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ABSTRACT

Antimicrobial resistance is expected to claim 10 million lives per year by 2050, and
resource-limited regions are most affected. Raman spectroscopy is a novel pathogen
diagnostic approach promising rapid and portable antibiotic resistance testing
within a few hours, compared to days when using gold standard methods. However,
current algorithms for Raman spectra analysis 1) are unable to generalize well on
limited datasets across diverse patient populations and 2) require increased complex-
ity due to the necessity of non-trivial pre-processing steps, such as feature extrac-
tion, which are essential to mitigate the low-quality nature of Raman spectral data.
In this work, we address these limitations using Sharpness-Aware Minimization
(SAM) to enhance model generalization across a diverse array of hyperparameters
in clinical bacterial isolate classification tasks. We demonstrate that SAM achieves
accuracy improvements of up to 10.5% on a single split, and an increase in average
accuracy of 2.7% across all splits in spectral classification tasks over the traditional
optimizer, Adam. These results display the capability of SAM to advance the
clinical application of AI-powered Raman spectroscopy tools. Code is available at:
https://github.com/Tadesse-Lab/SAM-Raman-Diagnostics

1 INTRODUCTION

Antimicrobial resistance is the second biggest global health threat and is expected to surpass cancer
by 2050 (de Kraker et al., 2016) as the second leading cause of death in the United States. According
to the Centers for Disease Control and Prevention (CDC), nearly 50% of all outpatient antibiotic
usage is improper, including unnecessary use and inappropriate selection, dosing, and duration of
antibiotic treatments (Centers for Disease Control and Prevention (CDC), 2011; Pichichero, 2002;
Shapiro et al., 2014). Altogether, such usage compromises effectiveness and contributes significantly
to antimicrobial resistance. In the context of this escalating challenge, it is crucial to recognize that
certain regions, such as developing nations or conflict zones, where access to quality hospital-level
clinical care is limited, are most vulnerable. Thus, a rapid, reliable, and compact solution for bacterial
infection diagnosis is needed to provide timely and accurate treatment. A promising tool is Raman
spectroscopy, an optical technique that captures inelastically scattered light acting as a fingerprint for
precise mapping to specific pathogen types. Within seconds, this method can identify not only the
primary pathogen but also its mutated antibiotic resistant variants (Das & Agrawal, 2011; Garcia-Rico
et al., 2018; Pieczonka & Aroca, 2008).

In this work, we address the intrinsic data quality challenges of working with Raman spectral data by
utilizing Sharpness-Aware Minimization (SAM) as an optimizer for Raman spectral data analysis.
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Our main contribution is as follows: we demonstrate that SAM is an effective optimizer for clinical
Raman spectroscopy-based pathogen classification tasks, achieving an increase in accuracy of up to
10.5% on a single split, and an increase in average accuracy of 2.7% across all splits when compared
to a standard ResNet architecture with Adam. The results demonstrate accuracy and generalizability
in translating rapid on-device pathogen diagnostics for patients in need.

2 BACKGROUND AND RELATED WORK

Although Raman spectroscopy is a promising tool for portable and rapid infectious disease diagnostics,
Raman spectral data tends to be complex, high-dimensional, and noisy. Due to intrinsic limitations
in the quality of Raman spectral data, current ML-based (machine learning) approaches in Raman
spectroscopy often encounter 1) increased complexity due to the necessity of extra enhancing steps,
such as feature extraction (Gautam et al., 2015; Pelletier, 2003), and 2) poor generalization due to
limited datasets and small sample sizes, which have high variability both within individual patient
samples and across patient populations (Luo et al., 2022). These data challenges limit the clinical
translation of portable Raman spectroscopy-based diagnostics.

Deep learning offers the advantage of extracting non-linearities in the data without the need for
non-trivial pre-processing (Liu et al., 2017), allowing for improved classification and more rapid
processing in clinical translation. 1D convolutional neural networks (CNNs) and ResNets are the
most commonly applied models in Raman classification tasks, and certain architectures (Figure
1) have achieved accuracies of up to 99% in classifying pathogen types and antibiotic resistance
using Raman spectra (Ho et al., 2019; Ogunlade et al., 2023). However, prior ML classification
tasks have required multiple samples to make a majority class prediction, and since sampling is a
time-consuming process, it is less desirable for clinical translation where rapid assessment is needed.

SAM offers a potential solution to the generalization challenges that come with the application
of traditional ML approaches to small datasets. Unlike previous optimization methods that may
develop sharp minima and have poor generalization, SAM is an optimization technique that improves
generalization by minimizing both the loss value and loss sharpness simultaneously (Foret et al.,
2021). The ability to effectively generalize to unseen data makes SAM a useful tool for addressing
the limited data issue commonly encountered in deep learning inference tasks with Raman spectral
data. Despite its success in healthcare-related tasks (Song et al., 2022; Anand et al., 2022) and its
promise towards advancing generalization in tasks with data quality concerns, SAM has not yet been
applied to Raman spectral data. In this work, we address this gap by using SAM to enhance model
generalization across a diverse array of hyperparameters in patient-derived bacterial classification
tasks.

3 METHODS

3.1 SAMPLING METHOD:

Clinical significance was preserved through subject-level sampling by excluding complete patient
samples from either the train or test set. This approach ensured that our model had not seen any
spectra from the clinical isolates in the test set during training, maintaining the integrity of the
simulation on a subject-level. We utilized this method in our clinical evaluation pipeline as described
below.

To demonstrate our algorithm’s performance, we used publicly available spectral data from a leading
Raman spectroscopy and CNN-based work by Ho et al. (2019). We obtained clinical bacterial isolate
spectral data spanning the five most common first-line antibiotic treatment groups. This data was
collected in groups of two distinct biological replicates. The dataset comprises 50 distinct clinical
isolates collected from individual patients, categorized into five bacterial pathogen classes. It includes
an equal distribution of five patient sources per infection type. To assess the efficacy of SAM with
a ResNet architecture for Raman we performed random stratified splitting on this clinical spectral
dataset.

To demonstrate clinically relevant evaluation, we began by randomly assigning one patient per
infection type from each of the two biological replicates to the test set (Figure A.1). The remaining
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Figure 1: A CNN trained on clinical Raman spectral data is used for a pathogen classification task.
Publicly available spectral data and CNN architecture are adapted from Ho et al. (2019). Using a
one-dimensional residual network with 6 residual blocks and 25 total convolutional layers, clinical
Raman spectra are classified as one of 5 isolates.

four patients in each type were utilized for training where they were split 90/10 into train and
validation sets. We then evaluated each model on the test dataset which contains independent clinical
data that has not been seen in the training pipeline. We repeated this process 10 times, employing
randomized splits for each iteration (Figure A.1b). This approach was utilized to enhance variation
within test sets and introduce a diverse set of data splits. We report classification results on the test
dataset across five trials per split.

3.2 ARCHITECTURE CONFIGURATION AND SELECT HYPERPARAMETERS

For our baseline architecture, we utilized the ResNet described in Ho et al. (2019) (Figure 1) due
to the architecture’s proven efficacy in bacterial classification tasks. Throughout the course of
experimentation, this architecture and the associated hyperparameters were modified in order to
optimize model performance. During experimentation, we examined the use of Gaussian Error Linear
Unit (GELU) activation (Hendrycks & Gimpel, 2016), Rectified Linear Unit (ReLU) activation (Nair
& Hinton, 2010), and Scaled Exponential Linear Unit (SELU) activation (Klambauer et al., 2017).
We trained all models on a single host having 1 NVIDIA T4 GPU.

3.3 SAM IMPROVES GENERALIZATION BY FINDING FLAT MINIMA

For our baseline optimizer, we used vanilla Adam (Kingma & Ba, 2015), a common choice in deep
learning. While Adam and similar optimizers focus on finding parameters with low loss values,
the loss surface geometry (particularly its sharpness around optimal solutions) has been shown to
significantly affect model generalization (Keskar et al., 2016). This observation led to the development
of Sharpness-Aware Minimization (SAM), which seeks parameters in regions of uniformly low loss
Foret et al. (2021). We utilized SAM as described in Foret et al. (2021) to find parameters w within
flat loss basins by optimizing the following objective:

min
w

LSAM
S (w) + λ∥w∥22

where LSAM
S (w) = max

∥ϵ∥p≤ρ
LS(w + ϵ)

(1)

To minimize LSAM
S (w), the inner maximization was linearized and solved analytically so that the

gradient ∇wLSAM
S (w) could be effectively approximated as follows:

∇wLSAM
S (w) ≈ ∇wLS(w)|w+ϵ̂(w) (2)

The model is more likely to generalize effectively and resist perturbations as the resulting parameter
values which exist in neighborhoods with uniformly low loss result in minimal variation in loss
relative to the training objective function (Keskar et al., 2016). Thus, by finding regions of uniformly
low loss, SAM’s optimization algorithm was shown to improve model generalization performance.
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Figure 2: Performance of SAM relative to Adam across splits and hyperparameters. (a) A plot
visualizing classification accuracy for each model, averaged across all 10 splits. We highlight SAM’s
performance, indicating higher accuracy and lower variance across hyperparameters. (b) A table
reporting the average classification accuracy of each configuration, showing that SAM increases
average accuracy relative to Adam across hyperparameters. SAM with SELU has the best overall
performance with an average accuracy of 93.1± 4.8%. (c) A summary of results for each individual
split demonstrates that ResNet configurations with SAM (blue) tend to outperform those using Adam
(orange) across all splits.

This makes it ideal for limited, high-variance Raman spectra derived from clinical samples. For our
experiments, we utilized a PyTorch implementation of SAM 1.

4 RESULTS AND DISCUSSION

Given the implemented ResNet architecture and hyperparameters, we observed that the SAM op-
timizer increased average accuracy up to 3.0% when compared to Adam, as shown in Figure 2b.
Average performance was determined for each configuration by averaging across all of the 10 splits
and 5 trials. Thus, the results reflect the expected model performance and inherent variances within
the test dataset. Table 1 presents a detailed summary of the results across all evaluated splits. As
illustrated in Figure 2c, individual data splits highlight SAM’s performance; when compared to
Adam, SAM demonstrated a maximum increase in performance of 10.5% on a single split. SAM
consistently outperformed Adam in mean classification accuracy across all splits. For each split,
GELU experienced, on average, an increase in accuracy of 3.0% with SAM compared to Adam.
Similarly, ReLU and SELU achieved 2.4% and 2.8% increases in average accuracy, respectively. In

1https://github.com/davda54/sam

Table 1: Testing set performance (meanstd for n=5) across different splits and hyperparameters
trained with Adam and SAM optimizers. Training with SAM yields higher classification accuracy
across most of the splits and hyperparameters when compared to Adam.

Random Splits
Optim. 1 2 3 4 5 6 7 8 9 10

GELU Adam 95.51.2 72.610.2 93.90.7 94.50.9 92.90.4 84.61.2 96.00.7 85.02.5 94.11.1 84.11.3
SAM 98.00.2 83.10.4 96.00.3 95.90.1 94.40.2 86.90.3 97.70.1 87.90.5 96.40.2 86.90.3

ReLU Adam 91.210.7 83.62.2 93.50.8 94.40.6 92.71.0 84.11.5 95.41.6 82.82.4 94.02.1 84.70.8
SAM 98.00.2 83.10.4 95.90.1 95.90.2 94.50.4 86.70.6 97.40.1 87.20.2 96.40.1 86.00.5

SELU Adam 96.11.0 82.51.0 93.32.2 95.31.7 94.20.4 84.30.8 95.10.7 85.72.8 94.71.4 82.41.9
SAM 97.90.1 84.00.1 96.40.2 96.90.2 95.40.1 88.70.3 97.90.2 88.60.3 96.90.1 88.70.2
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Figure 3: Classification accuracy of each technique on the best and worst performing splits across
all hyperparameters. (a) ResNet trained with SAM significantly outperforms Adam across all
hyperparameters in the best performing split. (b) Training with SAM has lower variance but no
significant performance improvement over Adam in the worst performing split.

addition, across all splits, SAM considerably decreased the expected variance in accuracy. When
using GELU, ReLU, and SELU, SAM also demonstrated decreases in variance of 79.1%, 75.2%,
and 84.3% on average, respectively, as shown in Table 1.

In addition to looking at the splits as a whole, we observed the best and worst performing splits
to better understand how SAM performed at the limits of our test sets (Figure 3). The best and
worst performing splits were determined by observing the mean performance across all splits. In
the best performing split (Figure 3a), we found that SAM significantly outperformed Adam across
all hyperparameters, offering both increased accuracy and decreased performance variance. In the
worst performing split (Figure 3b), we observed that SAM provided no significant performance
improvement compared to Adam. Figure A.2 further details the performance of SAM and Adam
across the remaining splits. Although overlapping regions of standard deviations (Figure 2a) are
observed in average performance across all splits, the lower variance and statistically significant
improved accuracy performance in the best performing cases suggest that SAM is positioned to be a
more promising approach for clinical Raman spectral classification tasks. The increase in accuracy
observed when using SAM as opposed to Adam indicates the promise of SAM for spectral data
classification tasks. Furthermore, in clinical classification tasks, consistency in prediction is as crucial
as performance itself. SAM exhibited a 2.7% increase in average performance and a 79.5% reduction
in average split-wise variance across activations, suggesting a more stable model and providing
greater reliability in prediction for classification tasks where the ability to validate results is limited.

5 CONCLUSION

In this work, we developed solutions for addressing limitations associated with limited datasets in
novel Raman spectroscopy-based rapid infection diagnostics and antibiotic susceptibility testing tools.
Compared to the standard utilization of the Adam optimizer for Raman spectral analysis, training
with SAM demonstrated an increase in accuracy of up to 10.5% on a single split, an average accuracy
improvement of 2.7% across all splits, and considerable reduction in variance across the chosen
hyperparameters. Performance with SAM was consistent across 10 distinct splits, showcasing its
robustness in processing a variety of patient-derived spectral data. Furthermore, the results indicate
a potential to better classify diverse bacterial profiles, suggesting that SAM may provide a more
reliable approach for clinical single-spectrum bacterial classification. Our work contributes to the
translation of portable Raman spectroscopy-based diagnostics towards the fight against the global
health threat of antibiotic resistance.

Limitations. We recognize that further exploration is required to determine the viability of SAM
across different datasets and architectures. Furthermore, we acknowledge that the clinical dataset
employed in this study may not comprehensively represent patient demographics and may not account
for the variance encountered when collecting spectra samples from different Raman instruments.
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A APPENDIX

A.1 EXPERIMENTAL METHODOLOGIES AND RESULTS
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Figure A.1: A CNN trained on clinical Raman spectral data is utilized for a pathogen classification
task. Publicly available spectral data and CNN architecture are adapted from Ho et al. (2019). (a)
Two datasets of 5 patients per infection type and 5 species of bacterial infections are merged to create
a single dataset of 5 species of bacterial infection and 10 patients per infection type. Each patient is
classified into one of the 5 treatment classes where each species corresponds to a different treatment
class. Average species identification accuracy using SAM shows an improvement from 89.8± 6.7%
to 92.5 ± 5.2%. (b) Noisy spectra and the intrinsic qualities of Raman spectral data can make it
difficult to distinguish between species, highlighting the need for deep learning and SAM to enable
rapid analysis of Raman spectral data.
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Figure A.2: Individual plots showing classification performance meanstd (n=5) for evaluation metrics
on the testing set across the reported random splits.
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