNA 0.916 0.954 0.917 0.902
–TMT 0.894 0.937 0.896 0.876
–HD4 0.916 0.956 0.917 0.903

–aux 0.920 0.946 0.920 0.902
–CLIP 0.915 0.954 0.916 0.901
–(aux+CLIP) 0.896 0.938 0.898 0.878

Ablation studies for data modality and loss terms To
assess the contribution of each component in MOIRA to
AD prediction, we conducted experiments across various
input modalities and loss configurations. Table 2 summa-
rizes evaluating under different conditions, including the
omission of specific data modalities or loss terms.

We first evaluated performance using the three commonly
used modalities—mRNA, METH, and miRNA. Trimodal
(∪) includes all samples with at least one of these modalities,
while Trimodal (∩) restricts to those with all three. We then
systematically excluded individual modalities to assess their
respective contributions to the AD prediction task. Lastly,
we conducted ablation studies on the loss components.

Results show that using all five modalities—or any combina-
tion of four that includes mRNA—significantly outperforms
the traditional three. Moreover, employing the union of
samples yields better prediction than using only their in-
tersection, highlighting the value of leveraging incomplete
data rather than discarding partially observed samples. Fi-
nally, ablation of any individual loss term led to reduced
performance when considering the overall metric profile.
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Table 3. Features extracted using IG scores and grouped by thematic relevance. In 100 repeated experiments, we selected the twelve
most frequently occurring features from the top 10% (i.e., the top 20 out of 200 features with the highest IG scores) for each modality.
Corresponding references to the literature are indicated as numbers with brackets, and further listed in the final row.

Omics Potential drug target Prognostic biomarker Important feature Differential expression Pathway/others

mRNA SCD[1,2] KIF5A[3], HOPX[4] MEIS3[5,6], PPDPF[5], KIF5A[6-
8], CSRP1[9-10], PLEKHB1[11],
CDK2AP1[12], TAC3[13], SCD[8]

MEIS3[14-17], PPDPF[14-16],
KIF5A[16-18], PLEKHB1[15,17],
HMGN2[15-17], QDPR[15-17,19],
HOPX[15,17], CDK2AP1[15,17],
PLEKHM2[20,21], TAC3[18,21]

KIF5A[22], HMGN2[22,23]

METH TMEM59[24,25],
NGEF[26], PLEK[27]

RORC[28], SNRPA[29] TMEM59[5,30,31], C10orf99[6,31],
NGEF[6,30,31], RORC[31],
SNRPA[5,6,31], KIAA1267[31],
HSPA6[5,6], PLEK[5], LDHC[13],
CHRLD2[32], HRASLS5[33]

TMEM59[31], C10orf99[31],
CHML[15,17,18], NGEF[31],
RORC[31], SNRPA[31],
KIAA1267[31], HSPA6[18],
HRASLS5[34]

TMEM59[35], C10orf99[36],
SNRPA[37], KIAA1267[38,39],
HSPA6[40], PLEK[41]

miRNA miR-132[42,43] miR-132[44] miR-129-
5p[44,45], miR-129-3p[44],
let-7i[46], miR-125b[47-49],
let-7g[46,50-52], miR-
34a[49]

miR-132[5,6,12,30,31], miR-
129-5p[5,12,30,31], ebv-miR-
BART8[13], miR-129-3p[5,12,30],
miR-133b[5,13], miR-26a[10],
let-7i[31]

miR-132[31,53], miR-129-
5p[31,53], let-7i[31], miR-125b[54],
miR-34a[23]

miR-132[55-58], miR-129-5p[57,58],
miR-129-3p[57], miR-133b[57-59],
miR-26a[56-58,60], let-7i[58], miR-
29a[56-58], miR-9[57,58], miR-125b[55-
58], let-7g[57,58], miR-34a[55-58]

TMT NRN1[61],
SLC38A2[62,63],
MACROD1[64], GGT5[65]

SMOC1[66], GFAP[67],
CCK[68-69]

SMOC1[70], SPOCK3[34,71],
SPOCK2[71]

GFAP[15,17,72,73],
RAB27B[15,18], NRN1[15,18],
SLC38A2[14,18,72],
SPOCK3[74,75], GGT5[15]

GFAP[23], SPOCK3[76,77],
SPOCK2[78]

HD4 Alpha-GPC[79], homocarno-
sine[80], threonate[81,82],
myo-inositol[83,84], caprate
(10:0)[85,86]

pipecolate[87], N-Acetyl-
GABA[88], myo-inositol[89],
N6-methyllysine[90,91],
dimethylarginine[92]

pipecolate[93] carboxyethyl-GABA[94,95], X -
24035[94], dimethylarginine[96]

Alpha-GPC[97], homocarnosine[98],
myo-inositol[99], dimethylargi-
nine[100,101]

* [1] Hamilton et al. (2022) [2] Loix et al. (2024) [3] Hares et al. (2019) [4] Liu et al. (2023) [5] Liang et al. (2024) [6] Luo et al. (2024) [7] Wang et al. (2021b) [8] Wang et al. (2024a) [9] Kong et al.
(2009) [10] Briscik et al. (2024) [11] Graham et al. (2025) [12] Zhang et al. (2024) [13] Wang et al. (2024b) [14] Wang et al. (2023) [15] Li & De Muynck (2021) [16] McCorkindale et al. (2022) [17]
Aguzzoli Heberle et al. (2025) [18] Vastrad & Vastrad (2021) [19] Rahimzadeh et al. (2024) [20] Liu et al. (2023) [21] Tian et al. (2022) [22] Millecamps & Julien (2013) [23] Mathys et al. (2024) [23]
Schipper et al. (2007) [24] Meng et al. (2020) [25] Liu et al. (2020) [26] Hudgins et al. (2024) [27] Dai et al. (2022) [28] Huang et al. (2025) [29] Jiang et al. (2018) [30] Cong et al. (2024) [31] Yao et al.
(2024) [32] Huang et al. (2022a) [33] Zheng et al. (2024) [34] Shu et al. (2022) [35] Ullrich et al. (2010) [36] Lee et al. (2011) [37] Hsieh et al. (2019) [38] Poorkaj et al. (2001) [39] Prasad & Jho (2019)
[40] Wu et al. (2021) [41] Samadian et al. (2021) [42] Zhang & Bian (2021) [43] Walgrave et al. (2021) [44] Nagaraj et al. (2024) [45] Han et al. (2024) [46] Derkow et al. (2018) [47] Hong et al. (2017)
[48] Yashooa & Nabi (2022) [49] Swarbrick et al. (2019) [50] Poursaei et al. (2022) [51] Kafshdooz et al. (2023) [52] Kumar et al. (2013) [53] Noronha et al. (2022) [54] McKeever et al. (2018) [55] Li
et al. (2024) [56] Liu et al. (2022) [57] Kumar & Reddy (2016) [58] Sun et al. (2021) [59] Yang et al. (2019) [60] Xie et al. (2022) [61] Hurst et al. (2023) [62] Li et al. (2022) [63] Patel et al. (2019) [64]
Carlyle et al. (2021) [65] Zhang et al. (2025) [66] Balcomb et al. (2024) [67] Kim et al. (2023) [68] Plagman et al. (2019) [69] Zhang et al. (2023) [70] Roberts et al. (2023) [71] Oveisgharan et al. (2024)
[72] Wang & Li (2021) [73] Jing et al. (2021) [74] Ma et al. (2020) [75] Levites et al. (2023) [76] Pan et al. (2020) [77] Wojtas et al. (2024) [78] Grupe et al. (2006) [79] Lee et al. (2017) [80] Hipkiss
(2007) [81] Liao et al. (2024) [82] Kim et al. (2020) [83] Ali et al. (2022) [84] Barak et al. (1996) [85] Shekhar et al. (2023) [86] Fan et al. (2023) [87] González-Domı́nguez et al. (2015) [88] Wang et al.
(2021c) [89] Voevodskaya et al. (2019) [90] Wang et al. (2021a) [91] Panyard et al. (2021) [92] Choi et al. (2020) [93] Hammond et al. (2020) [94] Batra et al. (2023) [95] Borghys et al. (2024) [96]
Zinellu et al. (2023) [97] Miatto et al. (1986) [98] Balion et al. (2007) [99] Miller et al. (1993) [100] Selley (2003) [101] Popp et al. (2012)

Features related to Alzheimer’s Disease extracted To
biologically validate our model, we identified the top fea-
tures contributing to phenotype prediction using IG. For
each modality, we selected twelve features with the highest
IG values (representing top 16%), and repeated the analysis
100 times with different random seeds to ensure robustness.
Table 3 lists the selected features, their known or suspected
relevance to AD, and corresponding literature. mRNA fea-
ture names were mapped to gene symbols using pyensembl,
while METH features were matched to genes via CpG-to-
gene mapping from the HumanMethylation450 BeadChip
annotation.

Among the identified features, only LAGE3 and TTC33
from the TMT modality, and N-methylpipecolate from HD4,
did not have any evidence for linkage to AD. For the remain-
ing 57 features, we found at least one supporting source,
classified as a potential drug target, prognostic biomarker,
differentially expressed gene, or key feature reported in
prior machine learning studies. We also noted indirect ev-
idence of some features, such as AD-associated pathways.
These results demonstrate that MOIRA is capable of feature
attribution in datasets with incomplete modalities.

4. Conclusion
In this paper, we proposed MOIRA, a novel method to ad-
dress the challenge of incomplete multi-omics data. Prior
studies using ROSMAP focused only on samples with com-
plete mRNA, DNA methylation, and miRNA data. In con-
trast, our model’s ability to handle missing modalities al-
lowed us to incorporate TMT and HD4 data, effectively dou-
bling the training set size. As a result, MOIRA outperforms
state-of-the-art methods in AD prediction on ROSMAP.
Moreover, IG analysis reveals biologically meaningful fea-
tures that are consistent with existing literatures on AD.

While our approach maximizes data utilization, there still is
room for improvement. We did not incorporate the genomic
dataset, due to its size and complexity. And although we
address missingness at the modality level, feature-level ab-
sence of data samples remains unhandled. In future work,
we aim to pre-train encoders using masked autoencoders to
address feature-level missingness and leverage foundation
models to integrate the genomic data. While this study fo-
cuses on multi-omics phenotype prediction, our scheme is
domain-agnostic and can also be applied broadly to multi-
modal learning scenarios where missing data are prevalent.
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