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Abstract

Exploration in reinforcement learning (RL) remains an open challenge. RL algo-
rithms rely on observing rewards to train the agent, and if informative rewards are
sparse the agent learns slowly or may not learn at all. To improve exploration and
reward discovery, popular algorithms rely on optimism. But what if sometimes
rewards are unobservable, e.g., situations of partial monitoring in bandits and the
recent formalism of monitored Markov decision process? In this case, optimism
can lead to suboptimal behavior that does not explore further to collapse uncer-
tainty. With this paper, we present a novel exploration strategy that overcomes the
limitations of existing methods and guarantees convergence to an optimal policy
even when rewards are not always observable. We further propose a collection
of tabular environments for benchmarking exploration in RL (with and without
unobservable rewards) and show that our method outperforms existing ones.

1 Introduction

Reinforcement learning (RL) has developed into a powerful paradigm where agents can tackle a
variety of tasks, including games [67], robotics [31], and medical applications [82]. Agents trained
with RL learn by trial-and-error interactions with an environment: the agent tries different actions,
the environment returns a numerical reward, and the agent adapts its behavior to maximize future
rewards. This setting poses a well-known dilemma: how and for how long should the agent explore,
i.e., try new actions and visit new states in search for rewards? If the agent does not explore enough
it may miss important rewards. However, prolonged exploration can be expensive, especially in
real-world problems where instrumentation (e.g., cameras or sensors) or a human expert may be
needed to provide rewards. Classic dithering exploration [39, 47] is known to be inefficient [34],
especially when informative rewards are sparse [54, 60]. Among the many exploration strategies
that have been proposed to improve RL efficiency, perhaps the most well-known and grounded
is optimism. With optimism, the agent assigns to each state-action pair an optimistically biased
estimate of future value and selects the action with the highest estimate [50]. This way, the agent
is encouraged to explore unvisited states and perform different actions, where either its optimistic
expectation holds — the observed reward matches the optimistic estimate — or not. If not, the agent
adjusts its estimate and looks for rewards elsewhere. Optimistic algorithms range from count-based
exploration bonuses [4, 16, 24, 25], to model-based planning [3, 20, 21], bootstrapping [15, 52], and
posterior sampling [50]. Nonetheless, optimism can fail when the agent has limited observability of
the outcome of its actions. Consider the example in Figure 1b, where the agent observes rewards
only under some condition and upon paying a cost. To fully explore the environment and learn an
optimal policy the agent must first take a suboptimal action (to push the button and pay a cost) to learn
about the rewards. However, optimistic algorithms would never select suboptimal actions, thus never
pushing the button and never learning how to accumulate positive rewards [36]. While alternatives to
optimism exist, such as intrinsic motivation [66], they often lack guarantees of convergence and their
efficacy strongly depends on the intrinsic reward used, the environment, and the task [7].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



…
(a) Rewards given for collecting a coin are al-
ways observable.

…
(b) The agent must first push a button and pay
a cost to observe coin rewards.

Figure 1: When optimism is not enough. The agent starts in the second leftmost cell of a corridor-
like gridworld and can move LEFT or RIGHT. The coin in the leftmost cell gives a small reward, the
one in the rightmost cell gives a large reward, while all other cells give zero rewards. In (b), pushing
the button is costly (negative reward) but is needed to observe coin rewards — if the agent collects
a coin without pushing it first, the environment returns the reward but the agent cannot observe
it. Given a sufficiently large discount factor, the optimal policy is to collect the large coin without
pushing the button. Consider a purely optimistic agent, i.e., an agent that selects action greedily with
respect to their value estimate, and these estimates are initialized to the same optimistically high
value [17]. In (a) all rewards are always observable, therefore: the agent visits a cell; its optimistic
estimate decreases according to the reward; the agent tries another cell. At the end, it will visit all
states and learn the optimal policy. In (b), however, when the agent visits a coin cell without pushing
the button first, it will not observe the reward and will not validate or prove wrong its optimistic
estimate. Thus, the estimate for both coin-cells will stay equally optimistic, and between the two the
agent will prefer to go to the leftmost cell because it is closer to the start. Optimistic model-based
algorithms [3, 24] have the same problem. If all value estimates are optimistic and the agent knows
that pushing the button is costly, between (1) push the button and collect the right coin, (2) do not
push the button and collect the right coin, and (3) do not push the button and collect the left coin, the
agent will always chose the third: the optimistic value is the same, but it does not incur in the button
cost and the left coin is closer. Yet, this gives no information to the agent, because it cannot observe
the reward and therefore cannot update its optimistic value. Note that the agent could replace the
unobserved reward with an estimate from a model updated as rewards are observed. But how can this
model be accurate if the agent cannot explore properly and observe rewards in the first place?

How can we efficiently explore and learn to act optimally when rewards are partially observable, with-
out relying on optimism and yet still have guarantees of convergence? In this paper, we present a novel
exploration strategy based on the successor representation to tackle this question. Note that Lattimore
and Szepesvari [36] already argued against optimism in partial monitoring [8], a generalization of the
bandit framework where the agent cannot observe the exact payoffs. Similarly, Schulze and Evans
[68] and Krueger et al. [33] discussed the shortcomings of optimism in active RL, where rewards are
observable upon paying a cost. While we follow the same line of research, we consider the more
recent and general framework of Monitored Markov Decision Processes (Mon-MDPs) [55], and we
validate the efficacy of the proposed exploration on a collection of both MDPs and Mon-MDPs.

2 Problem Formulation

Environment

Agent

Figure 2: The MDP framework.

A Markov Decision Process (MDP) (Figure 2) is a mathemat-
ical framework for sequential decision-making, defined by the
tuple ⟨S,A,R,P,γ⟩. An agent interacts with an environment
by repeatedly observing a state st ∈ S, taking an action at ∈ A,
and observing a bounded reward rt ∈ R. These interactions are
governed by the Markovian transition function P(st+1 |at, st)
and the reward function rt ∼ R(st, at), both unknown to the

agent. The agent’s goal is to act to maximize the sum of discounted rewards
∑∞

t=1γ
t−1rt, where

γ ∈ [0, 1) is the discount factor describing the trade-off between immediate and future rewards.

How the agent acts is determined by the policy π(a |s), a function denoting the probability of
executing action a in state s. A policy is optimal when it maximizes the Q-function, i.e.,

π∗ := argmax
π

Qπ(s, a), where Qπ(st, at) := E
[∑∞

k=t
γk−trk |π,P, st, at

]
. (1)

The existence of at least one optimal policy and its optimal Q-function Q∗ is guaranteed under
the following standard assumptions: finite state and action spaces, stationary reward and transition
functions, and bounded rewards [58]. Q-Learning [81] is one of the most common algorithms to

2



learn Q∗ by iteratively updating a function Q̂ as follows,

Q̂(st, at)← (1− αt)Q̂(st, at) + αt(rt + γ

greedy policy︷ ︸︸ ︷
max

a
Q̂(st+1, a)), (2)

where αt is the learning rate. Q̂ is guaranteed to converge to Q∗ under an appropriate learning rate
schedule αt and if every state-action pair is visited infinitely often [13]. Thus, how the agent explores
plays a crucial role. For example, a random policy eventually visits all states but is clearly inefficient,
as states that are hard to reach will be visited less frequently (e.g., because they can be reached only
by performing a sequence of specific actions). How frequently the policy explores is also crucial —
to behave optimally we also need the policy to act optimally eventually. That is, at some point, the
agent should stop exploring and act greedy instead. For these reasons, we are interested in greedy
in the limit with infinite exploration (GLIE) policies [69], i.e., policies that guarantee to explore all
state-action pairs enough for Q̂ to converge to Q∗, and that eventually act greedy as in Eq. (1). While
a large body of work in RL literature has been devoted to developing efficient GLIE policies in MDPs,
an important problem still remains largely unaddressed: the agent explores in search of rewards, but
what if rewards are not always observable? MDPs, in fact, assume rewards are always observable.
Thus, we consider the more general framework of Monitored MDPs (Mon-MDPs) [55].

2.1 Monitored MDPs: When Rewards Are Not Always Observable

Monitor

Agent

Environment

Figure 3: The Mon-MDP framework.

Mon-MDPs (Figure 3) are defined by the tuple
⟨SE,AE,PE,RE,M,SM,AM,PM,RM,γ⟩, where ⟨SE,
AE,PE,RE,γ⟩ is the same as classic MDPs and the su-
perscript E stands for “environment”, while ⟨M,SM,AM,
PM,RM⟩ is the “monitor”, a separate process with its own
states, actions, rewards, and transition. The monitor works
similarly to the environment — performing a monitor ac-
tion aM

t ∈ AM affects its state sM
t ∈ SM and yields a

bounded reward rM
t ∼ RM(sM

t , a
M
t ). However, there are

two crucial differences. First, its Markovian transition
depends on the environment as well, i.e., PM(sM

t+1 |sM
t , s

E
t , a

M
t , a

E
t ). Second, the monitor functionM

stands in between the agent and the environment, dictating what the agent sees about the environment
reward — rather than directly observing the environment reward rE

t ∼ RE(sE
t , a

E
t ), the agent observes

a proxy reward r̂E
t ∼M(rE

t , s
M
t , a

M
t ). Most importantly, the monitor may not always show a numerical

reward, and the agent may sometime receive r̂E
t = ⊥, i.e., “unobservable reward”.

In Mon-MDPs, the agent repeatedly executes a joint action at := (aE
t , a

M
t ) according to the joint

state st := (sE
t , s

M
t ). In turn, the environment and monitor states change and produce a joint reward

(rE
t , r

M
t ), but the agent observes (r̂E

t , r
M
t ). The agent’s goal is to select joint actions to maximize∑∞

t=1γ
t−1 (rE

t + rM
t ) even though it observes r̂E

t instead of rE
t . For example, in Figure 1b the agent

can turn monitoring on/off by pushing the button: if monitoring is off, the agent cannot observe
the environment rewards; if on, it observes them but receives negative monitor rewards. Formally,
SM = {ON, OFF}, AM = {PUSH, NO-OP}, RM(ON, ·) = −1,M(rE

t , ON, ·) = rE
t ,M(rE

t , OFF, ·) = ⊥.
The optimal policy is to move to the rightmost cell without turning monitoring on — the agent still
receives the positive reward even though it does not observe it.1

The presence of the monitor and the partial observability of rewards highlight two fundamental
differences between Mon-MDPs and existing MDPs variations. First, the observability of the reward
is dictated by a “Markovian entity” (the monitor), thus actions can have either immediate or long-term
effects on the reward observability. For example, the agent may immediately observe the reward
upon explicitly asking for it as in active RL [68], e.g., with a dedicated action aM = ASK. Or, rewards
may become observable only after changing the monitor state through a sequence of actions, e.g.,
as in Figure 1b by reaching and pushing the button. Second, reward unobservability goes beyond
reward sparsity. In sparse-reward MDPs [34], rewards are always observable even though informative
non-zero rewards are sparse. Mon-MDPs with dense informative observable rewards may still be
challenging even if a few rewards are partially observable. Consider the Mon-MDP in Figure 1b, but

1This example is just illustrative. In general, the monitor states and actions can be more heterogeneous. For
example, the agent could observe rewards by collecting and using a device or asking a human expert, and the
monitor state could include the battery of the device or the location of the expert. Similarly, the monitor reward
is not constrained to be negative and its design depends on the agent’s desired behavior.
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this time zero-rewards of empty tiles are replaced with negative rewards proportional to the distance
to the large coin (dense and informative). Because coin rewards are still observable only after pressing
the button, an optimistic agent will still collect the small coin: the optimistic value of the small coin is
as high as the optimistic value of the large coin, but collecting the small coin takes fewer steps, thus
ending the series of dense negative rewards sooner. The agent must first push the button (a suboptimal
action) to learn the optimal policy regardless of the presence of dense observable rewards.

Mon-MDPs provide a comprehensive framework encompassing existing areas of research, such as
active RL [33, 68] and partial monitoring [5, 8, 37, 41]. In their introductory work, Parisi et al. [55]
showed the existence of an optimal policy and the convergence of a variant of Q-Learning under
some assumptions.2 Yet, many research questions remain open, most prominently how to explore
efficiently in Mon-MDPs. In the next section, we review exploration strategies in RL and discuss
their shortcomings, especially when rewards are partially observable as in Mon-MDPs. For the sake
of simplicity, in the remainder of the paper we use the notation (s, a) to refer to both the environment
state-action pairs (in MDPs) and the joint environment-monitor state-action pairs (in Mon-MPDs).
All the related work on exploration for MDPs can be applied to Mon-MDPs as well (not albeit with
limited efficacy, as we discuss below). Similarly, the exploration strategy we propose in Section 3
can be applied to both MDPs and Mon-MDPs.

2.2 Related Work

Optimism. In tabular MDPs, many provably efficient algorithms are based on optimism in the face
of uncertainty (OFU) [35]. In OFU, the agent acts greedily with respect to an optimistic estimate
composed of the action-value estimate (e.g., Q̂) and a bonus term that is proportional to the uncertainty
of the estimate. After executing an optimistic action, the reward either validates the agent’s optimism
or proves it wrong, thus discouraging the agent from trying it again. RL literature provides many
variations of these algorithms, each with different convergence bounds and assumptions. Perhaps the
best known OFU algorithms are based on the upper confidence bound (UCB) algorithm [4], where
the optimistic value is computed from visitation counts (the lower the count, the higher the bonus). In
model-free RL, Jin et al. [25] proved convergence bounds for episodic MDPs, and later Dong et al.
[16] extended the proof to infinite horizon MDPs, but both are often intractable. In model-based
RL, algorithms like R-MAX [10] and UCRL [3, 24] consider a set of plausible MDP models (i.e.,
plausible reward and transition functions) and optimistically select the best action over what they
believe to be the MDP yielding the highest return. Unfortunately, this optimistic selection can fail
when rewards are not always unobservable [33, 36, 68], as the agent may have to select actions that
are known to be suboptimal to discover truly optimal actions. For example, in Figure 1b pushing the
button is suboptimal (the agent pays a cost) but is the only way to discover the large positive reward.

Posterior sampling for RL (PSRL). PSRL adapts Thompson sampling [79] to RL. The agent is given
a prior distribution over a set of plausible MDPs, and rather than sampling the MDP optimistically
as in OFU, PSRL samples it from a distribution representing how likely an MDP is to yield the
highest return. Only then, the agent acts optimally for the sampled MDP. PSRL can be orders of
magnitude more efficient than UCRL [50], but its efficiency strongly depends on the choice of the
prior [32, 57, 73, 80]. Furthermore, the computation of the posterior (by Bayes’ theorem) can be
intractable even for small tasks, thus algorithms usually approximate it empirically with an ensemble
of randomized Q-functions [15, 51, 52]. Nonetheless, if rewards are partially observable PSRL
suffers from the same problem as OFU: the agent may never discover rewards if actions needed to
observe them (and further identify the MDP) are suboptimal for all MDPs with posterior support [36].

Information gain. These algorithms combine PSRL and UCB principles. On one hand, they rely
on a posterior distribution over plausible MDPs, on the other hand they augment the current value
estimate with a bound that comes in terms of an information gain quantity, e.g., the difference between
the entropy of the posterior after an update [28, 40, 62, 70]. This allows to sample suboptimal but
informative actions, thus overcoming some limitations of OFU and PSRL. However, similar to PSRL,
performing explicit belief inference can be intractable even for small problems [2, 29, 62].

Intrinsic motivation. While many of above strategies are often computationally intractable, they

2The assumptions are: monitor and environment ergodicity, i.e., any joint state-action pair can be reached
by any other pair given infinite exploration; monitor ergodicity, i.e., for every environment reward there exists
at least one joint state-action pair for which the environment reward is observable given infinite exploration;
truthful monitor, i.e., either the proxy reward is the environment reward (r̂E

t = rE
t ) or is not observable (r̂E

t = ⊥).
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inspired more practical algorithms where exploration is conducted by adding an intrinsic reward
to the environment. This is often referred to as intrinsic motivation [63, 66]. For example, the
intrinsic reward can depend on the visitation count [9], the impact of actions on the environment [60],
interest or surprise [1, 53], information gain [22], or can be computed from prediction errors of some
quantity [11, 56, 71]. However, intrinsic rewards introduce non-stationarity to the Q-function (they
change over time), are often myopic (they are often computed only on the immediate transition), and
are sensitive to noise [56]. Furthermore, if they decay too quickly exploration may vanish prematurely,
but if they outweigh the environment reward the agent may explore for too long [11].

It should be clear that learning with partially observable rewards is still an open challenge. In the next
section, we present a practical algorithm that (1) performs deep exploration — it can reason long-term,
e.g., it tries to visit states far away, (2) does not rely on optimism — addressing the challenges of
partially observable rewards, (3) explicitly decouples exploration and exploitation — thus exploration
does not depend on the accuracy of Q̂, which is known to be problematic (e.g., overestimation bias)
for off-policy algorithms (even more if rewards are partially observable). After proving its asymptotic
convergence we empirically validate it on a collection of tabular MDPs and Mon-MDPs.

3 Directed Exploration-Exploitation With The Successor Representation

Algorithm 1: Directed Exploration-Exploitation
1 (sG, aG) = argmins,a Nt(s, a) // tie-break by deterministic ordering
2 βt = log t/Nt(s

G, aG)

3 if βt > β̄ then return ρ(a |st, sG, aG) // explore
4 else return argmaxa Q̂(st, a) // exploit

Algorithm 1 outlines our idea for step-wise exploration.3 N(s, a) is the state-action visitation count
and, at every timestep, the agent selects the least-visited pair as “goal” (sG, aG). The ratio βt decides
if the agent explores (goes to the goal) or exploits according to a threshold β̄ > 0. If two or more pairs
have the same lowest count, ties are broken consistently according to some deterministic ordering. For
example, if actions are {LEFT, RIGHT, UP, DOWN}, LEFT is the first and will be selected if the count of
all actions is the same. This ensures that once the agent starts exploring to reach a goal, it will continue
to do so until the goal is visited — once its count is minimal under the deterministic tie-break, it will
continue to be minimal until the goal is visited and its count is incremented. Exploration is driven by
ρ(a |st, sG, aG), a goal-conditioned policy that selects the action according to the current state st and
goal (sG, aG). Intuitively, as the agent explores, if every state-action pair is visited infinitely often,
log t will grow at a slower rate than Nt(s, a) and the agent will increasingly often exploit (formal
proof below). Furthermore, infinite exploration ensures Q̂ converges to Q∗, i.e., that its greedy actions
are optimal. Intuitively, the role of βt is similar to the one of ϵt in ϵ-greedy policies [75]. However,
rather than manually tuning its decay, βt naturally decays as the agent explores.

The goal-conditioned policy ρ is the core of Algorithm 1. For efficient exploration we want ρ to move
the agent as quickly as possible to the goal, i.e., we want to minimize the goal-relative diameter under
ρ. Intuitively, this diameter is a bound on the expected number of steps the policy would take to visit
the goal from any state (formal definition below). Moreover, we want to untie ρ from the Q-function,
the rewards, and their observability. In the next section we propose a policy ρ that satisfies these
criteria, but first we prove that Algorithm 1 is a GLIE policy under some assumptions on ρ.
Definition 1 (Singh et al. [69]). An exploration policy is greedy in the limit (GLIE) if (1) each action
is executed infinitely often in every state that is visited infinitely often, and (2) in the limit, the learning
policy is greedy with respect to the Q-function with probability 1.
Definition 2. Let ρ be a goal-conditioned policy ρ(a |s, sG, aG). Let T (sG, aG |ρ, s) be the first
timestep t in which (st, at) = (sG, aG) given s0 = s and at ∼ ρ(a |st, sG, aG). The goal-relative
diameter of ρ with respect to (sG, aG), if it exists, is

Dρ(sG, aG) = max
s

E[T (sG, aG |ρ, s) | P, ρ], (3)

i.e., the maximum expected number of steps to reach (sG, aG) from any state in the MDP. We say the
goal-relative diameter is bounded by D̄ if D̄ ≥ maxsG,aG Dρ(sG, aG).

3Recall that s and a denote either the classic state and action in MDPs, or the joint state s := (sE, sM) and
action a := (aE, aM) in Mon-MDPs.
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There exist goal-conditioned policies with bounded goal-relative diameter if and only if the MDP is
communicating (i.e., for any two states there is a policy under which there is non-zero probability
to move between the states in finite time; see Puterman [58] and Jaksch et al. [24]). While not all
goal-conditioned policies have bounded goal-relative diameter, one such policy is the random policy
or similarly an ϵ-greedy policy for ϵ > 0 [69]. Different goal-conditioned policies will have different
bounds on their goal-relative diameter Dρ(sG, aG).4

Theorem 1. If the goal-relative diameter of ρ is bounded by D̄ then Algorithm 1 is a GLIE policy.

Proof. Let Zt(s, a) be the number of timesteps before time t that the agent is in an exploration step
with (sG, aG) = (s, a). Let Xt =

∑
s,a Zt(s, a)/t be the fraction of time up to time t that the agent has

spent exploring. We want to show that ∀ε > 0 limt→∞ Pr[Xt > ε] = 0, i.e., the probability that the
agent explores as frequently as any positive ε approaches 0. Hence, the policy is greedy in the limit.
Note that, if the agent’s frequency of exploring approaches zero this also must mean that βt ∈ O(1),
implying Nt(s, a)→∞ ∀(s, a), i.e., all state-action pairs are visited infinitely often.
Let us focus on E[Zt(s, a)]. Once the agent starts exploring to visit (s, a), it will do so until it actually
visits (s, a). Let It(s, a) be the number of times the agent started exploring to visit (s, a) before time
t. We know that It(s, a) ≤ Nt(s, a) + 1, as the agent must visit (s, a) before it starts exploring to
visit it again. Let t′ ≤ t be the last time it started exploring to visit (s, a). We have

It(s, a) = It′(s, a) ≤ Nt′(s, a) + 1 <
log t′

β̄
+ 1 ≤ log t

β̄
+ 1, (4)

where the strict inequality is due to βt′ > β̄ (condition to explore). Since the agent cannot have
started exploration log t/β̄ + 1 times, and the goal-relative diameter of ρ is at most D̄, then

E[Zt(s, a)] < D̄

(
log t

β̄
+ 1

)
, and thus E[Xt] <

|S||A|D̄
t

(
log t

β̄
+ 1

)
. (5)

We can now apply Markov’s inequality with threshold 1/
√
t,

Pr
[
Xt ≥

1√
t

]
≤
√
tE[Xt] <

|S||A|D̄√
t

(
log t

β̄
+ 1

)
. (6)

Since 1/
√
t < ε for sufficiently large t,

lim
t→∞

Pr[Xt ≥ ε] ≤ lim
t→∞

Pr
[
Xt ≥

1√
t

]
≤ lim

t→∞

|S||A|D̄√
t

(
log t

β̄
+ 1

)
= 0, (7)

hence the Algorithm 1 is a GLIE policy.

Corollary 1. As a consequence of Theorem 1, Q̂ converges to Q∗ (infinite exploration) and therefore
the algorithm’s behavior converges to the optimal policy (greedy in the limit).5

While we have noted that the random policy is a sufficient choice for ρ to meet the criteria of Theo-
rem 1, the bound in Equation 7 shows a direct dependence on the goal-relative diameter Dρ(sG, aG).
Thus, the optimal ρ to explore efficiently in Algorithm 1 is ρ∗(a |s, sG, aG) := argminρ D

ρ(sG, aG),
i.e., we want to reach the goal from any state as quickly as possible in expectation. Furthermore, we
want to untie ρ from the learned Q-function and the reward observability. However, learning such a
policy can be challenging because the diameter of the MDP is usually unknown. In the next section,
we present a suitable alternative based on the successor representation [14].

3.1 Successor-Function: An Exploration Compass

The successor representation (SR) [14] is a generalization of the value function, and represents the
cumulative discounted occurrence of a state si under a policy π, i.e., E[

∑∞
k=tγ

k−t
1{sk=si} |π,P, st],

where 1{sk=si} is the indicator function returning 1 if sk = si and 0 otherwise. The SR does not
depend on the reward function and can be learned with temporal-difference in a model-free fashion,
e.g., with Q-Learning. Despite their popularity in transfer RL [6, 19, 38, 61], to the best of our
knowledge, only Machado et al. [43] and Jin et al. [26] used the SR to enhance exploration by using
it as an intrinsic reward. Here, we follow the idea of the SR — to predict state occurrences under

4Jaksch et al. [24] defined a diameter that is a property of the MDP irrespective of any (goal-directed) policy.
Their MDP diameter can be thought of as the smallest possible bound on the goal-relative diameter for any ρ.

5For Mon-MDPs, convergence is guaranteed under the assumptions discussed in Footnote 2.
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a policy — to learn a value function that the goal-conditioned policy in Algorithm 1 can use to
guide the agent towards desired state-action pairs. We call this the state-action successor-function
(or S-function) and we formalize it as a general value function [76] representing the cumulative
discounted occurrence of a state-action pair (si, aj) under a policy π, i.e.,

Sπ
siaj

(st, at) = E
[∑∞

k=t
γk−t

1{sk=si,ak=aj} |π,P, st, at
]
, (8)

where 1{sk=si,ak=aj} is the indicator function returning 1 if sk = si and ak = aj , and 0 otherwise.

Prior work considered the SR relative to either an ϵ-greedy exploration policy [43] or a random
policy [38, 44, 61]. Instead, we consider a different “successor policy” for every state-action pair
(si, aj), and define the optimal successor policy as the one maximizing the respective S-function, i.e.,

ρ∗siaj
:= argmax

ρ
Sρ
siaj

(s, a). (9)

The switch from π to ρ is intentional: to maximize the S-function means to maximize the occurrence
of (si, aj) under γ discounting, which can been seen as visiting (si, aj) as fast as possible from any
other state.6 Thus, Eq. (9) is a suitable goal-conditioned policy ρ∗ discussed in Algorithm 1. Similar
to the Q-function, we can learn an approximation of the S-functions using Q-Learning, i.e.,

Ŝsiaj
(st, at)← (1− αt)Ŝsiaj

(st, at) + αt(1{st=si,at=aj} + γmax
a

Ŝsiaj
(st+1, a)). (10)

Because the initial estimates of Ŝsiaj
can be inaccurate, in practice we let ρ to be ϵ-greedy over ŜsGaG .

That is, at every time step, the agent selects the action a = argmaxa ŜsGaG(st, a) with probability
1−ϵ, or a random action otherwise. As discussed in the previous section, any ϵ-greedy policy with
ϵ > 0 is sufficient to meet the criteria of Theorem 1.

3.2 Directed Exploration via Successor-Functions: A Summary

Our exploration strategy can be applied to any off-policy algorithm where the temporal-difference
update of Eq. (2) and (10) is guaranteed to convergence under the GLIE assumption (pseudocode for
Q-Learning in Appendix A.5). Most importantly, our exploration does not suffer from the limitations
of optimism discussed in Section 2.2 — the agent will eventually explore all state-action pairs even
when rewards are partially observable, because exploration is not influenced by the Q-function
(and, thus, by rewards), but fully driven by the S-function. Consider the example in Figure 1b again,
and an optimistic agent (i.e., with high initial Q̂) that learns a reward model and uses its estimate
when rewards are not observable. As discussed, classic exploration strategies will likely fail — their
exploration is driven by Q̂ that can be highly inaccurate, either because of its optimistic estimate
or because the reward model queried for Q-updates is inaccurate (and will stay so without proper
exploration). This can easily lead to premature convergence to a suboptimal policy (to collect the left
coin). On the contrary, if the agent follows our exploration strategy it will always push the button,
discover the large coin, and eventually learn the optimal policy — it does not matter if Q̂ is initialized
optimistically high and would (wrongly) believe that collecting the left coin is optimal, because the
agent follows Ŝ. And even if Ŝ is initialized optimistically (or even randomly), the indicator reward
1 of Eq. (10) is always observable, thus the agent can always update Ŝ at every step. As Ŝ becomes
more accurate, the agent will eventually explore optimally, i.e., maximizing visitation occurrences
— it will be able to visit states more efficiently, to observe rewards more frequently and update its
reward model properly, and thus to update Q̂ estimates with accurate rewards. To summarize, the
explicitly decoupling of exploration (Ŝ) and exploitation (Q̂) together with the use of SR (whose
reward is always observable) is the key of our algorithm. Experiments in the next section empirically
validate both the failure of classic exploration strategies and the success of ours. In Appendix B.4 we
further report a deeper analysis on a benchmark similar to the example of Figure 1.

Related Work. In reward-free RL, Jin et al. [26] proposed an algorithm where the agent explores by
maximizing SR rewards. After collecting a sufficient amount of data, the agent no longer interacts
with the environment and uses the data to learn policies maximizing different reward functions. In
model-based RL, the agent of Hu et al. [23] alternates between exploration and exploitation at every
training episode. During exploration, the agent follows a goal-conditioned policy randomly sampled

6In deterministic MDPs, maximizing discounted occurrences is equivalent to minimizing the (expected)
time-to-visit. However, this is not always true in stochastic MDPs, with discounted occurrences tending to ignore
long time-to-visit outliers, making the agent more risk-seeing than expected time-to-visit. Nonetheless, in both
cases, goal-conditioned policies have bounded goal-relative diameter as long as the MDP is communicating.
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from a replay buffer with the goal of minimizing the number of actions needed to reach a goal. Finally,
in sparse-reward RL, Parisi et al. [54] learn two value functions — one using extrinsic sparse rewards,
one using dense visitation-count rewards — and combine them to derive a UCB-like exploration
policy. While the use of SR of Jin et al. [26], the goal-conditioned policies of Hu et al. [23], and
the interaction of two separate value functions of Parisi et al. [54] are related to our work, there are
significant differences to what we presented in this paper. First, our directed exploration does not
strictly separate exploration and exploitation into two phases [26] or between episodes [23], but rather
interleaves them step-by-step using either the Q-function or the S-functions. However, the two value
functions are never combined together [54], as the agent follows either one or the other according
to the coefficient βt. Second, our goal-conditioned policy is chosen according to the least-visited
state-action pair, rather than randomly sampled from a set [26] or from a replay buffer [23]. Third,
none of them have considered the setting of Mon-MDPs and partially observable rewards.

4 Experiments

Empty Hazard One-Way

River Swim

Figure 4: Environments. The goal is to collect the large
coin (rE

t = 1) instead of small “distracting” coins (rE
t =

0.1). In Hazard, the agent must avoid quicksand (it prevents
any movement) and toxic clouds (rE

t = −10). In One-Way,
the agent must walk over toxic clouds (rE

t = −0.1) to get
the large coin. In River Swim, the stochastic transition
pushes the agent to the left. More details in Appendix A.2.

We validate our exploration strategy on
tabular MDPs (Figure 4) characterized
by different challenges, e.g., sparse re-
wards, distracting rewards, stochastic
transitions. For each MDP, we propose
the following Mon-MDP versions of
increasing difficulty. The first has a
simple random monitor, where posi-
tive and negative rewards are unobserv-
able (r̂E

t = ⊥) with probability 50%
and observable otherwise (r̂E

t = rE
t ),

while zero-rewards are always observ-
able. In the second, the agent can ask
to observe the current reward at a cost
(rM

t = −0.2). In the third, the agent can
turn monitoring ON/OFF by pushing a

button in the top-left cell, and if sM
t = ON the agent pays a cost (rM

t = −0.2) and observes r̂E
t = rE

t .
In the fourth, there are many experts the agent can ask for rewards from at a cost (rM

t = −0.2), but
only a random one is available at the time. In the fifth and last, the agent has to level up the monitor
state by doing a correct sequence of costly (rM

t = −0.2) monitor actions to observe rewards (a wrong
action resets the level). In all Mon-MDPs, the optimal policy does not need monitoring (rM

t = −0.2
to observe r̂E

t = rE
t ). However, prematurely doing so would prevent observing rewards and, thus,

learning Q∗. More experiments on more environments are presented in Appendix B.

Baselines. We evaluate Q-Learning with the following exploration policies (details in Appendix A.5):
(1) ours; (2) greedy with optimistic initialization; (3) naive ϵ-greedy; (4) ϵ-greedy with count-based
intrinsic reward [9]; (5) ϵ-greedy with UCB bonus [4]; (6) ϵ-greedy with Q-Counts [54]. Note that
if rewards and transitions are deterministic and fully observable, then (2) is very efficient [17, 75, 77],
thus serves as best-case scenario baseline. For all algorithms, γ = 0.99 and ϵt starts at 1 and linearly
decays to 0. Because in Mon-MDPs environment rewards are always unobservable for some monitor
state-action pairs (e.g., when the monitor is OFF), all algorithms learn a reward model to replace
r̂E
t = ⊥, initialized to random values in [−0.1, 0.1] and updated when r̂E

t ̸= ⊥.7

Why Is This Hard? Q-function updates rely on the reward model, but the model is inaccurate at
the beginning. To learn the reward model and produce accurate updates the agent must perform
suboptimal actions and observe rewards. This results in a vicious cycle in exploration strategies that
rely on the Q-function: the agent must explore to learn the reward model, but the Q-function will
mislead the agent and provide unreliable exploration (especially if optimistic).

Results. For each baseline, we test the greedy policy at regular intervals (full details in Appendix A).
Figure 5 shows that Our exploration outperforms all the baselines, being the only one converging
to the optimal policy in the vast majority of the seeds for all environments and monitors. When

7Because for every environment reward there is a monitor state-action pair for which the reward is observable
(i.e., sM

t = ON), Q-Learning is guaranteed to converge given infinite exploration [55].
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Figure 5: Episode return
∑

(rE
t + rM

t ) of greedy policies averaged over 100 seeds (shades denote
95% confidence interval). Our exploration clearly outperforms all baselines, as it is the only one
learning in all Mon-MDPs. Indeed, while all baselines learn relatively quickly when rewards are fully
observable (first column), their performance drastically decreases with rewards partial observability.

the environment is deterministic and rewards are always observable (first column), pure Optimism
is optimal (as expected). However, if the environment is stochastic (River Swim) or rewards are
unobservable, Optimism fails. Even just random observability of the reward (second column) is
enough to cause convergence to suboptimal policies — without observing rewards the agent must rely
on its model estimates, but these are initially wrong and mislead Q̂ updates, preventing exploration.
Even though mitigated by the ϵ-randomness, exploration with Q-Counts, UCB, Intrinsic Reward,
and Naive is suboptimal as well, as these baselines learn suboptimal policies in most of the seeds,
especially in harder Mon-MDPs. On the contrary, Our exploration is only slightly affected by the
rewards unobservability because it relies on Ŝ rather than Q̂ — the agent visits all state-action pairs
as uniformly as possible, observes rewards frequently, and ultimately learns accurate Q̂ that make the
policy optimal. Figure 6 strengthens these results, showing that indeed Our exploration observes
significantly more rewards than the baselines in all Mon-MDPs — because we decouple exploration
and exploitation, and exploration does not depend on Q̂, Our agent does not avoid suboptimal
actions and discovers more rewards.8 More plots and discussion in Appendix B. Source code at
https://github.com/AmiiThinks/mon_mdp_neurips24.

5 Discussion

In this paper, we discussed the challenges of exploration when the agent cannot observe the outcome
of its actions, and highlighted the limitations of existing approaches. While partial monitoring is a
well-known and studied framework for bandits, prior work in MDPs with unobservable rewards is
still limited. To fill this gap, we proposed a paradigm change in the exploration-exploitation trade-off
and investigated its efficacy on Mon-MDPs, a general framework where the reward observability is
governed by a separate process the agent interacts with. Rather than relying on optimism, intrinsic
motivation, or confidence bounds, our approach explicitly decouples exploration and exploitation
through a separate goal-conditioned policy that is fully in charge of exploration. We proved the
convergence of this paradigm under some assumptions, presented a suitable goal-conditioned policy
based on the successor representation, and validated it on a collection of MDPs and Mon-MDPs.

8Note that Our agent keeps exploring and observing rewards (Figure 6) because βt did not reach the exploit
threshold β̄ (but still decays quickly, see Appendix B.3), even if its greedy policy is already optimal (Figure 5).
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Figure 6: Number of rewards observed (r̂E
t ̸= ⊥) during training by the exploration policies. In

Mon-MDPs, only Ours observes enough rewards because it does not avoid suboptimal actions.

Advantages. Directed exploration via the S-functions benefits from implicitly estimating the dynam-
ics of the environment and being independent of the reward observability. First, the focus on the
environment (states, actions, and dynamics) rather than on rewards or optimism (e.g., optimistic value
functions) disentangles efficient exploration from imperfect or absent feedback — not observing the
rewards may compromise exploratory strategies that rely on them. Second, the goal-conditioned
policy learns to explore the environment regardless of the reward, i.e., of a task. This has potential
application in transfer RL, in the same spirit of prior use of the successor representation [6, 19, 38, 61].
Third, the goal-conditioned policy can guide the agent to any desired goal state-action pair, and by
choosing the least-visited pair as the goal the agent implicitly explores as uniformly as possible.
Limitations and Future Work. First, we considered tabular MDPs, thus we plan to follow up on
continuous MDPs. This will require extending the S-function and the visitation count to continuous
spaces, e.g., by following prior work on universal value function approximators [64], successor fea-
tures [43, 61], and pseudocounts [42, 46, 78]. For example, the finite set of S-functions Ŝsiaj

(st, at)
could be replaced by a neural network Ŝ(st, at, si, aj). For discrete actions, the network would take
the (current state, goal state) pair and output the value for all (action, goal action) pairs, similarly
to how deep Q-networks [48] work. Extending visitation counts to continuous spaces is more chal-
lenging, because Algorithm 1 relies on the min operator to select the goal. To make it tractable,
one solution would be to store samples into a replay buffer and prioritize sampling according to
pseudocounts, similarly to what prioritized experience replay does with TD errors [65].
Second, our exploration policy requires some stochasticity to explore as we learn the S-functions. In
our experiments, we used ϵ-greedy noise for a fair comparison against the baselines, but there may be
better alternatives (e.g., “balanced wandering” [27]) that could improve our exploration.
Third, we assumed that the MDP has a bounded goal-relative diameter but this may not be true, e.g.,
in weakly-communicating MDPs [18, 59]. Thus, we will devote future work developing algorithms
for less-constrained MDPs, following recent advances in convergence of reward-free algorithms [12].
Finally, we focused on model-free RL (i.e., Q-Learning) but we believe that our exploration strategy
can benefit from model-based approaches. For example, we could use algorithms like UCRL [3, 24]
to learn the S-functions (not the Q-function), whose indicator reward is always observable. And,
by learning the model of the monitor, the agent could plan what rewards to observe (e.g., the least-
observed) rather than what state-action pair to visit. Furthermore, our strategy could be combined
with model-based methods where exploration is driven by uncertainty [45, 74] rather than visits. That
would allow the agent to plan visits to states where rewards are more likely to be observed.
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Figure 7: Full set of the tabular environments used for our experiments. Loop (3×3), Two-Room
(3×5), Two-Room (2×11), and Corridor (20) were not included in Section 4 due to page limits.

A Experiments Details

A.1 Source Code and Compute Details

Source code at https://github.com/AmiiThinks/mon_mdp_neurips24.
We ran our experiments on a SLURM-based cluster, using 32 Intel E5-2683 v4 Broadwell @ 2.1GHz
CPUs. One single run took between 3 to 45 minutes on a single core, depending on the size of the
environment and the number of training steps. Runs were parallelized whenever possible.

A.2 Environments

In all environments except River Swim, the environment actions are aE ∈ {LEFT, RIGHT, UP, DOWN,
STAY}, and the agent starts in the position pictured in Figure 7. The environment reward depends on
the current state and action as follows.
• Coin cells: STAY gives a positive reward (rE

t = 0.1 for small coins, rE
t = 1 for large ones) and end

the episode.
• Toxic cloud cells: any action gives a negative reward (rE

t = −0.1 for small coins, rE
t = −10 for

large ones).
• Any other cell: rE

t = 0.
The agent can move away from its current cell or stay, but some cells have special dynamics.
• In quicksand cells, any action can fail with 90% probability. These cells can easily prevent

exploration, because the agent can get stuck and waste time.
• In arrowed cells, only the corresponding action succeeds. For example, if the agent is in a cell

pointing to the left, the only action to move away from it is LEFT. In practice, they force the agent
to take a specific path to reach the goal (e.g., in One-Way), or divide the environment in rooms
(e.g., in Two-Rooms).

In all environments, the goal is to follow the shortest path to the large coin and STAY there. Below we
discuss the characteristics and challenges of the first seven environments. Episodes end when the
agent collects a coin or after a step limit (in brackets after the environment name and its grid size).

• Empty (6×6; 50 steps). This is a classic benchmark for exploration in RL with sparse rewards.
There are no intermediate rewards between the initial position (top-left) and the large reward
(bottom-right). Furthermore, the small coin in the bottom-left can “distract” the agent and cause
convergence to a suboptimal policy.

• Loop (3×3; 50 steps). The large coin can be reached easily, but if the agent wants to visit the
top-right cell is forced to follow the arrowed “loop“. Algorithms that explore inefficiently or for
too long can end up visiting those states too often.

• Hazard (4×4; 50). Because of the toxic clouds, the optimal path is to walk following the edges of
the grid. Along the way, however, the agent may find the a small coin and converge to a suboptimal
policie, or get stuck in the quicksand cell.

• One-Way (3×4; 50 steps). The only way to reach the large coin is to walk past small toxic clouds.
Because of their negative reward, shallow exploration strategies can prematurely decide not to
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explore further and never discover the large coin. The presence of an easy-to-reach small coin can
also cause convergence to a suboptimal policy.

• Corridor (20; 200 steps). This is a flat variant of the environment presented by Klissarov and
Machado [30]. Because of the length of the corridor, the agent requires persistent deep exploration
from the start (leftmost cell) to the large coin (rightmost cell) to learn the optimal policy. Naive
dithering exploration strategies like ϵ-greedy are known to be extremely inefficient for this.

• Two-Room (2×11; 200 steps). The arrowed cells divide the grid into two rooms, one with a small
coin and one with a large coin. If exploration relies too much on randomness or value estimates,
the agent may converge to the suboptimal policy collecting the small coin.

• Two-Room (3×5; 50 steps). The arrowed cell divides the grid into two rooms, and moving from
one room to another may be hard if the agent gets stuck in the quicksand cell.

River Swim is different from the other seven environments because the agent can only move LEFT
and RIGHT, and there are no terminal states. This environment was originally presented by Strehl
and Littman [72] and later became a common benchmark for exploration in RL, although often with
different transition and reward functions. Here, we implement the version in Figure 8. There is a
small positive reward for doing LEFT in the leftmost cell (acting as local optima) and a large one for
doing RIGHT in the rightmost cell. The transition is stochastic and RIGHT has a high chance of failing
in every cell, either not moving the agent or pushing it back to the left. The initial position is either
state 1 or 2. Although this is an infinite-horizon MDP, i.e., no state is terminal, we reset episodes
after 200 steps. The optimal policy always does RIGHT.

0 1 2 3 4 5

(L, 1, 0.01)

(R, 0.6, 0) (R, 0.6, 0) (R, 0.6, 0) (R, 0.6, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.4, 0)

(R, 0.4, 0)
(R, 0.6, 1)

(R, 0.6, 0) (R, 0.35, 0) (R, 0.35, 0) (R, 0.35, 0) (R, 0.35, 0)

Figure 8: River Swim reward and transition functions. Each tuple represents (action, probability,
reward) and arrows specify the corresponding transition. For example, doing RIGHT in state 0 has
60% chance of moving the agent to 1 and 40% chance of keeping it in 0. In both cases, the reward is
0. In state 5 the transition probability is the same, but if RIGHT succeeds the reward is 1.

A.3 Monitored-MDPs

• Random Monitor. There is no monitor state, action, nor reward. Positive (coin) and negative
(toxic cloud) environment rewards are unobservable with probability 50% (r̂E

t = ⊥) and fully
observable otherwise (r̂E

t = rE
t ). Zero-rewards in other cells are always observable.

• Ask Monitor. The monitor is always OFF. The agent can observe the current environment reward
with an explicit monitor action at a cost.

SM := {OFF} AM := {ASK, NO-OP} sM
t+1 = OFF, t ≥ 0

r̂E
t =

{
rE
t if aM

t = ASK
⊥ otherwise

rM
t =

{
−0.2 if aM

t = ASK
0 otherwise

• Button Monitor. The monitor is turned ON/OFF by pushing a button in the starting cell (except
for River Swim, where the button is in state 0). The agent can do that with aE = LEFT, i.e., the
agent has no dedicated monitor action. Having the monitor ON is costly, and leaving it ON when
collecting a coin results in an extra cost. Because the initial monitor state is random, the optimal
policy always turns it OFF before collecting the large coin.

SM := {ON, OFF} AM := {NO-OP} sM
1 = random uniform in SM

sM
t+1 =


ON if sM

t = OFF and sE
t = BUTTON-CELL and aE

t = LEFT
OFF if sM

t = ON and sE
t = BUTTON-CELL and aE

t = LEFT
sM
t otherwise
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r̂E
t =

{
rE
t if sM

t = ON
⊥ otherwise

rM
t =


−0.2 if sM

t = ON
−2 if sM

t = ON and sE
t is terminal

0 otherwise

• Random Experts Monitor. At every step, the monitor state is random. If the agent’s monitor
action matches the state, it observes r̂E

t = rE
t but receives a negative monitor reward. Otherwise, it

receives r̂E
t = ⊥ but receives a smaller positive monitor reward.

SM := {1, . . . , n} AM := {1, . . . , n} sM
t+1 = random uniform in SM, t ≥ 0

r̂E
t =

{
rE
t if aM

t = sM
t

⊥ otherwise
rM
t =

{
−0.2 if aM

t = sM
t

0.001 otherwise
In our experiments, n = 4. An optimal policy collects the large coin while never matching monitor
states and actions, in order to receive small positive monitor rewards along the way. However,
prematurely deciding to be greedy with respect to monitor rewards will result in never observing
environment rewards, thus not learning how to collect coins. We also note that this monitor has
larger state and action spaces than the others, and a stochastic transition.

• Level Up Monitor. The monitor has n states, each representing a “level”, and n+ 1 actions. The
first n actions are costly and needed to “level up” the state, while the last is NO-OP. The initial
level is random. To level up, the agent’s action must match the state, e.g., if sM

t = 1 and aM
t = 1,

then sM
t+1 = 2. However, if the agent executes the wrong action, the level resets to sM

t+1 = 1.
Environment rewards will become visible only when the monitor level is n. Leveling up the
monitor is costly, and only aM

t = NO-OP is cost-free.
SM := {1, . . . , n} AM := {1, . . . , n, NO-OP}

sM
t+1 =


max(sM

t + 1, n) if sM
t = aM

t

sM
t if aM

t = NO-OP
1 otherwise

r̂E
t =

{
rE
t if sM

t = n

⊥ otherwise
rM
t =

{
0 if aM

t = NO-OP
−0.2 otherwise

The optimal policy always does aM
t = NO-OP to avoid negative monitor rewards. Yet, without

leveling up the monitor, the agent cannot observe rewards and learn about environment rewards in
the first place. Furthermore, the need to do a correct sequence of actions to observe rewards elicits
deep exploration.

A.4 Training Steps and Testing Episodes

All algorithms are trained over the same amount of steps, but this depends on the environment and the
monitor as reported in Table 1. As the agent explores and learns, we test the greedy policies at regular
intervals for a total of 1,000 testing points. For example, in River Swim with the Button Monitor
the agent learns for 40,000 steps, therefore we test the greedy policy every 40 training steps. Every
testing point is an evaluation of the greedy policy over 1 episode (for fully deterministic environments
and monitors) or 100 (for environments and monitors with stochastic transition or initial state, i.e.,
Hazard, Two-Room (3×5), River Swim; Button, Random Experts, Level Up).

Table 1: Number of training
steps. For each environment, we
decided a default number of train-
ing steps. Then, we multiplied
this number for a constant de-
pending on the difficulty of the
monitor. For example, agents
are trained for 30,000 steps in
the Corridor environment without
any monitor, 60,000 with the But-
ton Monitor, and 600,000 with
the Level Up Monitor.

Environment Default Steps
Empty (6×6) 5,000
Loop (3×3) 5,000
Hazard (4×4) 10,000
One-Way (3×4) 10,000
Corridor (20) 30,000
Two-Room (2×11) 5,000
Two-Room (3×5) 10,000
River Swim (6) 20,000

Monitor Multiplier
Full Obs. ×1
Random ×1
Ask ×3
Button ×2
Rnd. Experts ×10
Level Up ×20
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Algorithm 2: Q-Update With Reward Model for Mon-MDPs

input :{sE
t , a

E
t , r̂

E
t , s

E
t+1, s

M
t , a

M
t , r

M
t , s

M
t+1},αt, N

r, R̂, Q̂, γ

1 if r̂E
t ̸= ⊥ then

2 Nr(sE
t , a

E
t )← Nr(sE

t , a
E
t ) + 1

3 R̂(sE
t , a

E
t )←

(Nr(sE
t,a

E
t)− 1)R̂(sE

t,a
E
t)+ r̂E

t

Nr(sE
t,a

E
t)

4 st ← (sE
t , s

M
t )

5 at ← (aE
t , a

M
t )

6 rt ← R̂(sE
t , a

E
t ) + rM

t

7 return Q̂(st, at)← (1− αt)Q̂(st, at) + αt

(
rt + γmaxa Q̂(st+1, a)

)

A.5 Baselines

All baselines evaluated in Section 4 use Q-Learning with reward model to compensate for unobserv-
able rewards in Mon-MDPs (r̂E

t = ⊥), as outlined in Algorithm 2. Because there is always a monitor
state-action pair for which all environment rewards are observable, Q-Learning with reward model
will converge given enough exploration [55]. The reward model is a table R̂(sE, rE) initialized to
random values in [−0.1, 0.1] that keeps track of the running average of observed proxy reward —
every time a reward is observed, a count Nr(sE, sE) is increased and the entry R̂(sE, rE) is updated.

The differences between the baselines lie in their exploration policies, as described below and outlined
in Algorithms 3, 4 and 5.

• Ours. As described in Algorithm 1, with β̄ = 0.01. The goal-conditioned policy ρ is ϵ-greedy
over ŜsGaG(st, a). The S-function is initialized optimistically to Ŝsiaj

(s, a) = 1 ∀(s, a, si, aj).

• Optimism. Exploration is pure greedy, i.e., at = argmaxa Q̂(st, a).

• UCB. Exploration is ϵ-greedy over the UCB estimate Q̂(st, a) +
√

2 log
∑

a N(st, a)/N(st, a) [4].

• Q-Counts. This baseline learns a separate Q-function Q̂C(s, a) using N(st, at) as rewards, i.e.,

Q̂C(st, at)← (1− αt)Q̂C(st, at) + αt

(
N(st, at) + γmin

a
Q̂C(st+1, a)

)
. (11)

This function is initialized to Q̂C(s, a) = 0 ∀(s, a), and intuitively estimates and minimizes “cu-
mulative visitation counts” [54]. The exploration policy then replaces N(s, a) with Q̂C(s, a) in the
UCB estimate, favoring actions that result in low cumulative counts rather than low immediate
counts. Formally, the exploration is ϵ-greedy over Q̂(st, a) +

√
2 log

∑
a Q̂C(st, a)/Q̂C(st, a).

• Intrinsic. Exploration is ϵ-greedy over Q̂(st, a). The Q-function is trained with intrinsic reward
0.01/

√
N(st, at) [9].

• Naive. Exploration is ϵ-greedy over Q̂(st, a).

When two or more actions have the same value estimate — whether Q̂(st, a), ŜsGaG(st, a), or Q̂(st, a)
with UCB bonuses) — ties are broken randomly.

Below are the learning hyperparameters.

• The schedule ϵt starts at 1 and linearly decays to 0 throughout all training steps. For all algorithms,
this performed better than the following schedules: linear decay from 0.5 to 0, linear decay from
0.2 to 0, constant 0.2, constant 0.1.

• The schedule αt depends on the environment: constant 0.5 for Hazard and Two-Room (3×5)
(because of the quicksand cell), linear decay from 0.5 to 0.05 in River Swim (because of the
stochastic transition), and constant 1 otherwise. For the Random Experts Monitor we linearly
decay the learning rate to 0.1 in all environments (0.05 in River Swim) because of the random
monitor state.

• Discount factor γ = 0.99.
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Algorithm 3: Q-Learning Baselines

input :α, N, Q̂

1 s0 ← environment.start()
2 for t = 0 to tMAX do
3 at = explore(st, Q̂, N)
4 N(st, at)← N(st, at) + 1

5 rt, st+1 ← environment.step(at)
6 if st is terminal then
7 st+1 ← environment.start()
8 q_update(st, at, rt, st+1,α) // Eq. (2)

Algorithm 4: Our Q-Learning with S-functions

input :α, N, Q̂, Ŝ, β̄

1 s0 ← environment.start()
2 for t = 0 to tMAX do
3 at = explore(st, Q̂, N, Ŝ, β̄)
4 N(st, at)← N(st, at) + 1

5 rt, st+1 ← environment.step(at)
6 if st is terminal then
7 st+1 ← environment.start()
8 q_update(st, at, rt, st+1,α) // Eq. (2)
9 s_update(st, at, st+1,α) // Eq. (10)

Algorithm 5: Q-Learning with Q-Counts [54]

input :α, N, Q̂, Q̂C

1 s0 ← environment.start()
2 for t = 0 to tMAX do
3 at = explore(st, Q̂, Q̂C)
4 N(st, at)← N(st, at) + 1

5 rt, st+1 ← environment.step(at)
6 if st is terminal then
7 st+1 ← environment.start()
8 q_update(st, at, rt, st+1,α) // Eq. (2)
9 q_count_update(st, at, st+1, N,α) // Eq. (11)

Note that the discount factor γ and the learning rate αt in Eq. (2), (10), and (11) can be different,
e.g., a higher learning rate to update Q̂ and a smaller for Ŝ. In our experiment, we use the same γ

and αt for both Q̂, Ŝ, and Q̂C.

The Q-function is initialized optimistically to Q̂(s, a) = 1∀(s, a) (first seven environments) and
Q̂(s, a) = 50∀(s, a) (River Swim) for all algorithms except Ours, where it is initialized pessimisti-
cally to Q̂(s, a) = −10∀(s, a) (all environments). This performed better than optimistic initialization
because it mitigates overestimation bias, that can be more prominent with optimism [49]. From
our experiments, this is especially true in Mon-MDPs, where the reward model used to compensate
for unobservable rewards can be inaccurate and lead to overly optimistic value estimates. We also
tried the same pessimistic Q̂ initialization for UCB, Q-Counts, Intrinsic, and Naive, but their
performance was significantly worse. Most of the time, in fact, the “distracting” small coins were
causing premature convergence to suboptimal policies.
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B Additional Results

B.1 Greedy Policy Return

Figure 9 is an extended version of Figure 5 with all eight environments (we showed only four in the
main paper due to page limit). Results on Loop (3×3), Two-Room (3×5), Two-Room (2×11), and
Corridor (20) are aligned with the remainder, showing that Our exploration strategy outperforms all
the baselines. Note that only in River Swim, Ours did not significantly outperformed the baselines.
Its highly stochastic transition, indeed, makes learning harder and is the reason why Optimism fails
even in the MDP version (in spite of fully observable rewards). Nonetheless, Ours did not perform
worse than any baseline in any version of River Swim (MDP and Mon-MDPs).
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Figure 9: Episode return
∑

(rE
t + rM

t ) of greedy policies averaged over 100 seeds (shades denote
95% confidence interval).
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Figure 10: Number of rewards observed (r̂E
t ̸= ⊥) during training by the exploration policies

averaged over 100 seeds (shades denote 95% confidence interval). In Mon-MDPs, all baselines
except Ours do not observe enough rewards because they do not perform suboptimal actions to
explore. Thus, they often converge to suboptimal policies, as also shown in Figure 9. The ratio
between training steps and number of observed rewards also hints that Our policy truly explores
uniformly. For example, in Ask the agent can observe rewards only in half of the Mon-MDP state
space (only when sM

t = ON). Indeed, in the plots in the third column, the number of observed rewards
is roughly half of the number of timesteps (e.g., in Empty (Ask) the agent is trained for 15,000 steps
and Our agent ends up observing ∼7,500 rewards). The same 1/2 ratio is consistent across all Ask
plots. Similarly, in Random Experts the agent can observe rewards only in 1/4 of the state space
(there are four monitor states and only by matching the current state the agent can observe the reward),
and indeed the agent ends up observing rewards ∼1/4 of the time (e.g., ∼12,500 out of 50,000 steps
in Empty (Random Experts)). In Figure 13, we confirm exploration uniformity with heatmaps.
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B.2 Reward Discovery

Figure 10 shows how many rewards the agent observes (r̂E
t ̸= ⊥) during training. When rewards are

fully observable (first column) this is equal to the number of training steps. If reward observability is
random and the agent cannot control it (second column), all the baselines still perform relatively well.
However, when the agent has to act to observe rewards — and these actions are suboptimal, e.g. costly
requests or pushing a button — results clearly show that Optimism, UCB, Q-Counts, Intrinsic,
and Naive do not observe many rewards. Most of the time, in fact, they explore the environment
only when rewards are observable, and therefore converge to suboptimal policies. As discussed
throughout the paper, in fact, if the agent must perform suboptimal actions to gain information, classic
approaches are likely to fail. Our exploration strategy, instead, actively explores all state-action pairs
uniformly, including the ones where actions are suboptimal yet allow to observe rewards.
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Figure 11: Trend of the exploration-exploitation ratio βt (in log-scale) during training by Our
exploration policy averaged over 100 seeds (shades denoting 95% confidence are too small to be
seen). Until the agent has visited every state-action pair once, minN(s, a) = 0, thus βt =∞. For
the sake of clarity, we report it as βt = 10 in this plot. Even if it did not reach the threshold β̄ = 0.01
(bottom line in black), the ratio clearly decreases over time, a further sign that the agent explores all
state-action pairs uniformly (i.e., maximizing the occurrence of the least-visited pair). Note that in
small environments (e.g., River Swim) βt decreases faster than in large environment (e.g., Empty).
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Training Steps (1e3)

Figure 12: Explore-exploit ratio βt = log t/minN(s, a) (in log-
scale) during a run on RiverSwim with Button Monitor. For the
sake of clarity, we replaced βt =∞ (when minN(s, a) = 0)
with βt = 10. For roughly the first 8,000 steps, βt trend is
“irregular” — it goes down when the current state-action goal
is visited, and then up until the new goal is visited. Later,
these “up/down steps” become smaller and smaller and βt

consistently decreases. This denotes that Ŝ become more and
more accurate, thus the policy ρ can bring the agent to the goal
(i.e., the least-visited state-action pair) faster.

B.3 Goal-Conditioned Threshold βt

Figure 11 shows the trend of the exploration-exploitation ratio βt (in log-scale) of Our exploration
policy. The decay denotes that, indeed, the policy explores uniformly and efficiently, maximizing
the occurrence of the least-visited state-action pair. The fact that βt did not reach the threshold β̄
explains why in Figure 10 the agent keeps exploring and observing rewards, while the greedy policy
in Figure 9 is already optimal. In Figure 12 we further show the trend of βt on one run on River Swim
with the Button Monitor. After some time spent learning the S-functions Ŝ, the trend consistently
decreases, denoting that the agent has learned to quickly visit any state-action pair.

Ours

Monitor ON Monitor OFF

Optimism

UCB

Q-Counts

Intrinsic
Reward

Naive

Figure 13: State-action visitation counts N(s,a) after one run (40,000 steps) on River Swim with
the Button Monitor. Only Our agent visits the state-action space as uniformly as possible, as shown
by the smooth heatmap and its range (374−3,425). On the contrary, all the other baselines explore
poorly (less smooth heatmaps and much larger range). Indeed, they do not visit most environment
state-action pairs when the monitor is ON (some have never been visited and have count 0). Having
the monitor ON, in fact, is suboptimal (rM

t = −0.2), yet needed to observe rewards. This further
explains why they observe much fewer rewards in Figure 10.
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B.4 River Swim With Button Monitor: A Deeper Analysis

Here, we investigate more in detail the results for River Swim with Button Monitor, a benchmark
similar to the example in Figure 1 discussed throughout the paper. States are enumerated from 0
to 5 as in Figure 8, the agent starts either in state 1 or 2, the button is located in state 0 and can be
turned ON/OFF by doing LEFT in state 0. Figure 13 shows the visitation count and Figure 14 the
Q-function for all state-action pairs. Optimism barely explores with monitoring ON. This is expected,
because observing rewards is costly (negative monitor reward), and pure optimistic exploration does
not select suboptimal actions (but this is the only way to discover higher rewards). UCB, Q-counts,
Intrinsic, and Naive mitigate this problem thanks to ϵ-randomness, but still do not explore properly
and, ultimately, do not learn accurate Q-functions. On the contrary, Our policy explores the whole
state-action space as uniformly as possible9, observes rewards frequently (because it visits states with
monitoring ON), and learns a close approximation of Q∗ that results in the optimal greedy policy.

Optimal Q∗

Monitor ON Monitor OFF

Ours

Optimism

UCB

Q-Counts

Intrinsic
Reward

Naive

Figure 14: Q-function approximators Q̂(s,a) after one run (40,000 steps) on River Swim with the
Button Monitor. Only Our agent learns a close approximation of the true optimal Q-function (on the
top) that produces the optimal behavior — Q̂(5, OFF, RIGHT) and Q̂(0, ON, LEFT) have the highest
Q-value for monitoring OFF/ON, respectively, and the value of other state-action pairs smoothly
decreases as the agent is further away from those states. Doing RIGHT in state 5, in fact, gives rE

t = 1,
but the optimal policy turns monitoring OFF first by doing LEFT in state 0 (to stop rM

t = −0.2). On
the contrary, Optimism learns a completely wrong Q-function that cannot turn monitoring OFF .
This is not surprising given the poor visitation count of Figure 13. UCB, Intrinsic, and Naive learn
smoother Q-function, but end up overestimating the Q-values due to the optimistic initialization and
overestimation bias (see the range of their Q-functions).

9Note that the agent starts in state 1 or 2 and the transition is likely to push the agent to the left, thus states
on the left are naturally visited more often.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We claim and prove asymptotic convergence of our algorithm in Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full details of the environments, algorithms, and hyper-
parametrs in the Appendix. Source code at https://github.com/AmiiThinks/mon_
mdp_neurips24.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Source code at https://github.com/AmiiThinks/mon_mdp_neurips24.
No extra data is needed.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all needed details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all plots we show the 95% confidence interval over 100 seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational details are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work is mostly theoretical and experiments are conducted on simple
environments that do not involve human participants or concerning datasets. We believe that
our contribution has no potential harmful impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is mostly theoretical, experiments are conducted on simple environ-
ments, and it is not tied to particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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