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Abstract

We propose a hybrid diffusion-based augmentation framework to overcome the
critical challenge of limited and imbalanced data in medical ultrasound AI. Un-
like conventional augmentations, our approach captures ultrasound-specific fea-
tures such as speckle noise by combining text-to-image generation with image-
to-image (img2img) refinement and fine-tuning using LoRA and textual inver-
sion (TI). For the Breast Ultrasound (BUSI) dataset, our method generated re-
alistic, class-consistent images that improved classification accuracy (90.4% —
91.7%), Fl-score (88.7% — 90.4%), and achieved an AUC of 0.985. Incorpo-
rating img2img refinement further reduced the Fréchet Inception Distance (FID)
to 33.29, enhancing visual fidelity without sacrificing performance. These results
demonstrate that hybrid diffusion augmentation produces high-fidelity ultrasound
images and strengthens downstream model reliability, offering a scalable solution
to one of the most persistent barriers in clinical imaging Al.

1 Introduction

Medical imaging, particularly ultrasound, is a cornerstone of early disease diagnosis [[1] due to its af-
fordability, non-invasive nature, and real-time imaging capabilities [2]. Yet, applying deep learning
for automated ultrasound interpretation remains challenging. Advances in artificial intelligence (AI)
and machine learning (ML) have improved breast cancer diagnosis, enabling automated detection
and classification of tumor subtypes such as invasive ductal carcinoma (IDC) and ductal carcinoma
in situ (DCIS) [3]]. However, progress is consistently hindered by the limited availability and imbal-
ance of annotated ultrasound datasets, which restricts model robustness and generalizability across
disease categories.

Traditional augmentation techniques such as flipping, rotations, and intensity variations provide only
superficial diversity in medical imaging [4}5]. Synthetic data generation methods, including Gener-
ative Adversarial Networks (GANSs), have been explored but often fail to reproduce the speckle noise
and fine-grained tissue textures that are diagnostically essential in ultrasound. Diffusion models of-
fer a promising alternative, with greater stability, controllability, and fidelity in generating realistic
samples.

Recent advances have demonstrated their effectiveness for high-quality image generation. Text-to-
image (text2img) frameworks such as Palette [6] and One-Step models [7] can translate semantic
cues into detailed visuals. Textual Inversion (TI) [8l |9] enables domain personalization and fine-
grained control, while parameter-efficient strategies such as Stylelnject [10] facilitate adaptation to
specialized domains. Although text2img and other generative models have shown promising results
in general images, they often fail to adapt to the domain-specific features of medical imaging, such
as ultrasound. Hence, this leaves a gap in the utility and fidelity of such synthetic images in the
medical domain.
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In this study, we address the low fidelity of the ultrasound image generation and the critical bot-
tleneck of class imbalance in breast ultrasound imaging, particularly the underrepresentation of
malignant cases. We propose a hybrid diffusion augmentation pipeline that combines semantic con-
ditioning (via text2img generation) with structural refinement (via image-to-image synthesis). The
framework builds on Stable Diffusion v1.5, enhanced with Low-Rank Adaptation (LoRA) and T to
capture ultrasound-specific characteristics, while img2img refinement improves visual fidelity. By
generating high-quality, class-consistent synthetic images for minority classes, we enrich training
datasets and improve downstream classification performance. Evaluation includes Fréchet Incep-
tion Distance (FID) for realism and standard metrics such as accuracy, F1-score, and AUC-ROC for
diagnostic utility.

In summary, we present a hybrid diffusion—based augmentation framework for breast ultrasound
that improves the fidelity of synthetic images and mitigates class imbalance. Our contributions are
as follows:

* A hybrid diffusion model framework integrating text2img generation with image-to-image
refinement for realistic ultrasound synthesis.

* Domain-adaptive fine-tuning with LoRA and Textual Inversion to capture ultrasound-
specific noise and texture patterns.

» Comprehensive evaluation on the BUSI dataset, including ablation studies isolating the
contributions of each component.

2 Related Work

Ultrasound imaging is non-invasive, and cost-effective nature, but it suffers from speckle noise,
acoustic clutter, and low signal-to-noise ratios. Diffusion models have recently been explored for
enhancement and denoising in this context. Stevens et al. [[11] introduced a diffusion-based dehaz-
ing strategy for echocardiography, mitigating acoustic clutter while preserving weak tissue echoes.
Zhang et al. [12]] combined adaptive beamforming with DDPMs for despeckling, effectively main-
taining anatomical fidelity. Stojanovski et al. [13] employed semantic label maps to synthesize
echocardiograms that improved segmentation performance, while Asgariandehkordi et al. [14] pro-
posed a plane-wave denoising method that generalized well from simulation to phantom and in vivo
data. Collectively, these works highlight the ability of diffusion models to address ultrasound’s
inherent noise and improve image interpretability.

Recent efforts apply diffusion models directly to breast ultrasound data for augmentation and diag-
nosis. Freiche et al. [[L5]] explored Stable Diffusion for text2img augmentation, while Oh et al. [[16]]
applied diffusion probabilistic models on the BUSI dataset. Lai et al. [[17] introduced a lesion-
focused diffusion framework to amplify tumor visibility. Kazerouni et al. [[18] further contextual-
ized these studies in a broader survey, noting ultrasound as a growing application area for generative
diffusion approaches.

Beyond generative methods, deep learning has long been a cornerstone in breast ultrasound analysis.
Shilaskar et al. and others [19] proposed hybrid frameworks coupling VGG-16 for classification
with UNet for segmentation, achieving 90% classification and 98% segmentation accuracy. These
results demonstrate the advantage of task-specific CNNs within unified diagnostic pipelines and
emphasize the complementary strengths of classification and segmentation in improving computer-
aided diagnosis.

Overall, the prior work illustrates two converging directions: (i) diffusion models enhance or syn-
thesize ultrasound data to address noise and class imbalance, and (ii) discriminative deep learning
models perform well for classification and segmentation. The synergy of these paradigms moti-
vates hybrid strategies, where diffusion-based generation augments traditional classifiers, advancing
robust and generalizable models for breast cancer diagnosis.

3 Hybrid Diffusion Model

The overall workflow of the proposed method is illustrated in Figure [T} which consists of three
stages: preprocessing, model fine-tuning, and image synthesis.
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Figure 1: Overview of the proposed hybrid diffusion-based image generation framework for breast
ultrasound augmentation. The pipeline consists of three main stages. (i) Preprocessing stage con-
verts the labels into descriptive prompts. (ii) LoRA finetuning and Token Generation adapts the
Stable Diffusion v1.5 using LoRA (for image—prompt alignment) and Textual Inversion (for learn-
ing domain-specific ultrasound tokens). (iii) In the final workflow, the prompts and learned token
<ultrasound> are passed through the finetuned Text2Img model to generate synthetic images,
which are further refined using an Img2Img stage with LoRA weights, yielding the final synthetic
ultrasound images.

Prompts

Token
Embedding

<ultrasound>

3.1 Preprocessing

We incorporated both textual and structural priors to prepare the dataset. To guide the generation
process, we used class-specific prompts derived from BUSI labels (normal, benign, malignant),
mapped to radiology-style descriptions such as “ultrasound image of a benign (or malignant) breast
lesion.” For the normal class, it is: “ultrasound image of a benign breast tissue.” These prompts
provided semantic guidance, ensuring the diffusion model generated images aligned with diagnostic
categories while preserving medical plausibility.

3.2 Model Fine-Tuning

We utilized Low-Rank Adaptation (LoRA) to fine-tune the attention mechanisms of the Stable Diffu-
sion model efficiently. LoORA enabled parameter-efficient adaptation by injecting trainable low-rank
matrices into frozen attention layers. This strategy facilitated the learning of domain-specific fea-
tures, such as characteristic textures and lesion appearances, while avoiding full model retraining.
The fine-tuning was performed using paired prompts and ultrasound images, allowing the model to
map textual semantics to appropriate visual features.

In order to improve the model’s capacity to interpret ultrasound-specific prompts, we introduced a
custom token <ultrasound> through TI. This technique optimized a new embedding that encap-
sulated domain-specific patterns like speckle noise and soft tissue textures based on a curated set
of representative BUSI images. The learned embedding was appended to all prompts during both
training and inference, enhancing semantic alignment and promoting consistent generation across
diagnostic categories.

3.3 Image Synthesis

Following the initial synthesis, we applied Stable Diffusion’s img2img pipeline to enhance the real-
ism of the generated outputs. This refinement process was performed with a low denoising strength
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of 0.3, which maintained the structural integrity while improving visual quality. It effectively sharp-
ened textures and reinforced ultrasound-specific attributes like speckle noise and soft tissue gradi-
ents, which are essential for producing clinically plausible synthetic images suitable for training
downstream classification models.

4 Experimental Results

4.1 Dataset and Evaluation Metrics

We use the Breast Ultrasound Images (BUSI) dataset, which contains 780 grayscale ultrasound
scans from female patients, categorized as normal (133), benign (437), or malignant (210). For
benign and malignant images, the dataset also provides binary lesion segmentation masks. Prior
to training, all images were resized to a uniform resolution and normalized to ensure consistency
across acquisitions and reduce preprocessing artifacts. The original split (80-20) consisted of 623
training images (349 benign, 168 malignant, 106 normal) and 157 validation images (88 benign,
42 malignant, 27 normal). To mitigate class imbalance, we padded the training set with 1 benign,
182 malignant, and 244 normal synthetic images generated by our hybrid diffusion pipeline. The
final training set thus contained 1,050 images evenly distributed across the three classes, while the
validation set remained unchanged.

To evaluate classification performance, we used accuracy, Fl-score, AUC-ROC, PPV, and recall.
For image quality, we used the Fréchet Inception Distance (FID), which quantifies the similarity
between real and synthetic image distributions. FID was computed using Inception v3 features on
780 real and synthetic images.

4.2 Training Protocol and Hardware

ResNet18 classification model were trained using the Adam optimizer with a learning rate of 0.0001,
batch size of 16, and for 30 epochs. Cross-entropy loss was used for optimization. Standard data
augmentations, such as horizontal flips and normalization, were applied to improve generalization.
Random seeds were fixed to ensure reproducibility.

All experiments were conducted on a workstation equipped with a 12th Gen Intel Core 15-12500
processor (6 cores, 12 threads, base clock 3.0 GHz, turbo up to 4.6 GHz), 128 GB of RAM, and
an NVIDIA RTX A4000 GPU with 16 GB VRAM. The system ran on a 64-bit Ubuntu Linux
environment. Model training and diffusion-based image generation were implemented in PyTorch,
utilizing the Hugging Face diffusers library.

Table 1: Ablation study showing the impact of each component in the hybrid diffusion framework
on classification and image quality metrics.

Components Accuracy T F1-Scoref AUC-ROC1t PPV1T FID|
Baseline (Real) 0.904 0.887 0.979 0.890 -

Real + SD1.5 0.917 0.905 0.986 0901 4597
Real + SD1.5 + img2img 0.898 0.879 0.978 0.878  38.34
Real + SD1.5 + TI 0.924 0.912 0.980 0.906 45.66
Real + SD1.5 + TI + img2img 0.905 0.884 0.975 0.89  37.18

4.3 Ablation Study

Table[T)isolates the effect of LoRA finetuning, Textual Inversion (TI), and Img2Img refinement. Us-
ing SD1.5 text2img augmentation on top of real data improves the baseline to Acc 0.917, F1 0.905,
and yields the highest AUC-ROC (0.986) with FID 45.97. Adding TI delivers the best downstream
classification with Acc 0.924, F1 0.912, and PPV 0.906, which indicates that the learned domain to-
ken improves class-aware synthesis (FID 45.66). Img2Img consistently lowers FID (from 45.97 to
38.34 without TT and from 45.66 to 37.18 with TI), but modestly reduces classifier accuracy (0.905)
and F1 (0.884). Across all settings AUC-ROC remains > 0.975, suggesting stable class ranking
despite the trade-off against visual realism.
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4.4 Qualitative Analysis

SD1.5
+ Img2img

SD1.5+TIl
+ Img2img

SD15+Tl

Malignant Benign

Normal

Figure 2: Comparison of real ultrasound images and synthetic variants generated by different Stable
Diffusion 1.5-based approaches. Rows correspond to breast lesion categories: benign (top), ma-
lignant (middle), and normal (bottom). Columns show (from left to right): original real images,
baseline SD1.5 generations, SD1.5 with img2img refinement, SD1.5 with TI, and SD1.5 combined
with TI and img2img. The img2img refinement increases the fidelity by improving ultrasound-
specific artifacts.

To assess the visual quality and realism of the generated images, we presented a sample grid in
Figure[2] displaying synthetic ultrasound images across different diagnostic categories. The images
demonstrate that the model captures critical ultrasound features such as lesion boundaries, internal
textures, and background anatomy. Notably, malignant lesions display irregular, heterogeneous tex-
ture, while benign ones exhibit smoother contours with homogeneous texture. Normal cases show
no lesions and variable breast tissues. In addition, img2img refinement helps preserve fine-grained
tissue patterns relative to baseline SD1.5, while textual inversion enhances semantic consistency
with the intended class label. Some minor artifacts and oversmoothing remain, but overall, the
results suggest the synthetic images retain clinically interpretable traits. This visual validation com-
plements the quantitative improvements, highlighting both the strengths and remaining challenges
in generating diagnostically meaningful content.

5 Conclusion

We presented a hybrid diffusion—based augmentation framework for breast ultrasound that integrates
prompt-driven text-to-img synthesis with LoRA finetuning and Textual Inversion, plus an img2img
refinement stage. Applied to BUSI, our method balanced the training set (350 images per class)
and improved downstream classification over a real-only baseline. The refinement stage further
improved visual quality, preserving ultrasound characteristics relevant for diagnosis. Although after
refinement, it achieved the lowest FID, it also reveals a realism—utility trade-off.

Future work will focus on closing this gap via task-aware generation: conditioning on lesion masks
or structure-preserving priors, jointly optimizing with a diagnostic encoder, and weighting synthetic
samples by classifier confidence. We will also extend validation to multi-institutional, multimodal
cohorts that include clinical metadata. Finally, we will assess generalizability to other modalities,
including MRI, CT, and X-ray, to evaluate robustness and clinical utility.
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