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Abstract

We propose a hybrid diffusion-based augmentation framework to overcome the1

critical challenge of limited and imbalanced data in medical ultrasound AI. Un-2

like conventional augmentations, our approach captures ultrasound-specific fea-3

tures such as speckle noise by combining text-to-image generation with image-4

to-image (img2img) refinement and fine-tuning using LoRA and textual inver-5

sion (TI). For the Breast Ultrasound (BUSI) dataset, our method generated re-6

alistic, class-consistent images that improved classification accuracy (90.4% →7

91.7%), F1-score (88.7% → 90.4%), and achieved an AUC of 0.985. Incorpo-8

rating img2img refinement further reduced the Fréchet Inception Distance (FID)9

to 33.29, enhancing visual fidelity without sacrificing performance. These results10

demonstrate that hybrid diffusion augmentation produces high-fidelity ultrasound11

images and strengthens downstream model reliability, offering a scalable solution12

to one of the most persistent barriers in clinical imaging AI.13

1 Introduction14

Medical imaging, particularly ultrasound, is a cornerstone of early disease diagnosis [1] due to its af-15

fordability, non-invasive nature, and real-time imaging capabilities [2]. Yet, applying deep learning16

for automated ultrasound interpretation remains challenging. Advances in artificial intelligence (AI)17

and machine learning (ML) have improved breast cancer diagnosis, enabling automated detection18

and classification of tumor subtypes such as invasive ductal carcinoma (IDC) and ductal carcinoma19

in situ (DCIS) [3]. However, progress is consistently hindered by the limited availability and imbal-20

ance of annotated ultrasound datasets, which restricts model robustness and generalizability across21

disease categories.22

Traditional augmentation techniques such as flipping, rotations, and intensity variations provide only23

superficial diversity in medical imaging [4, 5]. Synthetic data generation methods, including Gener-24

ative Adversarial Networks (GANs), have been explored but often fail to reproduce the speckle noise25

and fine-grained tissue textures that are diagnostically essential in ultrasound. Diffusion models of-26

fer a promising alternative, with greater stability, controllability, and fidelity in generating realistic27

samples.28

Recent advances have demonstrated their effectiveness for high-quality image generation. Text-to-29

image (text2img) frameworks such as Palette [6] and One-Step models [7] can translate semantic30

cues into detailed visuals. Textual Inversion (TI) [8, 9] enables domain personalization and fine-31

grained control, while parameter-efficient strategies such as StyleInject [10] facilitate adaptation to32

specialized domains. Although text2img and other generative models have shown promising results33

in general images, they often fail to adapt to the domain-specific features of medical imaging, such34

as ultrasound. Hence, this leaves a gap in the utility and fidelity of such synthetic images in the35

medical domain.36
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In this study, we address the low fidelity of the ultrasound image generation and the critical bot-37

tleneck of class imbalance in breast ultrasound imaging, particularly the underrepresentation of38

malignant cases. We propose a hybrid diffusion augmentation pipeline that combines semantic con-39

ditioning (via text2img generation) with structural refinement (via image-to-image synthesis). The40

framework builds on Stable Diffusion v1.5, enhanced with Low-Rank Adaptation (LoRA) and TI to41

capture ultrasound-specific characteristics, while img2img refinement improves visual fidelity. By42

generating high-quality, class-consistent synthetic images for minority classes, we enrich training43

datasets and improve downstream classification performance. Evaluation includes Fréchet Incep-44

tion Distance (FID) for realism and standard metrics such as accuracy, F1-score, and AUC-ROC for45

diagnostic utility.46

In summary, we present a hybrid diffusion–based augmentation framework for breast ultrasound47

that improves the fidelity of synthetic images and mitigates class imbalance. Our contributions are48

as follows:49

• A hybrid diffusion model framework integrating text2img generation with image-to-image50

refinement for realistic ultrasound synthesis.51

• Domain-adaptive fine-tuning with LoRA and Textual Inversion to capture ultrasound-52

specific noise and texture patterns.53

• Comprehensive evaluation on the BUSI dataset, including ablation studies isolating the54

contributions of each component.55

2 Related Work56

Ultrasound imaging is non-invasive, and cost-effective nature, but it suffers from speckle noise,57

acoustic clutter, and low signal-to-noise ratios. Diffusion models have recently been explored for58

enhancement and denoising in this context. Stevens et al. [11] introduced a diffusion-based dehaz-59

ing strategy for echocardiography, mitigating acoustic clutter while preserving weak tissue echoes.60

Zhang et al. [12] combined adaptive beamforming with DDPMs for despeckling, effectively main-61

taining anatomical fidelity. Stojanovski et al. [13] employed semantic label maps to synthesize62

echocardiograms that improved segmentation performance, while Asgariandehkordi et al. [14] pro-63

posed a plane-wave denoising method that generalized well from simulation to phantom and in vivo64

data. Collectively, these works highlight the ability of diffusion models to address ultrasound’s65

inherent noise and improve image interpretability.66

Recent efforts apply diffusion models directly to breast ultrasound data for augmentation and diag-67

nosis. Freiche et al. [15] explored Stable Diffusion for text2img augmentation, while Oh et al. [16]68

applied diffusion probabilistic models on the BUSI dataset. Lai et al. [17] introduced a lesion-69

focused diffusion framework to amplify tumor visibility. Kazerouni et al. [18] further contextual-70

ized these studies in a broader survey, noting ultrasound as a growing application area for generative71

diffusion approaches.72

Beyond generative methods, deep learning has long been a cornerstone in breast ultrasound analysis.73

Shilaskar et al. and others [19] proposed hybrid frameworks coupling VGG-16 for classification74

with UNet for segmentation, achieving 90% classification and 98% segmentation accuracy. These75

results demonstrate the advantage of task-specific CNNs within unified diagnostic pipelines and76

emphasize the complementary strengths of classification and segmentation in improving computer-77

aided diagnosis.78

Overall, the prior work illustrates two converging directions: (i) diffusion models enhance or syn-79

thesize ultrasound data to address noise and class imbalance, and (ii) discriminative deep learning80

models perform well for classification and segmentation. The synergy of these paradigms moti-81

vates hybrid strategies, where diffusion-based generation augments traditional classifiers, advancing82

robust and generalizable models for breast cancer diagnosis.83

3 Hybrid Diffusion Model84

The overall workflow of the proposed method is illustrated in Figure 1, which consists of three85

stages: preprocessing, model fine-tuning, and image synthesis.86
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Figure 1: Overview of the proposed hybrid diffusion-based image generation framework for breast
ultrasound augmentation. The pipeline consists of three main stages. (i) Preprocessing stage con-
verts the labels into descriptive prompts. (ii) LoRA finetuning and Token Generation adapts the
Stable Diffusion v1.5 using LoRA (for image–prompt alignment) and Textual Inversion (for learn-
ing domain-specific ultrasound tokens). (iii) In the final workflow, the prompts and learned token
<ultrasound> are passed through the finetuned Text2Img model to generate synthetic images,
which are further refined using an Img2Img stage with LoRA weights, yielding the final synthetic
ultrasound images.

3.1 Preprocessing87

We incorporated both textual and structural priors to prepare the dataset. To guide the generation88

process, we used class-specific prompts derived from BUSI labels (normal, benign, malignant),89

mapped to radiology-style descriptions such as “ultrasound image of a benign (or malignant) breast90

lesion.” For the normal class, it is: “ultrasound image of a benign breast tissue.” These prompts91

provided semantic guidance, ensuring the diffusion model generated images aligned with diagnostic92

categories while preserving medical plausibility.93

3.2 Model Fine-Tuning94

We utilized Low-Rank Adaptation (LoRA) to fine-tune the attention mechanisms of the Stable Diffu-95

sion model efficiently. LoRA enabled parameter-efficient adaptation by injecting trainable low-rank96

matrices into frozen attention layers. This strategy facilitated the learning of domain-specific fea-97

tures, such as characteristic textures and lesion appearances, while avoiding full model retraining.98

The fine-tuning was performed using paired prompts and ultrasound images, allowing the model to99

map textual semantics to appropriate visual features.100

In order to improve the model’s capacity to interpret ultrasound-specific prompts, we introduced a101

custom token <ultrasound> through TI. This technique optimized a new embedding that encap-102

sulated domain-specific patterns like speckle noise and soft tissue textures based on a curated set103

of representative BUSI images. The learned embedding was appended to all prompts during both104

training and inference, enhancing semantic alignment and promoting consistent generation across105

diagnostic categories.106

3.3 Image Synthesis107

Following the initial synthesis, we applied Stable Diffusion’s img2img pipeline to enhance the real-108

ism of the generated outputs. This refinement process was performed with a low denoising strength109
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of 0.3, which maintained the structural integrity while improving visual quality. It effectively sharp-110

ened textures and reinforced ultrasound-specific attributes like speckle noise and soft tissue gradi-111

ents, which are essential for producing clinically plausible synthetic images suitable for training112

downstream classification models.113

4 Experimental Results114

4.1 Dataset and Evaluation Metrics115

We use the Breast Ultrasound Images (BUSI) dataset, which contains 780 grayscale ultrasound116

scans from female patients, categorized as normal (133), benign (437), or malignant (210). For117

benign and malignant images, the dataset also provides binary lesion segmentation masks. Prior118

to training, all images were resized to a uniform resolution and normalized to ensure consistency119

across acquisitions and reduce preprocessing artifacts. The original split (80-20) consisted of 623120

training images (349 benign, 168 malignant, 106 normal) and 157 validation images (88 benign,121

42 malignant, 27 normal). To mitigate class imbalance, we padded the training set with 1 benign,122

182 malignant, and 244 normal synthetic images generated by our hybrid diffusion pipeline. The123

final training set thus contained 1,050 images evenly distributed across the three classes, while the124

validation set remained unchanged.125

To evaluate classification performance, we used accuracy, F1-score, AUC-ROC, PPV, and recall.126

For image quality, we used the Fréchet Inception Distance (FID), which quantifies the similarity127

between real and synthetic image distributions. FID was computed using Inception v3 features on128

780 real and synthetic images.129

4.2 Training Protocol and Hardware130

ResNet18 classification model were trained using the Adam optimizer with a learning rate of 0.0001,131

batch size of 16, and for 30 epochs. Cross-entropy loss was used for optimization. Standard data132

augmentations, such as horizontal flips and normalization, were applied to improve generalization.133

Random seeds were fixed to ensure reproducibility.134

All experiments were conducted on a workstation equipped with a 12th Gen Intel Core i5-12500135

processor (6 cores, 12 threads, base clock 3.0 GHz, turbo up to 4.6 GHz), 128 GB of RAM, and136

an NVIDIA RTX A4000 GPU with 16 GB VRAM. The system ran on a 64-bit Ubuntu Linux137

environment. Model training and diffusion-based image generation were implemented in PyTorch,138

utilizing the Hugging Face diffusers library.139

Table 1: Ablation study showing the impact of each component in the hybrid diffusion framework
on classification and image quality metrics.

Components Accuracy ↑ F1-Score ↑ AUC-ROC ↑ PPV ↑ FID ↓
Baseline (Real) 0.904 0.887 0.979 0.890 -
Real + SD1.5 0.917 0.905 0.986 0.901 45.97
Real + SD1.5 + img2img 0.898 0.879 0.978 0.878 38.34
Real + SD1.5 + TI 0.924 0.912 0.980 0.906 45.66
Real + SD1.5 + TI + img2img 0.905 0.884 0.975 0.89 37.18

4.3 Ablation Study140

Table 1 isolates the effect of LoRA finetuning, Textual Inversion (TI), and Img2Img refinement. Us-141

ing SD1.5 text2img augmentation on top of real data improves the baseline to Acc 0.917, F1 0.905,142

and yields the highest AUC-ROC (0.986) with FID 45.97. Adding TI delivers the best downstream143

classification with Acc 0.924, F1 0.912, and PPV 0.906, which indicates that the learned domain to-144

ken improves class-aware synthesis (FID 45.66). Img2Img consistently lowers FID (from 45.97 to145

38.34 without TI and from 45.66 to 37.18 with TI), but modestly reduces classifier accuracy (0.905)146

and F1 (0.884). Across all settings AUC-ROC remains ≥ 0.975, suggesting stable class ranking147

despite the trade-off against visual realism.148
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4.4 Qualitative Analysis149
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Figure 2: Comparison of real ultrasound images and synthetic variants generated by different Stable
Diffusion 1.5–based approaches. Rows correspond to breast lesion categories: benign (top), ma-
lignant (middle), and normal (bottom). Columns show (from left to right): original real images,
baseline SD1.5 generations, SD1.5 with img2img refinement, SD1.5 with TI, and SD1.5 combined
with TI and img2img. The img2img refinement increases the fidelity by improving ultrasound-
specific artifacts.

To assess the visual quality and realism of the generated images, we presented a sample grid in150

Figure 2, displaying synthetic ultrasound images across different diagnostic categories. The images151

demonstrate that the model captures critical ultrasound features such as lesion boundaries, internal152

textures, and background anatomy. Notably, malignant lesions display irregular, heterogeneous tex-153

ture, while benign ones exhibit smoother contours with homogeneous texture. Normal cases show154

no lesions and variable breast tissues. In addition, img2img refinement helps preserve fine-grained155

tissue patterns relative to baseline SD1.5, while textual inversion enhances semantic consistency156

with the intended class label. Some minor artifacts and oversmoothing remain, but overall, the157

results suggest the synthetic images retain clinically interpretable traits. This visual validation com-158

plements the quantitative improvements, highlighting both the strengths and remaining challenges159

in generating diagnostically meaningful content.160

5 Conclusion161

We presented a hybrid diffusion–based augmentation framework for breast ultrasound that integrates162

prompt-driven text-to-img synthesis with LoRA finetuning and Textual Inversion, plus an img2img163

refinement stage. Applied to BUSI, our method balanced the training set (350 images per class)164

and improved downstream classification over a real-only baseline. The refinement stage further165

improved visual quality, preserving ultrasound characteristics relevant for diagnosis. Although after166

refinement, it achieved the lowest FID, it also reveals a realism–utility trade-off.167

Future work will focus on closing this gap via task-aware generation: conditioning on lesion masks168

or structure-preserving priors, jointly optimizing with a diagnostic encoder, and weighting synthetic169

samples by classifier confidence. We will also extend validation to multi-institutional, multimodal170

cohorts that include clinical metadata. Finally, we will assess generalizability to other modalities,171

including MRI, CT, and X-ray, to evaluate robustness and clinical utility.172
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