Under review as a conference paper at ICLR 2025

Sketch-Plan-Generalize: LEARNING INDUCTIVE REPRE-
SENTATIONS FOR GROUNDED SPATIAL CONCEPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Our goal is to enable embodied agents to learn inductive representations for
grounded spatial concepts, e.g., learning staircase as an inductive composition
of towers of increasing height. Given few human demonstrations, we seek a
learning architecture that infers a succinct inductive program representation that
explains the observed instances. The approach should generalize to learning of
novel structures of different size or complexity expressed as a hierarchical compo-
sition of previously learned concepts. Existing approaches that use code generation
capabilities of pre-trained large (visual) language models as well as purely neural
models show poor generalization to a-priori unseen complex concepts. Our key
insight is to factor inductive concept learning as: (i) Sketch: detecting and inferring
a coarse signature of a new concept (ii) Plan: performing MCTS search over
grounded action sequences (iii) Generalize: abstracting out grounded plans as
inductive programs. Our pipeline facilitates generalization and modular re-use
enabling continual concept learning. Our approach combines the benefits of code
generation ability of large language models (LLMs) along with grounded neural
representations, resulting in neuro-symbolic programs that show stronger inductive
generalization on the task of constructing complex structures vis-4-vis LLM-only
and purely neural approaches. Further, we demonstrate reasoning and planning
capabilities with learned concepts for embodied instruction following.

1 INTRODUCTION

The ability to learn inductive representation for novel grounded concepts is one of the hallmarks
of human intelligence (Tenenbaum et al.| [2011). Humans are highly data efficient — observing a
few instances of fowers of a certain heights, we can generalize to constructing fowers of any height.
Further, we interpret increasingly complex concepts as hierarchical composition over simpler ones,
e.g., a fower as a sequence of blocks placed on top of each other, or a staircase composed of towers of
increasing height. This paper considers the problem of learning a program representation, from a few
demonstrations, that models the inductive realization of grounded spatial concepts. Learning of such
concepts is a challenging task due to an expansive space of programs and the need to reason about
their physical plausibility. Further, the representation must support inductive generalization over
learned concepts as well as express complex hierarchical concepts via modular re-use of concepts
learnt previously.

Prior efforts such as|Liang et al.[(2023) uses a LLM (Large Language Model) to generate control
program for a given task specification but fail to generalize to complex spatial concepts which are
difficult to tokenize. Extension of this to VLMs (Vision Language Models), |Achiam et al.|(2023)),
also fail to generalize when presented with linguistically novel concepts, due to over reliance on
prior knowledge and their inability to effectively learn novel concepts from given demonstrations.
On the other hand, neural approaches such as [Liu et al.|(2023), learn from given demonstrations but
generalize poorly due to their inability to (a) explicitly model symbolic concept of induction and
(b) modularize as well as re-use previously acquired concepts. Approaches such as|Li et al.|(2019)
train RL-based policies to attain spatial assembly by encoding an inductive spatial prior using GNNs
within the policy architecture. However, generalization is still limited and assumes an elicitation
of the goal as per object positions, resulting in lack of ability to take in goal description such as
“construct a tower of size three”. In essence, we attribute poor generalization of such approaches to an
implicit entangling of the following objectives: (i) postulating a high-level program for new concepts,

Under review as a conference paper at ICLR 2025

Training Demonstrations Gen. over visual attributes Gen. over size Composition Gen.

Construct a row of size 5 using Construct a pyramid of height 3
green die using cyan die

Construct a row of size 3 using
ellow cubes

Construct a row of size 3 using
cyan cubes

2R EA @A A S

|~ Constructa tower of height 3using | Construct a tower of height 3using | Construct a tower of height 5 using | Construct a staircase of pink cubes |
white die green cubes cyan die having 4 steps

Figure 1: Problem Overview. Our goal is to enable an embodied agent to learn grounded and generalizeable
representations for spatial abstractions possessing a notion of induction (e.g., constructing a tower, row or their
combinations such as staircases, boundary etc.). Learning is enabled by querying prior knowledge from large pre-
trained models, performing search in the action space guided by observations of a human demonstration for few
examples and finally generalizing as compact programs. (Left) A human demonstrates the construction of a row
and fower of size three. (Right) The agent learns program representation that enables inductive generalization to
novel structures (varied sizes and visual attributes) and expresses complex concepts as hierarchical composition
of previously acquired ones. E.g., learning a fower as a sequence of blocks placed one on top of another and a
pyramid as rows of decreasing size.

(ii) evaluating plausibility of grounded plans to align with human demonstration of concepts to be
learned and (iii) abstracting out a grounded program to facilitate inductive generalization and modular
re-use in a continual manner.

This paper introduces an approach, termed SPG, that factorizes the concept learning task as: (a) Sketch:
Given a language-annotated demonstration of a novel concept, an LLM is used to postulate a function
signature. (b) Plan: Refinement of program sketches via MCTS search, rapidly evaluating actions
sequences guided by a reward associated with constructing a concept. The search is accelerated by
training a neural action predictor that uses the given demonstrations. (c) Generalize: Leveraging the
code generation capability of an LLM to distill grounded plans into a program that is inductively
generalize-able. This results in a continually evolving library of concepts which can be used
to hierarchically learn complex concepts in future. The modular architecture enables continual
learning by providing the ability to decide whether the new concept encountered either as a symbolic
composition of existing concepts, or, a neural embedding trained via gradient update. Our experiments
demonstrate accurate learning of simple and complex concepts from few demonstrations for a range
of spatial structures. Further, our approach shows inductive generalization in out-of-distribution
settings, significantly improving over the baselines. We also present deeper insights around the
efficiency gains obtained by combining symbolic MCTS with neural action predictor. Finally, we
show how learned concepts can be grounded in the visual input, enabling a robot to follow natural
language instructions referring to a-priori unseen spatial configurations.

2 RELATED WORKS

Concept Learning: The problem of acquiring higher-order programmatic constructs is often modeled
as Bayesian inference over a latent symbol space given observed instances. Seminal works have
demonstrated efficient inference over latent generative programs to express hand-written digits (Lake]

2015)), object arrangements 2018)), motion plans (Mao et all,[2019), goal-directed
policies (Silver et al. [2019) or compressed/refactored code (Grand et al., 2023} [Ellis et al.| 2021).

These works are focused on learning abstract programs without considering their grounding in the
3D world or the process of constructing them (e.g., via an embodied agent performing stacking).
In contrast, this paper focus on learning a representation of specific class of higher-order spatially-
grounded concepts, namely those possessing a notion of induction resulting in the construction of a
structure. While prior efforts have leveraged program synthesis/search methods in learning concepts,
we expose such a search to the assessing the physical construction plausibility thereby learning
physically grounded concepts.

Under review as a conference paper at ICLR 2025

Learning-to-plan Methods: Our work is complementary to efforts that learn symbolic constructs
for efficient planning. Works such as|Silver et al.| (2023}2024); Liu et al.| (2024)), infer state-action
abstractions for planning by querying large pre-trained models or by optimizing a goal attainability
objective. This paper, instead, focuses on learning a representation for complex spatial assemblies
as inductive programs leading to the ability to infer complex goal specifications which can then be
combined with aforementioned works for synthesize efficient plans to realize complex assemblies.
Works such as|Li et al.|(2019) learn to construct structures by encoding relational knowledge via
graph neural network. However, this effort suffers from poor generalization to unseen examples, (e.g.,
tower of larger size) and do not possess a mechanism to re-use previously acquired concepts. Works
such as Wang et al.|(2023afd) shows lifelong learning of skills by learning to plan high-level tasks
through composition of simple skills for simulated agents. Others (Wan et al., | 2023}; [Parakh et al.,
2023)) initiate new skill acquisition upon detecting task failure, building a library of skills over time.
However, they do not model deep inductive use of learned concepts and initiate skill acquisition only
upon failure as opposed to learning continually even from goal-reaching demonstrations.

Robot Instruction Following: Instruction following involves grounding symbolic constructs ex-
pressed in language with aspects of the state-action space such as object assemblies (Paul et al.|[2018];
Collins et al., 2024} [Lachmy et al., [2022), spatial relations (Tellex et al.,|2011; |Kim et al.; [2024),
reward functions (Boularias et al.l|2015)), or motion constraints (Howard et al.,[2014)). These works
assume the presence of grounded representation for symbolic concepts and only learn associations
between language and concepts. In contrast our work jointly learns higher-order concepts composed
of simpler concepts along with their grounding in the robot’s state and action space. Others (Singh
et al.| 2022; [Wang et al.,2023bj |Ahn et al.| [2022; Liang et al., 2023)) leverage prior-knowledge em-
bodied in large vision-language models to directly translate high-level tasks to robot control programs.
Our experiments (reported subsequently) demonstrate their limitation in outputting programs for
structure assembly-type tasks that require long-range (inductive) spatial reasoning and consideration
of physical plausability of construction. Our approach addresses this problem by coupling abstract
task knowledge from pre-trained models with physical reasoning in the space of executable plans.

3 PRELIMINARIES AND PROBLEM SETTING

We consider an embodied agent that uses a visual and depth sensor to observe its environment and can
grasp and release objects at specified poses. We represent the robot’s domain as a goal-conditioned
MDP < S, A,T,g9,R,v > where S is the state space, A is the action space, 7T is the transition
function, g is the goal, R is the reward model and + is the discount factor. The agent’s objective is to
learn a policy that generates a sequence of actions from an initial state sq to achieve the goal g in
response to an instruction A specifying the intended goal from a human. We assume that the agent
possesses a model of semantic relations (e.g., left(), right() etc.) as well as semantic actions such
as moving an object by grasping and releasing at a target location. Such modular and composable
notions can be acquired from demonstrations via approaches outlined in|Kalithasan et al.|(2023); Mao
et al|(2019;2022)). Such notions populate a library of concepts £ available as grounded executable
function calls. Following recent efforts (Liang et al., 2023} [Huang et al.| 2022 |Ahn et al.| [2022;
Singh et al.l 2022) in representing robot control directly as executable programs, we represent action
sequence corresponding to a plan as a program consisting of function calls to executable actions and
grounded spatial reasoning.

Our goal is to enable a robot to interpret and learn the concepts in instructions such as “construct a
tower with red blocks of height five". Specifically, we aim to learn spatial constructs like a tower that
requires sequential actions that repeatedly place a block on top of a previously constructed assembly,
a process akin to induction. Given a few demonstrations of constructing a spatial assembly, D, each
consisting of natural language description A (“construct a tower of red blocks of size five") and a
sequence of key frame states {51, - - - , S, } associated with the construction process, we seek to learn
a program that models the inductive nature of the concept of tower. This learned representation should
enable the agent to generalize inductively to new instructions, such as "construct a tower of blue
blocks of height ten." Moreover, the learned concepts should facilitate the learning of more complex
structures, which are challenging to represent using primitive actions alone. For example, the concept
of a "tower" should assist in learning a "staircase," which can be represented as a sequence of towers
of increasing heights.

Under review as a conference paper at ICLR 2025

4 REPRESENTING INDUCTIVE SPATIAL CONCEPTS

We formalize the notion of inductive spatial concepts and formulate the learning objective.

Inductive Spatial Concepts: A spatial structure is an inductive concept if its construction can be
described recursively using a similar structure of smaller size or as a composition of other simpler
structures. Formally, let C, - - - , C|z represent the concepts in the concept library £. We define a
partial order on £ where a concept C' is "dependent on" C'if C' is a substructure of C'. For example, a
staircase is dependent on a tower, and X (cross) is dependent on diagonals, and so on. This partial
order is referred to as structural complexity, where a concept C' is more structurally complex than C' if
C'is dependent on C'. Without loss of generality, assume that C'y, - - - , C| | are written in topological
order as per their structural complexity. Now, the construction of an inductive spatial concept Cx of
size n at a position p, denoted by the function h(Cy, n, p), is defined recursively as:

L(Ck) L'(Cy)
h(Ck,n,p) = PM(Cryn = 1,pos(.)) o [] h(Chrsize(),pos(.))o [] mh(pos(.)) (1)

=1 =1

Induction (I)

Composition (C) Base (B)

where, A € {0,1}, ¥’ < k,0 < L(Cy), L' (Ck) < o(|£]), pos(.) = pos(Ck,1,n,p) and size(.) =
size(Cy, [, n) are functions that predict the size and position of the structure to be constructed.

1. Induction term: The first term h*(Cj,n — 1,pos(.)) is referred to as the induction term
because it represents the possibility of constructing CY, of size n using C}, of size n — 1.
Here,) is an integer exponent, either O or 1, where A = 0 indicates the absence of the
induction term, and A = 1 indicates its presence.

L(Cy)
2. Composition term: The second term [] h(C’k;, size(.),pos(.)), called the composition
=1 ’

term, allows us to express the construction of C}, as a composition of previously known
concepts in the library. The number of required compositions depends on the concept Cj,
and the size of the library L.
L' (Cy
3. Base term: The third term H Mg (pos()) defines the base case where the construction

of concept C, may include L’ number of primitive actions. For example the construction
of a tower of size n can be written as a construction of a tower of size n — 1 followed by a
primitive action of moving a block on top.

Learning Objective: The functional space of inductive concepts (h) leads to a hypothesis space H of
associated neuro-symbolic programs. Each goal-reaching demonstration corresponds to a particular
instantiation of a given inductive concept, i.e. h(Cy,n,p), where the p comes from the sequence of
frames, and n, Cj, comes from A. We aim to learn a generic representation H = h(Cy,-,-) € H
for the given concept, which is general for all n and p. Given (few) demonstrations of a human
constructing a spatial structure, concept learning can be formulated as the Bayesian posterior (Lake
et al., |2015; Shah et al., [2018; |Silver et al., 2019), Py (H|A, S1..54) o P(S1..S4|A, H) - P(H|A).
Here, the likelihood term associates a candidate program, and the prior term regularizes the program
space. The maximum a-posteriori estimate, representing the learnt program, is obtained by optimizing
the following objective:

H* = arg Ir{né% [Loss({51..S4}, Exec(H, A, S1)) —logP(H|A)])

Since exact inference is intractable, approximate inference is performed via search in the program
space. Note that learning inductive spatial concepts given demonstration considers programs that
represent plans that attain physically grounded/feasible structures, an object we model during the
search. Additionally, we seek strong generalization from a few instances of an inductive structure to
structures with arbitrary sizes, in effect favouring programs with iterative looping constructs.

Under review as a conference paper at ICLR 2025

/7 [SKETGH! gy AR D (=L

staircase(4, Filter(magenta, legos)) — Visual Action Simulator
1 Grounder

Task Generator (GPT-4)
7 Program: def staircase(n, objects): 22

[MOVE._ H-HD/ Output H
def staircase(n:size, ObjSet:list):
for i in range(n):

tower(

f

A Construct a staircase of
size 4 using magenta legos e
— move_head('right)

-

!
Add concept staircase
!

v

Retrieve from Library(PL) 7 Library (PL)
def staircase(n:size, ObjSet:lisy): _, ~ Action
for i in range(n): simulator £
tower(i+1) [
move_head('right) \
b N

Figure 2: Method Overview. We learn a neuro-symbolic program for inductive spatial concepts factored as
(a) Sketch (b) Plan (c) Generalize. The example above shows the progressive realization of a program for the
concept of a staircase acquired by observing a single demonstration of building a staircase of size four and its
corresponding natural language instruction, “construct a staircase of size four using magenta legos."”

5 LEARNING INDUCTIVE CONCEPTS FROM DEMONSTRATIONS

We address the problem of estimating a succinct generalized program, Eq. 2] modeling an inductive
spatial concept modeling structures whose construction is observed in a human demonstration. Direct
symbolic search in the space of programs is intractable (particularly due to looping constructs needed
for modeling induction) but can explicitly reason over previously acquired concepts. Alternatively,
neural methods attempting to predict action sequence to attain the assembly are challenged by
continual setting where concepts can increase over time building on previously learnt ones but are
resilient to noise. Our approach blends both approaches and factors the concept learning task as:

* Sketch: From the natural language instruction (A), we extract a task sketch (H) using an
LLM that provides the signature (concept name and instantiated arguments) of the concept
to be learned. When grounded in the initial scene of the demonstration, the task sketch
provides a particular instance of the concept demonstrated in the given demonstration.

* Plan: MCTS-based search using the already learnt concepts that outputs the sequence of
grounded actions, best explaining the given demonstration.

* Generalize: The grounded plan H;, and task sketch H § are provided to an LLM to obtain a
general Python program whose execution on the given scene matches the searched plan.

Formally, the factored exploration of the program space for a demonstration is performed as:
Hg < Sketch(A; 0s); Hp < Plan(S1..S4, Hg; 0p); Hf < Generalize(Hp, Hg; 0c) (3)

Here, fg, Op and ¢ are the learnable parameters (including hyperparameters) of the Sketch, Plan
and Generalize functions, respectively. The concept library £ is initialized with primitive visual
and action concepts. Upon acquiring a new inductive concept H = H*, we update our library
accordingly: £ < £U H*. An example is provided in Appendix Sec.[A.5] Fig. Pillustrates an
example of progressive prog. estimation. Next, we detail each of the three steps mentioned above.

5.1 (SKETCH) GROUNDED TASK SKETCH GENERATION

An LLM driven by in-context learning is used to get a program signature (a sketch) for a concept
from the natural language instruction. The task sketch is a tree of nested function calls that outlines
the function header (name and the parameters) of the inductive concept/program to be learned. A
detailed exposition on prompting appears in the Appendix [C.I] The task sketch thus obtained is
then grounded on the input scene using a quasi-symbolic visual grounding module akin to |[Mao
et al.[(2019); Kalithasan et al.|(2023)); Wang et al.|(2023c). This module has three key components:
(1) a visual extractor (ResNet-34 based) that extracts the features of all objects in the scene, (2) a
concept embedding module that learns disentangled representations for visual concepts like green
and dice, and (3) a quasi-symbolic executor equipped with pre-defined behaviours such as “filter”
to select/ground the objects of interest. For example, grounding the task sketch “Tower (height =3,

Under review as a conference paper at ICLR 2025

objects = filter(green, dice))” results in an instantiated function call “Tower(height = 3, objects = [1,
2, 3])” where [1, 2, 3] are the green coloured dice.

5.2 (PLAN) PHYSICAL REWARD GUIDED PLAN SEARCH

The plan search involves finding a generalizable plan that effectively explains the demonstration
S1,- -+, 8. Specifically, this involves determining the concepts, their respective grounded parameters,
and the order of composition as specified in the Equation I}

Primitive Actions. Constructing complex structures involves two steps: (1) identifying or imag-
ining the placement location of an object/structure and (2) picking and placing the object at the
imagined location. The position posg(.) for placement is determined using a head, which rep-
resents a cuboidal enclosure in 3D space. Conceptually, moving the head is akin to the robot’s
cognitive exploration of potential placements to achieve the desired spatial configuration. We
define a set of primitive functions, A,, to guide the movement and placement of objects in
two stages: (1) move_head (direction): This primitive moves the abstract head to a de-
sired relative position and (2) keep_at_head (objects): This primitive places the target
object from the list objects at the current location of the head. It is important to note that
move_head (direction) is a neural operator, which takes the head’s current position and pre-
dicts its new location based on the specified direction. This operator is trained on a corpus of
pick-and-place instructions, such as "move the green object to the right of the red cube," similar to
the approach in Kalithasan et al.| (2023).

MCTS Search. We use an object-centric state representation defined by bounding boxes (including
the depth of the center) and visual attributes of all the objects that are present on the table. For each
learned inductive concept <cpt>, we define a macro-action Make_<cpt> (size) that executes
the corresponding program with the given size argument, resulting in the construction of the desired
concept. Thus, the action space A is the union of primitive actions A, and compound/macro-
actions A.. Intersection over Union (IoU) between the attained state and the expected state in the
demonstration is provided as a reward for all macro actions and keep_at_head (objects);all
other actions yield zero reward. An MCTS procedure similar toKhandelwal et al.| (2016) is performed
to find a plan that maximizes the reward. The node expansion process and reward calculation for the
MCTS procedure is detailed in Appendix[A.3] The search outputs a sequence of grounded actions for
an instantiation of the given inductive concept by the task arguments.

Modularity and Scalability. MCTS that searches for a plan only in terms of primitive actions may
not be generalizable due to lack of modularity [C.3] The use of macro-actions in the search ensures
that the plan H; for a given demonstration is concise, modular, and easily generalizable. This can be
seen as a form of regularization in terms of the length of concept description by making the prior
P(H) o |H|~™ (where a > 0) in equation (2)

H* = arg 3161% [Loss({S1..Sn}, H(A)) + alog |H|]

However, as the action space expands with the learning of more concepts, the search becomes
slower, necessitating the pruning of the search space. To avoid searching over the size parameter
in macro-actions, we greedily select the smallest size that achieves the maximum average reward
from the current state. Additionally, to prune primitive actions, we train a reactive policy Tpeural
which, given the current state s; and the next expected state sy (from the demonstration), outputs
one of the primitive actions a; € 4,,. Consequently, the effective branching factor of the search is
reduced from |A.|+ |A,| to |A.|+ 1. Thus, our MCTS algorithm is modular through the hierarchical
composition of learned concepts and efficient through action space pruning, and is referred to as
MCTS+L+P. Further details regarding modifications in MCTS are given in the Appendix [A.3]

5.3 (GENERALIZE) PLAN TO PROGRAM ABSTRACTION

Leveraging the code generation and pattern matching abilities of LLMs (Mirchandani et al.| [2023)),
we use GPT-4 to distil out a general Python program from the sequence of grounded actions as
determined by MCTS+L+P. The learnt program is incorporated in the concept library, £, for modular
reuse in subsequent learning tasks. Additional details, prompting mechanism and use of learnt
programs in the search step of future learning tasks are described in Appendix [C.2} [A.3] We take
a curriculum learning approach beginning from learning of primitive actions and visual attributes,

Under review as a conference paper at ICLR 2025

followed by structures of increasing complexity. Appendix [C.2] Fig. 2} [A4]details the curriculum
used for concept learning, architecture details, and learning from multiple demonstrations.

6 EVALUATION SETUP

Corpus. A corpus is created using a simulated Robot Manipulator assembling spatial struc-
tures on a table-top viewed by a visual-depth sensor. Demonstration data (3 demonstrations
per structure, with up to 20 objects present in the scene) includes observations (via a visual-
depth camera) of the action sequence (picking and placing of blocks) resulting in the construc-
tion of the final assembly using varied block instances and types (e.g., cubes, dice, lego etc.).
The scope of concepts and associated evaluation tasks
are adapted from closely related works. The stair-
case and enclosure construction tasks are inspired from
from Silver et al.|(2019), adapted to 3D from the original
2D grid world setting. Structures such as boundaries in-
volving repetitive use of columns and rows (w/o explicit Arch-Bridge

joint fastening) are inspired by a robotic assembly data

set (Collins et all, [2024). Finally, the arc-bridge and Figure 3: Illustrative examples of spatial
x-shaped patterns are inspired from concept learning structures from corpus showing inductive
works as [Lake et al. (20135). A total of 15 structures composition over simpler structures. De-
types are incorporated and are additionally modulated ~tails and visualizations in Appendix [B]

in size/spatial arrangement for generalization evaluation.

Three evaluation data sets are formed each with simple structures and complex structures composed
of simpler concepts (e.g., staircase consists of towers as substructure). Dataset I and II contain
demonstrations constructing structures with size(.) € [3, 5], where size is defined in 4| Dataset
11 reverses the linguistic labels used (e.g., the “tower” in I becomes “rewot” in II) to assess model
reliance on pre-training knowledge in presence of new labels for concepts. Dataset III includes
concepts of larger size than those in training to test generalization.

Baselines. Four baselines are formed from two alternative approaches as follows.

(1) Purely-Neural: An end-to-end neural model inspired by StructDiffusion (Liu et al.,[2023)) that
treats structure construction as a rearrangement problem. We consider two variations of the model:
(1.1) Struct-Diff (SD): End-to-end approach without any additional supervision regarding which
objects need to be moved. (1.2) With-Grounder (SD+G): Similar to (1.1) except that we assume a
perfect object selector/grounder that identifies the relevant set of objects which are to be moved.

(2) Pre-trained models that directly output symbolic programs: (2.1) LLMs for Scene-Graph
Reasoning: This approach uses a Pre-trained Language Model (GPT-4) to generate Python programs
from instructions which describe the given demonstration. To help the LLM understand the underlying
structure, it is provided with the symbolic spatial relationships (e.g., left(a,b)) between objects in the
demonstration. For this baseline we further assume absence of distractor objects in the scene. (2.2)
Vision Language Model (GPT-4V): Similar to (2.1) but has the ability to take input demonstration as
images. For learning the program of a new inductive concept, we give the demonstration to the VLM
in the form of A, (S:..5,). Additional details on prompting method in Appendix Experiments
were also conducted with open source code-generation LLMs such as CodeLlama (70Bq), Due to
significantly poorer performances w.r.t. GPT-4, GPT-4 was retained as the primary LLM baseline.

Model variants. We implement three variants of the MCTS search to perform a grounded plan
search over the action space A: (i) MCTS+P+L: Our approach as described in section [5.2] that
uses the learnt concepts from £ as macro actions in subsequent searches (e.g., Make_Tower (3,
objects) € A.) (L). Further it performs pruning of 4, using mneyrar (P), (ii) MCTS-P+L: Our
approach without neural pruning and (iii) MCTS+P-L: No access to library of concepts during
continual learning and thereby lacks ability to use macro actions. This method greedily selects the
action from A, as given by Tyeura. We provide more details about the 3 methods in Appendix @

Metrics. We adopt the following metrics to evaluate our models: (i) Program Accuracy: A binary
score obtained through human evaluation. 1 for constructing the structure fully, 0 otherwise. (ii)
Target Construction loU: Intersection over Union (2D-IoU) between bounding boxes. (iii) Target
Construction Loss: Mean Squared Error (MSE) loss over the bounding boxes + depth of the center.

Under review as a conference paper at ICLR 2025

7 RESULTS

Our experiments evaluate the following questions. Q1: How does our model perform when compared
to baselines in terms of concept learning and execution ability (In-Distribution)? Q2: How does our
model generalize to concept instances not seen (larger) during training (Out-of-Distribution)? Q3:
How robust and efficient is our concept learning pipeline? Q4: How can the acquired concepts be
used in for embodied instruction following tasks?

Q1: CONCEPT LEARNING ACCURACY

We compare the program accuracy (Table[T)) and the IoU/MSE values (Table[2)) of the final states
attained by SPG and the baselines w.r.t. the gold states in the in-distribution setting and find that
SPG significantly outperforms other approaches. Values for Purely neural approaches are marked NA
because Neural Outputs are not physically grounded. We make the following observations: (i) For
complex compositional structures, the accuracy of the pre-trained models is poor (zero), indicating
their inability to reason over the numerous and complex spatial relations present in these structures.
(i1) While program inference via the LLM is better than the VLM for learning simple structures, it
is worse for complex structures. This indicates the inherent weakness of the textual descriptions of
complex spatial relations present in complex structures. (iii) While the data-intensive purely neural
approaches perform much better on complex structures when compared to the pre-trained foundation
models, they are still weaker than SPG.

Table 2: In-distribution Performance (Mean + Std-error)
Table 1: Program Accuracy

Model Simple Complex
Model Simple Complex ToU MSE (1e-3) ToU MSE (1e-3)
SPG(O 100 083
P O SPG(Ours) 0.96 £ 0.00 0.01+0.00 0.85+002 2.06+ 1.02
GPT-4 0.78 0.00 GPT-4V 0.75+0.01 433+£041 050£0.02 7.29+1.10
SD+G NA NA GPT-4 0.89 £0.01 136+026 028+002 13.5=1.65
SD NA NA SD+G 074 +001 142+£029 0.61+002 243+ 048
SD 049 £0.01 148+024 046+002 3.71+1.53

Q2: GENERALIZATION PERFORMANCE

Table [3] compares the generalization performance on Dataset III for models trained on Dataset I
(full table in Appendix, [8). We see that SPG outperforms other approaches. We further consider
the relative decrease (R.D.) in performance (2D-IoU) on going from the in-distribution to the out-of-
distribution (OOD) setting. We make the following observations: (i) SPG suffers a relative decrease
of 7.27% for simple and 5.74% for complex structures. (ii) In contrast, the SD+G baseline shows
a large R.D. of 63.25% on simple structures and 74.72% on complex structures; highlighting the
inability of Purely Neural Models to generalize inductively. (iii) Pre-trained models also have a large
R.D. in perf. for complex structures (GPT-4 : 53.87% & GPT4V : 41.64%), which is attributed to
their inability to generate the correct program that can generalize inductively to unseen data.

Table 3: OOD Performance. R.D% is the relative .
decrease in IoU from Table@ MSE is in le-3 units Table 4: Perf. on Dataser II with Reversed

Names. Acc. is Prog. Accuracy, MSE in le-3 units

Simple Complex

Model

IoU RD% MSE IoU RD% MSE Model Simple Complex
SPG(Ours) 0.89 727 043 080 574 149 Acc. ToU MSE Acc. IoU MSE
GPT-4V 058 2333 132 029 4164 109 SPG(Ours) 0.88 0.86 174 078 078 3.93
GPT-4 078 1261 551 0.3 5387 19.1 GPT4V 023 071 392 000 009 21.29
SD+G 0.27 6325 621 0.15 7472 14.2 GPT-4 067 0.78 3.16 0.00 0.00 22.73
SD 024 5184 686 0.5 6767 116

Q3: ROBUSTNESS AND EFFICIENCY ANALYSIS

Reliance on pre-trained Knowledge vs. Demonstration. Next, we evaluate the degree to which
concept learning relies on prior knowledge vs. the action sequences observed in demonstrations. We

Under review as a conference paper at ICLR 2025

compare pre-trained models against our approach by learning programs on Dataset II ([6), which
uses arbitrary names for concepts. This forces all models to rely on demonstration data because there
is no real-world knowledge associated with the name of the concept, say "rewot" instead of "fower”.
Table M]indicates the corresponding performances, with our approach outperforming others. For
the IoU/MSE values along with standard errors refer to Appendix Table [9] The relative decrease
in performance (program accuracy w.r.t. Table [I)) for simple structures for our approach (12%) is
lower than GPT-4 (14%) and much lower than GPT-4V (30%). The poorer generalization of pre-
trained models can be attributed to their over-reliance on prior knowledge and failure to effectively
incorporate the data from demonstrations. In contrast, SPG better captures the semantics of a novel
concept, especially ones whose knowledge may not be available for the LLMs/VLMs at training time.

MCTS Variants for Concept Learning.

Figure [compares the program accuracy for the three meth- .
ods of plan search. For the MCTS-L+P method, the program
accuracy is expected to be independent of expansion steps as
it greedily chooses the action for which 7y gives the highest
probability. For the MCTS+L based methods the accuracy in-

Program Accuracy

creases beyond 0.6 with time, which demonstrates that having o wersien
a composable library of concepts allows us to learn a much g
richer class of inductive concepts. MCTS+P+L saturates to a C mberotepansonseps fogascae)

program accuracy of 0.933 in just 4000 expansion steps com-

pared to MCTS+L-P taking 512000 expansion steps, which Figure 4: MCTS Variants. Num. of
demonstrates a significant increase in learning efficiency via expansion steps in search (log scale) (X-
use of the neural pruner. For very low number of expansions 2Xi$) Vs Program accuracy (Y-axis).
steps (<40) accuracy of MCTS+L based methods is lower than MCTS-L as the former expends
expansion steps on UCB exploration (instead of greedy actions).

Significance of MCTS in SPG. To assess the necessity and importance of MCTS, we carry out an
ablation study where we replace it with an LLM planner during the planning stage, referred to as
SPG-M+LMP. In the "plan" stage of our pipeline, GPT-4V is prompted to output a plan given the
concept library and RGB keyframes from the demonstration. Our experiment shows that GPT-4V
struggles to generate correct plans, particularly for complex structures like pyramids, arch_bridge
and boundaries, resulting in significantly lower performance than SPG, see [5] Additionally, some
plans generated by GPT-4V are not physically grounded, leading to errors in both the planning
and generalization stages, which compounds the inaccuracies. This demonstrates that combining
symbolic search with LLMs offers a substantial advantage over using only LLM:s.

Figure 5: Ablation studies and Disentanglement. Left: Ablations with SPG-M+LMP and GPT-4V+VR.
MSE values are in 1e-3. Right: The acquisition of new visual concepts. Plot shows an increase in the likelihood
of correct grounding of an object referenced with a new neural concept (chocolate color) with training iterations.

Model Simple Complex % o —
Acc. IoU MSE Ace. IoU MSE 5° //’/
=2 S
SPG(Ours) 1.0 096 0.01 0.83 085 2.06 S e Wragerta oe
SPG-M+LMP 0.55 0.68 11.1 0.16 0.19 20.0 5. / .cicma‘e e
GPT-4V+VRF 0.66 0.75 6.8 0.16 046 120 a S

Training Iterations

Effectiveness of Continual Learning of Visual Concepts Having a disentangled representations
allows us to (i) intersperse learning of new visual attributes with learning of new inductive concepts
(i1) avoid catastrophic forgetting of already learnt attributes. For example, the model can learn the
chocolate from an instruction “construct a tower using chocolate blocks of size 4”, even if it has not
seen the color in the pretraining phase. Because of our modular architecture, we can learn the color
as a new embedding in the space of visual attributes. The plot in Fig. [5]demonstrates the benefit of
having such disentangled representations. As the training proceeds the probability of being able to
select the chocolate blocks when required increases with time, while keeping the ability of selecting
a magenta colored object (when required) remains the same. Additional details for continual learning
of visual concepts appear in Appendix

Under review as a conference paper at ICLR 2025

Ablating with Pre-trained Models + Visual Reward Filter In line with program synthesis tech-
niques using LLMs (Li et al} 2022} [Chen et al|,[2021)), we sample five programs from GPT-4V and
rank them according to the visual reward obtained from their execution. Furthermore, we provide the
ground-truth programs of the concepts that are needed to learn the given new concept, thus employing
a form of teacher forcing in program generation. Even with these measures, it performs significantly
worse than SPG, see Table|§| (GPT-4V+VRF). While this performance is better than that of GPT-4V,
it still unable to generate correct programs, especially for complex structures.

Q4: APPLICATION OF LEARNT CONCEPTS FOR ROBOT INSTRUCTION FOLLOWING

Complex instruction execution via LLM. We demonstrate our ability to use the learnt program
representations to perform complex guided robot manipulation tasks. We instruct the robot to perform
tasks like : “Construct a tower of green die having the same height as the existing tower of white
die.” and “Construct a tower of total 6 blocks using alternating blue and red blocks”. For both the
above tasks we prompt GPT-4 by providing it with the set of learnt inductive concepts, the set of
primitive actions, and some pre-defined helper functions by using Python import statements in a
manner similar to [Liang et al.[(2023). GPT-4 generates an executable Python code in terms of these
functions, which, on running, generates the resultant and required action sequence. Figure [6](top)
illustrates task execution (also see Appendix [D.3).

Grounding learnt concepts into visual input for plan synthesis. We further demonstrate that
the concepts we have acquired can help us to perform goal conditioned planning. Fig. [6](bottom)
demonstrates the results of our approach for the tasks of constructing a staircase beginning from
adversarial and assistive initial states. Note, the planner that we learn is a grounded neuro-symbolic
planner, as a PDDL based planner cannot be hand-coded easily ([D.3)), and LLMs/VLMs are unable
to perform such complex reasoning tasks (see Appendix [D.3).

Construct a tower of height 6 using red and blue blocks that are alternating | Construct a tower of white cubes to the same height as tower of green die

~ I
*x » L ., 1 " 5 ' . ™)
- ‘ --
I
I
I
I
I
I
I

Construct a staircase of blue cubes having 3 steps Construct a staircase of magenta die having 3 steps

|
2 o S] J | v =i = o
® ® \ | o : \ \
| "
-4 Pl ! . nEm
|
|

Figure 6: Application of learnt concepts. Top: Using LLM to generate the executable code for a novel tasks,
given the concept definitions. Bottom: Integrating a neuro-symbolic planner over the concepts. Bottom-left: The
planner is able to optimally replace the green cube from the adversarial initial state by unstacking and re-stacking
the faulty tower. Bottom-right: The planner is able to complete a staircase from an initially constructed row by
layering rows upon rows, a method of construction it has not seen while learning staircase.

8 CONCLUSION

This paper introduces a novel approach for learning inductive representation of grounded spatial
concepts as neuro-symbolic programs via language-guided demonstrations. Our approach factors pro-
gram learning as: Sketch: generating the high-level program signature via an LLM, Plan: searching
for a grounded plan that maximises the total discounted reward with the respect to the demonstration,
and Generalize: abstracting the grounded plan into an inductively generalize-able abstract plan via
an LLM. Continual learning is achieved via learning of modular programs by giving preference to
shorter programs through composition of learnt ones. Extensive evaluation demonstrates accurate
program learning and stronger generalization in relation to purely LLM based as well as purely
neural baselines. Grounding of learned concepts in visual data facilitates reasoning and planning for
embodied instruction following. Limitations include reliance on perfect demonstrations, assumption
of full observability of all objects and experiments confined to simulation. Incorporating noisy
demonstrations, reasoning with beliefs and interleaving planning and execution remains part of future
work.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Abdeslam Boularias, Felix Duvallet, Jean Oh, and Anthony Stentz. Grounding spatial relations for
outdoor robot navigation. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1976-1982. IEEE, 2015.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374l

Jack Collins, Mark Robson, Jun Yamada, Mohan Sridharan, Karol Janik, and Ingmar Posner. Ramp:
A benchmark for evaluating robotic assembly manipulation and planning. IEEE Robotics and
Automation Letters, 9(1):9-16, January 2024. ISSN 2377-3774. doi: 10.1109/1ra.2023.3330611.
URL http://dx.doi.org/10.1109/LRA.2023.3330611.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics
programs from hand-drawn images. Advances in neural information processing systems, 31, 2018.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping inductive
program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm sigplan
international conference on programming language design and implementation, pp. 835-850,

2021.

Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X Olausson, Muxin Liu, Joshua B Tenenbaum,
and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting code.
arXiv preprint arXiv:2310.19791, 2023.

Thomas M Howard, Stefanie Tellex, and Nicholas Roy. A natural language planner interface for
mobile manipulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6652-6659. IEEE, 2014.

Wenlong Huang, F. Xia, Ted Xiao, Harris Chan, Jacky Liang, Peter R. Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In Conference on Robot Learning, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.

Namasivayam Kalithasan, Himanshu Singh, Vishal Bindal, Arnav Tuli, Vishwajeet Agrawal, Rahul
Jain, Parag Singla, and Rohan Paul. Learning neuro-symbolic programs for language guided robot
manipulation. 2023.

Piyush Khandelwal, Elad Liebman, Scott Niekum, and Peter Stone. On the analysis of complex
backup strategies in monte carlo tree search. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML’16, pp. 1319-1328. JMLR.org,
2016.

11

https://arxiv.org/abs/2107.03374
http://dx.doi.org/10.1109/LRA.2023.3330611

Under review as a conference paper at ICLR 2025

Dohyun Kim, Nayoung Oh, Deokmin Hwang, and Daehyung Park. Lingo-space: Language-
conditioned incremental grounding for space. arXiv preprint arXiv:2402.01183, 2024.

Royi Lachmy, Valentina Pyatkin, Avshalom Manevich, and Reut Tsarfaty. Draw me a flower:
Processing and grounding abstraction in natural language. Transactions of the Association for
Computational Linguistics, 10:1341-1356, 2022.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical multi-object manipu-
lation using relational reinforcement learning, 2019.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092—-1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abgll58.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023.

Weiyu Liu, Yilun Du, Tucker Hermans, Sonia Chernova, and Chris Paxton. Structdiffusion: Language-
guided creation of physically-valid structures using unseen objects, 2023.

Weiyu Liu, Geng Chen, Joy Hsu, Jiayuan Mao, and Jiajun Wu. Learning planning abstractions from
language. arXiv preprint arXiv:2405.03864, 2024.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision,
2019.

Jiayuan Mao, Tomds Lozano-Pérez, Josh Tenenbaum, and Leslie Kaelbling. Pdsketch: Integrated
domain programming, learning, and planning. Advances in Neural Information Processing Systems,
35:36972-36984, 2022.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines,
2023.

Meenal Parakh, Alisha Fong, Anthony Simeonov, Tao Chen, Abhishek Gupta, and Pulkit Agrawal.
Lifelong robot learning with human assisted language planners, 2023.

Rohan Paul, Jacob Arkin, Derya Aksaray, Nicholas Roy, and Thomas M Howard. Efficient grounding
of abstract spatial concepts for natural language interaction with robot platforms. The International
Journal of Robotics Research, 37(10):1269-1299, 2018.

Ankit Shah, Pritish Kamath, Julie A Shah, and Shen Li. Bayesian inference of temporal task
specifications from demonstrations. Advances in Neural Information Processing Systems, 31,
2018.

Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logical program policies, 2019.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomas Lozano-Pérez, Leslie Kael-
bling, and Joshua B Tenenbaum. Predicate invention for bilevel planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 12120-12129, 2023.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael Katz.
Generalized planning in pddl domains with pretrained large language models. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 2025620264, 2024.

12

http://dx.doi.org/10.1126/science.abq1158

Under review as a conference paper at ICLR 2025

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. arXiv preprint arXiv:2209.11302, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. Approaching the symbol grounding problem with probabilistic graphical
models. Al magazine, 32(4):64-76, 2011.

Joshua B. Tenenbaum, Charles Kemp, Thomas L. Griffiths, and Noah D. Goodman. How to
grow a mind: Statistics, structure, and abstraction. Science, 331(6022):1279-1285, 2011.
doi: 10.1126/science.1192788. URL https://www.science.org/doi/abs/10.1126/
science.1192788.

Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu. Lotus: Continual imitation learning for robot
manipulation through unsupervised skill discovery, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega, Yash Sharma, and Sanjiban Choudhury.
Demo2code: From summarizing demonstrations to synthesizing code via extended chain-of-
thought. arXiv preprint arXiv:2305.16744, 2023b.

Renhao Wang, Jiayuan Mao, Joy Hsu, Hang Zhao, Jiajun Wu, and Yang Gao. Programmatically
grounded, compositionally generalizable robotic manipulation. arXiv preprint arXiv:2304.13826,
2023c.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng

He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models, 2023d.

13

https://www.science.org/doi/abs/10.1126/science.1192788
https://www.science.org/doi/abs/10.1126/science.1192788

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ON TECHNICAL APPROACH

Figure [7]illustrates the pipeline for online inference to realize to realize construction of novel
structures.

2 Sy

Visual Grounder:

B EEEEN] \ 7
Executor/) ~
H, = staircase(4, Fifter(magenta, legos)) Action Sy

Slimulator

Task Generator (GPT-4)

A ="Construct a staircase of
size 4 using of magenta legos”

Figure 7: SPG: Inference First the library of concept L is loaded with the corresponding set of
learnt programs. Then the given instruction is converted into task-sketch H, which is grounded in
the initial scene. The required program is fetched from the library, and the grounded task-sketch is
executed based on the semantics of the learnt program.

A.1 SYMBOLIC CONSTRUCTS AND THEIR SEMANTICS USED IN PROGRAMS

Table 5] defines the types of the signature and semantics of all the operators. Table[6} includes the type
definition of various symbols. Standard Python constructs such as for loops, if else - - -) as assumed
in addition to the constructs defined here.

Table 5: Symbols and Semantics Signature and semantics for the primitive concepts and operations
that are used in the construction of the programs used to express inductive spatial concepts.

Function Signature Semantics

filter (VisualConcept, ObjSet) — ObjSet | Returns the objects that con-
tain the VisualConcept

move_head (Head, Dir) — Head Moves the head to the given

direction (May or may not
take input/return the head,

based on a flag)
assign_head a.k.a | (Head, Objldx) — Head Given the index/one-hot rep-
move_head(overloaded) resentation for an object, it

moves the head to the posi-
tion corresponding to that ob-

ject

keep_at_head (ObjSet, Head) — None Keeps the argmax of ObjSet
at the head

reset_head None — Head Sets the head to the top posi-

tion of stack and pops this po-
sition from the stack as well

store_head Head — None Pushes the current position
of head into the stack

A.2 CURRICULUM LEARNING

We follow a curriculum approach where the visual concepts are trained first from simpler linguistically-
described demonstrations (¢ in figure [8). This is followed by learning of action concepts through
sequentially composed pick and place tasks. Its essential to use such long range sequential instructions
in order to ensure that the semantics of action concepts are learnt for placement of objects at a height
much above the tabletop (¢; in figure [8). After the pre-training phase, the agent can continually learn
new inductive concepts and visual attributes. (t2, t3 in figure [8))

14

Under review as a conference paper at ICLR 2025

Table 6: Symbolic representation. The table lists the type definitions used in the implementation of
SPG programs.

Defined Types Python Type Usage

IntArg int Argument for the structures that de-
fines the size (height, length etc)

Obj torch. Tensor One-hot vector whose non-zero in-
dex represents the selected objects

ObjSet torch.tensor Probability mask over the selected
objects

Dir string Primitive directions like left, right,
front, top, etc

ConceptName string name of the visual, action or induc-
tive concept

Head torch.Tensor Bounding box with depth. 3D
cuboidal space.

Demonstration (Intial Scene, Instruction Final Scene) Library
Visual Action Programs
Move the blue '@e> ShEpERColoy
to cube behind the & | Cube Blue Ly,
yellow lego | Lego Yellow
< REU‘\EVE

Visual Action Programs

U dale
i3y Shape Color Right L
b" Cube Blue Top t
w Lego Yellow Left

Move the red cube to the

right of yellow dice and

move the yellow cube on top
t1 of red cube and move the

green cube to the left of

yellow cube

o @> Visual Action Programs
late
YN Construct a tower Shape Color Right def tower(:
ta of size 4 using white Cube Blue Top height, obj_set): Lt2
(s Left foriin range(n).
= Lego Yellow
. ’ﬁl> Visual Action Programs
” ~ Construct a tower o pdate .
t 3 size 4 using . Frees e Right def tower(n
3 H Cube Blue Top height, obj_sef): Ly,
= chocolate colored : Lego _ Yellow Left foriin range(n):
die < Retrieve Chocolate .

Figure 8: Continual learning through curriculum: Using simple pick and place demonstrations we
learn visual attributes such as blue cube, yellow lego (tp). Using long range instructions which are
sequentially concatenated descriptions of pick and place tasks we train our action concepts such as
left, right, top (t1). After pre-training the agent can perform continual learning of concepts such as
learning generalized representation for tower (t2). Because of disentangled representation of neural
and symbolic concepts, interspersed learning of new visual attributes such as chocolate color are also
possible through few demonstrations of structure creation(ts).

A.3 DETAILS FOR PLAN-SEARCH AND GENERALIZATION

Modifications to the Simulation and Reward Back propagation Steps: Next, we outline the
modifications in the simulation and the reward back propagation steps of the standard MCTS
algorithm for our setting. During program search we assume access of intermediate scenes in the
demonstration. This allows us to provide intermediate rewards that can guide the search well. We
observed that making the following changes in simulation and back propagation step increased the
efficiency of our search procedure. Fig[9]illustrates the possible states explored by MCTS and the
reward calculation.

» Simulation: Rather than performing Monte Carlo simulations at each newly expanded leaf
node (to estimate its value) we completely avoid these simulation steps. This was motivated
by the fact that our reward is not completely sparse and the intermediate IoU rewards for
each object we place allow us to guide the search effectively.

15

Under review as a conference paper at ICLR 2025

* Back propagation: We perform off policy Q-learning updates during back propagation

similar to one indicated by [Khandelwal et al.| (2016) :

V(s¢) = mazacaQ(s¢, a). 4
7(8t,a) = St41 5
Q(st,a) =1¢ + vV (s141) (6)

Tree Search

! l

move_head('right’) move_head(left’)

move_head('top’) move_head(‘front’)

l

row(3, [....]) keep_at_head(obj_id)

Reward: +3

Figure 9: A sample MCTS search tree outlining the states explored and the calculation of reward.

Improving Modularity and Scalability of MCTS procedure: We present additional details on the
MCTS procedure for searching for a plan conditioned on a program signature and guided by the
demonstration.

In order to incorporate the objective of searching for physically realizeable plans and facilitating
generation via re-use of concepts, the following conceptual changes are incorporated in the standard

MCTS procedure |Sutton & Barto| (2018)).

Modularity (MCTS + L): We want to allow learning of novel inductive concepts in terms of existing
ones. This would ensure that the plan H}, corresponding to a given demonstration is concise and
can be easily generalized to the H . |C_3| in appendix give example of two plans for the structure
Pyramid one which is modular and can be successfully generalized by GPT-4, other for which GPT-4
fails in generalization due to lack of modularity. This can be seen as a form of regularization in terms
of the length of concept description, by making the prior P(H) o |H|~™“ (where « > 0) in equation
2

H* = arg Ir{nel% [Loss({S1..5¢}, H(A)) + alog | H]| ™)

16

Under review as a conference paper at ICLR 2025

In order to allow modular learning of programs, for every inductive concept already stored in
the library we define corresponding action instantiations which can be a potential candidate ac-
tions during our search. As an example, for the concept Tower we have one of the action in-
stantiation as Make_Tower (3, objects) which would be the action of constructing desired
tower. This can be visualized as a compound/macro-action which is composed of primitive ac-
tions keep_at_head (objects), move_head(‘top’). We define A, as the space of such
compound actions, and A, as the space of primitive action/function consisting reset_head (),
move_head (direction), keep_at_head(objects), store_head(). Realization
of equation (6) (increased preference of macro-actions over primitive ones) is done through discounted
IoU rewards during our search (Make_Tower (3) would have a reward of 1+1+1, as compared to
1 +~+2(1) + v*(1) for a sequence of 3 (keep_at_head (objects), move_head(’top’)0)).
We refer to MCTS using concept instantiations from £ as macro actions in search as MCTS+L.

Scalablility (MCTS+P): as more concepts are added to the library £ the action space of our search
A (specifically A, the space of compound concepts) increases, therefore we want to prune the
search space effectively. For this during the pre-training phase we train a reactive policy Tneural
which given the current state, s; and the next expected state sy (part of the demonstration) would
output one of the primitive action, a; € .4, where A, is the primitive action space, i.e. af =
Tneural(Qt|St, St41), ar € A, Note that while expanding our search tree we only search among the
space of compound actions .4, and the action a;, thereby reducing the branching factor of search
from |A. U A,| to | A.| + 1. We refer to MCTS using neural pruning as MCTS+P. Therefore our
MCTS algorithm is modular through hierarchical composition of learnt concepts and efficient through
pruning of action space and is referred to as MCTS+L+P.

Generalization: Glven multiple equal length plans for a given demonstration, we seek to recover
a plan one that can be easily generalized by the LLM. [5]shows a plan which could be correctly
abstracted out into a generic program by GPT-4. Whereas [I5]|shows another plan with similar
semantics, for which GPT-4 is unable to correctly find the generalized program (Note that row or
column of size 1 is equivalent to keep_at_head). We tackle this problem in the following manner.

1. Rather than getting a single plan from the plan search we get the top k plans { H pﬂ'}éilf. In
order to get these top k plans we expand the complete tree (based on UCB criteria) starting
from the root node corresponding to the initial state, till a predefined budget of expansions.
Then we select the top k paths(potential plans) from the root node to all the leaf nodes
(where the top k ones are those that give the highest accumulated IoU reward with respect to
the given demonstration).

2. Later we abstract out each of these k plans into corresponding generalized programs,
{HGL}E’f using GPT-4. We again run each of these programs on the given demonstration
and then choose the one which gives the highest IoU reward (resolving ties based on
predefined order). Note that some program H¢ ; upon execution may result in a plan Hp;
different from the original plan H p; using which it was generalized. This can be attributed
to potential errors in GPT-4s program generalization process.

A.4 ADDITIONAL DETAILS: LEARNING WITH INCREASING NUMBER OF DEMONSTRATIONS

Given k demonstrations for a novel inductive concept, we independently find k task sketch { H sk

and grounded plans { H ;l}jj’f During the generalization phase we give these k pair of task-sketch
and corresponding plans to GPT-4 and ask into infer a single abstraction over them. [C.5|in appendix
gives a concrete example. Equation for generalize step (getting H¢, from Hp,, Hg) can be modified
as follows.

H¢ «+ Generalize(Hg |{Hp,;, H;_’i}z::k' 0c), Hg € HY 8)

i=1"
A.5 DETAILED EXPERIMENTAL METHODOLOGY

Input to the Method: The input consists of a language instruction and a human demonstration
represented as a sequence of RGBD keyframes.

Output/Aim of the Model: The goal is to learn a representation of the unknown concept in the
instruction, assuming there is only one unknown concept. If the unknown concept is inductive (e.g.,

17

Under review as a conference paper at ICLR 2025

"tower"), the model learns a program definition de ftower() and stores it in the program library. If the
unknown concept is a primitive concept, a concept embedding is learned through backpropagation.

Evaluation: The learned model is evaluated based on the correctness of the program representation
for inductive concepts and the correctness of object placements, measured through the Intersection
over Union (IoU) metric (see Metrics, line 262). d. Examples: Suppose the current library contains
the concepts “red”, “tower”. Given the instruction “construct a staircase of height 3 using red blocks,”
the process is as follows:

Parsing: The instruction is parsed into a sketch: Staircase(height=3, objects=filter(red, blocks)).

Grounding: The “objects” parameter is grounded using the visual grounder, which identifies the
indices of the red blocks, e.g., [1, 2, 3, 4, 5, 6]. That is, filter(red, blocks) =[1,2,3,4,5,6].

Planning: The planning step uses the demonstrations (sequence of keyframes) to identify the
sequence of actions that best explains the demonstrations. In this case, the plan might be:
Tower(height=1, objects=[1,2,3,4,5,6]), move_head(right), Tower(height=2, objects=[2,3,4,5,6]),
move_head(right), Tower(height=3, objects=[4,5,6]

Generalization: The generalization step abstracts the plan obtained from three such demonstrations
into a program. The resulting program would be:

def staircase (height, objects):
for 1 in range (height) :
tower (height=i, objects)
move_head (right)

Note: Whenever an object is placed, the objects list is modified in place, and the index of the placed
object is removed. primitive actions: The movement of any object is achieved by first determining the
placement position by moving the head (an imaginary bounding box) in specific directions and then
placing the object to be moved at the head. The head is implemented as a 3D bounding box defined
by coordinates (x1, y1, x2, y2, d), where x1, y1, x2, and y2 are the 2D corners of the bounding box,
and d is the depth at the center. The primitive action move_head(direction) shifts the bounding box in
the required direction. The action keep_at_head(object_list) picks the first object in the list and places
it at the center of the bounding box. Two other primitives, store_head and reset_head, are used to
save the current position of the head, allowing the search to return to useful positions later if needed.

B ADDITIONAL DETAILS REGARDING DATASETS

Figure [I0] demonstrates the kind of inductive concepts for which we want to learn generic (i.e
instance agnostic) representations.

Dataset for Pre-training: We use Sk examples of constructing twin-fowers i.e. 2 towers adjacent to
each other, for learning semantics of move_head (dir), a basic set of visual attributes, reactive
policy Theural, and neural modules required for grounded planning. The twin towers allow us to learn
various action semantics for all possible configurations of blocks in 3D-space (and not being limited
to blocks placed directly on table top surface). Since we are not aware of the underlying semantics of
tower during pre-training phase the corresponding natural language instruction consists of step by
step pick and place actions. [IT]gives example demonstrations from this dataset.

Dataset for Inductive Structures: We learn a variety of structures which we have divided into
Simple and Complex structures. A structure is considered complex if it can be expressed as an
inductive composition of simpler structures. As an example, we can express a staircase to be a
composition of towers of increasing height. The structures are listed in the Table[7] Figure [12]shows
the hierarchical relationship among these structures in the form of a DAG (directed acyclic graph).
gives the ground truth program representations for each structure.

C PROMPTING STRATEGY AND EXAMPLES

This section gives various prompting examples for our approach and baselines, along with examples
motivating particular design decisions in our approach.

18

Under review as a conference paper at ICLR 2025

Row Column Tower Inverted-Row Inverted-Column

Diagonal_135 Diagonal_225 Diagonal_315 Staircase

Inverted-Staircase

Figure 10: Illustration of the inductive concepts.

Put the green box on the right side of the white box and move the magenta dice on top of
the green box and place the green dice on the left side of the magenta dice and put the red
dice above green dice and place the magenta box on the right side of the red dice and move
the blue dice on top of the magenta box and put the blue cube to the left of the blue dice

t=0 t=1 t=2 t=3

Figure 11: Example from pre-training dataset.

Table 7: Structure Types. Examples of simple and complex structures considered in this work for
the robot to construct.

Simple Structures Complex Structures
Row, Column, Tower X (cross-shape), Staircase
Inverted-Row, Inverted-Column | Inverted-Staircase, Pyramid
Diagonal-45, Diagonal-135 Arch-Bridge, Boundary
Diagonal-225, Diagonal-315

C.1 PROMPT EXAMPLE FOR TASK SKETCH GENERATION STAGE (Sketch)

In order to get a program representation (high level task sketch) of the given natural language
instruction, we prompt GPT-4 with few shot examples in a manner similar to [Liang et al.| (2023).
Code segment [I] gives an example of getting the task sketch given the demonstration for constructing
a staircase. We first import the available primitive operators and functions and also give examples
in order to demonstrate the signature of the available primitives(line 1-8). Then we give incontext

19

L S

W —_

W

N

Under review as a conference paper at ICLR 2025

Complex Structures . l l I l
d /e Lo ! Diagona Diagonal Diagona
S < 135 225 315
Simple Structures . . s

Figure 12: Hierarchy of the structures/programs. This diagram shows the hiearchical nature of the
structures in our dataset. MH is abbrevation for move_head and KH is abbreviation for keep_at_head

Primitive Actions

examples of how to parse various natural language instructions in a program representation(line
10-14). We append to this prompt the instruction for current task(line 16-17).

importing the available functions
from visual_operators import filter
from inductive_operators import get_parameters, find_structure

function signature of the imported functions

filter(color, cube) # filter the objects that are cubes and color

get_parameters (structure) # parameters of the structure

find_structure (type, description) # finding structure of given type,
description

examples:

instruction: Find the tower with green cubes
find_structure (type = tower, description = filter (green, cube))
instruction: Construct a tower of height 3 with yellow cubes
Tower (height = 3, objects = filter(yellow, cubes))

current task: Construct a staircase of 4 steps using cyan legos

(GPT-4s output)
Staircase(steps = 4, filter(cyan, legos))

Listing 1: Task Sketch Generation Using GPT-4 (Sketch)

C.2 PROMPT EXAMPLE FOR GENERALIZING A SEQUENCE OF ACTIONS/PLAN TO A GENERAL
PROGRAM (Generalize)

Code segment [2] give an example of getting the general Python program from the plan found using
MCTS. We first provide a base prompt giving details to GPT-4 about the desired task (line 1-2). Then
we give the input arguments and the corresponding output/plan for a given demonstration (line 3-5).
We expect the GPT-4 to output the final Python program (line 7-10)staircase (line 6-8).

Write a general python code which on the given input produces the
desired output, do not output anything other than the function
description.

input: n = 4, objects = ObjSet

output: tower (l, ObjSet), move_head(‘right’), tower (2, ObjSet),
move_head (‘right’), tower (3, ObjSet), move_head(‘right’), tower (4,
ObjSet)

Program (GPT-4s output)
def staircase(n, objects):

20

Under review as a conference paper at ICLR 2025

10

1

5

3
4
5

6

N

S}

woE W

18

for i in range(n):
tower (i+1, objects)
move_head (’ right’)

Listing 2: Plan to Program using GPT-4 (Generalize)

C.3 BENEFIT OF ESTIMATING MODULAR/SMALLER PLANS

The below examples demonstrate the benefit of learning new inductive concepts in terms of already
acquired inductive concepts (more modular representation). The program [3]is obtained through
generalization of plan H,, that represents pyramid in terms of rows of decreasing size. The generated
program generalizes to pyramid of different height.

input: n = 3, objects = ObjSet
output: row(5, ObjSet), move_head(’right’), move_head(’'top’), row(3,
ObjSet), move_head(’right’), move_head(’top’), row(l, ObjSet)

Program (GPT-4s output)
def pyramid(n, objects)
for i in range(n, 0, -1):
Calculate the number of objects in the current row
row_count = 2 x i - 1

Perform actions for the current layer

row (row_count, objects)

if 1 > 1: # No need to move head after the last row
move_head (' right’)
move_head (' top’)

Listing 3: Pyramid in terms of rows

On the other hand program @] which is obtained in an attempt to generalize the plan expressed in
terms of primitives is incorrect.

input: n = 3, objects = ObjSet

output: store_head (), keep_at_head(ObjSet), move_head(’right’),
keep_at_head (ObjSet), move_head(’right’), keep_at_head(ObjSet),
move_head (" right’), keep_at_head(ObjSet), move_head(’right’),
keep_at_head (ObjSet), reset_head(), move_head(’top’), move_head(’
right’), store_head(), keep_at_head(ObjSet), move_head(’right’),
keep_at_head (ObjSet), move_head(’right’), keep_at_head(ObjSet),
reset_head (), move_head(’'right’), move_head(’top), keep_at_head(
ObjSet)

Program (GPT-4s output)

def pyramid(n, objects)

Store initial position
store_head()

Initial sequence of placing and moving right
for _ in range(n):

keep_at_head (objects)

move_head (' right’)

Reset and move to top right position
reset_head()

move_head (' top’)

move_head (' right’)

Store again and repeat placing and moving right
store_head()
for _ in range(n):

keep_at_head (objects)

move_head (' right’)

21

Under review as a conference paper at ICLR 2025

25 # Reset and adjust final position
26 reset_head()

27 move_head (' right’)

28 move_head (' top’)

29 keep_at_head (objects)

Listing 4: Pyramid in terms of primitive actions

C.4 COMPARING SAME-LENGTH PLANS IN TERMS OF GENERALIZABILITY

Below we illustrate plan to program generalization for 2 different plans which are correct and have
same length, but LLMs find it difficult to generalize the second one as compared to first. (Note that
row and column of size 1 are equivalent to keep_at_head)

input: n = 3, objects = ObjSet
2> # output: keep_at_head(ObjSet), move_head(’top’), keep_at_head(ObjSet),
move_head (' top’), keep_at_head (ObjSet)

Program
6 def tower (n, objects):
for _ in range(n):
8 keep_at_head (objects)
9 move_head (' top’)

Listing 5: Plan for tower that can be easily generalized (correct generalization)

1 # input: n = 3, objects = ObjSet
2 # output: row(l, ObjSet), move_head(’top’), keep_at_head(l, ObjSet),
move_head (" top’), column (1, ObjSet)

2

5 # Program

6 def tower (n, objects):

7 for 1 in range(l, n + 1):
8 row (i, objects)

9 move_head (' top’)
10 keep_at_head (objects)
11 move_head (' top’)

12 if 1 < n:
13

: column (i, objects)
14 move_head (' top”’)

Listing 6: Plan for tower that is difficult to generalize (Incorrect generalization)

C.5 GENERALIZING VIA MULTIPLE DEMONSTRATIONS

Given multiple demonstrations we independently find task sketch and corresponding grounded plans
for each demonstration. These are further given to GPT-4 for generalization. Code segment [7] gives
an example of getting a single Python program from multiple demonstrations. Note that we explicitly
prompt the LLM that some of the grounded plans might be incorrect (which may lead to more robust
generalization in case of noisy demonstrations).

[38]
=

Function Call: wor (height = 3, objects = ObjSet_1)

3 # Execution: keep_at_head(obj = ObjSet_1), move_head(dir = right),
keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(
obj = ObjSet_1),

4 # Function Call: wor (height = 3, objects = ObjSet_1)

5 # Execution: keep_at_head(obj = ObjSet_1), move_head(dir = right),
keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(
obj = ObjSet_1),

6 # Function Call: wor (height = 3, objects = ObjSet_1)

22

o —

~ W

5
4

5

Under review as a conference paper at ICLR 2025

Execution: column(size=1, obj = ObjSet_1), move_head(dir = right),
keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(
obj = ObjSet_1),

#Write the function definition, which generalizes the above executions.
Note that some of the executions can be partially wrong.

python

def wor (height, objects):

AN

AURNRY

GPT-4s Output
Listing 7: Generalizing through multiple plans

C.6 PROMPT EXAMPLES FOR LEARNING PROGRAMS USING LLM/VLM MODELS

Below we describe the prompting methodologies for learning programs through LLM/VLM models.
Note that although the prompt examples described below are for the case of learning novel structure
from 1 demonstration, we use 3 demonstration per novel structure in our main results (for both our
approach and LLM/VLM baseline).

LLM/GPT-4 Code segment|[8|depicts our prompting methodology given a demonstration for a new
concept fower. For this baseline we aim to check demonstration following and spatial reasoning
abilities of LLMs (GPT-4). We provide supervision of the intermediate scenes by using tokenized
spatial relations between objects in the scene (Given in the form of Scene = [right(1, 0) ...]). We
further assume that only those objects that are required to perform the task are present in the scene
(no distractor objects). For every structure (that needs to be learned at time t) we give LLM a prompt
providing in-context example on how to generalize (line 19-35), the set of primitive operators (line
4) available and the set of structures learnt/present in library (till time t-1) (line 5-18). Finally we
append to this prompt the expected declaration (arguments and keywords arguments) of the inductive
concept that is to be learnt along with the spatial relations for each scene of the given demonstration
(36-51). Note that we assume absence of distractor objects for this baseline.

Consider a block world domain Given a structure creation task
along with intermediate scnes complete a general Python function for
it. The function should be in terms of primitive operators and
already learnt structures that are present in the program library.
Enclose the function within backtick (''')

primitive_operators = [keep_at_head, move_head ..]
this would be our program library
learnt_structures = {

"row": {

"program_tree":
def row(size, objects):
for 1 in range(size):
keep_at_head(obj = objects)
move_head (dir = 'right’)

the example task
Example task:— Place all the objects to the right of each other.

Final state :- [right (1, 0), right(2, 1), right (3, 2), right (4, 3)]
Intermediate scenes :-—

Scene 0 = []

Scene 1 = []

Scene 2 = [right (1, 0)]

Scene 3 = [right (1, 0), right (2, 1)]

Scene 4 = [right (1, 0), right(2, 1), right (3, 2)]

Scene 5 = [right (1, 0), right(2, 1), right (3, 2), right (4, 3)]

=

Under review as a conference paper at ICLR 2025

Python function :-
‘Y'python
def placing_all_right (objects):
for 1 in range(len(objects)):
keep_at_head(objects) # select one object from the objects set
and keep the head at this location
move_head(dir = 'right’) # move the head to the right of the
previous position

AN

The current task for which program needs to be found

Current task:— Construct a tower of size 6.
Final state :- [top(l, 0), top(2, 1), top(3, 2), top(4, 3), top(5, 4)]
Intermediate scenes :-—
Scene 0 = []
Scene 1 = []
Scene 2 = [top(l, 0)]
2> Scene 3 = [top(l, 0), top(2, 1)]
3 Scene 4 = [top(l, 0), top(2, 1), top(3, 2)]
Scene 5 = [top(l, 0), top(2, 1), top(3, 2), top(4, 3)]
Scene 6 = [top(l, 0), top(2, 1), top(3, 2), top(4, 3), top(5, 4)]
Python function :-
‘Y 'python

8 def tower (size, objects):

2

AN

Listing 8: Prompting Strategy for LLM baselines (GPT-4)

VLM/GPT-4-V Unlike LLM, VLM:s have the abilities to process the demonstration as a sequence of
visual frames. Therefore rather than providing the symbolic spatial relations between every scene we
instead directly provide all the intermediate scenes for the given demonstration. Further we also relax
the assumption that there are no distractor objects. As shown in figure [[3] We first give information
about the set of primitive operators and the structures that we have already learnt (library of concepts).
In order to visually ground the semantics of our primitive actions we give 3 example tasks (natural
language instruction and intermediate scenes) that do not directly refer to any structure, along with
corresponding sequence of actions taken (# Demonstration for visual grounding). We further provide
another example (without scenes) demonstrating how to write generalizable Python function for a
given task using our operators (# Example for generalization). Finally we give the natural language
instruction and corresponding scenes for the current task along with signature of the program to be
learnt (# Current task description).

24

Under review as a conference paper at ICLR 2025

Consider a block world domain ... Given a structure creation task along with intermediate scenes complete a general Python function for it.
The function should be in terms of primitive operators and already learnt structures that are present in the library. Enclose the function
withing backticks (*).
set of operators
primitive_operators = [keep_at_head, move_head]
learnt_structures ={

"row": {

"program_tree":

def row(size, objects):
for i in range(size):
keep_at_head(obj = objects)
move_head(dir = 'right’)

R T
Demonstration for visual grounding
Example Task 1: Place the red cube to Visual Demonstration 1:
the back of the . = PR - > -
magenta dice and e -
put the yellow dice on
top of the red cube Sc Scene - 2

ene - 0 Scene - 1
Action Sequence: assign_head(filter(magenta, cube)), move_head(back), keep_at_head(filter(red, cube))
Example for generalization
Example task:- Place all the objects to the right of each other

Python function:- ***python
def placing_all_right(objects):
for i in range(len(objects)):
keep_at_head(objects)
move_head(dir = 'right’)

Current task description
Current task: Construct a row of size 3 Visual Demonstration:

Python function:-"""python
def row(size, objects):
22

Scene - 1 Scene -2

Figure 13: Prompt example for VLM-baseline. Figure shows the prompting strategy for GPT-4-V
that includes the primitive actions, the example tasks for visual grounding, example of writing
generalizable Python functions and the demonstration frames.

D SUPPLEMENTARY RESULTS

Out-of-Distribution Performance:

Table 8: Out-of-Distribution Performance (mean =+ std-error)

Model Simple Complex

IoU MSE IoU MSE
SPG(Ours) 0.892 + 0.065 4.386e-4 +2.387e-4 0.804 £ 0.025 0.001 £ 5.391e-4
GPT-4 0.776 £ 0.023 0.006 + 0.001 0.131 £0.019 0.019 £ 1.498e-3
GPT-4V 0.575 £ 0.026 0.013 £ 0.001 0.290 £0.016 0.011 £ 1.316e-3
SD 0.236 £ 0.005 0.006 £ 7.495¢-4 0.150 £0.011 0.011 £ 2.860e-3
SD+G 0.273 £ 0.004 0.006 £ 6.180e-4 0.154 £0.010 0.014 £ 2.958e-3

Performance Dataset II (i.e. name reversed evaluation): Table [gives the corresponding program
accuracies, while Table [9| give the corresponding IoU/MSE metrics along with standard errors.

D.1 QUALITATIVE COMPARISON BETWEEN PURELY-NEURAL (STRUCT-DIFF+GROUNDER) VS.
OURS(SPG)

Figure [I4] gives compares the qualitative results for our approach against Struct-Diffusion with
grounder on both in-distribution, Dataset I and out-of-distribution (larger size), Dataset III. In
in-distribution setting the our method performs slightly better in terms of structure creation for
both simple and complex structures, but the difference is not significant. However for out-of-
distribution setting structures created by our approach are much better than those created by Struct-

25

Under review as a conference paper at ICLR 2025

Table 9: Performance on Dataset II(Names Reversed)

Model Simple Complex

IoU MSE (1e-3) IoU MSE (1e-3)
SPG(Ours) 0.86 £0.03 1.74+045 0.78+0.02 3.93 + 1.09
GPT-4 0.78 +£0.03 3.16 £0.51 0.00+0.00 22.73 +1.48

GPT-4V 0.71£0.01 392+£045 0.09+£0.02 21.29+1.59

Diffusion+Grounder. Further for this setting structure creation by Struct-Diffusion seems to be much
worse for complex structures than simple ones.

In-Distribution Setting
‘Construct a tower of 4 yellow dice blocks' (Simple)

Qurs Struct-Diffusion

‘Construct an x of size 3 using blue dice blocks' (Complex)
Ours Struct-Diffusion

Out-of-Distribution Setting

Construct an inverted_row of 6 green cube blocks
(Simple)

Ours Struct-Diffusion

‘Construct an arch_bridge of height 4 of magenta cube
blocks' (Complex)

Ours Struct-Diffusion

Figure 14: Structure creation comparison between SPG(Ours), and Struct-Diff+Grounder

D.2 CONTINUAL LEARNING OF NEURAL CONCEPTS

Given demonstration for the task “Construct a tower of height 4 using chocolate cubes”, we would
like to learn the neural embedding for the unknown color chocolate (where we assume that tower has

26

1C
11

12

13
14

15

16

18

19
20
21

2

]

23

Under review as a conference paper at ICLR 2025

already been learnt and stored in the library £). First the instruction is converted into corresponding
plan sketch H g = tower(4, Filter(chocolate, cubes)), which is passed to the visual grounder. The
grounder detects the presence of an unknown attribute chocolate as an argument to filter, and randomly
initializes a new neural embedding for it. Using this new embedding along with the already present
embedding of cube and the visual features found through ResNet-34, the quasi-symbolic executor
outputs a grounded task-sketch. The executor executes the grounded task-sketch by getting the
semantics of the underlying function i.e. tower from the library £. MSE+IoU loss computed over the
final scene obtained and the expected final scene is backpropogated through the network. Note that
during backpropogation all the neural modules (action semantics, visual attributes, ResNet-34) are
frozen, except for the newly initialized embedding for chocolate. For the purpose of differentiable
sampling during tower construction we use gumbel-softmax with masking. Figure
[[3]illustrates our approach.

Sy

Hp = keep_at_head(obj2).. (]

»|

Update the
embeddings

H, = tower(4, Filter(chocolate, cubes))

Executor/
Action
Simulator

L

A = "Construct a tower of size 4 j IEERCEIEEET (ALY def tower(h, objects):

using of chocolate cubes” for i in range(h): Backprogogate

Figure 15: Continual learning of visual primitives

D.3 DETAILS FOR INFERENCE ON NOVEL TASKS USING AN LLM

Below we show the [Liang et al.| (2023) inspired prompting methodology that we use to get the
executable code corresponding to a language specified manipulation task. We initially begin by
importing the helper functions, spatial direction, primitive functions, and learnt inductive concept-
s/structures (line 5-11). Then we give few examples for how to use and compose the various functions
for different tasks (line 16-83). Finally we give the instruction of current task, and expect GPT-4 to
output the corresponding executable code.

Given a task you have to provide Python code for executing the task
importing available functions
from spatial_directions import top, front, back, left, right

from primitives import assign_head, move_head, keep_at_head
HEAD is a imaginary pointer keeping track of the current spatial
location in consideration

from helpers import find_size, filter
from structures import row, column, tower

#function signature of the imported functions

finds all the objects with the given color and shape, returns a mask
denoting the probability of object selection

filter (color, shape)

finds the size of the structure struct_name that is formed with objects
of the given type, returns the size of the structure (whose type is
integer), arguments for this should be provided as kwargs

find_size (struct_name = str_name, objects = ObjSet)

assigns the head to the location of the object
assign_head(at_obj_loc)

27

Under review as a conference paper at ICLR 2025

24 # moves the head in the given dir
25 move_head (dir)

27 # keeps the object obj at the head
28 keep_at_head (ob3j)

31 #Examples:

32 #Instruction: Move the green block to the left of the red dice
33 assign_head(at_obj_loc = filter (red, dice))

34 move_head (left)

35 keep_at_head(obj = filter (green, cube))

37 # Instruction: Find the size of the tower made of yellow legos
38 find_size (struct_name = tower, objects = filter(yellow, lego))

40 #Instruction: Find the size of the row made of orange cubes
41 find_size (struct_name = row, objects = filter (orange, cube))

43 # Instruction: Find the size of the column made of cyan cubes
44 find_size (struct_name = column, objects = filter (cyan, cube))

46 # Instruction: Move the green block to the left of the red dice and the
yvellow block to the top of the green block

47 assign_head (at_obj_loc = filter (red, dice))

48 move_head (left)

49 keep_at_head(obj = filter (green, cube))

50 assign_head (at_obj_loc = filter (green, cube))

51 move_head (top)

52 keep_at_head (obj = filter(yellow, cube))

s4 # Instruction: Construct a row of green legos of length 3 to the right of
the blue block

55 assign_head (at_obj_loc = filter (blue, block))

56 move_head (right)

57 row (length = 3, objects = filter (green, legos))

60 # Instruction: Construct a tower of size 3 using red cubes
61 tower (height = 3, objects = filter(red, cube))

63 # Instruction: Construct a row of size 5 using blue legos
64 row(length = 5, objects = filter (blue, lego))

66 # Instruction: Construct a column of size 6 using green die
67 column (length = 6, objects = filter (green, dice))

6 # Instruction: Place 3 green blocks so that one block is to the right of
the other

green_blocks = filter (green, block)

71 keep_at_head (green_blocks)

72 move_head (right)

73 keep_at_head (green_blocks)

74 move_head (right)

75 keep_at_head (green_blocks)

=

77 # Instruction: Place 3 red legos on top of one another
78 red_legos = filter (red, lego)

79 keep_at_head(red_legos)

80 move_head (top)

81 keep_at_head(red_legos)

82 move_head (top)

83 keep_at_head(red_legos)

28

86
87
88
89
90
91
92
93
94

95

29

Under review as a conference paper at ICLR 2025

CURRENT TASK
Instruction: Construct tower of white cubes to the same height as
existing tower of green die

GPT-4s output
#First, we have to find the height of the tower of green dice,
#then construct a tower of white cubes of the same size

tower_size = find_size(struct_name = tower, objects = filter (green, die))
tower (height = tower_size , objects = filter (white, cube))

Listing 9: Prompting method for the task of constructing tower of white cubes to the same height as
existing tower of green die

Given a task you have to provide Python code for executing the task

importing available functions

from spatial_directions import top, front, back, left, right

from primitives import assign_head, move_head, keep_at_head

HEAD is a imaginary pointer keeping track of the current spatial
location in consideration

from helpers import find_size, filter

from structures import row, column, tower

#function signature of the imported functions

finds all the objects with the given color and shape, returns a mask
denoting the probability of object selection

filter (color, shape)

finds the size of the structure struct_name that is formed with objects
of the given type, returns the size of the structure (whose type is
integer), arguments for this should be provided as kwargs

find_size(struct_name = str_name, objects = ObjSet)

assigns the head to the location of the object

assign_head(at_obj_loc)

moves the head in the given dir

move_head (dir)

keeps the object obj at the head

keep_at_head (obj)

#Examples:
#Instruction: Move the green block to the left of the red dice
assign_head(at_obj_loc = filter (red, dice))

move_head (left)
keep_at_head(obj = filter (green, cube))

Instruction: Find the size of the tower made of yellow legos
find_size(struct_name = tower, objects = filter(yellow, lego))

#Instruction: Find the size of the row made of orange cubes
find_size (struct_name = row, objects = filter (orange, cube))

Instruction: Find the size of the column made of cyan cubes
find_size (struct_name = column, objects = filter (cyan, cube))

Instruction: Move the green block to the left of the red dice and the
yellow block to the top of the green block

assign_head(at_obj_loc = filter (red, dice))

move_head (left)

keep_at_head(obj = filter (green, cube))

assign_head(at_obj_loc = filter (green, cube))

move_head (top)

keep_at_head(obj = filter(yellow, cube))

Instruction: Construct a row of green legos of length 3 to the right of
the blue block

5 assign_head(at_obj_loc = filter (blue, block))

29

60
6

62

63

64

66
67
68
69
70

90

93

Under review as a conference paper at ICLR 2025

move_head (right)
row (length = 3, objects = filter (green, legos))

Instruction: Construct a tower of size 3 using red cubes
tower (height = 3, objects = filter(red, cube))

Instruction: Construct a row of size 5 using blue legos
row (length = 5, objects = filter (blue, lego))

Instruction: Construct a column of size 6 using green die
column (length = 6, objects = filter (green, dice))

Instruction: Place 3 green blocks so that one block is to the right of
the other

green_blocks = filter (green, block)

keep_at_head (green_blocks)

move_head (right)

keep_at_head (green_blocks)

move_head (right)

5 keep_at_head (green_blocks)

Instruction: Place 3 red legos on top of one another
red_legos = filter (red, lego)

keep_at_head(red_legos)

move_head (top)

keep_at_head(red_legos)

move_head (top)

3 keep_at_head(red_legos)

CURRENT TASK
Instruction: Construct a tower of height 6 using red and blue blocks
that are alternating

GPT-4s output
Python code:

Define the red and blue blocks

3 red_blocks = filter('red’, ’'block’)

blue_blocks = filter(’blue’, ’'block’)

Start at the bottom and alternate building the tower
for i in range(6) :
if i%2 == 0: # if the stack position is even
keep_at_head(red_blocks)
else: # if the stack position is odd
keep_at_head (blue_blocks)
if i !'= 5: # if not at the top of the tower
move_head (top)

Listing 10: Prompting method for the task of constructing tower of alternating red and blue cubes

To find the size of a given structure in the given scene we define the function find_size, which
takes the name of structure, all the objects in the initial scene, mask of the objects (a distribution over
the objects based on the attributes), and the initial state. (we assume that this function has access to
the semantics of all the concepts learnt so far, through a transition function). Algorithm [I] gives the
pseudocode for the function find_structure. Below we provide a brief explanation for it.

1. First we assign our head to every block in the available blocks (line 6)

2. Then we begin constructing/visualizing the corresponding structure from that block begin-
ning with a size of 1. (line 7)

30

Under review as a conference paper at ICLR 2025

3. For each structure created/visualized we compare the blocks moved for the structure creation
with corresponding blocks originally present in the scene, and perform a matching between
these blocks and a subset of the blocks originally present (line 11-26).

4. If we are able to find a mapping for each moved block, such that each mapped pair has an
IoU greater than a threshold, we increase the next potential size to test by 1 (line 26-27).

5. The final size is the size corresponding to 2nd last iteration, before termination (line 28).

6. We return the maximum of all the possible structures that are found (line 34)

Algorithm 1 Find Size

Require: name: structure name, objs: object list, state: initial state, mask: object mask
Ensure: Size of the maximum sized structure found
1: found + ||
2: for each cand in objs do
size 1
4 curr < state.copy()
5: while true do
6: new_state < assign_head(cand)
7.
8

vis_state, num_mov, rew <— transition(
new_state, name, [('size’, size), ('objects’, mask)])

9: topk < torch.topk(mask, num_mov)
10: possible < true
11: matches + ||
12: for each idx in topk do
13: possible < (idx in objs)
14: match_ok <+ false
15: for m_idx, obj in enumerate(state.state) do
16: iou +— tou2d(vis_state.statelidzx],
17: state.state[m_idz))
18: match_ok « (iou > 0.75)and
19: (m_idx in objs)
20: if match_ok then
21: matches.append(m_idx)
22: break
23: end if
24: end for
25: if not match_ok then
26: break
27: end if
28: end for
29: if possible then
30: stze < size + 1
31: else
32: found.append((size — 1, matches))
33: break
34: end if
35: end while
36: end for

37: return max(size for size, match in found)

D.4 DETAILS ON MCTS VARIANTS FOR PLAN SEARCH

Here we provide the details for 3 different plan search methods, that search over the space A =

A UA,

e MCTS+L+P: This is the approach that we describe in section 4.2. For every concept
say Tower € L we have a corresponding set of macro action say Make_Tower (3,

31

Under review as a conference paper at ICLR 2025

objects) (L). Further we use a neural pruner 7, that outputs a primitive action a;
(given current state and next expected state). We only consider the actions A, U {a;} during
our search from the given state. This helps to reduce the effective branching factor and
allows to search longer length plans within the same computational budget.

* MCTS+L-P: Here we do not use the reactive policy, therefore the branching factor for every
node becomes A =4, U A,,.

* MCTS-L+P: We only search among the space of primitive actions i.e .A,. Given a state 5; and
corresponding next expected state s;1 we greedily pick the action a;, = Teural (8¢, St41)-
This method is much more faster than the previous 2 methods as there is no explicit search.
However the corresponding policy is trained only to output an action a € A, and lacks
the ability to output modular plans composed of macro actions such as Make_Tower (3,
objects) € A, (the action space A, is increasing with time and the architecture of
network needs to be changed accordingly). As a result the plans found are not modular and
difficult to generalize. Further, the reactive policy is not trained to output reset_head (),
store_head () as additional annotated data is required in order to train a classifier over
them. This further decreases the space of grounded plans (and therefore corresponding
generic programs) such a policy can represent. Training a reactive policy that can handle
actions such as reset_head () and an action space A, that grows with time is part of
future work.

D.5 GOAL-CONDITIONED PLANNING WITH LEARNT CONCEPTS

Why is it difficult to hand encode a PDDL for our domain? Most of the PDDL description of blocks
world assume actions involving only the spatial relation onTop, which limits their applicability to
describing different structures like row that need spatial relations like onRight. Further a single action
might lead to varied effects/post-conditions based on the initial state. [T6] gives 2 example of the same
action moveOnTop (A, B) which would end up giving adding different number of spatial relations.

Approach Overview. Given an instruction A = “Con- moveO”T"p(X Y) moveOnTop(X, Y)

struct a staircase of magenta die having 3 steps”, we first
convert it into corresponding grounded task sketch Hg = -
staircase (3, [3, 2, 1, ---1). Executing the

corresponding program of staircase (by getting the seman-
tics from the library £) on the desired objects we get the
expected final scene S}- in bounding box space. The ini-
tial scene S; and expected final scene S} are converted Figure 16: Difficult to encode post-
into scene graph SG; and SG'; (described in . The conditions. Illustration of a domain
relations between the task relevant objects in SG”, act as where encoding a PDDL for direct plan-
propositions/relations for goal check and the initial scene ning is challenging.

graph act as the initial state. Then a neuro-symbolic plan-

ner is used to obtain the optimal plan from the start state

to a state that satisfies the goal. Below we also detail different aspects of the approach.

Relation added = Relation added = onTop(X, Y),
onTop(X, Y) onRight(X, B)

Scene-graph Extraction. [0] gives the algorithm used for generating scene graph from a given
scene (set of bounding boxes). Suppose we need to check whether there exists a relation of the
form (4, j, direction) i.e. block i is in the direction direction of block j, in a given scene. We
first initialize the head at the position/bounding-box of block j (line 7). Then we move the head in
direction direction (line 9). We claim that the relationship would exists if bounding box for block ¢
has IoU > 0.75 with the predicted_head (line 10-12).

32

Under review as a conference paper at ICLR 2025

Algorithm 2 Get Scene Graph

1: procedure GET_SCENE_GRAPH(bbozes) // bboxes describe the corresponding scene for which

15:
16:
17:

scene graph is to be found

spatial_relations < []
directions < {’right’, ’front’, ’top’ }
for i, bbox: in enumerate(bboxes) do
for j, other_bbox in enumerate(bboxes) do
final_head + bboxes]i|
init_head + bboxes[j]
for direction in directions do
pred_head < move_head(direction, init_head)
iou_score < IoU(final_head, pred_head)
if iou_score > 0.75 then
spatial_relations.append((i, j, direction))
end if
end for
end for
end for
return spatial_relations

18: end procedure

Pre-conditions. We define the following 2 preconditions (and learn their grounding) in order to
ensure that the generated plans are physically possible.

1. is-clear (blk, dir): We need to check whether a block blk has some free space in

direction dir. For this we simply move the head in the direction dir with respect to the block
blk. If the resulting position of head has 0 overlap with bounding boxes of all the other
objects the predicate is True otherwise False.

. will-not-be-floating (pred_loc) : We need to check whether the resultant/pre-

dicted location of an object on taking an action would be dynamically stable or not. The
location would be stable if either it is on top of some already placed object or it is on the
table surface. The former can be checked through the resultant scene graph itself (that is
obtained by applying the algorithm [0), while for the later we train an on-table classifier.
This would take as input a bounding box and predict whether the box is on the table or
not. For training this classifier we use the dataset of pretraining phase. The blockwise
positive and negative sample annotation can be done automatically by giving GPT-4 the
corresponding scene graph and then querying which objects are on the table and which
aren’t. gives an example. (Though we have not taken this approach for the complete
dataset of 5k samples due to high cost).

Actions. We define the following two types actions

. place-random (blk) : To place a block at a random free position on the table. For this

we train a generative model (VAE) which learns the underlying distribution of bounding
boxes for all the blocks that lie on the table. Given a scene we would sample position
(bounding box) from this until we get a position that is not overlapping with the existing
blocks in the scene. For training the VAE we assume that for every demonstration in the
pretraining data, the first scene has all the objects randomly placed on the table (we could
have also used the positive examples used for training on-table classifier).

. move (rel, blkl, blk2): This action corresponds to moving the blkl in the di-

rection rel of blk2, resulting in the addition of a relation (rel, blkl, blk2) in the set
of spatial relations. This action is defined as a sequential composition of the actions
assign_head (blk2), move_head(rel), keep_at_head(blkl) (blkl is a
one hot tensor for the corresponding block).

Techniques and heuristic for efficient planning. Since the action space for the planner could
be o(n?), where n is the number of objects we adopt the following techniques to make planning
scalable/efficient:

33

W

Under review as a conference paper at ICLR 2025

Input Prompt

Suppose the spatial relation (top, 1, 2) means 1 is on top of object 2 and in
this case object 2 is on table

Consider the following spatial relations:
(C, A, 'right) Y X
(B, C, 'top)
(H, A, 'top") H B
(B, H, 'right)
(X, B, 'top’) Al C
(X, Y, 'right")

(Y, H, 'top")

Identify which objects are on the horizontal table surface

GPT-4's Output

The objects directly on the horizontal table surface are A and C.

Figure 17: Method to get annotation for training on-table classifier.

1. Heuristic - We define the heuristic value h(s) for a state s, as the number of relations that

are present in the goal but are absent in the scene graph corresponding to the state s. Even
though this heuristic is not admissible (as it may over overestimate the cost to goal), it was
found to work optimally in most of the cases.

. Greedy-pruning - We assume that all the actions resulting in states with higher or same

heuristic value would be of the form place-random (blk). This means among the
actions of the form move (rel, blkl, blk2) we only select those that lead to states
with decreased heuristic value.

. Relevant-object-set - Suppose O is the set of objects that are part of atleast one of the

predicate in goal. We define O’ as the transitive closure of O with respect to the relation
Related in the initial state s;, where SG(s;) is scene graph for the initial state

Related(a, b, s;) <= 3dir((dir,a,b) € SG(s;) V (dir,b,a) € SG(s;)) ©)

We assume O’ is the relevant set of object for completing the task and actions that move any
other object should not be taken.

E BROADER IMPACT

This work creates foundational knowledge in understanding human-like spatial abstractions. This
work contributes towards the development of explainable and interpret-able learning architectures
that may eventually contribute towards the development of embodied agents collaborating with and
assisting humans in performing tasks. No negative impact of this work is envisioned.

F HYPERPARAMETERS, ARCHITECTURE DETAILS AND GROUND TRUTH

F.1

CONCEPTS

ARCHITECTURE FOR NEURAL MODULES

Action Simulator:

import torch.nn as nn

class ActionSimulatorNetwork (nn.Module) :

def _ _init_ (self, bbox_mode, hidden_size = 2506):

super (ActionSimulatorNetwork, self)._ _init__ ()
self.bbox_mode = bbox_mode

34

-

W

9 o

-

Under review as a conference paper at ICLR 2025

self.hidden_size hidden_size

self.action_semantics_encoder
nn.Linear (5, hidden_size),
nn.RelLU(),
nn.Linear (hidden_size,
nn.ReLU ()

hidden_size),

)

self.argument_encoder nn.Sequential (
nn.Linear (5, hidden_size),
nn.RelLU(),
nn.Linear (hidden_size,
nn.ReLU ()

hidden_size),

)
self.decoder
nn.Linear (hidden_size,
nn.RelLU(),
nn.Linear (hidden_size,
nn.Tanh ()

nn.Sequential (
hidden_size),

5),

nn.Sequential (

Listing 11: Action Simulator Network in PyTorch

Reactive Policy(myeural):

import torch.nn as nn

class NeuralSearch (nn.Module) :
def __init__ (self, action_space=6):

super (NeuralSearch, self).__init__ ()
self.action_space = action_space
self.fcl = nn.Linear (10, 256)

self.bnl = nn.BatchNormld (256)
self.bnl = nn.Identity ()

self.fc2 = nn.Linear (256, 256)

self.bn2 = nn.BatchNormld (256)
self.bn2 = nn.Identity ()

self.fc3 = nn.Linear (256, 256)

self.bn3 = nn.BatchNormld (256)
self.bn3 = nn.Identity ()

self.fc4 = nn.Linear (256, action_space)

Listing 12: Neural Search in PyTorch

Random Position predictor (for grounding of place-random (blk)):

import torch.nn as nn

class VAE (nn.Module) :
def __init__ (self, input_dim, latent_dim):
super (VAE, self).__init__ ()
self.input_dim input_dim
self.latent_dim latent_dim
Encoder

self.fcl = nn.Linear (input_dim, 512)
self.bnl = nn.BatchNormld(512)
self.fc2 = nn.Linear (512, 512)
self.bn2 = nn.BatchNormld(512)
self.fc3 = nn.Linear (512, 512)
self.bn3 = nn.BatchNormld (512)
self.fc4d = nn.Linear (512, 512)
self.bnd4 = nn.BatchNormld (512)
self.fc51 = nn.Linear (512, latent_dim)
space
self.fc52 = nn.Linear (512, latent_dim)

latent space

35

Mean of the latent

Log-variance of the

(log-var for numerical stability)

Under review as a conference paper at ICLR 2025

20 # Decoder
21 self.fc5 = nn.Linear (latent_dim, 512)

22 self.bn5 = nn.BatchNormld(512)
23 self.fc6 = nn.Linear (512, 512
24 self.bn6 = nn.BatchNormld (512

26 self.bn7 = nn.BatchNormld (512
27 self.fc8 = nn.Linear (512, 512
28 self.bn8 = nn.BatchNormld(512)
29 self.fc9 = nn.Linear (512, input_dim)

Listing 13: VAE in PyTorch

)
)
25 self.fc7 = nn.Linear (512, 512)
)
)

On-table classifier (for grounding of will-not-be-floating (pred_loc):

I import torch.nn as nn

3 class TableClassifier (nn.Module) :

4 def _ init_ (self):

5 super (TableClassifier, self).__init__ ()
6 self.fcl = nn.Linear (5, 16)

7 self.bnl = nn.BatchNormld(16)

8 self.fc2 = nn.Linear (16, 16)

9 self.bn?2 = nn.BatchNormld(16)

10 self.fc3 = nn.Linear (16, 16)

11 self.bn3 = nn.BatchNormld(16)

12 self.fc4d = nn.Linear (16, 1)
13 self.bn4 = nn.BatchNormld (1)
14 self.sigmoid = nn.Sigmoid ()

Listing 14: Table Classifier in PyTorch

F.2 HYPERPARAMETERS USED IN EXPERIMENT

As indicated in [AZ3]for the purpose of generalization through multiple candidate plans (from 1
demonstration) we chose the top-k plans (as measured by overall IoU achieved). The k chosen for all
our experiments involving MCTS was 5. (The performance of our best approach was found to be the
same for k=5 to 20). For every plan we obtain 3 programs from GPT-4 by re-prompting it 3 times
with the same input prompt (with temperature > 0). From the pool of these 3*k programs we chose
the one with highest IoU reward by running each of them on the given demonstration. The discount
factor kept for our search is v = 0.95, and unless explicitly specified the number of expansions steps
used = 5000.

F.3 GROUND-TRUTH INDUCTIVE CONCEPTS

I hHHEES

2 # row

3 def row(length, objects):

4 for 1 in range (length) :

5 keep_at_head(obj = objects)
6 move_head (dir = "right")

8 HHHFHH

9 # tower

0 def tower (height, objects):
1 for i in range (height):
2 keep_at_head(obj = objects)
3 move_head (dir = 'top’)

s #HEHEHE

6 # column
7 def column (size, objects):

36

26

66

69
(
71

73
74

76
77
78
79
80
81
82

Under review as a conference paper at ICLR 2025

for _ in range(size):
keep_at_head(obj = objects)
move_head(dir = ’"front’)
#HEHHH

staircase
def staircase(steps, objects):
for step in range(l, steps+l):
tower (height = step, objects = objects)
move_head (dir = ’"right’)

#HeH4H
inverted_row
def inverted_row (num, objects):
for i in range (num) :
keep_at_head (obj=objects)
move_head (dir="1left’)

HHEHHH
inverted_column
def inverted_column(size, objects):

for _ in range(size):
keep_at_head(obj = objects)
move_head (dir = "back’)

return None

HHEHHH
inverted_staircase
def inverted_staircase (steps, objects):
for step in range(l, steps+l):
tower (height = step, objects = objects)
move_head (dir = "left")

FH#HHH

2 # diagonal_ 135

def diagonal_135(length, objects):
for i in range(length) :
keep_at_head(obj = objects)

move_head(dir = ’"front’)
move_head (dir = "left’)
return

HHEH4H
diagonal_315
def diagonal_ 315 (length, objects):
for i in range(length) :
keep_at_head(obj = objects)

move_head (dir = "back’)
move_head (dir = "right’)
return

#HFHAEH
diagonal_225
def diagonal_225(length, objects):

for _ in range(length) :
keep_at_head(obj = objects)
move_head (dir = ’"back’)
move_head (dir = "left’)
HHEHHH

diagonal_45
def diagonal_45(length, objects):

for _ in range (length) :
keep_at_head(obj = objects)
move_head (dir = ’"front’)

37

92
93
94
95

96

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

Under review as a conference paper at ICLR 2025

move_head (dir = "right’)

HHHHHH
boundary
def boundary(size, objects):
row (length=size-1, objects=objects)

for _ in range(size-1):
move_head (dir = "right’)
move_head (dir = " front’)

column (length=size-1, objects=objects)

for _ in range(size-1):
move_head (dir = ’front’)
move_head (dir = ’"left’)

inverted_row (length=size-1, objects=objects)

for _ in range(size-1):
move_head (dir = "left’)
move_head (dir = ’"back’)

inverted_column (length=size-1, objects=objects)

for _ in range(size-1):
move_head (dir = ’back’)
move_head (dir = "right’)
#HHHdEH

arch_bridge
def arch_bridge (height, objects):

staircase (steps = height, objects = objects)
move_head (dir = ’"left’)
inverted_staircase (steps = height, objects = objects)
return

#HHHHEH

x-shaped structure
def x(size, objects):
diagonal_45(length = size, objects = objects)

move_head (dir = ’"back’)

diagonal_315(length = size, objects = objects)
move_head (dir = ’"left’)

diagonal_225(length = size, objects = objects)
move_head (dir = " front’)

diagonal_135(length = size, objects = objects)

FHAHHH

pyramid

def pyramid(height, objects):
for i in range (height) :

row_length = (height « 2) - (i = 2) -1
row (length = row_length, objects = objects)
if 1 !'= height - 1:

move_head(dir = "top’)

move_head (dir = "right’)

#HAEHH
Listing 15: Definition of inductive concepts

G COMPUTATIONAL REQUIREMENTS: DETAILS

All our experiments were run on a server with the following machine specifications.

CPU Specification:

38

Under review as a conference paper at ICLR 2025

Specification Value
Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Address sizes 46 bits physical, 57 bits virtual
Byte Order Little Endian
CPU(s) 112
On-line CPU(s) list | 0-111
Vendor ID Genuinelntel
Model name Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
CPU family 6
Model 106
Thread(s) per core | 2
Core(s) per socket | 28
Socket(s) 2
Stepping 6
CPU max MHz 3100.0000
CPU min MHz 800.0000
BogoMIPS 4000.00
GPU Specification:
Specification | Value
GPU 1
Description VGA compatible controller
Product Integrated Matrox G200eW3 Graphics Controller
Vendor Matrox Electronics Systems Ltd.
Physical ID 0
Bus Info pci@0000:03:00.0
Logical Name | /dev/fb0
Version 04
Width 32 bits
Clock 66MHz
Capabilities pm vga_controller bus_master cap_list rom fb
Configuration | depth=32 driver=mgag200 mingnt=16
Resources irq:16 memory:91000000-91{tffff memory:92808000-9280bfff
memory:92000000-927ftfff memory:c0000-dffff
GPU 2
Description 3D controller
Product GA102GL [A40]
Vendor NVIDIA Corporation
Physical ID 0
Bus Info pci@0000:17:00.0
Version al
Width 64 bits
Clock 33MHz
Capabilities pm bus_master cap_list
Configuration | driver=nvidia latency=0
Resources iomemory:21000-20fff iomemory:21200-211ff irq:18
memory:9c000000-9cfffftf memory:210000000000-210ftfftff
memory:212000000000-212001 ffffff memory:9d000000-9d7fffff
memory:211000000000-21 1 fffffffff memory:212002000000-21204 1 {ffftf
GPU 3
Description 3D controller
Product GA102GL [A40]
Vendor NVIDIA Corporation

39

Under review as a conference paper at ICLR 2025

Physical ID 0

Bus Info pci@0000:ca:00.0

Version al

Width 64 bits

Clock 33MHz

Capabilities pm bus_master cap_list

Configuration | driver=nvidia latency=0

Resources iomemory:28000-27fff iomemory:28200-2811f irq:18
memory:e7000000-e7{fffff memory:280000000000-280fffffftf
memory:282000000000-282001 ffffff memory:e8000000-e87{ftff
memory:281000000000-28 1 fffffffff memory:282002000000-28204 1 {ffftf

Time Required: The time required for pretraining phase of all the neural modules is around 36
hours. For learning of inductive concepts the time taken varies from 5 minutes to 1 day depending on
the search method used and the specific set of hyperparameters. However for our best approach we
get the maximum performance in approx 12 minutes. Time taken for our approach during inference

is less than 2 minutes per dataset.

40

	Introduction
	Related Works
	Preliminaries and Problem Setting
	Representing Inductive Spatial Concepts
	Learning Inductive Concepts from Demonstrations
	(Sketch) Grounded Task Sketch Generation
	(Plan) Physical Reward Guided Plan Search
	(Generalize) Plan to Program Abstraction

	Evaluation Setup
	Results
	Conclusion
	Additional Details on Technical Approach
	Symbolic Constructs and their Semantics used in Programs
	Curriculum Learning
	Details for Plan-Search and Generalization
	Additional Details: Learning with Increasing Number of Demonstrations
	Detailed Experimental Methodology

	Additional details regarding datasets
	Prompting Strategy and Examples
	Prompt Example for Task Sketch Generation Stage (Sketch)
	Prompt Example for Generalizing a sequence of actions/plan to a general program (Generalize)
	Benefit of Estimating Modular/Smaller Plans
	Comparing Same-length Plans in terms of Generalizability
	Generalizing via Multiple Demonstrations
	Prompt Examples for Learning Programs using LLM/VLM Models

	Supplementary Results
	Qualitative Comparison between Purely-neural (Struct-Diff+Grounder) vs. Ours(SPG)
	Continual Learning of Neural Concepts
	Details for Inference on Novel Tasks using an LLM
	Details on MCTS Variants for Plan Search
	Goal-conditioned Planning with Learnt Concepts

	Broader Impact
	Hyperparameters, Architecture details and Ground Truth Concepts
	Architecture for neural modules
	Hyperparameters used in experiment
	Ground-Truth Inductive Concepts

	Computational Requirements: Details

