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ABSTRACT

Efficient GPU kernels are crucial for building performant machine learning archi-
tectures, but writing them is a time-consuming challenge that requires significant
expertise; therefore, we explore using language models (LMs) to automate kernel
generation. We introduce KernelBench, an open-source framework for evaluating
LMs’ ability to write fast and correct kernels on a suite of 250 carefully selected
PyTorch ML workloads. KernelBench represents a real-world engineering environ-
ment and making progress on the introduced benchmark directly translates to faster
practical kernels. We introduce a new evaluation metric fastp, which measures the
percentage of generated kernels that are functionally correct and offer a speedup
greater than an adjustable threshold p over baseline. Our experiments across var-
ious state-of-the-art models and test-time methods show that frontier reasoning
models perform the best out of the box but still fall short overall, matching the
PyTorch baseline in less than 20% of the cases. While we show that results can
improve by leveraging execution and profiling feedback during iterative refinement,
KernelBench remains a challenging benchmark, with its difficulty increasing as we
raise speedup threshold p.

1 INTRODUCTION

AI relies on efficient GPU kernels to achieve high performance and cost and energy savings; however,
developing kernels remains challenging. There has been a Cambrian explosion of ML architec-
tures Tay et al. (2022); Peng et al. (2023); Dao & Gu (2024), but their available implementations
routinely underperform their peak potential. We are seeing a proliferation of AI hardware NVIDIA
(2017b; 2020; 2022); Jouppi et al. (2023); Groq; Cerebras; Graphcore, each with different specs
and instruction sets, and porting algorithms across platforms is a pain point. A key example is the
FlashAttention kernel Dao et al. (2022), which is crucial for running modern Transformer models
–– the initial kernel released in 2022, five years after the Transformer was proposed; it took two
more years from the release of NVIDIA Hopper GPUs to transfer the algorithm to the new hardware
platform. We explore the question: Can language models help write correct and optimized kernels?

AI engineers use a rich set of information when developing kernels and it is not clear whether
language models (LMs) can mimic the workflow. They use compiler feedback, profiling metrics,
hardware-specific specs and instruction sets, and knowledge of hardware-efficiency techniques (e.g.,
tiling, fusion, recompute). They can use programming tools ranging from assembly (e.g., PTX as in
DeepSeek-AI (2025)) to higher-level libraries (ThunderKittens Spector et al. (2024), Triton Tillet
et al. (2019)). Compared to existing LM code generation workloads Yang et al. (2024a), kernel
writing requires a massive amount and diversity of information.

We first design an environment that reflects the typical AI engineer’s workflow and supports providing
LMs with this rich information. The environment should:
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Figure 1: KernelBench evaluates LMs’ ability to generate performant GPU Kernels. Overview
of tasks in KernelBench: KernelBench tasks LMs with generating optimized CUDA kernels for a
given target PyTorch model architecture and conducts automated evaluation

• Automate the AI engineer’s workflow. The model should have full flexibility to decide which
operators to optimize and how to optimize them.

• Support a diverse set of AI algorithms, programming languages, and hardware platforms.
• Make it easy to evaluate both performance and functional correctness of LM generations, ideally

in a programmatic way. It should also capture profiling and execution information from generated
kernels.

We introduce KernelBench to generate and evaluate kernels, which addresses the above considera-
tions. KernelBench tests LM optimizations on three levels of AI workloads:

1. Individual operations: We include various AI operators, including matrix multiplies, convolu-
tions, activations, norms, and losses. While PyTorch already uses expert-optimized closed-source
kernels, making this a potentially challenging baseline, it is valuable if LMs can generate open-
source kernels for the operations.

2. Sequence of operations: We provide problems that contain 3-6 individual operations together
(e.g. a mainloop operator like matmul followed by pointwise operators like ReLU and Bias). This
enables evaluating the models’ ability to fuse multiple operators.

3. End-to-end architectures: We select architectures from popular AI reposi-
tories on Github including pytorch, huggingface/transformers, and
huggingface/pytorch-image-models. These architectures contain many opera-
tions.

Mimicking an AI researcher’s workflow, the LM takes PyTorch reference code as input and outputs
an optimized version of the code. Similar to the human kernel development process, our environment
enables the LM to iterate with compiler and profiler feedback to refine performance. The LM is free
to use any programming language and decide both which parts of the PyTorch code to optimize, and
how to optimize them. Our pipeline allows us to feed diverse information to the LMs, including
hardware-specific information, example kernels, and compiler/profiler feedback.

We observe that frontier and open-source models perform poorly out-of-the-box on KernelBench,
with OpenAI-o1 and DeepSeek-R1 matching the PyTorch Eager baseline on < 20% of the tasks.
These model-generated kernels greatly suffer from execution errors, functional correctness issues,
and are unable to perform platform-specific optimizations.

To identify areas for improvement, we conduct a series of experiments and analysis, and find that:

1. Writing functionally correct kernels remains challenging for models: while models are able to
fix execution failures through either reasoning or multiple attempts, they struggle to produce
functionally correct code. Furthermore, we observe a trade-off between LMs attempting more
complex optimizations / niche hardware instructions (e.g., tensor core wmma) and producing error-
free kernels. We hypothesize this is due to CUDA being a low-resource language in open-source
training data, only 0.073% of popular code corpus The Stack v1.2 Li et al. (2023); Kocetkov et al.
(2022).

2. Models demonstrate potential to produce performant kernels via optimizations: We observe a few
instances where LMs make algorithmic improvements – e.g., exploiting sparsity, operator fusion,
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and utilizing hardware features. We notice more of such instances when we explicitly condition
the LM on hardware information (e.g., bandwidth and TFLOP specs) and demonstrations of
hardware optimization techniques (e.g., tiling, fusion). While these capabilities remain nascent,
LMs do demonstrate potential for generating performant kernels.

3. Leveraging feedback is important for reducing execution errors and discovering faster solutions:
By providing execution results and profiler feedback to the LM in context, the kernel quality
significantly improves after multiple refinements from 12%, 36%, and 12% in fast1 to 43%, 72%,
and 18% respectively.

Our findings highlight the technical challenges we need to solve in order to adopt LMs for kernel
writing. These include but are not limited to: how to improve LM performance in a low-resource
data regime, and how to select from the rich set of information we can provide to models. To address
these challenges, we contribute (1) an open-source framework to study LM kernel generation with
a comprehensive suite of evaluation problems and (2) analysis of where current LMs stand and
how to realize a future of efficient kernels generated by models.

2 RELATED WORKS

Kernel libraries and compilers. We evaluate existing approaches for kernel programming along
the dimensions of automation, breadth, and performance. Mainstream kernel programming libraries
like cuDNN NVIDIA (2014), CUTLASS NVIDIA (2017a), and Apple MLX Apple (2020) are
hardware-specific and demand substantial engineering effort from human experts. Other libraries, like
ThunderKittens Spector et al. (2024) and Triton Tillet et al. (2019), successfully help AI researchers
write a breadth of fast and correct kernels Arora et al. (2024); Yang & Zhang (2024), but still require
human programming effort. Compiler-based tools, like torch.compile Paszke et al. (2019) and
FlexAttention Team PyTorch et al. (2024), automatically provide a narrow slice of optimizations. In
contrast to these efforts, we ask if LMs can automatically generate performant kernels for a breadth
of AI workloads.

LLMs for performance-optimized code generation. In the past year, there have been several efforts
to build LMs that can automate algorithmic coding Chen et al. (2021); Shi et al. (2024); Li et al.
(2022), resolving GitHub issues Yang et al. (2024a;b), and domain-specific coding Yin et al. (2022);
Lai et al. (2022). While these works focus on producing correct and functional code, subsequent
works have explored LMs’ ability to produce solutions with better algorithmic and asymptotic
efficiency Nichols et al. (2024); Waghjale et al. (2024). KernelBench focuses on wall-clock efficiency.
LMs generate high-performance computing (HPC) code, which requires an understanding of the
underlying hardware features and device instruction set, and common performance characteristics of
parallel processors.

Existing works in the space of HPC code generation have evaluated LM performance on translating
arbitrary code samples from C++ to CUDA TehraniJamsaz et al. (2024); Wen et al. (2022) or
generating well-known, low-level kernels such as GEMMs Valero-Lara et al. (2023); Wijk et al.
(2024). KernelBench instead curates a set of 250 diverse kernels from real-world, modern deep
learning workloads, many of which do not have existing human-written implementations — in other
words, solving KernelBench tasks are immediately beneficial for real deep learning workloads.

3 KERNELBENCH: A FRAMEWORK FOR AI KERNEL GENERATION

KernelBench is a new framework for evaluating the ability of language models to generate performant
kernels for a breadth of AI workloads.

3.1 KERNELBENCH TASK FORMAT

KernelBench contains 250 tasks representing a range of AI workloads, and is easily extensible to new
workloads. The end-to-end specification for a task is illustrated in Figure 1 and described below.

Task input: Given an AI workload, the input to the task is a reference implementation written in
PyTorch. Mimicking an AI researcher’s workflow, the PyTorch code contains a class named Model
derived from torch.nn.Module(), where the standard init and forward() functions
(and any helper functions) are populated with the AI workload’s PyTorch operations.
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AI algorithms generally operate on large tensors of data. The optimal kernel for a workload depends
on the size and data type (e.g., BF16, FP8) of the tensor. Therefore, each task additionally contains
functions get inputs() and get init inputs(), which specify the input tensors exactly.

Task output: Given the input, the LM needs to output a new class named ModelNew derived from
torch.nn.Module(), which contains custom optimizations. For example, the LM can incorpo-
rate in-line kernel calls during the forward() function using CUDA-C extension in PyTorch.

In order to succeed, the LM needs to identify (1) which operations in the Model class would benefit
most from optimizations, and (2) how to optimize those operations. The LM can use any hardware-
efficiency techniques such as fusion and tiling or specialized instructions (e.g., tensor cores) and any
programming library (e.g., PTX, CUDA, CUTLASS, Triton, ThunderKittens).

3.2 TASK SELECTION

The 250 tasks in KernelBench are partitioned into three levels, based on the number of primitive
operations, or PyTorch library functions, they contain:

• Level 1 (100 tasks): Single primitive operation. This level includes the foundational building
blocks of AI (e.g. convolutions, matrix-vector and matrix-matrix multiplications, losses, activations,
and layer normalizations). Since PyTorch makes calls to several well-optimized and often closed-
source kernels under-the-hood, it can be challenging for LMs to outperform the baseline for these
primitive operations. However, if an LM succeeds, the open-source kernels could be an impactful
alternative to the closed-source (e.g., CuBLAS NVIDIA (2023)) kernels.

• Level 2 (100 tasks): Operator sequences. This level includes AI workloads containing multiple
primitive operations, which can be fused into a single kernel for improved performance (e.g., a
combination of a convolution, ReLU, and bias). Since compiler-based tools such as the PyTorch
compiler are effective at fusion, it can be challenging for LMs to outperform them. However, LMs
may propose more complex algorithms compared to compiler rules.

• Level 3 (50 tasks): Full ML architectures. This level includes architectures that power popular
AI models, such as AlexNet and MiniGPT, collected from popular PyTorch repositories on GitHub.
Given the scale of modern models, it is critical to use kernels when running training and inference.
Unfortunately, it has been difficult for the AI community to generate performant kernels. For
instance, it took 5 years from the release of the Transformer architecture Vaswani et al. (2017)
to obtain performant kernels Dao et al. (2022), let alone today’s many new architectures. Peak
performance kernels for these architectures require algorithmic modifications that are often beyond
the scope of a compiler.

3.3 METRIC DESIGN

Evaluation approach KernelBench is an evaluation-only benchmark. We do not provide ground
truth kernels for the tasks since we imagine users benchmarking on a variety of hardware platforms
(including new platforms), input types, and workloads. However, by design, KernelBench is au-
tomatically verifiable. Given a task, we randomly generate input tensors of the prescribed shape
and precision and collect the PyTorch Model output. We can evaluate whether LM generations are
correct and fast as follows:

1. Correctness We compare the Model output to the LM-generated ModelNew output. We evaluate
on 5 random inputs per problem (detailed in Appendix C).

2. Performance We compare the wall-clock execution time of Model against ModelNew using
repeated trials to account for timing variations.

Comparing LMs on KernelBench Some LMs may generate a small number of correct kernels
that are very fast, while other LMs generate a large number of correct kernels that are quite slow. To
capture both axes of correctness and performance, we introduce a new metric called fastp, which is
defined as the fraction of tasks that are both correct and have a speedup (computed as the ratio of
PyTorch wall-clock time to generated kernel time) greater than threshold p. Formally:

fastp =
1

N

N∑
i=1

1(correcti ∧ {speedupi > p}),
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where fast0 is equivalent to the LM’s correctness rate, as it measures the fraction of tasks for which
the LM code is functionally correct regardless of its speed.

By adjusting the threshold parameter p, we enable evaluation of kernel performance at different
speedup thresholds and capture the speedup distributions. For our evaluations, we focus on p = 1 as
a starting point, with the possibility of increasing p as future methods for kernel generation improve.
Additionally, using p < 1 for training is valuable, since PyTorch relies on complex optimized kernels,
and matching even a fraction of their performance is still considered beneficial.

4 KERNELBENCH BASELINE EVALUATION

In this section, we investigate how a range
of LMs perform when evaluated off-the-
shelf on KernelBench and explore their
capabilities and failure modes.

4.1 ONE-SHOT BASELINE

We evaluate LMs using a prompt that con-
tains one example of a PyTorch Model
input and ModelNew output, highlighting
the task format. The example is simple,
containing only an add operator (See Ap-
pendix D.1). Given this in-context exam-
ple and the PyTorch task Model to opti-
mize, the LM generates ModelNew via
greedy decoding. We profile the generated
code on an NVIDIA L40S GPU, and mea-
sure the fastp metric across all problems.
Table 1 shows that the LM-generated ker-
nels achieve a speedup over PyTorch Eager
in fewer than 20% of tasks on average.

fast1 over: PyTorch Eager torch.compile

KernelBench Level 1 2 3 1 2 3

GPT-4o 4% 5% 0% 18% 4% 4%
OpenAI o1 10% 24% 12% 28% 19% 4%
DeepSeek V3 6% 4% 8% 20% 2% 2%
DeepSeek R1 12% 36% 2% 38% 37% 2%
Claude 3.5 Sonnet 10% 7% 2% 29% 2% 2%
Llama 3.1-70B Inst. 3% 0% 0% 11% 0% 0%
Llama 3.1-405B Inst. 3% 0% 2% 16% 0% 0%

Table 1: KernelBench is a challenging bench-
mark for current LMs. Here we present fast1,
i.e. the percentage of problems where the model-
generated kernel is faster than the PyTorch Eager and
torch.compile baseline (default configuration) on
NVIDIA L40S.

4.2 CORRECTNESS: ERROR ANALYSIS

In Figure 2, we analyze the failure modes
of LMs across problems. It can be seen
that a large proportion of model-generated
kernels are incorrect. To better understand
where model-generated kernels fail, we
break down their correctness issues into
execution failures (CUDA/nvcc / Python
compile-time errors, CUDA memory viola-
tions, and runtime errors) and correctness
errors (output tensor shape and value mis-
matches). We observe that the reasoning
LMs (o1, R1) produce fewer incorrect solu-
tions (< 55%) than other models (> 70%).
However, we find this is mainly because
they make fewer execution failures. All
LMs struggle with functional correctness
to a similar degree.

Figure 2: We categorize failure modes of kernel code
into execution failure and functional correctness.
For the one-shot baseline, reasoning models generate
fewer kernels with execution failures, but all models
struggle similarly with functional correctness.

4.3 PERFORMANCE: SPEEDUP DISTRIBUTION

A key point of interest is whether the functionally correct LM-generated kernels outperform the
PyTorch baseline. Figure 3 shows the distribution of fastp as p varies, indicating the percentage of

The torch.compile baseline runtime is sometimes slower than Torch Eager – this is due to reproducible
runtime overhead (not compile time) that could be significant for small kernels in Level 1. We focus on PyTorch
Eager for the rest of our analysis, but we elaborate on other baselines in Appendix C.
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Figure 3: Most LM-generated kernels are slow. This figure shows the distribution of the fastp
metric as the speedup threshold p (over PyTorch baseline) increases. fast0 represents the number of
correct kernels regardless of speed, and fast1 represents the number of correct kernels achieving at
least > 1× speedup over PyTorch. Increasing the threshold p increases the difficulty.

kernels that are p-times faster than the PyTorch Eager baseline (the top right of the plot is better). At
p = 1, fewer than 15% of LM-generated kernels outperform PyTorch across all KernelBench levels.
Reasoning-based LMs generally outperform the other LMs in providing speedups.

4.4 PERFORMANCE VARIATIONS ACROSS HARDWARE

Our one-shot baseline makes no assumptions about the underlying hardware, so a natural question
is how our analysis of the LM-generated kernels generalizes across various GPU types. Table 14
and Figure 7 show that kernels outperforming PyTorch Eager on NVIDIA L40S in Level 1 achieve
similar speedups versus the baselines on other GPUs. However, on problems in Level 2, LMs exhibit
larger variations in speedups across GPUs (Figure 8): DeepSeek R1-generated kernels achieve a
fast1 of 36% on NVIDIA L40S but 47% on NVIDIA A10G for Level 2. This suggests that one-shot
LM-generated kernels may not generalize well across hardware. To generate target-specific kernels,
we explore in Section 5.2 whether providing hardware-specific details in-context could help.

Our analysis reveals that the best models available today struggle to generate correct kernels that
outperform the baseline PyTorch speeds. LM-generated kernels frequently fail due to simple compiler
and run-time errors. Furthermore, it is difficult for LMs to write kernels that perform well across
hardware platforms given simple instructions.

5 ANALYSIS OF MODEL CAPABILITIES

In the last section, we found that KernelBench is a challenging benchmark for today’s models. In this
section, we conduct case studies to explore opportunities for improvement in future AI systems.

5.1 CASE STUDY: LEVERAGING KERNELBENCH ENVIRONMENT AT TEST-TIME

As observed in Section 4.2, execution failures are the most frequent failure mode in LM-generated
kernels. The environment provided by KernelBench allows us to collect rich signals, including
compiler errors, correctness checks, and runtime profiling metrics, all of which can be fed back in to
the LM to help it resolve kernel failures. To explore how well LMs can use this feedback, we evaluate
and compare two baselines: (1) generating multiple parallel samples from the LM per KernelBench
task and (2) sequentially generating kernels per KernelBench task by allowing the LM to iteratively
refine using the execution feedback.

5.1.1 REPEATED SAMPLING

The KernelBench environment enables programmatic verification of LM-generated kernels, allowing
us to collect and evaluate multiple LM generations per task Brown et al. (2024); Li et al. (2022);
Grubisic et al. (2024). We evaluate this repeated sampling approach using fastp@k, which measures
the percentage of tasks where the model generated at least one functionally correct kernel that is p
times faster than PyTorch Eager when drawing k samples.
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Figure 4: Repeated sampling helps discover
more correct and performant kernels. As the
number of parallel samples k increases (up to
100), fast1@k improves for both DeepSeek-V3
and Llama 3.1-70B Instruct across all 3 Kernel-
Bench levels.

Repeated sampling helps LMs discover more
fast and correct solutions. Figure 4 shows that
repeated sampling with high temperature im-
proves fast1 as k increases across all three levels
with both DeepSeek-V3 and Llama 3.1 70B. No-
tably, on Level 2, DeepSeek-V3 reaches a fast1
of 37% with k = 100 samples, compared to
just 4% in the one-shot baseline. Examining the
samples, we find that high-temperature sampling
helps explore the solution space, increasing the
chances of generating error-free kernels with
better optimizations. However, if a model has a
very low inherent probability of solving a task,
simply increasing the sampling budget has lim-
ited impact. For example, DeepSeek-V3 was
never able to generate any correct solution for a
group of 34 convolution variants in Level 1, even when attempting with 100 samples.

5.1.2 ITERATIVE REFINEMENT OF GENERATIONS

The KernelBench environment is well-suited for collecting compiler feedback, execution errors, and
timing analysis using tools like the PyTorch profiler as ground-truth signals. We investigate whether
leveraging this feedback can help LMs to iteratively refine their generations.

We provide feedback to the model after each generation
in a multi-turn process: after the initial generation, we
provide the model with its previous generation G, as
well as compiler/execution feedback E and/or profiler
output P over its current generation. We define each
generation and subsequent feedback as a turn, and run
this Iterative Refinement process over N turns. For
each turn, we measure fastp@N , which is the percent-
age of tasks where the model generated at least one
functionally correct kernel that is p times faster than
PyTorch Eager by turn N .

Leveraging execution feedback helps reduce errors
and improves overall speedups over time. We ex-
amine the fast1 behavior at turn N = 10 in Table 2
and find that iterative refinement consistently improves
performance across models and levels of KernelBench.
DeepSeek-R1 on Level 2 results in the most notable im-
provement, where the combination of execution feed-
back E and profiler feedback P boosts fast1 from 36%
to 72% (shown in Figure 5).

Figure 5: Iterative refinement with ex-
ecution feedback E and profiling infor-
mation P enable models to improve ker-
nel generations over turns, as shown in
the fast1@N trajectory of DeepSeek-R1
on Level 2. The percentage of problems
where the best generated kernel up to turn
N is correct and faster than PyTorch Eager
consistently increases as we increase the
number of turns.

Furthermore, by examining iterative refinement trajectories, we find that models self-correct more
effectively with execution feedback E, fixing issues especially related to execution errors. DeepSeek-
R1 on Level 1 and 2 can generate a functional kernel on >90% of the tasks within 10 turns of
refinement (Table 9). However, the remaining incorrect kernels almost always fail due to functional
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incorrectness, likely because correctness feedback is less granular than execution failure messages.
We include successful and failed examples of iterative refinement trajectories in Appendix E.4.

5.1.3 COMPARING REPEATED SAMPLING AND ITERATIVE REFINEMENT

Method
Level 1 Level 2 Level 3

Llama-3.1 DeepSeek Deepseek Llama-3.1 Deepseek Deepseek Llama-3.1 Deepseek Deepseek
70B V3 R1 70B V3 R1 70B V3 R1

Single Attempt (Baseline) 3% 6% 12% 0% 4% 36% 0% 8% 2%

Repeated Sampling (@10) 5% 11% N/A 3% 14% N/A 1% 14% N/A

Iterative Refinement w G 9% 9% 18% 0% 7% 44% 0% 14% 4%
Iterative Refinement w G+E 5% 13% 41% 5% 5% 62% 8% 22% 12%
Iterative Refinement w G+E+P 7% 19% 43% 4% 6% 72% 2% 14% 18%

Table 2: Both repeated sampling and iterative improvement enable models to generate more
correct and fast kernels compared to baseline: Here we present the percentage of problems where
the LM-generated kernel is correct and faster than baseline Torch Eager (Fast1 in %) for the two
test-time methods, both with the same sample budget of 10 calls. We further compare performance
within iterative refinement achieved when leveraging previous Generation G, Execution Result E,
and Timing Profiles P . Note we do not repeatedly sample DeepSeek R1, as its API endpoint does not
provide a temperature parameter.

In Table 2, we compare repeated sampling and iterative refinement given a fixed budget of 10 inference
calls. Both methods provide meaningful improvements over the one-shot baseline, with iterative
refinement being more effective in 5 of the 6 cases. However, ultimately we find that the effectiveness
of the test-time methods is inherently dependent on the quality of the base model. For instance, with
repeated sampling, DeepSeek-V3 consistently outperforms Llama-3.1 70B across all three levels.
Similarly, with iterative refinement, DeepSeek-R1 consistently improves using feedback E and P ,
while DeepSeek-V3 and Llama-3.1 70B does not always benefit from having such information.

5.2 CASE STUDY: GENERATING HARDWARE-EFFICIENT KERNELS VIA HARDWARE
KNOWLEDGE

It is clear that LMs demonstrate limited success at generating hardware-efficient kernels. This is likely
due to the scarcity of kernel code in the training data and the fact that the optimal kernel may need to
change depending on the hardware platform-specific properties, as discussed in Section 4.4. In this
case study, we explore providing 1) in-context examples of best-practices for kernel engineering and
2) in-context hardware specification details.

5.2.1 HARDWARE-AWARE IN-CONTEXT EXAMPLES

Well-written kernels often use techniques such as fusion, tiling, recompute, and asynchrony to
maximize performance. We find that most of the one-shot generated kernels evaluated in Section 4
often do not use these techniques. Here, we explore whether providing explicit in-context examples
that use these techniques can help the LMs improve their performance on KernelBench. Specifically,
we include three in-context examples: GeLU Hendrycks & Gimpel (2023) using operator fusion,
matrix multiplication using tiling Mills (2024), and a minimal Flash-Attention Dao et al. (2022);
Kim (2024) kernel that demonstrates shared memory I/O management.

In-context examples degrade the LM’s overall fast1 score since LMs attempt more aggressive
optimization strategies, but result in more execution failures. OpenAI o1’s generations are 25%
longer on average using the few-shot examples, compared to the generations produced by Section 4
baseline. However, among the correct solutions, the LMs apply interesting optimizations: we find
that on 77% of GEMM variants in KernelBench Level 1, o1 applies tiling and improves speed over
the one-shot baseline (although remains slower than PyTorch Eager due to the lack of tensor core
utilization). On Level 2, o1 applies aggressive shared memory I/O management on 11 problems, and
is able to outperform PyTorch Eager (See Appendix G).
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5.2.2 SPECIFYING HARDWARE INFORMATION

As discussed in Section 4.4, kernel performance varies depending on the hardware platform. For
instance, FlashAttention-2 Dao (2024) degrades 47% in hardware utilization going from the NVIDIA
A100 to H100 GPU. FlashAttention-3 Shah et al. (2024), an entirely different algorithm, was written
for the H100. In this study, we explore whether LMs can use (1) hardware specifications such as the
GPU type (H100, A100, etc.), memory sizes, bandwidths, TFLOPS and (2) hardware knowledge
(e.g. definitions of threads, warps, thread-blocks, streaming multiprocessors) in-context to generate
improved kernels (See Appendix H for more detail on the context).

Models rarely generate kernels that are optimized for the underlying hardware, highlighting
room for improvement for future models. Certain generations of GPUs (e.g. H100) feature a variety
of new hardware units and instructions from their predecessors. Providing hardware information
does not significantly impact the outputs of Llama 3.1 70B or DeepSeek-V3. Interestingly, we find
that a subset of OpenAI o1 and DeepSeek-R1 generated kernels use hardware-specific instructions
and optimizations. R1 attempts to generate warp matrix multiply-accumulate (wmma) instructions
(Figure 9) for approximately 50% of the Level 1 matrix multiplication problems, although most fail
to compile. Among the functionally correct generations, R1 and o1 produce 1-3 outliers per level that
are ≥ 2× faster than the Section 4 baselines. Overall, we find that LMs are better at adjusting their
approaches when provided with few-shot examples in Section 5.2.1 than with hardware information.

6 DISCUSSION

6.1 DEEP DIVE INTO INTERESTING KERNELS

Here, we discuss a few surprising LM-generated kernels that demonstrate significant speedups over
the PyTorch baseline. See detailed examples in Appendix E.

Operator fusion GPUs have small amounts of fast-access memory and large amounts of slow-access
memory. Fusion can help reduce slow-access I/O costs by performing multiple operations on data
that has been loaded into fast-access memory. We find that LMs optimize the GELU (2.9x) and
Softsign (1.3x) operators by fusing their computations into a single kernel. LMs generated a kernel
that fuses multiple foundational operators – matrix multiplication with division, summation, and
scaling – giving a 2.6x speedup. Overall, LMs leave many fusion opportunities on the table.

Memory hierarchy Effective kernels explicitly manage utilization of the limited amounts of shared
and register memory. In the generated kernels, we found kernels that uses GPU shared memory
– cosine similarity (2.8x) and triplet margin loss (2.0x) – to achieve speedups. We did not find
successful usages of tensor core instructions, which are crucial for AI performance.

Algorithmic optimizations Kernels can require algorithmic modifications to better utilize the
hardware features. We found one interesting generation for the problem of performing a multiplication
between a dense and diagonal matrix, where the kernel scales each row (or column), rather than
loading the zero-entries of the diagonal matrix, yielding a 13x speedup over PyTorch Eager.

6.2 CONCLUSION

Our contributions are: (1) We present KernelBench, a framework that lays the groundwork for LM-
driven kernel optimization, and (2) We evaluate a diverse set of models and approaches, analyzing
their strengths and limitations, and providing insights into opportunities for improvement.

Overall, while most benchmarks eventually saturate, KernelBench is designed to dynamically evolve
as new AI workloads arise. Our fastp metric can be adapted over time to measure the speedup
threshold (p) over increasingly advanced baselines (i.e., beyond the PyTorch baseline used in our
work). Since PyTorch is cross-hardware platform compatible, the PyTorch-based tasks in KernelBench
tasks can be evaluated on every new hardware platform release. Finally, unlike many benchmarks,
success on KernelBench directly maps to production value and real-world impacts (lowering costs
and reducing energy consumption at scale). These properties ensure that KernelBench will remain
valuable in the ever-evolving AI landscape.
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ETHICS STATEMENT

Optimized GPU kernels can lead to significant energy savings in large-scale machine learning
workloads, reducing both computational costs and environmental impact. By providing a framework
for AI-assisted performance tuning, KernelBench contributes to more energy-efficient AI systems,
aligning with global efforts to reduce the carbon footprint of computing infrastructure.

KernelBench does not involve human studies or collect user data, eliminating privacy concerns. It
also avoids proprietary or private code, relying solely on publicly available Github repositories.
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Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Cerebras. Cerebras wafer-scale engine wse architecture. Online. https://cerebras.ai/
product-chip/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. Interna-
tional Conference on Learning Representations, 2024.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. International Conference on Machine Learning (ICML), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
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A KERNELBENCH TASK EXAMPLE

Here we provide an example task from KernelBench. Each task is wrapped in a class named
Model. A task contains two key functions in the Model class, init and forward; helper
functions are included if necessary. We fix the shape of inputs and vary the numerical values through
randomly generated tensors. We provide two functions, get inputs and get init inputs, for
generating random parameters for initializing the model and running a forward pass, respectively.

PyTorch Reference Architecture:

1 import torch
2 import torch.nn as nn
3
4 class Model(nn.Module):
5 """
6 Simple model that performs a single matrix multiplication (C = A * B)

↪→ with a large K dimension
7 """
8 def __init__(self):
9 super(Model, self).__init__()

10
11 def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
12 """
13 Performs matrix multiplication of A and B.
14
15 Args:
16 A: Input tensor of shape (M, K)
17 B: Input tensor of shape (K, N)
18
19 Returns:
20 Output tensor of shape (M, N)
21 """
22 return torch.matmul(A, B)
23
24 M = 256
25 N = 256
26 K = 131072
27
28 def get_inputs():
29 A = torch.randn(M, K)
30 B = torch.randn(K, N)
31 return [A, B]
32
33 def get_init_inputs():
34 return [] # No special initialization inputs needed

We include an example output from a model below that attempts to optimize the task specifica-
tion above. The model is not only responsible for generating the kernel code, but is also responsible
for generating the peripheral code to integrate the kernel into the PyTorch framework. The evaluation
framework will run the forward pass of the model as if it is a PyTorch operator, so a common approach
is to inline the CUDA code.
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1 import torch
2 import torch.nn as nn
3 from torch.utils.cpp_extension import load_inline
4
5 # Define the custom CUDA kernel for matrix multiplication
6 matmul_source = """
7 #include <torch/extension.h>
8 #include <cuda_runtime.h>
9

10 __global__ void matmul_kernel(const float* A, const float* B, float* C,
↪→ int M, int N, int K) {

11 int row = blockIdx.y * blockDim.y + threadIdx.y;
12 int col = blockIdx.x * blockDim.x + threadIdx.x;
13
14 if (row < M && col < N) {
15 float sum = 0.0f;
16 for (int k = 0; k < K; ++k) {
17 sum += A[row * K + k] * B[k * N + col];
18 }
19 C[row * N + col] = sum;
20 }
21 }
22
23 torch::Tensor matmul_cuda(torch::Tensor A, torch::Tensor B) {
24 int M = A.size(0);
25 int N = B.size(1);
26 int K = A.size(1);
27
28 auto C = torch::zeros({M, N}, A.options());
29
30 dim3 threadsPerBlock(16, 16);
31 dim3 numBlocks((N + threadsPerBlock.x - 1) / threadsPerBlock.x, (M +

↪→ threadsPerBlock.y - 1) / threadsPerBlock.y);
32
33 matmul_kernel<<<numBlocks, threadsPerBlock>>>(A.data_ptr<float>(), B.

↪→ data_ptr<float>(), C.data_ptr<float>(), M, N, K);
34
35 return C;
36 }
37 """
38
39 matmul_cpp_source = (
40 "torch::Tensor matmul_cuda(torch::Tensor A, torch::Tensor B);"
41 )
42
43 # Compile the inline CUDA code for matrix multiplication
44 matmul = load_inline(
45 name="matmul",
46 cpp_sources=matmul_cpp_source,
47 cuda_sources=matmul_source,
48 functions=["matmul_cuda"],
49 verbose=True,
50 extra_cflags=[""],
51 extra_ldflags=[""],
52 )
53
54
55 class ModelNew(nn.Module):
56 def __init__(self):
57 super(ModelNew, self).__init__()
58 self.matmul = matmul
59
60 def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
61 return self.matmul.matmul_cuda(A, B)
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B OPPORTUNITIES FOR FUTURE WORK

We show that there is significant room for improvement on KernelBench given the currently available
models. First, future work can explore the development of advanced fine-tuning and reasoning
techniques, including agentic workflows. Since CUDA is a low-resource language, it would be
valuable for future work to open-source more high quality data. Second, LMs generate raw CUDA
code in our experiments. However, future work can explore whether generating code using alternative
programming abstractions (e.g., provided in ThunderKittens, CUTLASS, Triton, and others) can
simplify the generation problem, for instance by making it easier for LMs to leverage tensor core
instructions. Third, our evaluation has also been limited to GPUs so far and future work can expand
to other hardware accelerators.

C EVALUATION METHODOLOGY AND BASELINES

All evaluations are conducted on a bare-metal NVIDIA L40S GPU with Ada Lovelace architecture
unless otherwise stated (such as the device generalization experiments in Section 4.4 and the hardware
case study in 5.2). The NVIDIA L40S has 48 GB of HBM memory and operates at 300W. Our
environment uses Python 3.10, PyTorch 2.5.0+cu124, and CUDA 12.4, which is also where
our PyTorch Eager and torch.compile baselines are derived from.

C.1 KERNEL EVALUATION SETUP

Recall the KernelBench task entails a PyTorch reference module Model as baseline, and model-
generated PyTorch architecture ModelNew with custom inline CUDA kernel.

For correctness, we set num correctness to 5, where we check equivalence of output between
reference architecture Model and generated architecture with custom kernel ModelNew with 5
randomized inputs. We elaborate on our choice in C.2.

For performance, we measure the wall-clock execution time of nn.module.forward for both
Model and ModelNew. We ensure only one kernel is being evaluated (no other CUDA process) on
current GPU. We warm up for 3 iterations and then set num profile to 100 times which measures the
elapsed execution time signaled between CUDA events torch.cuda.Event. We take the mean
of the 100 trials, and also note its max, min, and standard deviation. While the wall clock time might
vary for every trial, we note our coefficient of variation (CV): std/mean is consistently < 3%, we use
the mean of both measured wall clock time for comparisons.

To compute the speedup of generated architecture over baseline architecture for individual problems,
we use the mean for both speedup = TModel/TModelNew. For example, if TModel = 2 ms and
TModelNew = 1 ms, we have a 2x speedup with the newly generated kernel. We compare this
speedup with our speedup threshold parameter p (as explained in section 3.3) to compute fastp scores.

C.2 CORRECTNESS ANALYSIS VARYING NUMBER OF RANDOMLY GENERATED INPUTS

Checking equivalence of programs in a formal sense is undecidable. ”The Halting Problem” (Turing,
1936) states that it is impossible to decide, in general, whether a given program will terminate for
every possible input. This problem naturally extends to checking equivalence because in order to
check whether two programs are equivalent, it is necessary to check their behavior for all inputs,
including cases where one or both programs may not terminate. Since determining whether a program
halts on a given input is undecidable (the Halting Problem), checking equivalence also becomes
undecidable.

Approximate or heuristic methods are often used in practice for checking program equivalence.
Random testing is the most common practical approach, where the program is run with sets of
randomly chosen inputs, and their outputs are compared. Random testing is particularly effective for
AI kernels, where control flow is simpler and the focus is primarily on numerical correctness. By
using diverse inputs, it can uncover errors in computations or memory handling with high probability.

We use five sets of random inputs for correctness, which is a good tradeoff between the ability to
catch errors and efficiency. In an experiment with 100 generated kernels, the results were as follows:
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50 kernels were correct (all 5/5 and 100/100), 19 had output value mismatches (19 0/5 and 0/100), 4
had output shape mismatches, 10 encountered runtime errors, and 17 had compilation errors. Notably,
the 0/5 and 0/100 failures indicate that no partial correctness was observed.

C.3 DISTRIBUTION OF MODEL PERFORMANCE FOR ONE-SHOT BASELINE

Here we examine the quality of (functionally correct) kernel generations across a wide variety of
models. Figure 6 shows the distribution of speedups for various kernels across different levels and
models. The median speedup for both Level 1 and Level 3 are less than 1, and the median speedup
for Level 2 is only slightly above one. Level 1 has the most significant outliers, in one case showing a
speedup greater than 10. We explored some of these outlier cases in greater detail in Section 6.

Reasoning-optimized models (OpenAI-o1 and DeepSeek-R1) perform the best of out-of-the-box
across all levels. These models demonstrate superior kernel generation capabilities, particularly
excelling at Level 2 tasks (which mainly involve kernel fusion). In contrast, Llama 3.1 models
(both 405B and 70B) perform poorly regardless of model size, suggesting that larger models do not
necessarily guarantee better results for this task. DeepSeek-R1, while strong at Level 1 and 2, suffers
significantly at Level 3, often generating incorrect kernels.

Figure 6: A box and whisker plot of the speedup relative to Torch Eager of (correct) kernels generated
by various models in the one-shot baseline setting. We also write the percentage of correctly
generated kernels next to the model name. We observe that among most models, the median speedup
for correctly generated kernels is below 1.

C.4 PYTORCH BASELINES

PyTorch offers two common execution modes: Eager and torch.compile. Aside from the results
shown in Table 1, all performance analysis is evaluated against PyTorch Eager.

PyTorch Eager is the default execution mode of PyTorch, which dynamically executes computation
by invoking calls to highly optimized closed-source kernels.

PyTorch Compile or torch.compile uses rule-based heuristics over the underlying computation
graph during an initial compilation phase and invokes various backends to perform optimizations like
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kernel fusion and graph transformations. In Table 1, our performance baseline for torch.compile
assumes the default configuration using PyTorch Inductor in default mode. Furthermore, we exclude
the torch.compile compile time in our timing analysis, as we are only interested in the raw
runtime behavior. torch.compile features multiple other backends and configurations, which we
describe in Table 3.

We observe that the torch.compile baseline runtime is generally faster on Level 2 and 3 of
KernelBench reference problems compared to PyTorch Eager, mostly due to the availability of
graph-level optimizations like operator fusion. However, on Level 1 problems, torch.compile
can exhibit higher runtimes than PyTorch Eager, which can be attribute to empirically-reproducible
runtime overhead for torch.compile (not compile time) that is significant for small kernels.

Configuration Backend Mode Description
PyTorch (Eager) - - Standard PyTorch eager execution
Torch Compile inductor default Default torch.compile behavior
Torch Compile inductor reduce-overhead Optimized for reduced overhead
Torch Compile inductor max-autotune Maximum autotuning enabled
Torch Compile inductor max-autotune-no-cudagraphs Maximum autotuning without CUDA graphs
Torch Compile cudagraphs - CUDA graphs with AOT Autograd

Table 3: Configurations and modes for PyTorch execution and optimization backends.

Other torch.compile backends. In Table 4, we show more one-shot baseline results for fast1
against some of the other torch.compile baselines. We note on some other configurations fast1
drops especially for Level 2, as the torch.compile backends apply more aggressive optimization
(at the cost of extra compile-time overhead, which we do not measure). Due to the variability of
torch.compile across configurations, we focus our analysis on PyTorch Eager.

fast1 over: torch.compile
default cudagraphs max-autotune max-autotune

no-cudagraphs reduce-overhead

KernelBench Level 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Claude 3.5 Sonnet 29% 2% 2% 31% 7% 2% 31% 2% 0% 29% 2% 2% 31% 2% 0%
DeepSeek V3 20% 2% 2% 21% 4% 20% 21% 2% 2% 20% 2% 2% 21% 2% 0%
DeepSeek R1 38% 37% 2% 42% 52% 0% 42% 29% 0% 38% 32% 4% 42% 28% 0%
GPT-4o 18% 4% 4% 22% 6% 6% 21% 4% 2% 18% 3% 4% 21% 4% 0%
Llama 3.1-70B Inst. 11% 0% 0% 12% 0% 0% 12% 0% 0% 11% 0% 0% 12% 0% 0%
Llama 3.1-405B Inst. 16% 0% 0% 16% 0% 4% 16% 0% 0% 16% 0% 0% 16% 0% 0%
OpenAI O1 28% 19% 4% 33% 37% 26% 34% 8% 4% 30% 19% 6% 34% 8% 2%

Table 4: We compare KernelBench torch.compile baseline runtime across various configura-
tions, all measured on NVIDIA L40S, in addition to what is showed in Table 1.

D EXPERIMENT PROMPTING DETAILS

We provide details for the prompting strategies and associated sampling strategies used in Section 4
and Section 5.

D.1 ONE-SHOT BASELINE PROMPT

For the one-shot baseline as shown in Section 4.1, we want to examine each model’s out-of-the-
box ability to generate kernels by providing the minimum set of information while ensuring the
instructions and output format are clear. We query each model with the following prompt and a pair
of in-context add examples (the PyTorch reference add and its CUDA kernel counterpart using
inline compilation) to provide the output format. We sample the model with greedy decoding to
ensure deterministic output, which is setting temperature = 0.
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1 You write custom CUDA kernels to replace the pytorch operators in the
↪→ given architecture

2 to get speedups.
3
4 You have complete freedom to choose the set of operators you want to

↪→ replace. You may
5 make the decision to replace some operators with custom CUDA kernels and

↪→ leave others
6 unchanged. You may replace multiple operators with custom implementations

↪→ , consider
7 operator fusion opportunities (combining multiple operators into a single

↪→ kernel, for
8 example, combining matmul+relu), or algorithmic changes (such as online

↪→ softmax). You are
9 only limited by your imagination.

10
11 Here\’s an example to show you the syntax of inline embedding custom CUDA

↪→ operators in
12 torch: The example given architecture is:
13 ‘‘‘
14 import torch
15 import torch.nn as nn
16 import torch.nn.functional as F
17
18
19 class Model(nn.Module):
20 def __init__(self) -> None:
21 super().__init__()
22
23 def forward(self, a, b):
24 return a + b
25
26
27 def get_inputs():
28 # randomly generate input tensors based on the model architecture
29 a = torch.randn(1, 128).cuda()
30 b = torch.randn(1, 128).cuda()
31 return [a, b]
32
33
34 def get_init_inputs():
35 # randomly generate tensors required for initialization based on the

↪→ model architecture
36 return []
37 ‘‘‘
38
39 The example new arch with custom CUDA kernels looks like this:
40 ‘‘‘
41 import torch
42 import torch.nn as nn
43 import torch.nn.functional as F
44 from torch.utils.cpp_extension import load_inline
45
46 # Define the custom CUDA kernel for element-wise addition
47 elementwise_add_source = """
48 #include <torch/extension.h>
49 #include <cuda_runtime.h>
50
51 __global__ void elementwise_add_kernel(const float* a, const float* b,

↪→ float* out, int size) {
52 int idx = blockIdx.x * blockDim.x + threadIdx.x;
53 if (idx < size) {
54 out[idx] = a[idx] + b[idx];
55 }
56 }
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57
58 torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor b) {
59 auto size = a.numel();
60 auto out = torch::zeros_like(a);
61
62 const int block_size = 256;
63 const int num_blocks = (size + block_size - 1) / block_size;
64
65 elementwise_add_kernel<<<num_blocks, block_size>>>(a.data_ptr<float

↪→ >(), b.data_ptr<float>(), out.data_ptr<float>(), size);
66
67 return out;
68 }
69 """
70
71 elementwise_add_cpp_source = "torch::Tensor elementwise_add_cuda(torch::

↪→ Tensor a, torch::Tensor b);"
72
73 # Compile the inline CUDA code for element-wise addition
74 elementwise_add = load_inline(
75 name=’elementwise_add’,
76 cpp_sources=elementwise_add_cpp_source,
77 cuda_sources=elementwise_add_source,
78 functions=[’elementwise_add_cuda’],
79 verbose=True,
80 extra_cflags=[’’],
81 extra_ldflags=[’’]
82 )
83
84 class ModelNew(nn.Module):
85 def __init__(self) -> None:
86 super().__init__()
87 self.elementwise_add = elementwise_add
88
89 def forward(self, a, b):
90 return self.elementwise_add.elementwise_add_cuda(a, b)
91 ‘‘‘
92
93 You are given the following architecture:
94
95 <PyTorch reference architecture for specific KernelBench Problem>
96
97 Optimize the architecture named Model with custom CUDA operators! Name

↪→ your optimized
98 output architecture ModelNew. Output the new code in codeblocks. Please

↪→ generate real
99 code, NOT pseudocode, make sure the code compiles and is fully functional

↪→ . Just output
100 the new model code, no other text, and NO testing code!

D.2 REPEATED SAMPLING PROMPTS

For repeated sampling, we use the same prompt that we used for the one-shot baseline in Appendix D.1.
We used the same sampling temperature described in Brown et al. (2024) as they allow sample
diversity while ensuring quality. Specifically we use temperature = 1.6 for Deepseek-V3 and
temperature = 0.7 for Llama 3.1-70B.

D.3 ITERATIVE REFINEMENT PROMPTS

For iterative refinement, we start with the same initial prompt that we used for the one-shot baseline in
Appendix D.1. A limitation of our experiments is that we sample with temperature= 0 to focus on the
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effect of iterating based on feedback rather than introducing variability. On subsequent generations,
we prompt the model with the following template depending on the feedback it expects:

1 <Initial prompt from one-shot baseline for specific KernelBench problem.>
2
3 Here is your latest generation:
4 <Previously generated kernel G>
5
6 Your generated architecture ModelNew and kernel was evaluated on GPU and

↪→ checked against the reference architecture Model.
7 Here is your Evaluation Result:
8
9 <Raw Compiler and Execution Feedback from stdout>

10
11 <’if correct:’>
12 Your kernel executed successfully and produced the correct output.
13 Here is your wall clock time: {runtime} milliseconds
14
15 <Profiler information if used and correct.>
16
17 Name your new improved output architecture ModelNew. Output the new code

↪→ in codeblocks. Please generate real code, NOT pseudocode, make sure
↪→ the code compiles and is fully functional. Just output the new
↪→ model code, no other text, and NO testing code!

For the compiler and execution feedback, we handle timeouts and deadlocks explicitly with ”Your
kernel execution timed out”, but do not provide any other information.

D.4 FEW-SHOT IN CONTEXT PROMPTS

For Few-Shot experiments as outlined in Section 5.2.1. We provide more details about the in-context
example in Appendix G. We sampled these experiments with temperature = 0.

1 <Initial Task prompt from one-shot baseline for Instruction>
2 <Initial pair of Reference PyTorch and CUDA kernel equiavlent for example

↪→ add kernel from one-shot baseline for Instruction>
3
4 Example <i>
5 Here is an example architecture
6 <PyTorch reference architecture for No. i in-context example>
7
8 Here is an optimized verison with custom CUDA kernels:
9 <PyTorch architecture with Custom CUDA Kernel for No. i in-context

↪→ example>
10
11 .. up to number of in-context sample times
12
13
14 Task:
15 Here is an example architecture:
16
17 <PyTorch reference architecture for specific KernelBench Problem>
18
19 Name your new improved output architecture ModelNew. Output the new code

↪→ in codeblocks. Please generate real code, NOT pseudocode, make sure
↪→ the code compiles and is fully functional. Just output the new
↪→ model code, no other text, and NO testing code!

D.5 HARDWARE CASE STUDY PROMPTS

Here we provide hardware information. This is used in Section 4.4 and elaborated more in H, sampled
with temperature = 0.
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1 <Initial Task prompt from one-shot baseline for Instruction>
2 <Initial pair of Reference PyTorch and CUDA kernel equiavlent for example

↪→ add kernel from one-shot baseline for Instruction>
3
4 Here is some information about the underlying hardware that you should

↪→ keep in mind.
5
6 The GPU that will run the kernel is NVIDIA <GPU NAME>.
7
8 - We have <x> GB GDDR6 with ECC of GPU Memory.
9 - We have <x> GB/s of Memory Bandwidth.

10 - We have <x> of RT Core Performance TFLOPS.
11 - We have <x> of FP32 TFLOPS.
12 - We have <x> of TF32 Tensor Core TFLOPS.
13 - We have <x> of FP16 Tensor Core TFLOPS.
14 - We have <x> of FP8 Tensor Core TFLOPS.
15 - We have <x> of Peak INT8 Tensor TOPS.
16 - We have <x> of Peak INT4 Tensor TOPS.
17 - We have <x> 32-bit registers per SM of Register File Size.
18 - We have <x> of Maximum number of registers per thread.
19 - We have <x> of Maximum number of thread blocks per SM.
20 - We have <x> KB of Shared memory capacity per SM.
21 - We have <x> KB of Maximum shared memory per thread block.
22
23
24
25 Here are some concepts about the GPU architecture that could be helpful:
26
27 - Thread: A thread is a single execution unit that can run a single

↪→ instruction at a time.
28 - Thread Block: A thread block is a group of threads that can cooperate

↪→ with each other.
29 - Shared Memory: Shared memory is a memory space that can be accessed by

↪→ all threads in a thread block.
30 - Register: A register is a small memory space that can be accessed by a

↪→ single thread.
31 - Memory Hierarchy: Memory hierarchy is a pyramid of memory types with

↪→ different speeds and sizes.
32 - Memory Bandwidth: Memory bandwidth is the rate at which data can be

↪→ read from or stored into memory.
33 - Cache: Cache is a small memory space that stores frequently accessed

↪→ data.
34 - HBM: HBM is a high-bandwidth memory technology that uses 3D-stacked

↪→ DRAM.
35
36 Here are some best practices for writing CUDA kernels on GPU
37
38 - Find ways to parallelize sequential code.
39 - Minimize data transfers between the host and the device.
40 - Adjust kernel launch configuration to maximize device utilization.
41 - Ensure that global memory accesses are coalesced.
42 - Minimize redundant accesses to global memory whenever possible.
43 - Avoid long sequences of diverged execution by threads within the same

↪→ warp.
44 #We added this to reference the specific GPU architecture
45 - Use specialized instructions based on the specific GPU architecture
46
47 You are given the following architecture:
48
49 <PyTorch reference architecture for specific KernelBench Problem>
50
51 Name your new improved output architecture ModelNew. Output the new code

↪→ in codeblocks. Please generate real code, NOT pseudocode, make sure
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↪→ the code compiles and is fully functional. Just output the new
↪→ model code, no other text, and NO testing code!

E KERNELS OF INTEREST

In this section we provide examples of interesting or notable kernel generations. We first expand on
the discussion in Section 6, where we defined the following categories of optimizations: algorithmic
optimizations, operator fusion, and using hardware features.

E.1 ALGORITHMIC OPTIMIZATIONS

13x Speedup on Level 1 Problem 11 by Claude-3.5 Sonnet
The original torch operator is torch.diag(A) @ B, multiplying a diagonal matrix formed from
the vector A with the matrix B. The model identifies an optimization in the special case of a diagonal
matrix multiplication, where the diagonal matrix doesn’t need to be explicitly constructed. Instead,
each element of the vector A is directly multiplied with the corresponding row in matrix B, significantly
improving performance:

1 __global__ void diag_matmul_kernel(
2 const float* diag,
3 const float* mat,
4 float* out,
5 const int N,
6 const int M) {
7
8 const int row = blockIdx.y * blockDim.y + threadIdx.y;
9 const int col = blockIdx.x * blockDim.x + threadIdx.x;

10
11 if (row < N && col < M) {
12 out[row * M + col] = diag[row] * mat[row * M + col];
13 }
14 }

E.2 KERNEL FUSION

2.9x Speedup on Level 1 Problem 87 by DeepSeek-V3
GeLU reference in torch:

1 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 *
↪→ torch.pow(x, 3.0))))

Optimized version fuses in a single kernel. There is also a small constant folding optimization, instead
of computing math.sqrt(2.0 / math.pi) repeatedly, the kernel uses the precomputed value
0.7978845608028654f:

1 __global__ void gelu_kernel(const float* x, float* out, int size) {
2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idx < size) {
4 float x_val = x[idx];
5 float cdf = 0.5f * (1.0f + tanhf((0.7978845608028654f * (x_val +

↪→ 0.044715f * x_val * x_val * x_val))));
6 out[idx] = x_val * cdf;
7 }
8 }
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1.3x Speedup on Level 1 Problem 29 by Claude-3.5 Sonnet
SoftSign reference in torch:

1 x / (1 + torch.abs(x))

Fused kernel:

1 __global__ void softsign_kernel(const float* input, float* output, int
↪→ size) {

2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idx < size) {
4 float x = input[idx];
5 float abs_x = abs(x);
6 output[idx] = x / (1.0f + abs_x);
7 }
8 }

2.6x Speedup on Level 2 Problem 13 by Claude-3.5 Sonnet
Sequence of operators in torch:

1 x = torch.matmul(x, self.weight.T) # Gemm
2 x = x / 2 # Divide
3 x = torch.sum(x, dim=1, keepdim=True) # Sum
4 x = x * self.scaling_factor # Scaling

Fused kernel:
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1 __global__ void fused_ops_kernel(
2 const float* input,
3 const float* weight,
4 float* output,
5 const float scaling_factor,
6 const int batch_size,
7 const int input_size,
8 const int hidden_size
9 ) {

10 // Each thread handles one element in the batch
11 const int batch_idx = blockIdx.x * blockDim.x + threadIdx.x;
12
13 if (batch_idx < batch_size) {
14 float sum = 0.0f;
15
16 // Compute matmul and divide for this batch element
17 for(int h = 0; h < hidden_size; h++) {
18 float elem = 0.0f;
19 for(int i = 0; i < input_size; i++) {
20 elem += input[batch_idx * input_size + i] *
21 weight[h * input_size + i];
22 }
23 // Divide by 2 as we go
24 sum += (elem / 2.0f);
25 }
26
27 // Scale and store final result
28 output[batch_idx] = sum * scaling_factor;
29 }
30 }

Despite this good example, overall Level 2 generated kernels show insufficient fusion. It is expected
that most Level 2 problems can be expressed in a single fused kernel.

1.9x Speedup on Level 3 Problem 49 by OpenAI-o1
We have a hypothetical architecture of the attention mechanism where the softmax is replaced with a
ReLU.

1 att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
2 att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float(’-inf’))
3 att = F.relu(att)

The model found an optimization that fuses the scaling, masked fill, and ReLU but not anything else,
resulting in a modest improvement of 1.9x.

25



Published at the Scaling Self-Improving Foundation Models (SSI-FM) Workshop, ICLR 2025

1 __global__ void fused_masked_fill_scale_relu_kernel(
2 const float* __restrict__ att,
3 const float* __restrict__ bias,
4 float* __restrict__ output,
5 int total_elems,
6 float scale,
7 int T,
8 float negative_infinity
9 ) {

10 int idx = blockIdx.x * blockDim.x + threadIdx.x;
11 if (idx < total_elems) {
12 float val = att[idx] * scale;
13 int bias_idx = idx % (T * T);
14 if (bias[bias_idx] == 0.0f) {
15 val = negative_infinity;
16 }
17 if (val < 0.0f) {
18 val = 0.0f;
19 }
20 output[idx] = val;
21 }
22 }

E.3 HARDWARE FEATURES

2.8x Speedup on Level 1 Problem 96 by OpenAI-o1
Torch reference for Cosine Similarity Loss

1 cosine_sim = torch.nn.functional.cosine_similarity(predictions, targets,
↪→ dim=1)

2 return torch.mean(1 - cosine_sim)

The generated kernel uses shared memory for reduce redundant global memory accesses, improving
data locality and increasing overall performance. This is a moderately complicated kernel with
synchronization points and reductions that would be tricky for humans to get right.
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1 __global__ void cosine_similarity_loss_kernel(
2 const float* __restrict__ predictions,
3 const float* __restrict__ targets,
4 float* __restrict__ losses,
5 const int batch_size,
6 const int input_size
7 ) {
8 // Each block handles one sample in the batch
9 int sample_idx = blockIdx.x;

10 if (sample_idx >= batch_size) return;
11
12 // Shared memory for reductions
13 extern __shared__ float sdata[];
14
15 // Pointers to data for this sample
16 const float* pred = predictions + sample_idx * input_size;
17 const float* targ = targets + sample_idx * input_size;
18
19 // Intermediate sums for dot product and norms
20 float thread_dot = 0.0f;
21 float thread_pred_norm_sq = 0.0f;
22 float thread_targ_norm_sq = 0.0f;
23
24 for (int idx = threadIdx.x; idx < input_size; idx += blockDim.x) {
25 float p = pred[idx];
26 float t = targ[idx];
27 thread_dot += p * t;
28 thread_pred_norm_sq += p * p;
29 thread_targ_norm_sq += t * t;
30 }
31
32 // Reduction for dot product
33 sdata[threadIdx.x] = thread_dot;
34 __syncthreads();
35 for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
36 if (threadIdx.x < s) {
37 sdata[threadIdx.x] += sdata[threadIdx.x + s];
38 }
39 __syncthreads();
40 }
41 float dot_product = sdata[0];
42
43 // Reduction for pred_norm_sq
44 sdata[threadIdx.x] = thread_pred_norm_sq;
45 __syncthreads();
46 for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
47 if (threadIdx.x < s) {
48 sdata[threadIdx.x] += sdata[threadIdx.x + s];
49 }
50 __syncthreads();
51 }
52 float norm_pred = sqrtf(sdata[0] + 1e-8f);
53
54 // Reduction for targ_norm_sq
55 sdata[threadIdx.x] = thread_targ_norm_sq;
56 __syncthreads();
57 for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
58 if (threadIdx.x < s) {
59 sdata[threadIdx.x] += sdata[threadIdx.x + s];
60 }
61 __syncthreads();
62 }
63 float norm_targ = sqrtf(sdata[0] + 1e-8f);
64
65 if (threadIdx.x == 0) {
66 float cosine_sim = dot_product / (norm_pred * norm_targ + 1e-8f);
67 losses[sample_idx] = 1.0f - cosine_sim;
68 }
69 }
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1.9x Speedup on Level 1 Problem 98 by Deepseek-R1
Torch reference for Cosine Similarity Loss

1 self.loss_fn = torch.nn.TripletMarginLoss(margin=margin)
2 self.loss_fn(anchor, positive, negative)

Another example of a generated kernel using shared memory:

1 __global__ void triplet_margin_loss_kernel(
2 const float* anchor,
3 const float* positive,
4 const float* negative,
5 float* losses,
6 float margin,
7 int feature_size)
8 {
9 extern __shared__ float shared_sums[];

10
11 int batch_idx = blockIdx.x;
12 int tid = threadIdx.x;
13
14 int offset = batch_idx * feature_size;
15
16 const float* a = anchor + offset;
17 const float* p = positive + offset;
18 const float* n = negative + offset;
19
20 float a_p_sum = 0.0f;
21 float a_n_sum = 0.0f;
22
23 int stride = blockDim.x;
24 for (int i = tid; i < feature_size; i += stride) {
25 float diff_ap = a[i] - p[i];
26 a_p_sum += diff_ap * diff_ap;
27 float diff_an = a[i] - n[i];
28 a_n_sum += diff_an * diff_an;
29 }
30
31 shared_sums[tid] = a_p_sum;
32 shared_sums[blockDim.x + tid] = a_n_sum;
33
34 __syncthreads();
35
36 for (int s = blockDim.x / 2; s > 0; s >>= 1) {
37 if (tid < s) {
38 shared_sums[tid] += shared_sums[tid + s];
39 shared_sums[blockDim.x + tid] += shared_sums[blockDim.x + tid

↪→ + s];
40 }
41 __syncthreads();
42 }
43
44 if (tid == 0) {
45 float d_ap = sqrtf(shared_sums[0]);
46 float d_an = sqrtf(shared_sums[blockDim.x]);
47 losses[batch_idx] = fmaxf(d_ap - d_an + margin, 0.0f);
48 }
49 }
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E.4 ITERATIVE REFINEMENT EXAMPLES

E.4.1 ITERATIVELY TRYING NEW OPTIMIZATIONS

We provide an example of a kernel that iteratively improves on its existing generation. In the following
example, the model attempts new optimizations incorrectly, fixes them, and continue to attempt new
optimizations, improving its kernel to faster than the torch.compile baseline (1.34ms) but short
of the Torch Eager baseline (0.47ms).

Level 1, Problem 63: 2D convolution with square input and square kernel. DeepSeek-R1 with
Execution and Profile Feedback

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10
Compiles? ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓
Correct? ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓
Runtime (ms) 9.1 - 1.57 - 1.83 1.43 - 1.13 - 1.46

Table 5: Iterative refinement trajectory of DeepSeek-R1 with execution feedback E and profiler
feedback P on Problem 63, Level 1. Torch Eager baseline runs in 0.47ms and torch.compile
runs in 1.34ms.

In this example, we see a 8× speedup in average kernel runtime from its initial generation, where
the model repeatedly (incorrectly) refines its kernel, fixes the compiler issues using feedback, then
continues to attempt more optimizations. The first big jump in performance (Turn 1 → Turn 3)
occurs because the model decides to launch thread blocks along an output channel dimension, when
it originally computed these elements sequentially. The model then attempts to use shared memory in
Turn 5, and continues using it, along with texture cache memory with the ldg instruction in Turns
7 and 8.

E.4.2 LEVERAGING FEEDBACK TO CORRECT KERNEL CODE

Level 2, Problem 73: 2D Convolution with a BatchNorm and a scale factor. DeepSeek-R1
with Execution Feedback We provide an example of a kernel that the model struggles to generate
correctly, and produces a correct kernel after iterative refinement using execution feedback.

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10
Compiles? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Correct? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Runtime - - - - - - - - - 3.16

Table 6: Iterative refinement trajectory of DeepSeek-R1 with execution feedback E on Problem 73,
Level 2. Torch Eager baseline runs in 0.105ms and torch.compile runs in 0.156ms.

In the above example, the model continually produces either the wrong output tensor shape or the
wrong values and iterates on its kernel using this feedback until the final turn, where it generates a
functionally correct, albeit non-performant kernel. We provide another example below that explicitly
leverages compiler feedback to fix compiler errors:

Level 2, Problem 23: 3D Convolution with a GroupNorm and return the mean across all but
the batch dimension. DeepSeek-R1 with Execution Feedback

In the above example, the model attempts to use the CUB library, but incorrectly invokes function
calls. The model is then able to correct these errors and write a slightly faster kernel in Turn 8.

E.4.3 ITERATIVE REFINEMENT NEVER FIXES THE ERROR

Level 1, Problem 54: 3D Convolution square input and square kernel. DeepSeek-R1 with
Execution and Profiler Feedback
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Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10
Compiles? ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Correct? ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
Runtime - - 11.4 1.36 - - 1.39 1.33 - -

Table 7: Iterative refinement trajectory of DeepSeek-R1 with execution feedback E on Problem 23,
Level 2. Torch Eager baseline runs in 1.29ms and torch.compile runs in 0.719ms.

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10
Compiles? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Correct? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Runtime - - - - - - - - - -

Table 8: Iterative refinement trajectory of DeepSeek-R1 with execution feedback E and profiler
feedback P on Problem 54, Level 1. Torch Eager baseline runs in 4.47ms and torch.compile
runs in 4.67ms.

This problem is particularly interesting because no model is able to consistently produce functional
code for this kernel, even with different forms of feedback and profiling information. Interestingly, the
example before is an arguably more difficult version of this kernel that fuses the 3D convolution with
another operator, and the same model is able to generate functional code for this task. In the example
above, the model consistently makes the same mistake and continually generates a functionally
incorrect kernel with the same value errors.

F ITERATIVE REFINEMENT ON CORRECTNESS

Here we show that fast0 across iterative refinement 5.1.2 configurations at a turn budget of N = 10
compared to one-shot baseline 4.1. We find that models self-correct more effectively with execution
feedback E, fixing issues especially related to execution errors. Notably, DeepSeek-R1 on Level 1
and 2 can generate a functional kernel on >90% of the tasks given 10 turns of iterative refinement.
However, the remaining incorrect kernels almost always fail due to functional incorrectness, likely
because correctness feedback is less granular than execution failure messages

Method
Level 1 Level 2 Level 3

Llama DeepSeek DeepSeek Llama DeepSeek DeepSeek Llama DeepSeek DeepSeek
3.1 70B V3 R1 3.1 70B V3 R1 3.1 70B V3 R1

Single Attempt (Baseline) 26% 43% 67% 0% 6% 62% 0% 30% 8%

Iterative Refinement (w G) 27% 48% 72% 2% 7% 67% 0% 36% 14%
Iterative Refinement (w G+E) 40% 53% 95% 7% 8% 85% 18% 42% 50%
Iterative Refinement (w G+E+P) 36% 50% 95% 7% 9% 92% 8% 44% 42%

Table 9: Leveraging execution feedback helps reduce errors: Here we present the percentage of
problems where the LM-generated Kernel is correct for iterative refinement. We note leveraging
execution feedback helps the model achieve better correctness fast0, which is the percentage of
problems where the model has at least one correct generation up to turn N = 10. We note the
various iterative refinement configurations, leveraging previous Generation G, Execution Result E,
and Timing Profiles P .

G FEW SHOT EXPERIMENT

For this experiment, we provide in-context examples of optimization techniques such as fusion,
tiling, recompute, and asynchrony to models during kernel generation. As described in Section
5.2.1, we provide three in-context examples: a fused GELU Hendrycks & Gimpel (2023), a tiled
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matrix multiplication Mills (2024), and a minimal Flash-Attention Dao et al. (2022); Kim (2024)
demonstrating effective shared memory I/O management. The prompt used for this experiment is
described in Appendix D.4. The speedup of these kernels were computed over PyTorch Eager. We
compare the performance of these few-shot kernels over the one-shot baseline below.

Baseline Few-Shot
Model Level fast1 fast0 Kernel Length (chars) fast1 fast0 Kernel Length (chars)

1 3% 27% 301018 6% 27% 360212
Llama 3.1-70B 2 0% 0% 646403 0% 0% 566668

3 0% 0% 404596 0% 4% 485332

1 10% 55% 343995 6% 39% 437768
OpenAI o1 2 24% 56% 381474 16% 39% 432800

3 12% 56% 260273 8% 22% 364551

Table 10: Comparison of the Section 4.1 baseline and few-shot prompting performance across models.
We examine the fast0, fast1, and cumulative character length of generated kernels per level.

77% of matrix multiplication problems in Level 1 achieves a speedup over the one-shot baseline
through tiling. The runtime comparison for each GEMM variant is presented below as Table ??.

Problem Name Baseline (ms) Few-Shot (ms) Ref Torch (ms)
3D Tensor Matrix Multiplication 20.9 7.71 1.45
Matmul for Upper-Triangular Matrices 14 5.39 2.98
Matrix Scalar Multiplication 1.19 0.811 0.822
Standard Matrix Multiplication 3.39 2.46 0.397
Matmul with Transposed Both 3.44 2.67 0.412
Matmul with Transposed A 3.61 2.99 0.384
4D Tensor Matrix Multiplication 366 338 36
Tall Skinny Matrix Multiplication 3.39 3.59 1.9
Matmul with Diagonal Matrices 0.221 0.237 2.83

Table 11: Performance comparison of the Section 4.1 baseline and few-shot prompting in level 1
matrix multiplication problems.

Few-shot kernels generated for the following problems in level 2 outperformed PyTorch Eager
through aggressive shared memory I/O management.

Problem Name Baseline (ms) Few-Shot (ms) Ref Torch (ms)
Conv2d InstanceNorm Divide 0.514 0.0823 0.0898
Gemm GroupNorm Swish Multiply Swish 0.124 0.0542 0.0891
Matmul Min Subtract 0.0651 0.0342 0.0397
Matmul GroupNorm LeakyReLU Sum 0.0935 0.0504 0.072
ConvTranspose3d Swish GroupNorm HardSwish 33.3 29.6 35.2
ConvTranspose2d Mish Add Hardtanh Scaling 0.235 0.209 0.243
ConvTranspose3d Add HardSwish 15.6 14.1 22.2
ConvTranspose2d Add Min GELU Multiply 0.365 0.349 0.4
ConvTranspose2d BiasAdd Clamp Scaling Clamp... 0.3 0.31 0.368
Conv2d GroupNorm Tanh HardSwish ResidualAdd... 0.124 0.129 0.154
Conv2d ReLU HardSwish 0.0681 0.0711 0.0768

Table 12: Performance comparison of the Section 4.1 baseline and few-shot prompting in level 2 for
problems whose few-shot kernels outperform PyTorch Eager.
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H CROSS-HARDWARE CASE STUDY

H.1 EVALUATION ACROSS DIFFERENT HARDWARE

To evaluate how generated kernels fare across different hardware platforms, we utilize a number of
different NVIDIA GPUs that span different micro-architectures and capabilities. The specific details
for each is provided in Table 13.

Provider GPU Type Memory Power Microarchitecture FP16 TFLOPS Memory Bandwidth
Baremetal NVIDIA L40S 48 GB 300W Ada 362.05 864 GB/s
Baremetal NVIDIA H100 80 GB 700W Hopper 989.5 3350 GB/s
Serverless NVIDIA L40S 48 GB 350W Ada 362.05 864 GB/s
Serverless NVIDIA A100 42 GB 400W Ampere 312 1935 GB/s
Serverless NVIDIA L4 24 GB 72W Ada 121 300 GB/s
Serverless NVIDIA T4 16 GB 70W Turing 65 300 GB/s
Serverless NVIDIA A10G 24 GB 300W Ampere 125 600 GB/s

Table 13: Specifications of different GPUs, including memory, power consumption, micro-
architecture, FP16 TFLOPS, memory bandwidth, and their providers.

We ran the same set of kernels generated in Section 4.1 on a variety of hardware (as listed in Table
13). We computed the fast1 speedup against the PyTorch Eager baseline profiled on that particular
hardware platform in Table 14.

Level GPUs Llama-3.1-70b-Inst DeepSeek-V3 DeepSeek-R1

1

L40S 3% 6% 12%
H100 2% 7% 16%
A100 3% 7% 16%
L4 2% 4% 15%
T4 3% 7% 22%
A10G 2% 7% 12%

2

L40S 0% 4% 36%
H100 0% 4% 42%
A100 0% 4% 38%
L4 0% 4% 36%
T4 0% 4% 46%
A10G 0% 4% 47%

3

L40S 0% 8% 2%
H100 0% 10% 2%
A100 0% 8% 2%
L4 0% 6% 2%
T4 0% 10% 2%
A10G 0% 10% 0%

Table 14: KernelBench result across multiple hardware types: Speedup (fast1) over Torch Eager
comparison of GPUs across different models and levels. The kernels used across different GPUs are
the same as the ones generated for Single Attempt without hardware/platform specific information.

Based on the increased variability in fast1 score for DeepSeek R1 as described in Section 4.4 and
Table 14, we plot the individual speedups for each problem (in Levels 1 and 2) across different GPUs.
Speedup is computed against PyTorch Eager and there is a horizontal line at y = 1.0 to mark the
cutoff for fast1.
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Figure 7: Speedup comparison across different GPUs for DeepSeek R1 on Level 1 (log scale).

Figure 8: Speedup comparison across different GPUs for DeepSeek-R1 on Level 2 (log scale).

H.2 EFFECT OF PROVIDING HARDWARE INFORMATION

We provided hardware-specific information such as the GPU’s micro-architecture, TFLOPS, and
memory bandwidth (as shown in Table 13) to models during kernel generation. These generations
were then profiled on their respective hardware platforms. The speedup in terms of fast1 over PyTorch
Eager is provided below in Table 15.
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Level GPUs Llama-3.1-70b-Inst DeepSeek-V3 DeepSeek-R1 OpenAI-o1

1
L40S 2% 5% 14% 13%
H100 3% 6% 14% 9%
A100 4% 4% 16% 9%

2
L40S 1% 4% 33% 25%
H100 2% 2% 35% 33%
A100 2% 1% 31% 32%

3
L40S 0% 2% 0% 10%
H100 2% 8% 0% 12%
A100 0% 0% 2% 8%

Table 15: Providing hardware specifications in context: Speedup (fast1) over Torch Eager comparison
of GPUs across different models and levels.

As described in Section 5.2.2, DeepSeek-R1 begins to generate kernels with warp matrix multiply-
accumulate (wmma) instructions. We show the generated kernel for Problem 1 Level 1 when provided
with H100 specifications in context below.
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1 #include <torch/extension.h>
2 #include <cuda_fp16.h>
3 #include <cuda_runtime.h>
4 #include <mma.h>
5
6 using namespace nvcuda;
7
8 __global__ void hgemm_kernel(const half* A, const half* B, half* C, int N

↪→ ) {
9 const int WARPS_PER_BLOCK = 8;

10 const int WMMA_M = 16;
11 const int WMMA_N = 16;
12 const int WMMA_K = 16;
13
14 __shared__ half Ashared[WARPS_PER_BLOCK][WMMA_M][WMMA_K];
15 __shared__ half Bshared[WARPS_PER_BLOCK][WMMA_K][WMMA_N];
16
17 int warpId = threadIdx.x / 32;
18 int laneId = threadIdx.x % 32;
19
20 int tileM = (blockIdx.y * WARPS_PER_BLOCK + warpId) * WMMA_M;
21 int tileN = blockIdx.x * WMMA_N;
22
23 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::

↪→ row_major> a_frag;
24 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::

↪→ row_major> b_frag;
25 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, half>

↪→ c_frag;
26 wmma::fill_fragment(c_frag, __float2half(0.0f));
27
28 for (int k = 0; k < N; k += WMMA_K) {
29 int loadAidx = laneId + (tileM + (laneId / WMMA_K)) * N + k + (

↪→ laneId % WMMA_K);
30 int loadBidx = laneId + (k + (laneId / WMMA_N)) * N + tileN + (

↪→ laneId % WMMA_N);
31
32 if (tileM + (laneId / WMMA_K) < N && k + (laneId % WMMA_K) < N)
33 Ashared[warpId][laneId / WMMA_K][laneId % WMMA_K] = A[

↪→ loadAidx];
34 else
35 Ashared[warpId][laneId / WMMA_K][laneId % WMMA_K] =

↪→ __float2half(0.0f);
36
37 if (k + (laneId / WMMA_N) < N && tileN + (laneId % WMMA_N) < N)
38 Bshared[warpId][laneId / WMMA_N][laneId % WMMA_N] = B[

↪→ loadBidx];
39 else
40 Bshared[warpId][laneId / WMMA_N][laneId % WMMA_N] =

↪→ __float2half(0.0f);
41
42 __syncthreads();
43
44 wmma::load_matrix_sync(a_frag, &Ashared[warpId][0][0], WMMA_K);
45 wmma::load_matrix_sync(b_frag, &Bshared[warpId][0][0], WMMA_N);
46 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
47
48 __syncthreads();
49 }
50
51 int storeCidx = (tileM + (laneId / WMMA_N)) * N + tileN + (laneId %

↪→ WMMA_N);
52 if (tileM + (laneId / WMMA_N) < N && tileN + (laneId % WMMA_N) < N)
53 C[storeCidx] = c_frag.x[laneId];
54 }
55
56 torch::Tensor hgemm_cuda(torch::Tensor A, torch::Tensor B, int N) {
57 auto C = torch::zeros({N, N}, A.options().dtype(torch::kFloat16));
58
59 const int WARPS_PER_BLOCK = 8;
60 dim3 grid((N + 15) / 16, (N + 15) / (16 * WARPS_PER_BLOCK));
61 dim3 block(32 * WARPS_PER_BLOCK);
62
63 hgemm_kernel<<<grid, block>>>(A.data_ptr<half>(), B.data_ptr<half>(),

↪→ C.data_ptr<half>(), N);
64 return C;
65 }

Figure 9: A CUDA kernel generated by DeepSeek-R1 for Level 1 Problem 1 when provided with
hardware-specific information on the H100 GPU.
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I HIGH-THROUGHPUT EVALUATION SYSTEM

I.1 SINGLE-SHOT EXPERIMENTS: BATCHED KERNEL GENERATION

Given the high volume of GPU kernels to evaluate, we build a fast and highly-parallelized evaluation
system, where we separate into the kernel generation and evaluation process into 3 stages, as shown
in Figure 10.

• Inference: We query LMs in parallel and store the generated kernel.

• CPU Pre-Compile: We compile the model-generated kernels with nvcc for a specified
hardware into a binary, parallelized on CPUs and each kernel binary is saved to their
individual specific directory for caching.

• GPU Evaluation: With the kernel binary already built on CPU, we focus on evaluating
multiple kernels in parallel across multiple GPU devices. However, to ensure accurate kernel
timing, we only evaluate one kernel at time on one device.

Figure 10: KernelBench provide a high throughput kernel generation and evaluation system.
We parallelized generation, compilation, and evaluation of kernels across CPUs and GPUs.

I.2 ITERATIVE REFINEMENT EXPERIMENTS: GPU ORCHESTRATOR SYSTEM

Based on the single-shot system, we also design a platform to handle multiple iterative refinement
experiments at once. We treat each iterative refinement experiment as a finite state machine, where
the states are LM-based kernel generation, pre-compilation, kernel execution, and profiling. The
transitions are based on environment feedback, and can change based on different experiment setups.

Our system was run on a node with 8 available GPUs. Unlike the single-shot system, batching each
generation and kernel execution is highly inefficient – thus, we design a pipelined, multiprocessing
system with a GPU orchestrator with the following characteristics:

• CPU Parallelism: The orchestrator spawns multiple independent processes that each handle
an independent task in KernelBench. These processes run the multi-turn state machine logic
for the iterative refinement experiments – only the kernel execution state requires acquiring
a GPU.

• Acquiring GPUs: The GPU orchestrator keeps a separate process running that handles
which processes can acquire a GPU using semaphores. Processes can request a GPU from
this process when it is ready to execute and evaluate kernel code. We try to minimize process
control over a GPU to maximize resource throughput, given a system with a limited number
of available GPUs.

• Pre-compiling on the CPU: To avoid processes hogging GPU time, we pre-compile kernels
with nvcc on the CPU for a specified hardware into a binary. We also did this same trick
for the single-shot system, but for separate reasons.
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• Evaluating Kernels on the GPU: The only state where the finite state machine uses
the GPU is for kernel execution and profiling. We found that waiting on GPUs is the
primary bottleneck in the orchestrator, so we designed the orchestrator to maximize device
occupancy.

The system generally supports overlapping the generation of kernel code and the execution of already-
generated kernel code. There are also several unavoidable errors such as CUDA illegal memory
accesses and deadlocks due to faulty kernel generations that the orchestrator solves by releasing and
spawning new processes when encountered, and we wrote specifically handlers to ensure these errors
are properly captured without crashing the orchestrator itself.

I.3 UI: VISUALIZING KERNEL GENERATION TRAJECTORIES

To qualitatively observe the generated and compare them across techniques, we design an interface to
easily visualize them. We provide this as part of the KernelBench framework.

Figure 11: We provide a visual interface for kernel inspection. This allows us to easily examine
kernel content, its performance, and compare across various techniques and configurations.
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