
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Sketch-Plan-Generalize: LEARNING INDUCTIVE REPRE-
SENTATIONS FOR GROUNDED SPATIAL CONCEPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Our goal is to enable embodied agents to learn inductive representations for
grounded spatial concepts, e.g., learning staircase as an inductive composition
of towers of increasing height. Given few human demonstrations, we seek a
learning architecture that infers a succinct inductive program representation that
explains the observed instances. The approach should generalize to learning of
novel structures of different size or complexity expressed as a hierarchical compo-
sition of previously learned concepts. Existing approaches that use code generation
capabilities of pre-trained large (visual) language models as well as purely neural
models show poor generalization to a-priori unseen complex concepts. Our key
insight is to factor inductive concept learning as: (i) Sketch: detecting and inferring
a coarse signature of a new concept (ii) Plan: performing MCTS search over
grounded action sequences (iii) Generalize: abstracting out grounded plans as
inductive programs. Our pipeline facilitates generalization and modular re-use
enabling continual concept learning. Our approach combines the benefits of code
generation ability of large language models (LLMs) along with grounded neural
representations, resulting in neuro-symbolic programs that show stronger inductive
generalization on the task of constructing complex structures vis-á-vis LLM-only
and purely neural approaches. Further, we demonstrate reasoning and planning
capabilities with learned concepts for embodied instruction following.

1 INTRODUCTION

The ability to learn inductive representation for novel grounded concepts is one of the hallmarks
of human intelligence (Tenenbaum et al., 2011). Humans are highly data efficient – observing a
few instances of towers of a certain heights, we can generalize to constructing towers of any height.
Further, we interpret increasingly complex concepts as hierarchical composition over simpler ones,
e.g., a tower as a sequence of blocks placed on top of each other, or a staircase composed of towers of
increasing height. This paper considers the problem of learning a program representation, from a few
demonstrations, that models the inductive realization of grounded spatial concepts. Learning of such
concepts is a challenging task due to an expansive space of programs and the need to reason about
their physical plausibility. Further, the representation must support inductive generalization over
learned concepts as well as express complex hierarchical concepts via modular re-use of concepts
learnt previously.

Prior efforts such as Liang et al. (2023) uses a LLM (Large Language Model) to generate control
program for a given task specification but fail to generalize to complex spatial concepts which are
difficult to tokenize. Extension of this to VLMs (Vision Language Models), Achiam et al. (2023),
also fail to generalize when presented with linguistically novel concepts, due to over reliance on
prior knowledge and their inability to effectively learn novel concepts from given demonstrations.
On the other hand, neural approaches such as Liu et al. (2023), learn from given demonstrations but
generalize poorly due to their inability to (a) explicitly model symbolic concept of induction and
(b) modularize as well as re-use previously acquired concepts. Approaches such as Li et al. (2019)
train RL-based policies to attain spatial assembly by encoding an inductive spatial prior using GNNs
within the policy architecture. However, generalization is still limited and assumes an elicitation
of the goal as per object positions, resulting in lack of ability to take in goal description such as
“construct a tower of size three”. In essence, we attribute poor generalization of such approaches to an
implicit entangling of the following objectives: (i) postulating a high-level program for new concepts,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Problem Overview. Our goal is to enable an embodied agent to learn grounded and generalizeable
representations for spatial abstractions possessing a notion of induction (e.g., constructing a tower, row or their
combinations such as staircases, boundary etc.). Learning is enabled by querying prior knowledge from large pre-
trained models, performing search in the action space guided by observations of a human demonstration for few
examples and finally generalizing as compact programs. (Left) A human demonstrates the construction of a row
and tower of size three. (Right) The agent learns program representation that enables inductive generalization to
novel structures (varied sizes and visual attributes) and expresses complex concepts as hierarchical composition
of previously acquired ones. E.g., learning a tower as a sequence of blocks placed one on top of another and a
pyramid as rows of decreasing size.

(ii) evaluating plausibility of grounded plans to align with human demonstration of concepts to be
learned and (iii) abstracting out a grounded program to facilitate inductive generalization and modular
re-use in a continual manner.

This paper introduces an approach, termed SPG, that factorizes the concept learning task as: (a) Sketch:
Given a language-annotated demonstration of a novel concept, an LLM is used to postulate a function
signature. (b) Plan: Refinement of program sketches via MCTS search, rapidly evaluating actions
sequences guided by a reward associated with constructing a concept. The search is accelerated by
training a neural action predictor that uses the given demonstrations. (c) Generalize: Leveraging the
code generation capability of an LLM to distill grounded plans into a program that is inductively
generalize-able. This results in a continually evolving library of concepts which can be used
to hierarchically learn complex concepts in future. The modular architecture enables continual
learning by providing the ability to decide whether the new concept encountered either as a symbolic
composition of existing concepts, or, a neural embedding trained via gradient update. Our experiments
demonstrate accurate learning of simple and complex concepts from few demonstrations for a range
of spatial structures. Further, our approach shows inductive generalization in out-of-distribution
settings, significantly improving over the baselines. We also present deeper insights around the
efficiency gains obtained by combining symbolic MCTS with neural action predictor. Finally, we
show how learned concepts can be grounded in the visual input, enabling a robot to follow natural
language instructions referring to a-priori unseen spatial configurations.

2 RELATED WORKS

Concept Learning: The problem of acquiring higher-order programmatic constructs is often modeled
as Bayesian inference over a latent symbol space given observed instances. Seminal works have
demonstrated efficient inference over latent generative programs to express hand-written digits (Lake
et al., 2015), object arrangements (Ellis et al., 2018), motion plans (Mao et al., 2019), goal-directed
policies (Silver et al., 2019) or compressed/refactored code (Grand et al., 2023; Ellis et al., 2021).
These works are focused on learning abstract programs without considering their grounding in the
3D world or the process of constructing them (e.g., via an embodied agent performing stacking).
In contrast, this paper focus on learning a representation of specific class of higher-order spatially-
grounded concepts, namely those possessing a notion of induction resulting in the construction of a
structure. While prior efforts have leveraged program synthesis/search methods in learning concepts,
we expose such a search to the assessing the physical construction plausibility thereby learning
physically grounded concepts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Learning-to-plan Methods: Our work is complementary to efforts that learn symbolic constructs
for efficient planning. Works such as Silver et al. (2023; 2024); Liu et al. (2024), infer state-action
abstractions for planning by querying large pre-trained models or by optimizing a goal attainability
objective. This paper, instead, focuses on learning a representation for complex spatial assemblies
as inductive programs leading to the ability to infer complex goal specifications which can then be
combined with aforementioned works for synthesize efficient plans to realize complex assemblies.
Works such as Li et al. (2019) learn to construct structures by encoding relational knowledge via
graph neural network. However, this effort suffers from poor generalization to unseen examples, (e.g.,
tower of larger size) and do not possess a mechanism to re-use previously acquired concepts. Works
such as Wang et al. (2023a;d) shows lifelong learning of skills by learning to plan high-level tasks
through composition of simple skills for simulated agents. Others (Wan et al., 2023; Parakh et al.,
2023) initiate new skill acquisition upon detecting task failure, building a library of skills over time.
However, they do not model deep inductive use of learned concepts and initiate skill acquisition only
upon failure as opposed to learning continually even from goal-reaching demonstrations.

Robot Instruction Following: Instruction following involves grounding symbolic constructs ex-
pressed in language with aspects of the state-action space such as object assemblies (Paul et al., 2018;
Collins et al., 2024; Lachmy et al., 2022), spatial relations (Tellex et al., 2011; Kim et al., 2024),
reward functions (Boularias et al., 2015), or motion constraints (Howard et al., 2014). These works
assume the presence of grounded representation for symbolic concepts and only learn associations
between language and concepts. In contrast our work jointly learns higher-order concepts composed
of simpler concepts along with their grounding in the robot’s state and action space. Others (Singh
et al., 2022; Wang et al., 2023b; Ahn et al., 2022; Liang et al., 2023) leverage prior-knowledge em-
bodied in large vision-language models to directly translate high-level tasks to robot control programs.
Our experiments (reported subsequently) demonstrate their limitation in outputting programs for
structure assembly-type tasks that require long-range (inductive) spatial reasoning and consideration
of physical plausability of construction. Our approach addresses this problem by coupling abstract
task knowledge from pre-trained models with physical reasoning in the space of executable plans.

3 PRELIMINARIES AND PROBLEM SETTING

We consider an embodied agent that uses a visual and depth sensor to observe its environment and can
grasp and release objects at specified poses. We represent the robot’s domain as a goal-conditioned
MDP < S,A, T , g,R, γ > where S is the state space, A is the action space, T is the transition
function, g is the goal, R is the reward model and γ is the discount factor. The agent’s objective is to
learn a policy that generates a sequence of actions from an initial state s0 to achieve the goal g in
response to an instruction Λ specifying the intended goal from a human. We assume that the agent
possesses a model of semantic relations (e.g., left(), right() etc.) as well as semantic actions such
as moving an object by grasping and releasing at a target location. Such modular and composable
notions can be acquired from demonstrations via approaches outlined in Kalithasan et al. (2023); Mao
et al. (2019; 2022). Such notions populate a library of concepts L available as grounded executable
function calls. Following recent efforts (Liang et al., 2023; Huang et al., 2022; Ahn et al., 2022;
Singh et al., 2022) in representing robot control directly as executable programs, we represent action
sequence corresponding to a plan as a program consisting of function calls to executable actions and
grounded spatial reasoning.

Our goal is to enable a robot to interpret and learn the concepts in instructions such as “construct a
tower with red blocks of height five". Specifically, we aim to learn spatial constructs like a tower that
requires sequential actions that repeatedly place a block on top of a previously constructed assembly,
a process akin to induction. Given a few demonstrations of constructing a spatial assembly, D, each
consisting of natural language description Λ (“construct a tower of red blocks of size five") and a
sequence of key frame states {S1, · · · , Sg} associated with the construction process, we seek to learn
a program that models the inductive nature of the concept of tower. This learned representation should
enable the agent to generalize inductively to new instructions, such as "construct a tower of blue
blocks of height ten." Moreover, the learned concepts should facilitate the learning of more complex
structures, which are challenging to represent using primitive actions alone. For example, the concept
of a "tower" should assist in learning a "staircase," which can be represented as a sequence of towers
of increasing heights.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 REPRESENTING INDUCTIVE SPATIAL CONCEPTS

We formalize the notion of inductive spatial concepts and formulate the learning objective.

Inductive Spatial Concepts: A spatial structure is an inductive concept if its construction can be
described recursively using a similar structure of smaller size or as a composition of other simpler
structures. Formally, let C1, · · · , C|L| represent the concepts in the concept library L. We define a
partial order on L where a concept C is "dependent on" C̃ if C̃ is a substructure of C. For example, a
staircase is dependent on a tower, and X (cross) is dependent on diagonals, and so on. This partial
order is referred to as structural complexity, where a concept C is more structurally complex than C̃ if
C is dependent on C̃. Without loss of generality, assume that C1, · · · , C|L| are written in topological
order as per their structural complexity. Now, the construction of an inductive spatial concept CK of
size n at a position p, denoted by the function h(Ck, n, p), is defined recursively as:

h(Ck, n, p) = hλ(Ck, n− 1, pos(.))︸ ︷︷ ︸
Induction (I)

◦
L(Ck)∏
l=1

h
(
Ck′

l
, size(.), pos(.)

)
︸ ︷︷ ︸

Composition (C)

◦
L′(Ck)∏
l=1

ηlθ
(
pos(.)

)
︸ ︷︷ ︸

Base (B)

(1)

where, λ ∈ {0, 1}, k′ < k, 0 ≤ L(Ck), L
′(Ck) ≤ o(|L|), pos(.) = pos(Ck, l, n, p) and size(.) =

size(Ck, l, n) are functions that predict the size and position of the structure to be constructed.

1. Induction term: The first term hλ(Ck, n − 1, pos(.)) is referred to as the induction term
because it represents the possibility of constructing Ck of size n using Ck of size n − 1.
Here, λ is an integer exponent, either 0 or 1, where λ = 0 indicates the absence of the
induction term, and λ = 1 indicates its presence.

2. Composition term: The second term
L(Ck)∏
l=1

h
(
Ck′

l
, size(.), pos(.)

)
, called the composition

term, allows us to express the construction of Ck as a composition of previously known
concepts in the library. The number of required compositions depends on the concept Ck

and the size of the library L.

3. Base term: The third term
L′(Ck)∏
l=1

ηlθ
(
pos(.)

)
defines the base case where the construction

of concept Ck may include L′ number of primitive actions. For example, the construction
of a tower of size n can be written as a construction of a tower of size n− 1 followed by a
primitive action of moving a block on top.

Learning Objective: The functional space of inductive concepts (h) leads to a hypothesis spaceH of
associated neuro-symbolic programs. Each goal-reaching demonstration corresponds to a particular
instantiation of a given inductive concept, i.e. h(Ck, n, p), where the p comes from the sequence of
frames, and n, Ck comes from Λ. We aim to learn a generic representation H = h(Ck, ·, ·) ∈ H
for the given concept, which is general for all n and p. Given (few) demonstrations of a human
constructing a spatial structure, concept learning can be formulated as the Bayesian posterior (Lake
et al., 2015; Shah et al., 2018; Silver et al., 2019), PH(H|Λ, S1..Sg) ∝ P(S1..Sg|Λ, H) · P(H|Λ).
Here, the likelihood term associates a candidate program, and the prior term regularizes the program
space. The maximum a-posteriori estimate, representing the learnt program, is obtained by optimizing
the following objective:

H∗ = arg min
H∈H

[Loss({S1..Sg}, Exec(H,Λ, S1))− log P(H|Λ)] (2)

Since exact inference is intractable, approximate inference is performed via search in the program
space. Note that learning inductive spatial concepts given demonstration considers programs that
represent plans that attain physically grounded/feasible structures, an object we model during the
search. Additionally, we seek strong generalization from a few instances of an inductive structure to
structures with arbitrary sizes, in effect favouring programs with iterative looping constructs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Method Overview. We learn a neuro-symbolic program for inductive spatial concepts factored as
(a) Sketch (b) Plan (c) Generalize. The example above shows the progressive realization of a program for the
concept of a staircase acquired by observing a single demonstration of building a staircase of size four and its
corresponding natural language instruction, “construct a staircase of size four using magenta legos."

5 LEARNING INDUCTIVE CONCEPTS FROM DEMONSTRATIONS

We address the problem of estimating a succinct generalized program, Eq. 2, modeling an inductive
spatial concept modeling structures whose construction is observed in a human demonstration. Direct
symbolic search in the space of programs is intractable (particularly due to looping constructs needed
for modeling induction) but can explicitly reason over previously acquired concepts. Alternatively,
neural methods attempting to predict action sequence to attain the assembly are challenged by
continual setting where concepts can increase over time building on previously learnt ones but are
resilient to noise. Our approach blends both approaches and factors the concept learning task as:

• Sketch: From the natural language instruction (Λ), we extract a task sketch (H∗
S) using an

LLM that provides the signature (concept name and instantiated arguments) of the concept
to be learned. When grounded in the initial scene of the demonstration, the task sketch
provides a particular instance of the concept demonstrated in the given demonstration.

• Plan: MCTS-based search using the already learnt concepts that outputs the sequence of
grounded actions, best explaining the given demonstration.

• Generalize: The grounded plan H∗
P and task sketch H∗

S are provided to an LLM to obtain a
general Python program whose execution on the given scene matches the searched plan.

Formally, the factored exploration of the program space for a demonstration is performed as:

H∗
S ← Sketch(Λ ; θS) ; H

∗
P ← Plan(S1..Sg, H

∗
S ; θP) ; H

∗
G ← Generalize(H∗

P , H
∗
S ; θG) (3)

Here, θS , θP and θG are the learnable parameters (including hyperparameters) of the Sketch, Plan
and Generalize functions, respectively. The concept library L is initialized with primitive visual
and action concepts. Upon acquiring a new inductive concept H∗

G = H∗, we update our library
accordingly: L ← L ∪ H∗. An example is provided in Appendix Sec. A.5. Fig. 2 illustrates an
example of progressive prog. estimation. Next, we detail each of the three steps mentioned above.

5.1 (SKETCH) GROUNDED TASK SKETCH GENERATION

An LLM driven by in-context learning is used to get a program signature (a sketch) for a concept
from the natural language instruction. The task sketch is a tree of nested function calls that outlines
the function header (name and the parameters) of the inductive concept/program to be learned. A
detailed exposition on prompting appears in the Appendix C.1. The task sketch thus obtained is
then grounded on the input scene using a quasi-symbolic visual grounding module akin to Mao
et al. (2019); Kalithasan et al. (2023); Wang et al. (2023c). This module has three key components:
(1) a visual extractor (ResNet-34 based) that extracts the features of all objects in the scene, (2) a
concept embedding module that learns disentangled representations for visual concepts like green
and dice, and (3) a quasi-symbolic executor equipped with pre-defined behaviours such as “filter”
to select/ground the objects of interest. For example, grounding the task sketch “Tower (height =3,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

objects = filter(green, dice))” results in an instantiated function call “Tower(height = 3, objects = [1,
2, 3])” where [1, 2, 3] are the green coloured dice.

5.2 (PLAN) PHYSICAL REWARD GUIDED PLAN SEARCH

The plan search involves finding a generalizable plan that effectively explains the demonstration
S1, · · · , Sg . Specifically, this involves determining the concepts, their respective grounded parameters,
and the order of composition as specified in the Equation 1.

Primitive Actions. Constructing complex structures involves two steps: (1) identifying or imag-
ining the placement location of an object/structure and (2) picking and placing the object at the
imagined location. The position posθ(.) for placement is determined using a head, which rep-
resents a cuboidal enclosure in 3D space. Conceptually, moving the head is akin to the robot’s
cognitive exploration of potential placements to achieve the desired spatial configuration. We
define a set of primitive functions, Ap, to guide the movement and placement of objects in
two stages: (1) move_head(direction): This primitive moves the abstract head to a de-
sired relative position and (2) keep_at_head(objects): This primitive places the target
object from the list objects at the current location of the head. It is important to note that
move_head(direction) is a neural operator, which takes the head’s current position and pre-
dicts its new location based on the specified direction. This operator is trained on a corpus of
pick-and-place instructions, such as "move the green object to the right of the red cube," similar to
the approach in Kalithasan et al. (2023).

MCTS Search. We use an object-centric state representation defined by bounding boxes (including
the depth of the center) and visual attributes of all the objects that are present on the table. For each
learned inductive concept <cpt>, we define a macro-action Make_<cpt>(size) that executes
the corresponding program with the given size argument, resulting in the construction of the desired
concept. Thus, the action space A is the union of primitive actions Ap and compound/macro-
actions Ac. Intersection over Union (IoU) between the attained state and the expected state in the
demonstration is provided as a reward for all macro actions and keep_at_head(objects); all
other actions yield zero reward. An MCTS procedure similar to Khandelwal et al. (2016) is performed
to find a plan that maximizes the reward. The node expansion process and reward calculation for the
MCTS procedure is detailed in Appendix A.3. The search outputs a sequence of grounded actions for
an instantiation of the given inductive concept by the task arguments.

Modularity and Scalability. MCTS that searches for a plan only in terms of primitive actions may
not be generalizable due to lack of modularity C.3. The use of macro-actions in the search ensures
that the plan H∗

p for a given demonstration is concise, modular, and easily generalizable. This can be
seen as a form of regularization in terms of the length of concept description by making the prior
P (H) ∝ |H|−α (where α > 0) in equation (2)

H∗ = arg min
H∈H

[Loss({S1..Sn}, H(Λ)) + α log |H|]

However, as the action space expands with the learning of more concepts, the search becomes
slower, necessitating the pruning of the search space. To avoid searching over the size parameter
in macro-actions, we greedily select the smallest size that achieves the maximum average reward
from the current state. Additionally, to prune primitive actions, we train a reactive policy πneural

which, given the current state s̃t and the next expected state st+1 (from the demonstration), outputs
one of the primitive actions a∗t ∈ Ap. Consequently, the effective branching factor of the search is
reduced from |Ac|+ |Ap| to |Ac|+1. Thus, our MCTS algorithm is modular through the hierarchical
composition of learned concepts and efficient through action space pruning, and is referred to as
MCTS+L+P. Further details regarding modifications in MCTS are given in the Appendix A.3.

5.3 (GENERALIZE) PLAN TO PROGRAM ABSTRACTION

Leveraging the code generation and pattern matching abilities of LLMs (Mirchandani et al., 2023),
we use GPT-4 to distil out a general Python program from the sequence of grounded actions as
determined by MCTS+L+P. The learnt program is incorporated in the concept library, L, for modular
reuse in subsequent learning tasks. Additional details, prompting mechanism and use of learnt
programs in the search step of future learning tasks are described in Appendix C.2, A.3. We take
a curriculum learning approach beginning from learning of primitive actions and visual attributes,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

followed by structures of increasing complexity. Appendix C.2, Fig. 2, A.4 details the curriculum
used for concept learning, architecture details, and learning from multiple demonstrations.

6 EVALUATION SETUP

Corpus. A corpus is created using a simulated Robot Manipulator assembling spatial struc-
tures on a table-top viewed by a visual-depth sensor. Demonstration data (3 demonstrations
per structure, with up to 20 objects present in the scene) includes observations (via a visual-
depth camera) of the action sequence (picking and placing of blocks) resulting in the construc-
tion of the final assembly using varied block instances and types (e.g., cubes, dice, lego etc.).

Figure 3: Illustrative examples of spatial
structures from corpus showing inductive
composition over simpler structures. De-
tails and visualizations in Appendix B

The scope of concepts and associated evaluation tasks
are adapted from closely related works. The stair-
case and enclosure construction tasks are inspired from
from Silver et al. (2019), adapted to 3D from the original
2D grid world setting. Structures such as boundaries in-
volving repetitive use of columns and rows (w/o explicit
joint fastening) are inspired by a robotic assembly data
set (Collins et al., 2024). Finally, the arc-bridge and
x-shaped patterns are inspired from concept learning
works as Lake et al. (2015). A total of 15 structures
types are incorporated and are additionally modulated
in size/spatial arrangement for generalization evaluation.
Three evaluation data sets are formed each with simple structures and complex structures composed
of simpler concepts (e.g., staircase consists of towers as substructure). Dataset I and II contain
demonstrations constructing structures with size(.) ∈ [3, 5], where size is defined in 4. Dataset
II reverses the linguistic labels used (e.g., the “tower" in I becomes “rewot" in II) to assess model
reliance on pre-training knowledge in presence of new labels for concepts. Dataset III includes
concepts of larger size than those in training to test generalization.

Baselines. Four baselines are formed from two alternative approaches as follows.

(1) Purely-Neural: An end-to-end neural model inspired by StructDiffusion (Liu et al., 2023) that
treats structure construction as a rearrangement problem. We consider two variations of the model:
(1.1) Struct-Diff (SD): End-to-end approach without any additional supervision regarding which
objects need to be moved. (1.2) With-Grounder (SD+G): Similar to (1.1) except that we assume a
perfect object selector/grounder that identifies the relevant set of objects which are to be moved.

(2) Pre-trained models that directly output symbolic programs: (2.1) LLMs for Scene-Graph
Reasoning: This approach uses a Pre-trained Language Model (GPT-4) to generate Python programs
from instructions which describe the given demonstration. To help the LLM understand the underlying
structure, it is provided with the symbolic spatial relationships (e.g., left(a,b)) between objects in the
demonstration. For this baseline we further assume absence of distractor objects in the scene. (2.2)
Vision Language Model (GPT-4V): Similar to (2.1) but has the ability to take input demonstration as
images. For learning the program of a new inductive concept, we give the demonstration to the VLM
in the form of Λ, (S1..Sg). Additional details on prompting method in Appendix C.6. Experiments
were also conducted with open source code-generation LLMs such as CodeLlama (70Bq), Due to
significantly poorer performances w.r.t. GPT-4, GPT-4 was retained as the primary LLM baseline.

Model variants. We implement three variants of the MCTS search to perform a grounded plan
search over the action space A: (i) MCTS+P+L: Our approach as described in section 5.2, that
uses the learnt concepts from L as macro actions in subsequent searches (e.g., Make_Tower(3,
objects) ∈ Ac) (L). Further it performs pruning of Ap using πneural (P), (ii) MCTS-P+L: Our
approach without neural pruning and (iii) MCTS+P-L: No access to library of concepts during
continual learning and thereby lacks ability to use macro actions. This method greedily selects the
action from Ap as given by πneural. We provide more details about the 3 methods in Appendix D.4.

Metrics. We adopt the following metrics to evaluate our models: (i) Program Accuracy: A binary
score obtained through human evaluation. 1 for constructing the structure fully, 0 otherwise. (ii)
Target Construction IoU: Intersection over Union (2D-IoU) between bounding boxes. (iii) Target
Construction Loss: Mean Squared Error (MSE) loss over the bounding boxes + depth of the center.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

7 RESULTS

Our experiments evaluate the following questions. Q1: How does our model perform when compared
to baselines in terms of concept learning and execution ability (In-Distribution)? Q2: How does our
model generalize to concept instances not seen (larger) during training (Out-of-Distribution)? Q3:
How robust and efficient is our concept learning pipeline? Q4: How can the acquired concepts be
used in for embodied instruction following tasks?

Q1: CONCEPT LEARNING ACCURACY

We compare the program accuracy (Table 1) and the IoU/MSE values (Table 2) of the final states
attained by SPG and the baselines w.r.t. the gold states in the in-distribution setting and find that
SPG significantly outperforms other approaches. Values for Purely neural approaches are marked NA
because Neural Outputs are not physically grounded. We make the following observations: (i) For
complex compositional structures, the accuracy of the pre-trained models is poor (zero), indicating
their inability to reason over the numerous and complex spatial relations present in these structures.
(ii) While program inference via the LLM is better than the VLM for learning simple structures, it
is worse for complex structures. This indicates the inherent weakness of the textual descriptions of
complex spatial relations present in complex structures. (iii) While the data-intensive purely neural
approaches perform much better on complex structures when compared to the pre-trained foundation
models, they are still weaker than SPG.

Table 1: Program Accuracy

Model Simple Complex
SPG(Ours) 1.00 0.83
GPT-4V 0.33 0.00
GPT-4 0.78 0.00
SD+G NA NA
SD NA NA

Table 2: In-distribution Performance (Mean ± Std-error)

Model Simple Complex
IoU MSE (1e-3) IoU MSE (1e-3)

SPG(Ours) 0.96 ± 0.00 0.01 ± 0.00 0.85 ± 0.02 2.06 ± 1.02
GPT-4V 0.75 ± 0.01 4.33 ± 0.41 0.50 ± 0.02 7.29 ± 1.10
GPT-4 0.89 ± 0.01 1.36 ± 0.26 0.28 ± 0.02 13.5 ± 1.65
SD+G 0.74 ± 0.01 1.42 ± 0.29 0.61 ± 0.02 2.43 ± 0.48
SD 0.49 ± 0.01 1.48 ± 0.24 0.46 ± 0.02 3.71 ± 1.53

Q2: GENERALIZATION PERFORMANCE

Table 3, compares the generalization performance on Dataset III for models trained on Dataset I
(full table in Appendix, 8). We see that SPG outperforms other approaches. We further consider
the relative decrease (R.D.) in performance (2D-IoU) on going from the in-distribution to the out-of-
distribution (OOD) setting. We make the following observations: (i) SPG suffers a relative decrease
of 7.27% for simple and 5.74% for complex structures. (ii) In contrast, the SD+G baseline shows
a large R.D. of 63.25% on simple structures and 74.72% on complex structures; highlighting the
inability of Purely Neural Models to generalize inductively. (iii) Pre-trained models also have a large
R.D. in perf. for complex structures (GPT-4 : 53.87% & GPT4V : 41.64%), which is attributed to
their inability to generate the correct program that can generalize inductively to unseen data.

Table 3: OOD Performance. R.D% is the relative
decrease in IoU from Table 2. MSE is in 1e-3 units

Model Simple Complex
IoU R.D% MSE IoU R.D% MSE

SPG(Ours) 0.89 7.27 0.43 0.80 5.74 1.49
GPT-4V 0.58 23.33 13.2 0.29 41.64 10.9
GPT-4 0.78 12.61 5.51 0.13 53.87 19.1
SD+G 0.27 63.25 6.21 0.15 74.72 14.2
SD 0.24 51.84 6.86 0.15 67.67 11.6

Table 4: Perf. on Dataset II with Reversed
Names. Acc. is Prog. Accuracy, MSE in 1e-3 units

Model Simple Complex
Acc. IoU MSE Acc. IoU MSE

SPG(Ours) 0.88 0.86 1.74 0.78 0.78 3.93
GPT-4V 0.23 0.71 3.92 0.00 0.09 21.29
GPT-4 0.67 0.78 3.16 0.00 0.00 22.73

Q3: ROBUSTNESS AND EFFICIENCY ANALYSIS

Reliance on pre-trained Knowledge vs. Demonstration. Next, we evaluate the degree to which
concept learning relies on prior knowledge vs. the action sequences observed in demonstrations. We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

compare pre-trained models against our approach by learning programs on Dataset II (6), which
uses arbitrary names for concepts. This forces all models to rely on demonstration data because there
is no real-world knowledge associated with the name of the concept, say "rewot" instead of "tower".
Table 4 indicates the corresponding performances, with our approach outperforming others. For
the IoU/MSE values along with standard errors refer to Appendix Table 9. The relative decrease
in performance (program accuracy w.r.t. Table 1) for simple structures for our approach (12%) is
lower than GPT-4 (14%) and much lower than GPT-4V (30%). The poorer generalization of pre-
trained models can be attributed to their over-reliance on prior knowledge and failure to effectively
incorporate the data from demonstrations. In contrast, SPG better captures the semantics of a novel
concept, especially ones whose knowledge may not be available for the LLMs/VLMs at training time.

MCTS Variants for Concept Learning.

Figure 4: MCTS Variants. Num. of
expansion steps in search (log scale) (X-
axis) vs Program accuracy (Y-axis).

Figure 4 compares the program accuracy for the three meth-
ods of plan search. For the MCTS-L+P method, the program
accuracy is expected to be independent of expansion steps as
it greedily chooses the action for which πneural gives the highest
probability. For the MCTS+L based methods the accuracy in-
creases beyond 0.6 with time, which demonstrates that having
a composable library of concepts allows us to learn a much
richer class of inductive concepts. MCTS+P+L saturates to a
program accuracy of 0.933 in just 4000 expansion steps com-
pared to MCTS+L-P taking 512000 expansion steps, which
demonstrates a significant increase in learning efficiency via
use of the neural pruner. For very low number of expansions
steps (<40) accuracy of MCTS+L based methods is lower than MCTS-L as the former expends
expansion steps on UCB exploration (instead of greedy actions).

Significance of MCTS in SPG. To assess the necessity and importance of MCTS, we carry out an
ablation study where we replace it with an LLM planner during the planning stage, referred to as
SPG-M+LMP. In the "plan" stage of our pipeline, GPT-4V is prompted to output a plan given the
concept library and RGB keyframes from the demonstration. Our experiment shows that GPT-4V
struggles to generate correct plans, particularly for complex structures like pyramids, arch_bridge
and boundaries, resulting in significantly lower performance than SPG, see 5. Additionally, some
plans generated by GPT-4V are not physically grounded, leading to errors in both the planning
and generalization stages, which compounds the inaccuracies. This demonstrates that combining
symbolic search with LLMs offers a substantial advantage over using only LLMs.

Figure 5: Ablation studies and Disentanglement. Left: Ablations with SPG-M+LMP and GPT-4V+VR.
MSE values are in 1e-3. Right: The acquisition of new visual concepts. Plot shows an increase in the likelihood
of correct grounding of an object referenced with a new neural concept (chocolate color) with training iterations.

Model Simple Complex
Acc. IoU MSE Acc. IoU MSE

SPG(Ours) 1.0 0.96 0.01 0.83 0.85 2.06
SPG-M+LMP 0.55 0.68 11.1 0.16 0.19 20.0
GPT-4V+VRF 0.66 0.75 6.8 0.16 0.46 12.0

Effectiveness of Continual Learning of Visual Concepts Having a disentangled representations
allows us to (i) intersperse learning of new visual attributes with learning of new inductive concepts
(ii) avoid catastrophic forgetting of already learnt attributes. For example, the model can learn the
chocolate from an instruction “construct a tower using chocolate blocks of size 4”, even if it has not
seen the color in the pretraining phase. Because of our modular architecture, we can learn the color
as a new embedding in the space of visual attributes. The plot in Fig. 5 demonstrates the benefit of
having such disentangled representations. As the training proceeds the probability of being able to
select the chocolate blocks when required increases with time, while keeping the ability of selecting
a magenta colored object (when required) remains the same. Additional details for continual learning
of visual concepts appear in Appendix D.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ablating with Pre-trained Models + Visual Reward Filter In line with program synthesis tech-
niques using LLMs (Li et al., 2022; Chen et al., 2021), we sample five programs from GPT-4V and
rank them according to the visual reward obtained from their execution. Furthermore, we provide the
ground-truth programs of the concepts that are needed to learn the given new concept, thus employing
a form of teacher forcing in program generation. Even with these measures, it performs significantly
worse than SPG, see Table 5 (GPT-4V+VRF). While this performance is better than that of GPT-4V,
it still unable to generate correct programs, especially for complex structures.

Q4: APPLICATION OF LEARNT CONCEPTS FOR ROBOT INSTRUCTION FOLLOWING

Complex instruction execution via LLM. We demonstrate our ability to use the learnt program
representations to perform complex guided robot manipulation tasks. We instruct the robot to perform
tasks like : “Construct a tower of green die having the same height as the existing tower of white
die.” and “Construct a tower of total 6 blocks using alternating blue and red blocks”. For both the
above tasks we prompt GPT-4 by providing it with the set of learnt inductive concepts, the set of
primitive actions, and some pre-defined helper functions by using Python import statements in a
manner similar to Liang et al. (2023). GPT-4 generates an executable Python code in terms of these
functions, which, on running, generates the resultant and required action sequence. Figure 6 (top)
illustrates task execution (also see Appendix D.3).

Grounding learnt concepts into visual input for plan synthesis. We further demonstrate that
the concepts we have acquired can help us to perform goal conditioned planning. Fig. 6 (bottom)
demonstrates the results of our approach for the tasks of constructing a staircase beginning from
adversarial and assistive initial states. Note, the planner that we learn is a grounded neuro-symbolic
planner, as a PDDL based planner cannot be hand-coded easily (D.5), and LLMs/VLMs are unable
to perform such complex reasoning tasks (see Appendix D.5).

Figure 6: Application of learnt concepts. Top: Using LLM to generate the executable code for a novel tasks,
given the concept definitions. Bottom: Integrating a neuro-symbolic planner over the concepts. Bottom-left: The
planner is able to optimally replace the green cube from the adversarial initial state by unstacking and re-stacking
the faulty tower. Bottom-right: The planner is able to complete a staircase from an initially constructed row by
layering rows upon rows, a method of construction it has not seen while learning staircase.

8 CONCLUSION

This paper introduces a novel approach for learning inductive representation of grounded spatial
concepts as neuro-symbolic programs via language-guided demonstrations. Our approach factors pro-
gram learning as: Sketch: generating the high-level program signature via an LLM, Plan: searching
for a grounded plan that maximises the total discounted reward with the respect to the demonstration,
and Generalize: abstracting the grounded plan into an inductively generalize-able abstract plan via
an LLM. Continual learning is achieved via learning of modular programs by giving preference to
shorter programs through composition of learnt ones. Extensive evaluation demonstrates accurate
program learning and stronger generalization in relation to purely LLM based as well as purely
neural baselines. Grounding of learned concepts in visual data facilitates reasoning and planning for
embodied instruction following. Limitations include reliance on perfect demonstrations, assumption
of full observability of all objects and experiments confined to simulation. Incorporating noisy
demonstrations, reasoning with beliefs and interleaving planning and execution remains part of future
work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Abdeslam Boularias, Felix Duvallet, Jean Oh, and Anthony Stentz. Grounding spatial relations for
outdoor robot navigation. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1976–1982. IEEE, 2015.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Jack Collins, Mark Robson, Jun Yamada, Mohan Sridharan, Karol Janik, and Ingmar Posner. Ramp:
A benchmark for evaluating robotic assembly manipulation and planning. IEEE Robotics and
Automation Letters, 9(1):9–16, January 2024. ISSN 2377-3774. doi: 10.1109/lra.2023.3330611.
URL http://dx.doi.org/10.1109/LRA.2023.3330611.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics
programs from hand-drawn images. Advances in neural information processing systems, 31, 2018.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping inductive
program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm sigplan
international conference on programming language design and implementation, pp. 835–850,
2021.

Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X Olausson, Muxin Liu, Joshua B Tenenbaum,
and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting code.
arXiv preprint arXiv:2310.19791, 2023.

Thomas M Howard, Stefanie Tellex, and Nicholas Roy. A natural language planner interface for
mobile manipulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6652–6659. IEEE, 2014.

Wenlong Huang, F. Xia, Ted Xiao, Harris Chan, Jacky Liang, Peter R. Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In Conference on Robot Learning, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.

Namasivayam Kalithasan, Himanshu Singh, Vishal Bindal, Arnav Tuli, Vishwajeet Agrawal, Rahul
Jain, Parag Singla, and Rohan Paul. Learning neuro-symbolic programs for language guided robot
manipulation. 2023.

Piyush Khandelwal, Elad Liebman, Scott Niekum, and Peter Stone. On the analysis of complex
backup strategies in monte carlo tree search. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML’16, pp. 1319–1328. JMLR.org,
2016.

11

https://arxiv.org/abs/2107.03374
http://dx.doi.org/10.1109/LRA.2023.3330611

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dohyun Kim, Nayoung Oh, Deokmin Hwang, and Daehyung Park. Lingo-space: Language-
conditioned incremental grounding for space. arXiv preprint arXiv:2402.01183, 2024.

Royi Lachmy, Valentina Pyatkin, Avshalom Manevich, and Reut Tsarfaty. Draw me a flower:
Processing and grounding abstraction in natural language. Transactions of the Association for
Computational Linguistics, 10:1341–1356, 2022.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical multi-object manipu-
lation using relational reinforcement learning, 2019.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023.

Weiyu Liu, Yilun Du, Tucker Hermans, Sonia Chernova, and Chris Paxton. Structdiffusion: Language-
guided creation of physically-valid structures using unseen objects, 2023.

Weiyu Liu, Geng Chen, Joy Hsu, Jiayuan Mao, and Jiajun Wu. Learning planning abstractions from
language. arXiv preprint arXiv:2405.03864, 2024.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision,
2019.

Jiayuan Mao, Tomás Lozano-Pérez, Josh Tenenbaum, and Leslie Kaelbling. Pdsketch: Integrated
domain programming, learning, and planning. Advances in Neural Information Processing Systems,
35:36972–36984, 2022.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines,
2023.

Meenal Parakh, Alisha Fong, Anthony Simeonov, Tao Chen, Abhishek Gupta, and Pulkit Agrawal.
Lifelong robot learning with human assisted language planners, 2023.

Rohan Paul, Jacob Arkin, Derya Aksaray, Nicholas Roy, and Thomas M Howard. Efficient grounding
of abstract spatial concepts for natural language interaction with robot platforms. The International
Journal of Robotics Research, 37(10):1269–1299, 2018.

Ankit Shah, Pritish Kamath, Julie A Shah, and Shen Li. Bayesian inference of temporal task
specifications from demonstrations. Advances in Neural Information Processing Systems, 31,
2018.

Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logical program policies, 2019.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomás Lozano-Pérez, Leslie Kael-
bling, and Joshua B Tenenbaum. Predicate invention for bilevel planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 12120–12129, 2023.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael Katz.
Generalized planning in pddl domains with pretrained large language models. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 20256–20264, 2024.

12

http://dx.doi.org/10.1126/science.abq1158

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. arXiv preprint arXiv:2209.11302, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. Approaching the symbol grounding problem with probabilistic graphical
models. AI magazine, 32(4):64–76, 2011.

Joshua B. Tenenbaum, Charles Kemp, Thomas L. Griffiths, and Noah D. Goodman. How to
grow a mind: Statistics, structure, and abstraction. Science, 331(6022):1279–1285, 2011.
doi: 10.1126/science.1192788. URL https://www.science.org/doi/abs/10.1126/
science.1192788.

Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu. Lotus: Continual imitation learning for robot
manipulation through unsupervised skill discovery, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega, Yash Sharma, and Sanjiban Choudhury.
Demo2code: From summarizing demonstrations to synthesizing code via extended chain-of-
thought. arXiv preprint arXiv:2305.16744, 2023b.

Renhao Wang, Jiayuan Mao, Joy Hsu, Hang Zhao, Jiajun Wu, and Yang Gao. Programmatically
grounded, compositionally generalizable robotic manipulation. arXiv preprint arXiv:2304.13826,
2023c.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models, 2023d.

13

https://www.science.org/doi/abs/10.1126/science.1192788
https://www.science.org/doi/abs/10.1126/science.1192788

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ON TECHNICAL APPROACH

Figure 7 illustrates the pipeline for online inference to realize to realize construction of novel
structures.

Figure 7: SPG: Inference First the library of concept L is loaded with the corresponding set of
learnt programs. Then the given instruction is converted into task-sketch Hs, which is grounded in
the initial scene. The required program is fetched from the library, and the grounded task-sketch is
executed based on the semantics of the learnt program.

A.1 SYMBOLIC CONSTRUCTS AND THEIR SEMANTICS USED IN PROGRAMS

Table 5 defines the types of the signature and semantics of all the operators. Table 6, includes the type
definition of various symbols. Standard Python constructs such as for loops, if else · · ·) as assumed
in addition to the constructs defined here.

Table 5: Symbols and Semantics Signature and semantics for the primitive concepts and operations
that are used in the construction of the programs used to express inductive spatial concepts.

Function Signature Semantics
filter (VisualConcept, ObjSet)→ ObjSet Returns the objects that con-

tain the VisualConcept
move_head (Head, Dir)→ Head Moves the head to the given

direction (May or may not
take input/return the head,
based on a flag)

assign_head a.k.a
move_head(overloaded)

(Head, ObjIdx)→ Head Given the index/one-hot rep-
resentation for an object, it
moves the head to the posi-
tion corresponding to that ob-
ject

keep_at_head (ObjSet, Head)→ None Keeps the argmax of ObjSet
at the head

reset_head None→ Head Sets the head to the top posi-
tion of stack and pops this po-
sition from the stack as well

store_head Head→ None Pushes the current position
of head into the stack

A.2 CURRICULUM LEARNING

We follow a curriculum approach where the visual concepts are trained first from simpler linguistically-
described demonstrations (t0 in figure 8). This is followed by learning of action concepts through
sequentially composed pick and place tasks. Its essential to use such long range sequential instructions
in order to ensure that the semantics of action concepts are learnt for placement of objects at a height
much above the tabletop (t1 in figure 8). After the pre-training phase, the agent can continually learn
new inductive concepts and visual attributes. (t2, t3 in figure 8)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Symbolic representation. The table lists the type definitions used in the implementation of
SPG programs.

Defined Types Python Type Usage
IntArg int Argument for the structures that de-

fines the size (height, length etc)
Obj torch.Tensor One-hot vector whose non-zero in-

dex represents the selected objects
ObjSet torch.tensor Probability mask over the selected

objects
Dir string Primitive directions like left, right,

front, top, etc
ConceptName string name of the visual, action or induc-

tive concept
Head torch.Tensor Bounding box with depth. 3D

cuboidal space.

Figure 8: Continual learning through curriculum: Using simple pick and place demonstrations we
learn visual attributes such as blue cube, yellow lego (t0). Using long range instructions which are
sequentially concatenated descriptions of pick and place tasks we train our action concepts such as
left, right, top (t1). After pre-training the agent can perform continual learning of concepts such as
learning generalized representation for tower (t2). Because of disentangled representation of neural
and symbolic concepts, interspersed learning of new visual attributes such as chocolate color are also
possible through few demonstrations of structure creation(t3).

A.3 DETAILS FOR PLAN-SEARCH AND GENERALIZATION

Modifications to the Simulation and Reward Back propagation Steps: Next, we outline the
modifications in the simulation and the reward back propagation steps of the standard MCTS
algorithm for our setting. During program search we assume access of intermediate scenes in the
demonstration. This allows us to provide intermediate rewards that can guide the search well. We
observed that making the following changes in simulation and back propagation step increased the
efficiency of our search procedure. Fig 9 illustrates the possible states explored by MCTS and the
reward calculation.

• Simulation: Rather than performing Monte Carlo simulations at each newly expanded leaf
node (to estimate its value) we completely avoid these simulation steps. This was motivated
by the fact that our reward is not completely sparse and the intermediate IoU rewards for
each object we place allow us to guide the search effectively.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Back propagation: We perform off policy Q-learning updates during back propagation
similar to one indicated by Khandelwal et al. (2016) :

V (st) = maxa∈AQ(st, a). (4)

τ(st, a) = st+1 (5)

Q(st, a) = rt + γV (st+1) (6)

Figure 9: A sample MCTS search tree outlining the states explored and the calculation of reward.

Improving Modularity and Scalability of MCTS procedure: We present additional details on the
MCTS procedure for searching for a plan conditioned on a program signature and guided by the
demonstration.

In order to incorporate the objective of searching for physically realizeable plans and facilitating
generation via re-use of concepts, the following conceptual changes are incorporated in the standard
MCTS procedure Sutton & Barto (2018).

Modularity (MCTS + L): We want to allow learning of novel inductive concepts in terms of existing
ones. This would ensure that the plan H∗

P corresponding to a given demonstration is concise and
can be easily generalized to the H∗

G. C.3 in appendix give example of two plans for the structure
Pyramid one which is modular and can be successfully generalized by GPT-4, other for which GPT-4
fails in generalization due to lack of modularity. This can be seen as a form of regularization in terms
of the length of concept description, by making the prior P (H) ∝ |H|−α (where α > 0) in equation
(2)

H∗ = arg min
H∈H

[Loss({S1..Sg}, H(Λ)) + α log |H|] (7)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In order to allow modular learning of programs, for every inductive concept already stored in
the library we define corresponding action instantiations which can be a potential candidate ac-
tions during our search. As an example, for the concept Tower we have one of the action in-
stantiation as Make_Tower(3, objects) which would be the action of constructing desired
tower. This can be visualized as a compound/macro-action which is composed of primitive ac-
tions keep_at_head(objects), move_head(‘top’). We define Ac as the space of such
compound actions, and Ap as the space of primitive action/function consisting reset_head(),
move_head(direction), keep_at_head(objects), store_head(). Realization
of equation (6) (increased preference of macro-actions over primitive ones) is done through discounted
IoU rewards during our search (Make_Tower(3) would have a reward of 1+1+1, as compared to
1 + γ2(1) + γ4(1) for a sequence of 3 (keep_at_head(objects), move_head(’top’)0)).
We refer to MCTS using concept instantiations from L as macro actions in search as MCTS+L.

Scalablility (MCTS+P): as more concepts are added to the library L the action space of our search
A (specifically Ac, the space of compound concepts) increases, therefore we want to prune the
search space effectively. For this during the pre-training phase we train a reactive policy πneural

which given the current state, s̃t and the next expected state st+1 (part of the demonstration) would
output one of the primitive action, a∗t ∈ Ap where Ap is the primitive action space, i.e. a∗t =
πneural(at|s̃t, st+1), at ∈ Ap Note that while expanding our search tree we only search among the
space of compound actions Ac and the action a∗t , thereby reducing the branching factor of search
from |Ac ∪ Ap| to |Ac| + 1. We refer to MCTS using neural pruning as MCTS+P. Therefore our
MCTS algorithm is modular through hierarchical composition of learnt concepts and efficient through
pruning of action space and is referred to as MCTS+L+P.

Generalization: GIven multiple equal length plans for a given demonstration, we seek to recover
a plan one that can be easily generalized by the LLM. 5 shows a plan which could be correctly
abstracted out into a generic program by GPT-4. Whereas 15 shows another plan with similar
semantics, for which GPT-4 is unable to correctly find the generalized program (Note that row or
column of size 1 is equivalent to keep_at_head). We tackle this problem in the following manner.

1. Rather than getting a single plan from the plan search we get the top k plans {HP,i}i=k
i=1 . In

order to get these top k plans we expand the complete tree (based on UCB criteria) starting
from the root node corresponding to the initial state, till a predefined budget of expansions.
Then we select the top k paths(potential plans) from the root node to all the leaf nodes
(where the top k ones are those that give the highest accumulated IoU reward with respect to
the given demonstration).

2. Later we abstract out each of these k plans into corresponding generalized programs,
{HG,i}i=k

i=1 using GPT-4. We again run each of these programs on the given demonstration
and then choose the one which gives the highest IoU reward (resolving ties based on
predefined order). Note that some program HG,i upon execution may result in a plan H̃P,i

different from the original plan HP,i using which it was generalized. This can be attributed
to potential errors in GPT-4s program generalization process.

A.4 ADDITIONAL DETAILS: LEARNING WITH INCREASING NUMBER OF DEMONSTRATIONS

Given k demonstrations for a novel inductive concept, we independently find k task sketch {H∗
S,i}i=k

i=1

and grounded plans {H∗
P,i}i=k

i=1 . During the generalization phase we give these k pair of task-sketch
and corresponding plans to GPT-4 and ask into infer a single abstraction over them. C.5 in appendix
gives a concrete example. Equation for generalize step (getting H∗

G from H∗
P , H

∗
S) can be modified

as follows.
H∗

G ← Generalize(HG | {H∗
P,i, H

∗
S,i}

i=k

i=1
; θG), HG ∈ HG (8)

A.5 DETAILED EXPERIMENTAL METHODOLOGY

Input to the Method: The input consists of a language instruction and a human demonstration
represented as a sequence of RGBD keyframes.

Output/Aim of the Model: The goal is to learn a representation of the unknown concept in the
instruction, assuming there is only one unknown concept. If the unknown concept is inductive (e.g.,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

"tower"), the model learns a program definition deftower() and stores it in the program library. If the
unknown concept is a primitive concept, a concept embedding is learned through backpropagation.

Evaluation: The learned model is evaluated based on the correctness of the program representation
for inductive concepts and the correctness of object placements, measured through the Intersection
over Union (IoU) metric (see Metrics, line 262). d. Examples: Suppose the current library contains
the concepts “red”, “tower”. Given the instruction “construct a staircase of height 3 using red blocks,”
the process is as follows:

Parsing: The instruction is parsed into a sketch: Staircase(height=3, objects=filter(red, blocks)).

Grounding: The “objects” parameter is grounded using the visual grounder, which identifies the
indices of the red blocks, e.g., [1, 2, 3, 4, 5, 6]. That is, filter(red, blocks) = [1,2,3,4,5,6].

Planning: The planning step uses the demonstrations (sequence of keyframes) to identify the
sequence of actions that best explains the demonstrations. In this case, the plan might be:
Tower(height=1, objects=[1,2,3,4,5,6]), move_head(right), Tower(height=2, objects=[2,3,4,5,6]),
move_head(right), Tower(height=3, objects=[4,5,6]

Generalization: The generalization step abstracts the plan obtained from three such demonstrations
into a program. The resulting program would be:

1 def staircase(height, objects):
2 for i in range(height):
3 tower(height=i, objects)
4 move_head(right)

Note: Whenever an object is placed, the objects list is modified in place, and the index of the placed
object is removed. primitive actions: The movement of any object is achieved by first determining the
placement position by moving the head (an imaginary bounding box) in specific directions and then
placing the object to be moved at the head. The head is implemented as a 3D bounding box defined
by coordinates (x1, y1, x2, y2, d), where x1, y1, x2, and y2 are the 2D corners of the bounding box,
and d is the depth at the center. The primitive action move_head(direction) shifts the bounding box in
the required direction. The action keep_at_head(object_list) picks the first object in the list and places
it at the center of the bounding box. Two other primitives, store_head and reset_head, are used to
save the current position of the head, allowing the search to return to useful positions later if needed.

B ADDITIONAL DETAILS REGARDING DATASETS

Figure 10 demonstrates the kind of inductive concepts for which we want to learn generic (i.e
instance agnostic) representations.

Dataset for Pre-training: We use 5k examples of constructing twin-towers i.e. 2 towers adjacent to
each other, for learning semantics of move_head(dir), a basic set of visual attributes, reactive
policy πneural, and neural modules required for grounded planning. The twin towers allow us to learn
various action semantics for all possible configurations of blocks in 3D-space (and not being limited
to blocks placed directly on table top surface). Since we are not aware of the underlying semantics of
tower during pre-training phase the corresponding natural language instruction consists of step by
step pick and place actions. 11 gives example demonstrations from this dataset.

Dataset for Inductive Structures: We learn a variety of structures which we have divided into
Simple and Complex structures. A structure is considered complex if it can be expressed as an
inductive composition of simpler structures. As an example, we can express a staircase to be a
composition of towers of increasing height. The structures are listed in the Table 7. Figure 12 shows
the hierarchical relationship among these structures in the form of a DAG (directed acyclic graph).
F.3 gives the ground truth program representations for each structure.

C PROMPTING STRATEGY AND EXAMPLES

This section gives various prompting examples for our approach and baselines, along with examples
motivating particular design decisions in our approach.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Illustration of the inductive concepts.

Figure 11: Example from pre-training dataset.

Table 7: Structure Types. Examples of simple and complex structures considered in this work for
the robot to construct.

Simple Structures Complex Structures
Row, Column, Tower X (cross-shape), Staircase

Inverted-Row, Inverted-Column Inverted-Staircase, Pyramid
Diagonal-45, Diagonal-135 Arch-Bridge, Boundary
Diagonal-225, Diagonal-315

C.1 PROMPT EXAMPLE FOR TASK SKETCH GENERATION STAGE (Sketch)

In order to get a program representation (high level task sketch) of the given natural language
instruction, we prompt GPT-4 with few shot examples in a manner similar to Liang et al. (2023).
Code segment 1 gives an example of getting the task sketch given the demonstration for constructing
a staircase. We first import the available primitive operators and functions and also give examples
in order to demonstrate the signature of the available primitives(line 1-8). Then we give incontext

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 12: Hierarchy of the structures/programs. This diagram shows the hiearchical nature of the
structures in our dataset. MH is abbrevation for move_head and KH is abbreviation for keep_at_head

examples of how to parse various natural language instructions in a program representation(line
10-14). We append to this prompt the instruction for current task(line 16-17).

1 # importing the available functions
2 from visual_operators import filter
3 from inductive_operators import get_parameters, find_structure
4

5 # function signature of the imported functions
6 filter(color, cube) # filter the objects that are cubes and color ..
7 get_parameters(structure) # parameters of the structure ...
8 find_structure(type, description) # finding structure of given type,

description
9

10 # examples:
11 # instruction: Find the tower with green cubes
12 find_structure(type = tower, description = filter(green, cube))
13 # instruction: Construct a tower of height 3 with yellow cubes
14 Tower(height = 3, objects = filter(yellow, cubes))
15

16 # current task: Construct a staircase of 4 steps using cyan legos
17

18 # (GPT-4s output)
19 Staircase(steps = 4, filter(cyan, legos))

Listing 1: Task Sketch Generation Using GPT-4 (Sketch)

C.2 PROMPT EXAMPLE FOR GENERALIZING A SEQUENCE OF ACTIONS/PLAN TO A GENERAL
PROGRAM (Generalize)

Code segment 2 give an example of getting the general Python program from the plan found using
MCTS. We first provide a base prompt giving details to GPT-4 about the desired task (line 1-2). Then
we give the input arguments and the corresponding output/plan for a given demonstration (line 3-5).
We expect the GPT-4 to output the final Python program (line 7-10)staircase (line 6-8).

1 # Write a general python code which on the given input produces the
desired output, do not output anything other than the function
description.

2

3 # input: n = 4, objects = ObjSet
4 # output: tower(1, ObjSet), move_head(‘right’), tower(2, ObjSet),

move_head(‘right’), tower(3, ObjSet), move_head(‘right’), tower(4,
ObjSet)

5

6 # Program (GPT-4s output)
7 def staircase(n, objects):

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

8 for i in range(n):
9 tower(i+1, objects)

10 move_head(’right’)

Listing 2: Plan to Program using GPT-4 (Generalize)

C.3 BENEFIT OF ESTIMATING MODULAR/SMALLER PLANS

The below examples demonstrate the benefit of learning new inductive concepts in terms of already
acquired inductive concepts (more modular representation). The program 3 is obtained through
generalization of plan Hp that represents pyramid in terms of rows of decreasing size. The generated
program generalizes to pyramid of different height.

1 # input: n = 3, objects = ObjSet
2 # output: row(5, ObjSet), move_head(’right’), move_head(’top’), row(3,

ObjSet), move_head(’right’), move_head(’top’), row(1, ObjSet)
3

4 # Program (GPT-4s output)
5 def pyramid(n, objects)
6 for i in range(n, 0, -1):
7 # Calculate the number of objects in the current row
8 row_count = 2 * i - 1
9

10 # Perform actions for the current layer
11 row(row_count, objects)
12 if i > 1: # No need to move head after the last row
13 move_head(’right’)
14 move_head(’top’)

Listing 3: Pyramid in terms of rows

On the other hand program 4 which is obtained in an attempt to generalize the plan expressed in
terms of primitives is incorrect.

1 # input: n = 3, objects = ObjSet
2 # output: store_head(), keep_at_head(ObjSet), move_head(’right’),

keep_at_head(ObjSet), move_head(’right’), keep_at_head(ObjSet),
move_head(’right’), keep_at_head(ObjSet), move_head(’right’),
keep_at_head(ObjSet), reset_head(), move_head(’top’), move_head(’
right’), store_head(), keep_at_head(ObjSet), move_head(’right’),
keep_at_head(ObjSet), move_head(’right’), keep_at_head(ObjSet),
reset_head(), move_head(’right’), move_head(’top), keep_at_head(
ObjSet)

3

4 # Program (GPT-4s output)
5 def pyramid(n, objects)
6 # Store initial position
7 store_head()
8

9 # Initial sequence of placing and moving right
10 for _ in range(n):
11 keep_at_head(objects)
12 move_head(’right’)
13

14 # Reset and move to top right position
15 reset_head()
16 move_head(’top’)
17 move_head(’right’)
18

19 # Store again and repeat placing and moving right
20 store_head()
21 for _ in range(n):
22 keep_at_head(objects)
23 move_head(’right’)
24

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

25 # Reset and adjust final position
26 reset_head()
27 move_head(’right’)
28 move_head(’top’)
29 keep_at_head(objects)

Listing 4: Pyramid in terms of primitive actions

C.4 COMPARING SAME-LENGTH PLANS IN TERMS OF GENERALIZABILITY

Below we illustrate plan to program generalization for 2 different plans which are correct and have
same length, but LLMs find it difficult to generalize the second one as compared to first. (Note that
row and column of size 1 are equivalent to keep_at_head)

1 # input: n = 3, objects = ObjSet
2 # output: keep_at_head(ObjSet), move_head(’top’), keep_at_head(ObjSet),

move_head(’top’), keep_at_head(ObjSet)
3

4

5 # Program
6 def tower(n, objects):
7 for _ in range(n):
8 keep_at_head(objects)
9 move_head(’top’)

Listing 5: Plan for tower that can be easily generalized (correct generalization)

1 # input: n = 3, objects = ObjSet
2 # output: row(1, ObjSet), move_head(’top’), keep_at_head(1, ObjSet),

move_head(’top’), column(1, ObjSet)
3

4

5 # Program
6 def tower(n, objects):
7 for i in range(1, n + 1):
8 row(i, objects)
9 move_head(’top’)

10 keep_at_head(objects)
11 move_head(’top’)
12 if i < n:
13 column(i, objects)
14 move_head(’top’)

Listing 6: Plan for tower that is difficult to generalize (Incorrect generalization)

C.5 GENERALIZING VIA MULTIPLE DEMONSTRATIONS

Given multiple demonstrations we independently find task sketch and corresponding grounded plans
for each demonstration. These are further given to GPT-4 for generalization. Code segment 7 gives
an example of getting a single Python program from multiple demonstrations. Note that we explicitly
prompt the LLM that some of the grounded plans might be incorrect (which may lead to more robust
generalization in case of noisy demonstrations).

1

2 # Function Call: wor(height = 3, objects = ObjSet_1)
3 # Execution: keep_at_head(obj = ObjSet_1), move_head(dir = right),

keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(
obj = ObjSet_1),

4 # Function Call: wor(height = 3, objects = ObjSet_1)
5 # Execution: keep_at_head(obj = ObjSet_1), move_head(dir = right),

keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(
obj = ObjSet_1),

6 # Function Call: wor(height = 3, objects = ObjSet_1)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

7 # Execution: column(size=1, obj = ObjSet_1), move_head(dir = right),
keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(
obj = ObjSet_1),

8

9 #Write the function definition, which generalizes the above executions.
Note that some of the executions can be partially wrong.

10 ‘‘‘python
11 def wor(height, objects):
12 ‘‘‘
13

14 GPT-4s Output

Listing 7: Generalizing through multiple plans

C.6 PROMPT EXAMPLES FOR LEARNING PROGRAMS USING LLM/VLM MODELS

Below we describe the prompting methodologies for learning programs through LLM/VLM models.
Note that although the prompt examples described below are for the case of learning novel structure
from 1 demonstration, we use 3 demonstration per novel structure in our main results (for both our
approach and LLM/VLM baseline).

LLM/GPT-4 Code segment 8 depicts our prompting methodology given a demonstration for a new
concept tower. For this baseline we aim to check demonstration following and spatial reasoning
abilities of LLMs (GPT-4). We provide supervision of the intermediate scenes by using tokenized
spatial relations between objects in the scene (Given in the form of Scene = [right(1, 0) ...]). We
further assume that only those objects that are required to perform the task are present in the scene
(no distractor objects). For every structure (that needs to be learned at time t) we give LLM a prompt
providing in-context example on how to generalize (line 19-35), the set of primitive operators (line
4) available and the set of structures learnt/present in library (till time t-1) (line 5-18). Finally we
append to this prompt the expected declaration (arguments and keywords arguments) of the inductive
concept that is to be learnt along with the spatial relations for each scene of the given demonstration
(36-51). Note that we assume absence of distractor objects for this baseline.

1 # Consider a block world domain Given a structure creation task
along with intermediate scnes complete a general Python function for
it. The function should be in terms of primitive operators and
already learnt structures that are present in the program library.
Enclose the function within backtick (‘‘‘)

2

3 primitive_operators = [keep_at_head, move_head ..]
4 # this would be our program library
5 learnt_structures = {
6 "row": {
7 "program_tree":
8 ’’’
9 def row(size, objects):

10 for i in range(size):
11 keep_at_head(obj = objects)
12 move_head(dir = ’right’)
13 ’’’,
14 },
15

16
17 }
18 # the example task
19 Example task:- Place all the objects to the right of each other.
20 Final state :- [right(1, 0), right(2, 1), right(3, 2), right(4, 3)]
21 Intermediate scenes :-
22 Scene 0 = []
23 Scene 1 = []
24 Scene 2 = [right(1, 0)]
25 Scene 3 = [right(1, 0), right(2, 1)]
26 Scene 4 = [right(1, 0), right(2, 1), right(3, 2)]
27 Scene 5 = [right(1, 0), right(2, 1), right(3, 2), right(4, 3)]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

28 Python function :-
29 ‘‘‘python
30 def placing_all_right(objects):
31 for i in range(len(objects)):
32 keep_at_head(objects) # select one object from the objects set

and keep the head at this location
33 move_head(dir = ’right’) # move the head to the right of the

previous position
34 ‘‘‘
35 # The current task for which program needs to be found
36 Current task:- Construct a tower of size 6.
37 Final state :- [top(1, 0), top(2, 1), top(3, 2), top(4, 3), top(5, 4)]
38 Intermediate scenes :-
39 Scene 0 = []
40 Scene 1 = []
41 Scene 2 = [top(1, 0)]
42 Scene 3 = [top(1, 0), top(2, 1)]
43 Scene 4 = [top(1, 0), top(2, 1), top(3, 2)]
44 Scene 5 = [top(1, 0), top(2, 1), top(3, 2), top(4, 3)]
45 Scene 6 = [top(1, 0), top(2, 1), top(3, 2), top(4, 3), top(5, 4)]
46 Python function :-
47 ‘‘‘python
48 def tower(size, objects):
49 ??
50 ‘‘‘

Listing 8: Prompting Strategy for LLM baselines (GPT-4)

VLM/GPT-4-V Unlike LLM, VLMs have the abilities to process the demonstration as a sequence of
visual frames. Therefore rather than providing the symbolic spatial relations between every scene we
instead directly provide all the intermediate scenes for the given demonstration. Further we also relax
the assumption that there are no distractor objects. As shown in figure 13 We first give information
about the set of primitive operators and the structures that we have already learnt (library of concepts).
In order to visually ground the semantics of our primitive actions we give 3 example tasks (natural
language instruction and intermediate scenes) that do not directly refer to any structure, along with
corresponding sequence of actions taken (# Demonstration for visual grounding). We further provide
another example (without scenes) demonstrating how to write generalizable Python function for a
given task using our operators (# Example for generalization). Finally we give the natural language
instruction and corresponding scenes for the current task along with signature of the program to be
learnt (# Current task description).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 13: Prompt example for VLM-baseline. Figure shows the prompting strategy for GPT-4-V
that includes the primitive actions, the example tasks for visual grounding, example of writing
generalizable Python functions and the demonstration frames.

D SUPPLEMENTARY RESULTS

Out-of-Distribution Performance:

Table 8: Out-of-Distribution Performance (mean ± std-error)

Model Simple Complex

IoU MSE IoU MSE

SPG(Ours) 0.892 ± 0.065 4.386e-4 ± 2.387e-4 0.804 ± 0.025 0.001 ± 5.391e-4
GPT-4 0.776 ± 0.023 0.006 ± 0.001 0.131 ± 0.019 0.019 ± 1.498e-3
GPT-4V 0.575 ± 0.026 0.013 ± 0.001 0.290 ± 0.016 0.011 ± 1.316e-3
SD 0.236 ± 0.005 0.006 ± 7.495e-4 0.150 ± 0.011 0.011 ± 2.860e-3
SD+G 0.273 ± 0.004 0.006 ± 6.180e-4 0.154 ± 0.010 0.014 ± 2.958e-3

Performance Dataset II (i.e. name reversed evaluation): Table 4 gives the corresponding program
accuracies, while Table 9 give the corresponding IoU/MSE metrics along with standard errors.

D.1 QUALITATIVE COMPARISON BETWEEN PURELY-NEURAL (STRUCT-DIFF+GROUNDER) VS.
OURS(SPG)

Figure 14 gives compares the qualitative results for our approach against Struct-Diffusion with
grounder on both in-distribution, Dataset I and out-of-distribution (larger size), Dataset III. In
in-distribution setting the our method performs slightly better in terms of structure creation for
both simple and complex structures, but the difference is not significant. However for out-of-
distribution setting structures created by our approach are much better than those created by Struct-

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 9: Performance on Dataset II(Names Reversed)

Model Simple Complex
IoU MSE (1e-3) IoU MSE (1e-3)

SPG(Ours) 0.86 ± 0.03 1.74 ± 0.45 0.78 ± 0.02 3.93 ± 1.09
GPT-4 0.78 ± 0.03 3.16 ± 0.51 0.00 ± 0.00 22.73 ± 1.48
GPT-4V 0.71 ± 0.01 3.92 ± 0.45 0.09 ± 0.02 21.29 ± 1.59

Diffusion+Grounder. Further for this setting structure creation by Struct-Diffusion seems to be much
worse for complex structures than simple ones.

Figure 14: Structure creation comparison between SPG(Ours), and Struct-Diff+Grounder

D.2 CONTINUAL LEARNING OF NEURAL CONCEPTS

Given demonstration for the task “Construct a tower of height 4 using chocolate cubes”, we would
like to learn the neural embedding for the unknown color chocolate (where we assume that tower has

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

already been learnt and stored in the library L). First the instruction is converted into corresponding
plan sketch HS = tower(4, Filter(chocolate, cubes)), which is passed to the visual grounder. The
grounder detects the presence of an unknown attribute chocolate as an argument to filter, and randomly
initializes a new neural embedding for it. Using this new embedding along with the already present
embedding of cube and the visual features found through ResNet-34, the quasi-symbolic executor
outputs a grounded task-sketch. The executor executes the grounded task-sketch by getting the
semantics of the underlying function i.e. tower from the library L. MSE+IoU loss computed over the
final scene obtained and the expected final scene is backpropogated through the network. Note that
during backpropogation all the neural modules (action semantics, visual attributes, ResNet-34) are
frozen, except for the newly initialized embedding for chocolate. For the purpose of differentiable
sampling during tower construction we use gumbel-softmax Jang et al. (2017) with masking. Figure
15 illustrates our approach.

Figure 15: Continual learning of visual primitives

D.3 DETAILS FOR INFERENCE ON NOVEL TASKS USING AN LLM

Below we show the Liang et al. (2023) inspired prompting methodology that we use to get the
executable code corresponding to a language specified manipulation task. We initially begin by
importing the helper functions, spatial direction, primitive functions, and learnt inductive concept-
s/structures (line 5-11). Then we give few examples for how to use and compose the various functions
for different tasks (line 16-83). Finally we give the instruction of current task, and expect GPT-4 to
output the corresponding executable code.

1 # Given a task you have to provide Python code for executing the task
2

3 # importing available functions
4

5 from spatial_directions import top, front, back, left, right
6

7 from primitives import assign_head, move_head, keep_at_head
8 # HEAD is a imaginary pointer keeping track of the current spatial

location in consideration
9

10 from helpers import find_size, filter
11 from structures import row, column, tower
12

13

14 #function signature of the imported functions
15 # finds all the objects with the given color and shape, returns a mask

denoting the probability of object selection
16 filter(color, shape)
17

18 # finds the size of the structure struct_name that is formed with objects
of the given type, returns the size of the structure (whose type is

integer), arguments for this should be provided as kwargs
19 find_size(struct_name = str_name, objects = ObjSet)
20

21 # assigns the head to the location of the object
22 assign_head(at_obj_loc)
23

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

24 # moves the head in the given dir
25 move_head(dir)
26

27 # keeps the object obj at the head
28 keep_at_head(obj)
29

30

31 #Examples:
32 #Instruction: Move the green block to the left of the red dice
33 assign_head(at_obj_loc = filter(red, dice))
34 move_head(left)
35 keep_at_head(obj = filter(green, cube))
36

37 # Instruction: Find the size of the tower made of yellow legos
38 find_size(struct_name = tower, objects = filter(yellow, lego))
39

40 #Instruction: Find the size of the row made of orange cubes
41 find_size(struct_name = row, objects = filter(orange, cube))
42

43 # Instruction: Find the size of the column made of cyan cubes
44 find_size(struct_name = column, objects = filter(cyan, cube))
45

46 # Instruction: Move the green block to the left of the red dice and the
yellow block to the top of the green block

47 assign_head(at_obj_loc = filter(red, dice))
48 move_head(left)
49 keep_at_head(obj = filter(green, cube))
50 assign_head(at_obj_loc = filter(green, cube))
51 move_head(top)
52 keep_at_head(obj = filter(yellow, cube))
53

54 # Instruction: Construct a row of green legos of length 3 to the right of
the blue block

55 assign_head(at_obj_loc = filter(blue, block))
56 move_head(right)
57 row(length = 3, objects = filter(green, legos))
58

59

60 # Instruction: Construct a tower of size 3 using red cubes
61 tower(height = 3, objects = filter(red, cube))
62

63 # Instruction: Construct a row of size 5 using blue legos
64 row(length = 5, objects = filter(blue, lego))
65

66 # Instruction: Construct a column of size 6 using green die
67 column(length = 6, objects = filter(green, dice))
68

69 # Instruction: Place 3 green blocks so that one block is to the right of
the other

70 green_blocks = filter(green, block)
71 keep_at_head(green_blocks)
72 move_head(right)
73 keep_at_head(green_blocks)
74 move_head(right)
75 keep_at_head(green_blocks)
76

77 # Instruction: Place 3 red legos on top of one another
78 red_legos = filter(red, lego)
79 keep_at_head(red_legos)
80 move_head(top)
81 keep_at_head(red_legos)
82 move_head(top)
83 keep_at_head(red_legos)
84

85

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

86 # CURRENT TASK
87 # Instruction: Construct tower of white cubes to the same height as
88 # existing tower of green die
89

90 # GPT-4s output
91 #First, we have to find the height of the tower of green dice,
92 #then construct a tower of white cubes of the same size
93

94 tower_size = find_size(struct_name = tower, objects = filter(green, die))
95 tower(height = tower_size , objects = filter(white, cube))

Listing 9: Prompting method for the task of constructing tower of white cubes to the same height as
existing tower of green die

1 # Given a task you have to provide Python code for executing the task
2

3 # importing available functions
4 from spatial_directions import top, front, back, left, right
5 from primitives import assign_head, move_head, keep_at_head
6 # HEAD is a imaginary pointer keeping track of the current spatial

location in consideration
7 from helpers import find_size, filter
8 from structures import row, column, tower
9 #function signature of the imported functions

10 # finds all the objects with the given color and shape, returns a mask
denoting the probability of object selection

11 filter(color, shape)
12 # finds the size of the structure struct_name that is formed with objects

of the given type, returns the size of the structure (whose type is
integer), arguments for this should be provided as kwargs

13 find_size(struct_name = str_name, objects = ObjSet)
14 # assigns the head to the location of the object
15 assign_head(at_obj_loc)
16 # moves the head in the given dir
17 move_head(dir)
18 # keeps the object obj at the head
19 keep_at_head(obj)
20

21 #Examples:
22 #Instruction: Move the green block to the left of the red dice
23 assign_head(at_obj_loc = filter(red, dice))
24 move_head(left)
25 keep_at_head(obj = filter(green, cube))
26

27 # Instruction: Find the size of the tower made of yellow legos
28 find_size(struct_name = tower, objects = filter(yellow, lego))
29

30 #Instruction: Find the size of the row made of orange cubes
31 find_size(struct_name = row, objects = filter(orange, cube))
32

33 # Instruction: Find the size of the column made of cyan cubes
34 find_size(struct_name = column, objects = filter(cyan, cube))
35

36 # Instruction: Move the green block to the left of the red dice and the
yellow block to the top of the green block

37 assign_head(at_obj_loc = filter(red, dice))
38 move_head(left)
39 keep_at_head(obj = filter(green, cube))
40 assign_head(at_obj_loc = filter(green, cube))
41 move_head(top)
42 keep_at_head(obj = filter(yellow, cube))
43

44 # Instruction: Construct a row of green legos of length 3 to the right of
the blue block

45 assign_head(at_obj_loc = filter(blue, block))

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

46 move_head(right)
47 row(length = 3, objects = filter(green, legos))
48

49

50 # Instruction: Construct a tower of size 3 using red cubes
51 tower(height = 3, objects = filter(red, cube))
52

53 # Instruction: Construct a row of size 5 using blue legos
54 row(length = 5, objects = filter(blue, lego))
55

56 # Instruction: Construct a column of size 6 using green die
57 column(length = 6, objects = filter(green, dice))
58

59 # Instruction: Place 3 green blocks so that one block is to the right of
the other

60 green_blocks = filter(green, block)
61 keep_at_head(green_blocks)
62 move_head(right)
63 keep_at_head(green_blocks)
64 move_head(right)
65 keep_at_head(green_blocks)
66

67 # Instruction: Place 3 red legos on top of one another
68 red_legos = filter(red, lego)
69 keep_at_head(red_legos)
70 move_head(top)
71 keep_at_head(red_legos)
72 move_head(top)
73 keep_at_head(red_legos)
74

75

76 # CURRENT TASK
77 # Instruction: Construct a tower of height 6 using red and blue blocks

that are alternating
78

79 # GPT-4s output
80 # Python code:
81

82 # Define the red and blue blocks
83 red_blocks = filter(’red’, ’block’)
84 blue_blocks = filter(’blue’, ’block’)
85

86 # Start at the bottom and alternate building the tower
87 for i in range(6):
88 if i%2 == 0: # if the stack position is even
89 keep_at_head(red_blocks)
90 else: # if the stack position is odd
91 keep_at_head(blue_blocks)
92 if i != 5: # if not at the top of the tower
93 move_head(top)

Listing 10: Prompting method for the task of constructing tower of alternating red and blue cubes

To find the size of a given structure in the given scene we define the function find_size, which
takes the name of structure, all the objects in the initial scene, mask of the objects (a distribution over
the objects based on the attributes), and the initial state. (we assume that this function has access to
the semantics of all the concepts learnt so far, through a transition function). Algorithm 1 gives the
pseudocode for the function find_structure. Below we provide a brief explanation for it.

1. First we assign our head to every block in the available blocks (line 6)

2. Then we begin constructing/visualizing the corresponding structure from that block begin-
ning with a size of 1. (line 7)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

3. For each structure created/visualized we compare the blocks moved for the structure creation
with corresponding blocks originally present in the scene, and perform a matching between
these blocks and a subset of the blocks originally present (line 11-26).

4. If we are able to find a mapping for each moved block, such that each mapped pair has an
IoU greater than a threshold, we increase the next potential size to test by 1 (line 26-27).

5. The final size is the size corresponding to 2nd last iteration, before termination (line 28).

6. We return the maximum of all the possible structures that are found (line 34)

Algorithm 1 Find Size

Require: name: structure name, objs: object list, state: initial state, mask: object mask
Ensure: Size of the maximum sized structure found

1: found← []
2: for each cand in objs do
3: size← 1
4: curr ← state.copy()
5: while true do
6: new_state← assign_head(cand)
7: vis_state, num_mov, rew ← transition(
8: new_state, name, [(′size′, size), (′objects′,mask)])
9: topk ← torch.topk(mask, num_mov)

10: possible← true
11: matches← []
12: for each idx in topk do
13: possible← (idx in objs)
14: match_ok ← false
15: for m_idx, obj in enumerate(state.state) do
16: iou← iou2d(vis_state.state[idx],
17: state.state[m_idx])
18: match_ok ← (iou > 0.75)and
19: (m_idx in objs)
20: if match_ok then
21: matches.append(m_idx)
22: break
23: end if
24: end for
25: if not match_ok then
26: break
27: end if
28: end for
29: if possible then
30: size← size+ 1
31: else
32: found.append((size− 1,matches))
33: break
34: end if
35: end while
36: end for
37: return max(size for size, match in found)

D.4 DETAILS ON MCTS VARIANTS FOR PLAN SEARCH

Here we provide the details for 3 different plan search methods, that search over the space A =
Ac ∪ Ap

• MCTS+L+P: This is the approach that we describe in section 4.2. For every concept
say Tower ∈ L we have a corresponding set of macro action say Make_Tower(3,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

objects) (L). Further we use a neural pruner πneural that outputs a primitive action a∗p
(given current state and next expected state). We only consider the actionsAc ∪{a∗p} during
our search from the given state. This helps to reduce the effective branching factor and
allows to search longer length plans within the same computational budget.

• MCTS+L-P: Here we do not use the reactive policy, therefore the branching factor for every
node becomes A = Ac ∪ Ap.

• MCTS-L+P: We only search among the space of primitive actions i.eAp. Given a state s̃t and
corresponding next expected state st+1 we greedily pick the action a∗p = πneural(s̃t, st+1).
This method is much more faster than the previous 2 methods as there is no explicit search.
However the corresponding policy is trained only to output an action a ∈ Ap and lacks
the ability to output modular plans composed of macro actions such as Make_Tower(3,
objects) ∈ Ac (the action space Ac is increasing with time and the architecture of
network needs to be changed accordingly). As a result the plans found are not modular and
difficult to generalize. Further, the reactive policy is not trained to output reset_head(),
store_head() as additional annotated data is required in order to train a classifier over
them. This further decreases the space of grounded plans (and therefore corresponding
generic programs) such a policy can represent. Training a reactive policy that can handle
actions such as reset_head() and an action space Ac that grows with time is part of
future work.

D.5 GOAL-CONDITIONED PLANNING WITH LEARNT CONCEPTS

Why is it difficult to hand encode a PDDL for our domain? Most of the PDDL description of blocks
world assume actions involving only the spatial relation onTop, which limits their applicability to
describing different structures like row that need spatial relations like onRight. Further a single action
might lead to varied effects/post-conditions based on the initial state. 16 gives 2 example of the same
action moveOnTop(A, B) which would end up giving adding different number of spatial relations.

Figure 16: Difficult to encode post-
conditions. Illustration of a domain
where encoding a PDDL for direct plan-
ning is challenging.

Approach Overview. Given an instruction Λ = “Con-
struct a staircase of magenta die having 3 steps”, we first
convert it into corresponding grounded task sketch H∗

S =
staircase(3, [3, 2, 1, · · ·]). Executing the
corresponding program of staircase (by getting the seman-
tics from the library L) on the desired objects we get the
expected final scene S′

f in bounding box space. The ini-
tial scene Si and expected final scene S′

f are converted
into scene graph SG′

i and SG′
f (described in D.5). The

relations between the task relevant objects in SG′
f act as

propositions/relations for goal check and the initial scene
graph act as the initial state. Then a neuro-symbolic plan-
ner is used to obtain the optimal plan from the start state
to a state that satisfies the goal. Below we also detail different aspects of the approach.

Scene-graph Extraction. 0 gives the algorithm used for generating scene graph from a given
scene (set of bounding boxes). Suppose we need to check whether there exists a relation of the
form (i, j, direction) i.e. block i is in the direction direction of block j, in a given scene. We
first initialize the head at the position/bounding-box of block j (line 7). Then we move the head in
direction direction (line 9). We claim that the relationship would exists if bounding box for block i
has IoU > 0.75 with the predicted_head (line 10-12).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Algorithm 2 Get Scene Graph

1: procedure GET_SCENE_GRAPH(bboxes) // bboxes describe the corresponding scene for which
scene graph is to be found

2: spatial_relations← []
3: directions← {’right’, ’front’, ’top’}
4: for i, bbox in enumerate(bboxes) do
5: for j, other_bbox in enumerate(bboxes) do
6: final_head← bboxes[i]
7: init_head← bboxes[j]
8: for direction in directions do
9: pred_head← move_head(direction, init_head)

10: iou_score← IoU(final_head, pred_head)
11: if iou_score > 0.75 then
12: spatial_relations.append((i, j, direction))
13: end if
14: end for
15: end for
16: end for
17: return spatial_relations
18: end procedure

Pre-conditions. We define the following 2 preconditions (and learn their grounding) in order to
ensure that the generated plans are physically possible.

1. is-clear(blk, dir): We need to check whether a block blk has some free space in
direction dir. For this we simply move the head in the direction dir with respect to the block
blk. If the resulting position of head has 0 overlap with bounding boxes of all the other
objects the predicate is True otherwise False.

2. will-not-be-floating(pred_loc): We need to check whether the resultant/pre-
dicted location of an object on taking an action would be dynamically stable or not. The
location would be stable if either it is on top of some already placed object or it is on the
table surface. The former can be checked through the resultant scene graph itself (that is
obtained by applying the algorithm 0), while for the later we train an on-table classifier.
This would take as input a bounding box and predict whether the box is on the table or
not. For training this classifier we use the dataset of pretraining phase. The blockwise
positive and negative sample annotation can be done automatically by giving GPT-4 the
corresponding scene graph and then querying which objects are on the table and which
aren’t. 17 gives an example. (Though we have not taken this approach for the complete
dataset of 5k samples due to high cost).

Actions. We define the following two types actions

1. place-random(blk): To place a block at a random free position on the table. For this
we train a generative model (VAE) which learns the underlying distribution of bounding
boxes for all the blocks that lie on the table. Given a scene we would sample position
(bounding box) from this until we get a position that is not overlapping with the existing
blocks in the scene. For training the VAE we assume that for every demonstration in the
pretraining data, the first scene has all the objects randomly placed on the table (we could
have also used the positive examples used for training on-table classifier).

2. move(rel, blk1, blk2): This action corresponds to moving the blk1 in the di-
rection rel of blk2, resulting in the addition of a relation (rel, blk1, blk2) in the set
of spatial relations. This action is defined as a sequential composition of the actions
assign_head(blk2), move_head(rel), keep_at_head(blk1) (blk1 is a
one hot tensor for the corresponding block).

Techniques and heuristic for efficient planning. Since the action space for the planner could
be o(n2), where n is the number of objects we adopt the following techniques to make planning
scalable/efficient:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 17: Method to get annotation for training on-table classifier.

1. Heuristic - We define the heuristic value h(s) for a state s, as the number of relations that
are present in the goal but are absent in the scene graph corresponding to the state s. Even
though this heuristic is not admissible (as it may over overestimate the cost to goal), it was
found to work optimally in most of the cases.

2. Greedy-pruning - We assume that all the actions resulting in states with higher or same
heuristic value would be of the form place-random(blk). This means among the
actions of the form move(rel, blk1, blk2) we only select those that lead to states
with decreased heuristic value.

3. Relevant-object-set - Suppose O is the set of objects that are part of atleast one of the
predicate in goal. We define O’ as the transitive closure of O with respect to the relation
Related in the initial state si, where SG(si) is scene graph for the initial state

Related(a, b, si) ⇐⇒ ∃dir((dir, a, b) ∈ SG(si) ∨ (dir, b, a) ∈ SG(si)) (9)

We assume O’ is the relevant set of object for completing the task and actions that move any
other object should not be taken.

E BROADER IMPACT

This work creates foundational knowledge in understanding human-like spatial abstractions. This
work contributes towards the development of explainable and interpret-able learning architectures
that may eventually contribute towards the development of embodied agents collaborating with and
assisting humans in performing tasks. No negative impact of this work is envisioned.

F HYPERPARAMETERS, ARCHITECTURE DETAILS AND GROUND TRUTH
CONCEPTS

F.1 ARCHITECTURE FOR NEURAL MODULES

Action Simulator:
1 import torch.nn as nn
2

3 class ActionSimulatorNetwork(nn.Module):
4 def __init__(self, bbox_mode, hidden_size = 256):
5 super(ActionSimulatorNetwork, self).__init__()
6 self.bbox_mode = bbox_mode

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

7 self.hidden_size = hidden_size
8

9 self.action_semantics_encoder = nn.Sequential(
10 nn.Linear(5, hidden_size),
11 nn.ReLU(),
12 nn.Linear(hidden_size, hidden_size),
13 nn.ReLU()
14)
15 self.argument_encoder = nn.Sequential(
16 nn.Linear(5, hidden_size),
17 nn.ReLU(),
18 nn.Linear(hidden_size, hidden_size),
19 nn.ReLU()
20)
21 self.decoder = nn.Sequential(
22 nn.Linear(hidden_size, hidden_size),
23 nn.ReLU(),
24 nn.Linear(hidden_size, 5),
25 nn.Tanh()
26)

Listing 11: Action Simulator Network in PyTorch

Reactive Policy(πneural):
1 import torch.nn as nn
2

3 class NeuralSearch(nn.Module):
4 def __init__(self, action_space=6):
5 super(NeuralSearch, self).__init__()
6 self.action_space = action_space
7 self.fc1 = nn.Linear(10, 256)
8 # self.bn1 = nn.BatchNorm1d(256)
9 self.bn1 = nn.Identity()

10 self.fc2 = nn.Linear(256, 256)
11 # self.bn2 = nn.BatchNorm1d(256)
12 self.bn2 = nn.Identity()
13 self.fc3 = nn.Linear(256, 256)
14 # self.bn3 = nn.BatchNorm1d(256)
15 self.bn3 = nn.Identity()
16 self.fc4 = nn.Linear(256, action_space)

Listing 12: Neural Search in PyTorch

Random Position predictor (for grounding of place-random(blk)):

1 import torch.nn as nn
2

3 class VAE(nn.Module):
4 def __init__(self, input_dim, latent_dim):
5 super(VAE, self).__init__()
6 self.input_dim = input_dim
7 self.latent_dim = latent_dim
8 # Encoder
9 self.fc1 = nn.Linear(input_dim, 512)

10 self.bn1 = nn.BatchNorm1d(512)
11 self.fc2 = nn.Linear(512, 512)
12 self.bn2 = nn.BatchNorm1d(512)
13 self.fc3 = nn.Linear(512, 512)
14 self.bn3 = nn.BatchNorm1d(512)
15 self.fc4 = nn.Linear(512, 512)
16 self.bn4 = nn.BatchNorm1d(512)
17 self.fc51 = nn.Linear(512, latent_dim) # Mean of the latent

space
18 self.fc52 = nn.Linear(512, latent_dim) # Log-variance of the

latent space (log-var for numerical stability)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

19

20 # Decoder
21 self.fc5 = nn.Linear(latent_dim, 512)
22 self.bn5 = nn.BatchNorm1d(512)
23 self.fc6 = nn.Linear(512, 512)
24 self.bn6 = nn.BatchNorm1d(512)
25 self.fc7 = nn.Linear(512, 512)
26 self.bn7 = nn.BatchNorm1d(512)
27 self.fc8 = nn.Linear(512, 512)
28 self.bn8 = nn.BatchNorm1d(512)
29 self.fc9 = nn.Linear(512, input_dim)

Listing 13: VAE in PyTorch

On-table classifier (for grounding of will-not-be-floating(pred_loc):

1 import torch.nn as nn
2

3 class TableClassifier(nn.Module):
4 def __init__(self):
5 super(TableClassifier, self).__init__()
6 self.fc1 = nn.Linear(5, 16)
7 self.bn1 = nn.BatchNorm1d(16)
8 self.fc2 = nn.Linear(16, 16)
9 self.bn2 = nn.BatchNorm1d(16)

10 self.fc3 = nn.Linear(16, 16)
11 self.bn3 = nn.BatchNorm1d(16)
12 self.fc4 = nn.Linear(16, 1)
13 self.bn4 = nn.BatchNorm1d(1)
14 self.sigmoid = nn.Sigmoid()

Listing 14: Table Classifier in PyTorch

F.2 HYPERPARAMETERS USED IN EXPERIMENT

As indicated in A.3 for the purpose of generalization through multiple candidate plans (from 1
demonstration) we chose the top-k plans (as measured by overall IoU achieved). The k chosen for all
our experiments involving MCTS was 5. (The performance of our best approach was found to be the
same for k=5 to 20). For every plan we obtain 3 programs from GPT-4 by re-prompting it 3 times
with the same input prompt (with temperature > 0). From the pool of these 3*k programs we chose
the one with highest IoU reward by running each of them on the given demonstration. The discount
factor kept for our search is γ = 0.95, and unless explicitly specified the number of expansions steps
used = 5000.

F.3 GROUND-TRUTH INDUCTIVE CONCEPTS

1 ######
2 # row
3 def row(length, objects):
4 for i in range(length):
5 keep_at_head(obj = objects)
6 move_head(dir = "right")
7

8 ######
9 # tower

10 def tower(height, objects):
11 for i in range(height):
12 keep_at_head(obj = objects)
13 move_head(dir = ’top’)
14

15 ######
16 # column
17 def column(size, objects):

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

18 for _ in range(size):
19 keep_at_head(obj = objects)
20 move_head(dir = ’front’)
21

22 ######
23 # staircase
24 def staircase(steps, objects):
25 for step in range(1, steps+1):
26 tower(height = step, objects = objects)
27 move_head(dir = ’right’)
28

29 ######
30 # inverted_row
31 def inverted_row(num, objects):
32 for i in range(num):
33 keep_at_head(obj=objects)
34 move_head(dir=’left’)
35

36 ######
37 # inverted_column
38 def inverted_column(size, objects):
39 for _ in range(size):
40 keep_at_head(obj = objects)
41 move_head(dir = ’back’)
42 return None
43

44 ######
45 # inverted_staircase
46 def inverted_staircase(steps, objects):
47 for step in range(1, steps+1):
48 tower(height = step, objects = objects)
49 move_head(dir = "left")
50

51 ######
52 # diagonal_135
53 def diagonal_135(length, objects):
54 for i in range(length):
55 keep_at_head(obj = objects)
56 move_head(dir = ’front’)
57 move_head(dir = ’left’)
58 return
59

60 ######
61 # diagonal_315
62 def diagonal_315(length, objects):
63 for i in range(length):
64 keep_at_head(obj = objects)
65 move_head(dir = ’back’)
66 move_head(dir = ’right’)
67 return
68

69 ######
70 # diagonal_225
71 def diagonal_225(length, objects):
72 for _ in range(length):
73 keep_at_head(obj = objects)
74 move_head(dir = ’back’)
75 move_head(dir = ’left’)
76

77 ######
78 # diagonal_45
79 def diagonal_45(length, objects):
80 for _ in range(length):
81 keep_at_head(obj = objects)
82 move_head(dir = ’front’)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

83 move_head(dir = ’right’)
84

85 ######
86 # boundary
87 def boundary(size, objects):
88 row(length=size-1, objects=objects)
89 for _ in range(size-1):
90 move_head(dir = ’right’)
91 move_head(dir = ’front’)
92

93 column(length=size-1, objects=objects)
94 for _ in range(size-1):
95 move_head(dir = ’front’)
96 move_head(dir = ’left’)
97

98 inverted_row(length=size-1, objects=objects)
99 for _ in range(size-1):

100 move_head(dir = ’left’)
101 move_head(dir = ’back’)
102

103 inverted_column(length=size-1, objects=objects)
104 for _ in range(size-1):
105 move_head(dir = ’back’)
106 move_head(dir = ’right’)
107

108 ######
109 # arch_bridge
110 def arch_bridge(height, objects):
111 staircase(steps = height, objects = objects)
112 move_head(dir = ’left’)
113 inverted_staircase(steps = height, objects = objects)
114 return
115

116 ######
117 # x-shaped structure
118 def x(size, objects):
119 diagonal_45(length = size, objects = objects)
120 move_head(dir = ’back’)
121 diagonal_315(length = size, objects = objects)
122 move_head(dir = ’left’)
123 diagonal_225(length = size, objects = objects)
124 move_head(dir = ’front’)
125 diagonal_135(length = size, objects = objects)
126

127 ######
128 # pyramid
129 def pyramid(height, objects):
130 for i in range(height):
131 row_length = (height * 2) - (i * 2) - 1
132 row(length = row_length, objects = objects)
133 if i != height - 1:
134 move_head(dir = ’top’)
135 move_head(dir = ’right’)
136 ######

Listing 15: Definition of inductive concepts

G COMPUTATIONAL REQUIREMENTS: DETAILS

All our experiments were run on a server with the following machine specifications.

CPU Specification:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Specification Value
Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Address sizes 46 bits physical, 57 bits virtual
Byte Order Little Endian
CPU(s) 112
On-line CPU(s) list 0-111
Vendor ID GenuineIntel
Model name Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
CPU family 6
Model 106
Thread(s) per core 2
Core(s) per socket 28
Socket(s) 2
Stepping 6
CPU max MHz 3100.0000
CPU min MHz 800.0000
BogoMIPS 4000.00

GPU Specification:

Specification Value
GPU 1

Description VGA compatible controller
Product Integrated Matrox G200eW3 Graphics Controller
Vendor Matrox Electronics Systems Ltd.
Physical ID 0
Bus Info pci@0000:03:00.0
Logical Name /dev/fb0
Version 04
Width 32 bits
Clock 66MHz
Capabilities pm vga_controller bus_master cap_list rom fb
Configuration depth=32 driver=mgag200 mingnt=16
Resources irq:16 memory:91000000-91ffffff memory:92808000-9280bfff

memory:92000000-927fffff memory:c0000-dffff
GPU 2

Description 3D controller
Product GA102GL [A40]
Vendor NVIDIA Corporation
Physical ID 0
Bus Info pci@0000:17:00.0
Version a1
Width 64 bits
Clock 33MHz
Capabilities pm bus_master cap_list
Configuration driver=nvidia latency=0
Resources iomemory:21000-20fff iomemory:21200-211ff irq:18

memory:9c000000-9cffffff memory:210000000000-210fffffffff
memory:212000000000-212001ffffff memory:9d000000-9d7fffff
memory:211000000000-211fffffffff memory:212002000000-212041ffffff

GPU 3
Description 3D controller
Product GA102GL [A40]
Vendor NVIDIA Corporation

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Physical ID 0
Bus Info pci@0000:ca:00.0
Version a1
Width 64 bits
Clock 33MHz
Capabilities pm bus_master cap_list
Configuration driver=nvidia latency=0
Resources iomemory:28000-27fff iomemory:28200-281ff irq:18

memory:e7000000-e7ffffff memory:280000000000-280fffffffff
memory:282000000000-282001ffffff memory:e8000000-e87fffff
memory:281000000000-281fffffffff memory:282002000000-282041ffffff

Time Required: The time required for pretraining phase of all the neural modules is around 36
hours. For learning of inductive concepts the time taken varies from 5 minutes to 1 day depending on
the search method used and the specific set of hyperparameters. However for our best approach we
get the maximum performance in approx 12 minutes. Time taken for our approach during inference
is less than 2 minutes per dataset.

40

	Introduction
	Related Works
	Preliminaries and Problem Setting
	Representing Inductive Spatial Concepts
	Learning Inductive Concepts from Demonstrations
	(Sketch) Grounded Task Sketch Generation
	(Plan) Physical Reward Guided Plan Search
	(Generalize) Plan to Program Abstraction

	Evaluation Setup
	Results
	Conclusion
	Additional Details on Technical Approach
	Symbolic Constructs and their Semantics used in Programs
	Curriculum Learning
	Details for Plan-Search and Generalization
	Additional Details: Learning with Increasing Number of Demonstrations
	Detailed Experimental Methodology

	Additional details regarding datasets
	Prompting Strategy and Examples
	Prompt Example for Task Sketch Generation Stage (Sketch)
	Prompt Example for Generalizing a sequence of actions/plan to a general program (Generalize)
	Benefit of Estimating Modular/Smaller Plans
	Comparing Same-length Plans in terms of Generalizability
	Generalizing via Multiple Demonstrations
	Prompt Examples for Learning Programs using LLM/VLM Models

	Supplementary Results
	Qualitative Comparison between Purely-neural (Struct-Diff+Grounder) vs. Ours(SPG)
	Continual Learning of Neural Concepts
	Details for Inference on Novel Tasks using an LLM
	Details on MCTS Variants for Plan Search
	Goal-conditioned Planning with Learnt Concepts

	Broader Impact
	Hyperparameters, Architecture details and Ground Truth Concepts
	Architecture for neural modules
	Hyperparameters used in experiment
	Ground-Truth Inductive Concepts

	Computational Requirements: Details

