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Abstract
Stochastic Rising Bandits (SRBs) model sequen-
tial decision-making problems in which the ex-
pected reward of the available options increases
every time they are selected. This setting captures
a wide range of scenarios in which the available
options are learning entities whose performance
improves (in expectation) over time. While previ-
ous works addressed the regret minimization prob-
lem, this paper focuses on the fixed-budget Best
Arm Identification (BAI) problem for SRBs. In
this scenario, given a fixed budget of rounds, we
are asked to provide a recommendation about the
best option at the end of the identification process.
We propose two algorithms to tackle the above-
mentioned setting, namely R-UCBE, which re-
sorts to a UCB-like approach, and R-SR, which
employs a successive reject procedure. Then, we
prove that, with a sufficiently large budget, they
provide guarantees on the probability of properly
identifying the optimal option at the end of the
learning process. Furthermore, we derive a lower
bound on the error probability, matched by our
R-SR (up to logarithmic factors), and illustrate
how the need for a sufficiently large budget is
unavoidable in the SRB setting. Finally, we nu-
merically validate the proposed algorithms in syn-
thetic and real-world environments and compare
them with the currently available BAI strategies.

1. Introduction
Multi-Armed Bandits (MAB, Lattimore & Szepesvári,
2020) are a well-known framework that effectively solves
learning problems requiring sequential decisions. Given a
time horizon, the learner chooses, at each round, a single
option (a.k.a. arm) and observes the corresponding noisy
reward, which is a realization of an unknown distribution.
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The MAB problem is commonly studied in two flavours:
regret minimization (Auer et al., 2002) and best arm identi-
fication (Bubeck et al., 2009). In regret minimization, the
goal is to control the cumulative loss w.r.t. the optimal arm
over a time horizon. Conversely, in best arm identification,
the goal is to provide a recommendation about the best arm
at the end of the time horizon. Specifically, we are interested
in the fixed-budget scenario, where we seek to minimize
the error probability of recommending the wrong arm at the
end of the time budget, no matter the loss incurred during
learning.

This work focuses on the Stochastic Rising Bandits (SRB),
a specific instance of the rested bandit (Tekin & Liu, 2012)
setting in which the expected reward of an arm increases
according to the number of times it has been pulled. Online
learning in such a scenario has been recently addressed from
a regret minimization perspective by Metelli et al. (2022),
in which the authors provide no-regret algorithms for the
SRB setting in both the rested and restless cases. The SRB
setting models several real-world scenarios where arms im-
prove their performance over time. A classic example is the
so-called Combined Algorithm Selection and Hyperparam-
eter optimization (CASH, Thornton et al., 2013; Kotthoff
et al., 2017; Erickson et al., 2020; Li et al., 2020; Zöller
& Huber, 2021), a problem of paramount importance in
Automated Machine Learning (AutoML, Feurer et al., 2015;
Yao et al., 2018; Hutter et al., 2019; Mussi et al., 2023). In
CASH, the goal is to identify the best learning algorithm
together with the best hyperparameter configuration for a
given ML task (e.g., classification or regression). In this
problem, every arm represents a hyperparameter tuner act-
ing on a specific learning algorithm. A pull corresponds
to a unit of time/computation in which we improve (on
average) the hyperparameter configuration (via the tuner)
for the corresponding learning algorithm. CASH was han-
dled in a bandit Best Arm Identification (BAI) fashion in Li
et al. (2020) and Cella et al. (2021). The former handles
the problem by considering rising rested bandits with deter-
ministic rewards, failing to represent the intrinsic uncertain
nature of such processes. Instead, the latter, while allow-
ing stochastic rewards, assumes that the expected rewards
evolve according to a known parametric functional class,
whose parameters have to be learned.1

1A complete discussion of the related works is available in
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Original Contributions In this paper, we address the de-
sign of algorithms to solve the BAI task in the rested SRB
setting when a fixed budget is provided.2 More specifically,
we are interested in algorithms guaranteeing a sufficiently
large probability of recommending the arm with the largest
expected reward at the end of the time budget (as if only
this arm were pulled from the beginning). The main contri-
butions of the paper are summarized as follows:3

• We propose two algorithms to solve the BAI problem in
the SRB setting: R-UCBE (an optimistic approach, Sec-
tion 4) and R-SR (a phases-based rejection algorithm,
Section 5). First, we introduce specifically designed esti-
mators required by the algorithms (Section 3). Then, we
provide guarantees on the error probability of the misiden-
tification of the best arm.

• We derive the first error probability lower bound for the
SRB setting, matched by our R-SR algorithm up to log-
arithmic factors, which highlights the complexity of the
problem and the need for a sufficiently large time budget
(Section 6).

• Finally, we conduct numerical simulations on syntheti-
cally generated data and a real-world online best model
selection problem. We compare the proposed algorithms
with the ones available in the bandit literature to tackle
the SRB problem (Section 7).

2. Problem Formulation
In this section, we revise the Stochastic Rising Bandits
(SRB) setting (Heidari et al., 2016; Metelli et al., 2022).
Then, we formulate our best arm identification problem,
introduce the definition of error probability, and provide a
preliminary characterization of the problem.

Setting We consider a rested Multi-Armed Bandit prob-
lem ν “ pνiqiPJKK with a finite number of arms K.4 Let
T P N be the time budget of the learning process. At every
round t P JT K, the agent selects an arm It P JKK, plays it,
and observes a reward xt „ νItpNIt,tq, where νItpNIt,tq
is the reward distribution of the chosen arm It at round
t and depends on the number of pulls performed so far
Ni,t :“

řt
τ“1 1tIτ “ iu (i.e., rested). The rewards are

stochastic, formally xt :“ µItpNIt,tq ` ηt, where µItp¨q

is the expected reward of arm It and ηt is a zero-mean σ2-
subgaussian noise, conditioned to the past.5 As customary in

Appendix A. Additional motivating examples are discussed in
Appendix B.

2We focus on the rested setting only and, thus, from now on,
we will omit “rested” in the setting name.

3The proofs of all the statements in this work are provided in
Appendix D.

4Let y, z P N, we denote with JzK :“ t1, . . . , zu, and with
Jy, zK :“ ty, . . . , zu.

5A zero-mean random variable x is σ2-subgaussian if it holds

the bandit literature, we assume that the rewards are bounded
in expectation, formally µipnq P r0, 1s,@i P JKK, n P JT K.
As in (Metelli et al., 2022), we focus on a particular family
of rested bandits in which the expected rewards are mono-
tonically non-decreasing and concave in expectation.

Assumption 2.1 (Non-decreasing and concave expected
rewards). Let ν be a rested MAB, defining γipnq :“ µipn`

1q ´ µipnq, for every n P N and every arm i P JKK the
rewards are non-decreasing and concave, formally:

Non-decreasing: γipnq ě 0,

Concave: γipn` 1q ď γipnq.

Intuitively, the γipnq represents the increment of the real
process µip¨q evaluated at the nth pull. Notice that concavity
emerges in several settings, such as the best model selec-
tion and economics, representing the decreasing marginal
returns (Lehmann et al., 2001; Heidari et al., 2016).

Learning Problem The goal of BAI in the SRB setting is to
select the arm providing the largest expected reward with a
large enough probability given a fixed budget T P N. Unlike
the stationary BAI problem (Audibert et al., 2010), in which
the optimal arm is not changing, in this setting, we need
to decide when to evaluate the optimality of an arm. We
define optimality by considering the largest expected reward
at time T . Formally, given a time budget T , the optimal arm
i˚pT q P JKK, which we assume unique, satisfies:

i˚pT q :“ argmax
iPJKK

µipT q,

where we highlighted the dependence on T as, with dif-
ferent values of the budget, i˚pT q may change. Let i P

JKKzti˚pT qu be a suboptimal arm, we define the subop-
timality gap as ∆ipT q :“ µi˚pT qpT q ´ µipT q. We em-
ploy the notation piq P JKK to denote the ith best arm at
time T (arbitrarily breaking ties), i.e., we have ∆p2qpT q ď

¨ ¨ ¨ ď ∆pKqpT q. Given an algorithm A that recommends
Î˚pT q P JKK at the end of the learning process, we measure
its performance with the error probability, i.e., the proba-
bility of recommending a suboptimal arm at the end of the
time budget T :

eT pAq :“ PApÎ˚pT q ‰ i˚pT qq.

Problem Characterization We now provide a characteri-
zation of a specific class of polynomial functions to upper
bound the increments γipnq.

Assumption 2.2 (Bounded γipnq). Let ν be a rested MAB,
there exist c ą 0 and β ą 1 such that for every arm i P JKK
and number of pulls n P J0, T K it holds that γipnq ď cn´β .

We anticipate that, even if our algorithms will not require
such an assumption, it will be used for deriving the lower
bound and for providing more human-readable error prob-

Exreξxs ď e
σ2ξ2

2 for every ξ P R.
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ability guarantees. Furthermore, we observe that our As-
sumption 2.2 is fulfilled by a strict superset of the functions
employed in Cella et al. (2021).

3. Estimators
In this section, we introduce the estimators of the arm ex-
pected reward employed by the proposed algorithms.6 A
representation of such estimators is provided in Figure 1.

Let ε P p0, 1{2q be the fraction of samples collected up to
the current time t we use to build estimators of the expected
reward. We employ an adaptive arm-dependent window
size hpNi,t´1q :“ tεNi,t´1u to include the most recent
samples collected only, avoiding the use of samples that
are no longer representative. We define the set of the last
hpNi,t´1q rounds in which the ith arm was pulled as:

Ti,t :“ tτ P JT K : Iτ “ i ^ Ni,τ “ Ni,t´1 ´ l,

l P J0, hpNi,t´1q ´ 1Ku .

Furthermore, the set of the pairs of rounds τ and τ 1 belong-
ing to the sets of the last and second-last hpNi,t´1q-wide
windows of the ith arm is defined as:
Si,t :“

␣

pτ, τ 1q P JT K ˆ JT K : Iτ “ Iτ 1 “ i ^

Ni,τ “ Ni,t´1 ´ l, Ni,τ 1 “ Ni,τ ´ hpNi,t´1q,

l P J0, hpNi,t´1q ´ 1K
(

.

In the following, we design a pessimistic estimator and an
optimistic estimator of the expected reward of each arm at
the end of the budget time T , i.e., µipT q.7

Pessimistic Estimator The pessimistic estimator
µ̂ipNi,t´1q is a negatively biased estimate of µipT q

obtained assuming that the function µip¨q remains constant
up to time T . This corresponds to the minimum admissible
value under Assumption 2.1 (due to the Non-decreasing
constraint). This estimator is an average of the last
hpNi,t´1q observed rewards collected from the ith arm,
formally:

µ̂ipNi,t´1q :“
1

hpNi,t´1q

ÿ

τPTi,t

xτ . (1)

The estimator enjoys the following concentration property.

Lemma 3.1 (Concentration of µ̂i). Under Assumption 2.1,
for every a ą 0, simultaneously for every arm i P JKK
and number of pulls n P J0, T K, with probability at least
1 ´ 2TKe´a{2 it holds that:

β̂ipnq ´ ζ̂ipnq ď µ̂ipnq ´ µipnq ď β̂ipnq,

6The estimators are adaptations of those presented by Metelli
et al. (2022) to handle a fixed time budget T .

7Naı̈vely computing the estimators from their definition re-
quires OphpNi,t´1qq number of operations. An efficient way to
incrementally update them, using Op1q operations, is provided in
Appendix C.
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Figure 1. Graphical representation of the pessimistic µ̂ipNi,t´1q

and the optimistic µ̌T
i pNi,t´1q estimators.

where:

β̂ipnq :“ σ

c

a

hpnq
,

and:

ζ̂ipnq :“
1

2
p2T ´ n` hpnq ´ 1q γipn´ hpnq ` 1q.

As supported by intuition, we observe that the estimator
is affected by a negative bias that is represented by ζ̂ipnq

that vanishes as n Ñ 8 under Assumption 2.1 with a rate
that depends on the increment functions γip¨q. Considering
also the term β̂ipnq and recalling that hpnq “ Opnq, under
Assumption 2.2, the overall concentration rate is Opn´1{2`

cTn´βq.

Optimistic Estimator The optimistic estimator µ̌Ti pNi,t´1q

is a positively biased estimation of µipT q obtained assum-
ing that function µip¨q linearly increases up to time T . This
corresponds to the maximum value admissible under As-
sumption 2.1 (due to the Concavity constraint). The esti-
mator is constructed by adding to the pessimistic estimator
µ̂ipNi,t´1q an estimate of the increment occurring in the
next step up to T . The latter uses the last 2hpNi,t´1q sam-
ples to obtain an upper bound of such growth thanks to the
concavity assumption, formally:

µ̌Ti pNi,t´1q :“ µ̂ipNi,t´1q `
ÿ

pj,kqPSi,t

pT ´ jq
xj ´ xk
hpNi,t´1q2

.

(2)
The estimator displays the following concentration guaran-
tee.

Lemma 3.2 (Concentration of µ̌Ti ). Under Assumption 2.1,
for every a ą 0, simultaneously for every arm i P JKK
and number of pulls n P J0, T K, with probability at least
1 ´ 2TKe´a{10 it holds that:

β̌Ti pnq ď µ̌Ti pnq ´ µipnq ď β̌Ti pnq ` ζ̌Ti pnq,



A Best Arm Identification Approach for Stochastic Rising Bandits

where:

β̌Ti pnq :“ σ ¨ pT ´ n` hpnq ´ 1q

c

a

hpnq3
,

and:

ζ̌Ti pnq :“
1

2
p2T ´ n` hpnq ´ 1q γipn´ 2hpnq`1q.

Differently from the pessimistic estimation, the optimistic
one displays a positive vanishing bias ζ̌Ti pnq. Under As-
sumption 2.2, we observe that the overall concentration rate
is OpTn´3{2 ` cTn´βq.

4. Optimistic Algorithm: Rising Upper
Confidence Bound Exploration

In this section, we introduce and analyze Rising Upper
Confidence Bound Exploration (R-UCBE) an
optimistic error probability minimization algorithm for the
SRB setting with a fixed budget. The algorithm explores by
means of a UCB-like approach and, for this reason, makes
use of the optimistic estimator µ̌Ti plus a bound to account
for the uncertainty of the estimation.8

Algorithm The algorithm, whose pseudo-code is reported
in Algorithm 1, requires as input an exploration parameter
a ě 0, the window size ε P p0, 1{2q, the time budget T ,
and the number of arms K. At first, it initializes to zero the
counters Ni,0, and sets to `8 the upper bounds BTi pNi,0q

of all the arms (Line 2). Subsequently, at each time t P

JT K, the algorithm selects the arm It with the largest upper
confidence bound (Line 4):
It P argmax

iPJKK
BTi pNi,t´1q :“ µ̌Ti pNi,t´1q ` β̌Ti pNi,t´1q,

(3)
with:

β̌Ti pNi,t´1q :“σ ¨ pT ´Ni,t´1

` hpNi,t´1q ´ 1q

c

a

hpNi,t´1q3
, (4)

where β̌Ti pNi,t´1q represents the exploration bonus (a
graphical representation is reported in Figure 1). Once the
arm is chosen, the algorithm plays it and observes the feed-
back xt (Line 5). Then, the optimistic estimate µ̌TItpNIt,tq

and the exploration bonus β̌TItpNIt,tq of the selected arm It
are updated (Lines 8-9). The procedure is repeated until
the algorithm reaches the time budget T . The final rec-
ommendation of the best arm is performed using the last
computed values of the bounds BTi pNi,T q, returning the
arm Î˚pT q corresponding to the largest upper confidence
bound (Line 12).

8In R-UCBE, the choice of considering the optimistic estimator
is natural and obliged since the pessimistic estimator is affected by
negative bias and cannot be used to deliver optimistic estimates.

Bound on the Error Probability of R-UCBE We now
provide bounds on the error probability for R-UCBE. We
start with a general analysis that makes no assumption on the
increments γip¨q and, then, we provide a more explicit result
under Assumption 2.2. The general result is formalized as
follows.

Theorem 4.1. Under Assumption 2.1, let a˚ be the largest
positive value of a satisfying:

T ´
ÿ

i‰i˚pT q

yipaq ě 1, (5)

where for every i P JKK, yipaq is the largest integer for
which it holds:

Tγiptp1 ´ 2εqyuq
looooooooomooooooooon

pAq

` 2Tσ

c

a

tεyu3
loooooomoooooon

pBq

ě ∆ipT q. (6)

If a˚ exists, then for every a P r0, a˚s the error probability
of R-UCBE is bounded by:

eT pR-UCBEq ď 2TK exp
´

´
a

10

¯

. (7)

Some comments are in order. First, a˚ is defined implicitly,
depending on the constants σ, T , the increments γip¨q, and
the suboptimality gaps ∆ipT q. In principle, there might
exist no a˚ ą 0 fulfilling condition in Equation (5) (this can
happen, for instance, when the budget T is not large enough),
and, in such a case, we are unable to provide theoretical
guarantees on the error probability of R-UCBE. Second, the
result presented in Theorem 4.1 holds for generic increasing
and concave expected reward functions. This result shows
that, as expected, the error probability decreases when the
exploration parameter a increases. However, this behavior
stops when we reach the threshold a˚. Intuitively, the value
of a˚ sets the maximum amount of exploration we should
use for learning.

Under Assumption 2.2, i.e., using the knowledge on the
increment γip¨q upper bound, we derive a result providing
conditions on the time budget T under which a˚ exists and
an explicit value for a˚.

Corollary 4.2. Under Assumptions 2.1 and 2.2, if the time
budget T satisfies:

T ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

c
1
β p1 ´ 2εq´1 pH1,1{βpT qq ` pK ´ 1q

¯

β
β´1

if β P p1, 3{2q
´

c
2
3 p1 ´ 2εq´ 2

3β pH1,2{3pT qq ` pK ´ 1q

¯3

if β P r3{2,`8q

,

(8)
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Algorithm 1: R-UCBE.
Input :Time budget T , Number of arms K,

Window size ε, Exploration parameter a
1 Initialize Ni,0 “ 0,
2 BT

i p0q “ `8,@i P JKK
3 for t P JT K do
4 Compute It P argmaxiPJKK B

T
i pNi,t´1q

5 Pull arm It and observe xt

6 NIt,t Ð NIt,t´1 ` 1
7 Ni,t Ð Ni,t´1, @i ‰ It
8 Update µ̌T

ItpNIt,tq

9 Update β̌T
ItpNIt,tq

10 Compute BT
ItpNIt,tq “ µ̌T

ItpNIt,tq ` β̌T
ItpNIt,tq

11 end
12 Recommend pI˚

pT q P argmaxiPJKK B
T
i pNi,T q

there exists a˚ ą 0 defined as:

a˚ “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϵ3

4σ2

ˆ

´

T 1´1{β
´pK´1q

H1,1{βpT q

¯β

´ cp1 ´ 2εq´β

˙2

if β P p1, 3{2q

ϵ3

4σ2

ˆ

´

T 1{3
´pK´1q

H1,2{3pT q

¯3{2

´ cp1 ´ 2εq´β

˙2

if β P r3{2,`8q

,

where H1,ηpT q :“
ř

i‰i˚pT q
1

∆η
i pT q

for η ą 0. Then, for ev-
ery a P r0, a˚s, the error probability of R-UCBE is bounded
by:

eT pR-UCBEq ď 2TK exp
´

´
a

10

¯

.

First of all, we notice that the error probability eT pR-UCBEq

presented in Theorem 4.2 holds under the condition that
the time budget T fulfills Equation (8). We defer a more
detailed discussion on this condition to Remark 5.1, where
we show that the existence of a finite value of T fulfilling
Equation (8) is ensured under mild conditions.

Let us remark that term H1,ηpT q characterizes the complex-
ity of the SRB setting, corresponding to termH1 of Audibert
et al. (2010) for the classical BAI problem when η “ 2. As
expected, in the small-β regime (i.e., β P p1, 3{2s), look-
ing at the dependence of H1,1{βpT q on β, we realize that
the complexity of a problem decreases as the parameter β
increases. Indeed, the larger β, the faster the expected re-
ward reaches a stationary behavior. Nevertheless, even in
the large-β regime (i.e., β ą 3{2), the complexity of the
problem is governed by H1,2{3pT q, leading to an error prob-
ability larger than the corresponding one for BAI in standard
bandits (Audibert et al., 2010). This can be explained by
the fact that R-UCBE uses the optimistic estimator that,
as shown in Section 3, enjoys a slower concentration rate
compared to the standard sample mean, even for stationary
bandits.

This two-regime behavior has an interesting interpretation

when comparing Corollary 4.2 with Theorem 4.1. Indeed,
β “ 3{2 is the break-even threshold in which the two terms
of the l.h.s. of Equation (6) have the same convergence rate.
Specifically, the term pAq takes into account the expected
rewards growth (i.e., the bias in the estimators), while pBq

considers the uncertainty in the estimations of the R-UCBE
algorithm (i.e., the variance). Intuitively, when the expected
reward function displays a slow growth (i.e., γipnq ď cn´β

with β ă 3{2), the bias term pAq dominates the variance
term pBq and the value of a˚ changes accordingly. Con-
versely, when the variance term pBq is the dominant one
(i.e., γipnq ď cn´β with β ą 3{2), the threshold a˚ is
governed by the estimation uncertainty, being the bias negli-
gible.

As common in optimistic algorithms for BAI (Audibert et al.,
2010), setting a theoretically sound value of exploration
parameter a (i.e., computing a˚), requires additional knowl-
edge of the setting, namely the complexity index H1,ηpT q.9

In the next section, we propose an algorithm that relaxes
this requirement.

5. Phase-Based Algorithm: Rising
Successive Rejects

In this section, we introduce the Rising Successive
Rejects (R-SR), a phase-based solution inspired by
the one proposed by Audibert et al. (2010), which over-
comes the drawback of R-UCBE of requiring knowledge of
H1,ηpT q.

Algorithm R-SR, whose pseudo-code is reported in Algo-
rithm 2, takes as input the time budget T and the number of
arms K. At first, it initializes the set of the active arms X0

with all the available arms (Line 1). This set will contain the
arms that are still eligible candidates to be recommended.
The entire process proceeds through K ´ 1 phases. More
specifically, during the jth phase, the arms still remaining in
the active arms set Xj´1 are played (Line 5) for Nj ´Nj´1

times each, where:

Nj :“

R

1

logpKq

T ´K

K ` 1 ´ j

V

, (9)

and logpKq :“ 1
2 `

řK
i“2

1
i . At the end of each phase,

the arm with the smallest value of the pessimistic estimator
µ̂ipNjq is discarded from the set of active arms (Line 11).
At the end of the pK´1qth phase, the algorithm recommends
the (unique) arm left in XK´1 (Line 13).

It is worth noting that R-SR makes use of the pessimistic es-
timator µ̂ipnq. Even if both estimators defined in Section 3
are viable for R-SR, the choice of using the pessimistic es-
timator is justified by its better concentration rate Opn´1{2q

9We defer the empirical study of the sensitivity of a to Sec-
tion 7.



A Best Arm Identification Approach for Stochastic Rising Bandits

Algorithm 2: R-SR.
Input :Time budget T , Number of arms K,

Window size ε
1 Initialize t Ð 1, N0 “ 0, X0 “ JKK
2 for j P JK ´ 1K do
3 for i P Xj´1 do
4 for l P JNj´1 ` 1, NjK do
5 Pull arm i and observe xt

6 t Ð t ` 1
7 end
8 Update µ̂ipNjq

9 end
10 Define Ij P argminiPXj´1

µ̂ipNjq

11 Update Xj “ Xj´1 ztIju

12 end
13 Recommend pI˚

pT q P XK´1 (unique)

compared to that of the optimistic estimator OpTn´3{2q,
being n ď T (see Section 3).

Note that the phase lengths are the ones adopted by Audibert
et al. (2010). This choice allows us to provide theoretical
results without requiring domain knowledge (still under a
large enough budget). An optimized version of Nj may be
derived assuming full knowledge of the gaps ∆ipT q, but,
unfortunately, such a hypothetical approach would have
similar drawbacks as R-UCBE.

Bound on the Error Probability of R-SR The following
theorem provides the guarantee on the error probability for
the R-SR algorithm.

Theorem 5.1. Under Assumptions 2.1 and 2.2, if the time
budget T satisfies:

T ě 2
β`1
β´1 c

1
β´1 logpKq

β
β´1 max

iPJ2,KK

!

i
β

β´1∆piqpT q
´ 1

β´1

)

,

(10)
then, the error probability of R-SR is bounded by:

eT pR-SRq ď
KpK ´ 1q

2
exp

ˆ

´
ε

8σ2
¨

T ´K

logpKqH2pT q

˙

,

where H2pT q :“ maxiPJKK
␣

i∆piqpT q´2
(

and logpKq “

1
2 `

řK
i“2

1
i .

Similar to the R-UCBE, the complexity of the problem is
characterized by term H2pT q that, for the standard MAB
setting, reduces to the H2 term of Audibert et al. (2010).
Furthermore, when the condition of Equation (10) on the
time budget T is satisfied, the error probability coincides
with that of the SR algorithm for standard MABs (apart for
constant terms). The following remark elaborates on the
conditions of Equations (8) and (10) about the minimum
requested time budget.

Remark 5.1 (About the minimum time budget T ). To sat-
isfy the eT bounds presented in Corollary 4.2 and Theo-
rem 5.1, R-UCBE and R-SR require the conditions pro-

vided by Equations (8) and (10) about the time budget T ,
respectively. First, let us notice that if the suboptimal arms
converge to an expected reward different from that of the
optimal arm as T Ñ `8, it is always possible to find a
finite value of T ă `8 such that these conditions are ful-
filled. Formally, assume that there exists T0 ă `8 and
that for every T ě T0 we have that for all suboptimal arms
i ‰ i˚pT q it holds that ∆ipT q ě ∆8 ą 0. In such a case,
the l.h.s. of Equations (8) and (10) are upper bounded by
a function of ∆8 and are independent on T . Instead, if a
suboptimal arm converges to the same expected reward as
the optimal arm when T Ñ `8, the identification problem
is more challenging and, depending on the speed at which
the two arms converge as a function of T , might slow down
the learning process arbitrarily. This should not surprise
as the BAI problem becomes non-learnable even in stan-
dard (stationary) MABs when multiple optimal arms are
present (Heide et al., 2021).

6. Lower Bound
In this section, we investigate the complexity of the BAI
problem for SRBs with a fixed budget.

Minimum time budget T We show that, under Assump-
tions 2.1 and 2.2, any algorithm requires a minimum time
budget T to be guaranteed to identify the optimal arm, even
in a deterministic setting.

Theorem 6.1. For every algorithm A, there exists a deter-
ministic SRB satisfying Assumptions 2.1 and 2.2 such that
the optimal arm i˚pT q cannot be identified for some time
budgets T unless:

T ě H1,1{pβ´1qpT q “
ÿ

i‰i˚pT q

1

∆ipT q
1

β´1

. (11)

Theorem 6.1 formalizes the intuition that any of the sub-
optimal arms must be pulled a sufficient number of times
to ensure that, if pulled further, it cannot become the opti-
mal arm. It is worth comparing this bound on the time
budget with the corresponding conditions on the mini-
mum time budget requested by Equations (8) and (10) for
R-UCBE and R-SR, respectively. Regarding R-UCBE,
we notice that the minimum admissible time budget in
the small-β regime is of order H1,1{βpT qβ{pβ´1q which
is larger than term H1,1{pβ´1qpT q of Equation (11).10

Similarly, in the large-β regime (i.e., β ą 3{2), the
R-UCBE requirement is of order H1,2{3pT q3 ě H1,2pT q

which is larger than the term of Theorem 6.1 since
1{pβ ´ 1q ă 2. Concerning R-SR, it is easy to show
that H1,1{pβ´1qpT q « maxiPJ2,KK i∆piqpT q´1{pβ´1q, apart
from logarithmic terms, by means of the argument provided
by (?)][Section 6.1]audibert2010best. Thus, up to logarith-

10See Lemma D.11.
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mic terms, Equation (10) provides a tight condition on the
minimum budget.

Error Probability Lower Bound We now present a lower
bound on the error probability.

Theorem 6.2. For every algorithm A run with a time budget
T fulfilling Equation (11), there exists a SRB satisfying
Assumptions 2.1 and 2.2 such that the error probability is
lower bounded by:

eT pAq ě
1

4
exp

ˆ

´
8T

σ2H1,2pT q

˙

,

where:

H1,2pT q :“
ÿ

i‰i˚pT q

1

∆2
i pT q

.

Some comments are in order. First, we stated the lower
bound for the case in which the minimum time budget sat-
isfies the inequality of Theorem 6.1, which is a necessary
condition for identifying the optimal arm. Second, the lower
bound on the error probability matches, up to logarithmic
factors, that of our R-SR, suggesting the superiority of this
algorithm compared to R-UCBE. Finally, provided that the
identifiability condition of Equation (11), such a result corre-
sponds to that of the standard (stationary) MABs (Audibert
et al., 2010; Kaufmann et al., 2016). A summary of all the
bounds provided in the paper is presented in Table 1.

7. Numerical Validation
In this section, we provide a numerical validation of
R-UCBE and R-SR. We compare them with state-of-the-art
bandit baselines designed for stationary and non-stationary
BAI in a synthetic setting, and we evaluate the sensitivity of
R-UCBE to its exploration parameter a. Additional details
about the experiments presented in this section are available
in Appendix F. Additional experimental results on both syn-
thetic settings and in a real-world experiment are available
in Appendix G.11

Baselines We compare our algorithms against a wide range
of solutions for BAI:

• RR: uniformly pulls all the arms until the budget ends in
a round-robin fashion and, in the end, makes a recommen-
dation based on the empirical mean of their reward over
the collected samples;

• RR-SW: makes use of the same exploration strategy as
RR to pull arms but makes a recommendation based on
the empirical mean over the last εT

K collected samples
from an arm.12

11The code to run the experiments is available in the supplemen-
tary material. It will be published in a public repository condition-
ally to the acceptance of the paper.

12The formal description of this baseline, as well as its theoreti-
cal analysis, is provided in Appendix E.
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Figure 2. Expected values µipnq for the arms of the synthetic set-
ting.

• UCB-E and SR (Audibert et al., 2010): algorithms for the
stationary BAI problem;

• Prob-1 (Abbasi-Yadkori et al., 2018): an algorithm deal-
ing with the adversarial BAI setting;

• ETC and Rest-Sure (Cella et al., 2021): algorithms
developed for the decreasing loss BAI setting.13

The hyperparameters required by the above methods have
been set as prescribed in the original papers. For both our
algorithms and RR-SW, we set ε “ 0.25.

Setting To assess the quality of the recommendation Î˚pT q

provided by our algorithms, we consider a synthetic SRB
setting with K “ 5 and σ “ 0.01. Figure 2 shows the evo-
lution of the expected values of the arms w.r.t. the number
of pulls. In this setting, the optimal arm changes depending
on whether T P r1, 185s or T P p185,`8q. Thus, when the
time budget is close to that value, the problem is more chal-
lenging since the optimal and second-best arms expected
rewards are close to each other. For this reason, the BAI al-
gorithms are less likely to provide a correct recommendation
than for time budgets for which the two expected rewards
are well separated. We compare the analyzed algorithms A
in terms of empirical error eT pAq (the smaller, the better),
i.e., the empirical counterpart of eT pAq averaged over 100
runs, considering time budgets T P r100, 3200s.

Results The empirical error probability provided by the
analyzed algorithms in the synthetically generated setting is
presented in Figure 3. We report with a dashed vertical blue
line at T “ 185, i.e., the budgets after which the optimal arm
no longer changes. Before such a budget, all the algorithms
provide large errors (i.e., ēT pAq ą 0.2). However, R-UCBE
outperforms the others by a large margin, suggesting that
an optimistic estimator might be advantageous when the
time budget is small. Shortly after T “ 185, R-UCBE starts
providing the correct suggestion consistently. R-SR begins
to identify the optimal arm (i.e., with ēT pR-SRq ă 0.05)

13This problem is equivalent to ours, given a linear transforma-
tion of the reward.
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Error Probability eT p¨q Time Budget T

SRB
1

4
exp

˜

´
8T

σ2
ř

i‰i˚pT q
1

∆2
i pT q

¸

ÿ

i‰i˚pT q

1

∆ipT q
1

β´1

R-UCBE 2 T K exp
´

´
a

10

¯

$

’

’

’

’

&

’

’

’

’

%

ˆ

c
1
β p1 ´ 2εq´1

ˆ

ÿ

i‰i˚pT q

1

∆
1{β
i pT q

˙

` pK ´ 1q

˙

β
β´1

if β P p1, 3{2q

ˆ

c
2
3 p1 ´ 2εq´ 2

3β

ˆ

ÿ

i‰i˚pT q

1

∆
2{3
i pT q

˙

` pK ´ 1q

˙3

if β P r3{2,`8q

R-SR
KpK ´ 1q

2
exp

¨

˚

˝

´
ε

8σ2

T ´K

logpKq max
iPJKK

!

i∆´2
piq pT q

)

˛

‹

‚

2
1`β
β´1 c

1
β´1 logpKq

β
β´1 max

iPJ2,KK

!

i
β

β´1∆piqpT q
´ 1

β´1

)

Table 1. Bounds on the time budget and error probability: lower for the setting and upper for the algorithms.
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Figure 3. Empirical error rate for the synthetically generated set-
ting (100 runs, mean ˘ 95% c.i.).

for time budgets T ą 1000. Nonetheless, both algorithms
perform significantly better than the baseline algorithms
used for comparison.

Sensitivity Analysis for the Exploration Parameter of
R-UCBE We perform a sensitivity analysis on the explo-
ration parameter a of R-UCBE. Such a parameter should be
set to a value less or equal to a˚, and the computation of the
latter is challenging. We tested the sensitivity of R-UCBE
to this hyperparameter by looking at the error probability
for a P ta˚{50, a˚{10, a˚, 10a˚, 50a˚u. Figure 4 shows
the empirical errors of R-UCBE with different parameters
a, where the blue dashed vertical line denotes the last time
the optimal arm changes over the time budget. It is worth
noting how, even in this case, we have two significantly
different behaviors before and after such a time. Indeed, if
T ď 185, we have that a misspecification with larger values
than a˚ does not significantly impact the performance of
R-UCBE, while smaller values slightly decrease the perfor-
mance. Conversely, for T ą 185 learning with different
values of a seems not to impact the algorithm performance
significantly. This corroborates the previous results about
the competitive performance of R-UCBE.
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Figure 4. Empirical error rate for the R-UCBE at different a (1000
runs, mean ˘ 95% c.i.).

8. Discussion and Conclusions
This paper introduces the BAI problem with a fixed budget
for the Stochastic Rising Bandits setting. Notably, such set-
ting models many real-world scenarios in which the reward
of the available options increases over time, and the inter-
est is on the recommendation of the one having the largest
expected rewards after the time budget has elapsed. In this
setting, we presented two algorithms, namely R-UCBE and
R-SR providing theoretical guarantees on the error prob-
ability. R-UCBE is an optimistic algorithm requiring an
exploration parameter whose optimal value requires prior
information on the setting. Conversely, R-SR is a phase-
based solution that only requires the time budget to run.
We established lower bounds for the error probability an
algorithm suffers in such a setting, which is matched by our
R-SR, up to logarithmic factors. Furthermore, we showed
how a requirement on the minimum time budget is unavoid-
able to ensure the identifiability of the optimal arm. Finally,
we validate the performance of the two algorithms in both
synthetic and real-world settings. A possible future line of
research is to derive an algorithm balancing the tradeoff
between theoretical guarantees on the eT and the chance of
providing such guarantees with lower time budgets.
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A. Related Works
In this appendix, we summarize the relevant literature related both to the works focusing on the best arm identification
problem and rested bandits. The SRB setting was proposed by Heidari et al. (2016) for the first time. Their work and
subsequently the one by Metelli et al. (2022) analyzed the problem from a regret minimization point of view.

Best Arm Identification in Stochastic Rising Bandits As highlighted in Section 1, the works mostly related to ours are
the ones by Li et al. (2020) and Cella et al. (2021). They both focus on the BAI problem in the rested setting, given a
fixed-budget. More specifically, Li et al. (2020) consider rising rested bandits in which the reward function of each arm
increases as it is pulled. However, they limit to deterministic arms and, thus, fail to deal with the intrinsic stochasticity
of the real-world processes they want to model. Instead, Cella et al. (2021) deal with the problem of identifying the arm
with the smallest loss in a setting where the losses incurred by selecting an arm decrease over time. It is easy to show that
such a setting can be transformed straightforwardly in the SRB one. However, the authors develop two algorithms whose
theoretical guarantees hold under the assumption that the expected loss follows a specific known parametric functional form,
whose parameters are to be estimated. This constitutes a major limitation to the presented work since checking such an
assumption is not feasible in real-world settings.

Best Arm Identification The pure exploration and BAI problems have been first introduced by Bubeck et al. (2009), while
algorithms able to learn in such a setting have been provided by Audibert et al. (2010). The work by Gabillon et al. (2012)
proposes a unified approach to deal with stochastic best arm identification problems by having either a fixed budget or fixed
confidence. However, the stochastic algorithms developed in this line of research only provide theoretical guarantees in
settings where the expected reward is stationary over the pulls. Abbasi-Yadkori et al. (2018) propose a method able to handle
both the stochastic and adversarial cases, but they do not make explicit use of the properties (e.g., increasing nature) of the
expected reward. Finally, (Garivier & Kaufmann, 2016; Kaufmann et al., 2016; Carpentier & Locatelli, 2016) analyze the
problem of BAI from the lower bound perspective.

Rested Bandits Bandit settings in which the evolution of an arm reward depends on the number of times the arm has been
pulled, such as the one analyzed in our paper, are generally referred to as rested. A first general formulation of the rested
bandit setting appeared in the work by Tekin & Liu (2012) and was further discussed by Mintz et al. (2020) and Seznec
et al. (2020). In these works, the evolution of the expected reward of each arm is regulated by a Markovian process that is
assumed to visit the same state multiple times. This is not the case for the rising bandits, where the arm expected rewards
continuously increase over the time budget. Finally, a specific instance of the rested bandits is constituted by the rotting
bandits (Levine et al., 2017; Seznec et al., 2019; 2020), in which the expected payoff for a given arm decreases with the
number of pulls. However, as pointed out by Metelli et al. (2022), techniques developed for this setting cannot be directly
translated into ours, due to the inherently different nature of the problem.

B. Additional Motivating Examples
In this appendix, we provide two additional motivating examples to better understand and appreciate the SRB setting.

Selection of Athletes for Competitions Consider the role of a professional trainer for a team, having several athletes (i.e.,
our arms) to train in order to increase their performances. The final goal is to select a single athlete to represent the team
in a competition. The performances of athletes increase when the trainer properly follows them. However, a trainer can
follow just one athlete at a time. The trainer can be modeled as an agent performing best-arm (athlete) identification, and the
athletes represent the arms that increase their payoffs (i.e., performance) when pulled (i.e., when the trainer follows them).

Online Best Model Selection Suppose we have to choose among a set of algorithms to maximize a given index (e.g.,
accuracy) over a training set. In this setting, we expect that all the algorithms progressively increase (on average) the
index value and converge to their optimum value with different convergence rates. Therefore, we want to identify which
candidate algorithm is the most likely to reach optimal performances, given the budget, and assign the available resources
(e.g., computational power or samples). In summary, this problem reduces to the identification, with the largest probability,
of the algorithm that converges faster to the optimum. A real-world example of such a scenario is provided in Figure 8.

C. Estimators Efficient Update
In this appendix, we describe how to implement an efficient version (i.e., fully online) of the estimators we presented in the
main paper. We resort to the update developed by Metelli et al. (2022). This update provides a way to achieve an Op1q
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computational complexity at each step for the update of the estimates for the pessimistic estimator µ̂iptq and optimistic
estimator µ̌Ti ptq.

With a slight abuse of notation, only in this appendix, for the sake of simplicity, we denote with xi,n the reward collected at
the nth pull from the arm i and with hi,t “ hpNi,t´1q the window size. Differently, from what we use in the paper, here the
reward subscript indicates the arm i and the number of pulls of that arm n instead of the total number of pulls t we used in
the definition of xt.

More specifically, the pessimistic estimator µ̂i can be written as:

µ̂iptq “
ai
hi,t

,

where the quantity ai is updated as follows:

ai Ð

#

ai ` xi,Ni,t
´ xi,Ni,t´hi,t

if hi,t “ hi,t´1

ai ` xi,Ni,t
otherwise

,

and ai “ 0 as the algorithm starts.

Instead, the optimistic estimator µ̌Ti ptq, is updated using:

µ̌Ti ptq “
1

hi,t

ˆ

ai `
T pai ´ biq

hi,t
´
ci ´ di
hi,t

˙

.

Where the quantity ai is defined and updated above and bi, ci, and di are updated as follows:

bi Ð

#

bi ` xi,Ni,t´hi,t
´ xi,Ni,t´2hi,t

if hi,t “ hi,t´1

bi ` xi,Ni,t´2hi,t`1 otherwise
,

ci Ð

#

ci `Ni,t ¨ xi,Ni,t ´ pNi,t ´ hi,tq ¨ xi,Ni,t´hi,t if hi,t “ hi,t´1

ci `Ni,t ¨ xi,Ni,t
otherwise

,

di Ð

#

di `Ni,t ¨ xi,Ni,t´hi,t
´ pNi,t ´ hi,tq ¨ xi,Ni,t´2hi,t

if hi,t “ hi,t´1

di ` pNi,t ´ hi,tq ¨ xi,Ni,t´2hi,t`1 ` bi otherwise
.

Similarly to what is presented above, the quantities are initialized to 0 as the algorithms start.

D. Proofs and Derivations
In this appendix, we provide all the proofs omitted in the main paper. For the sake of generality, we will provide the
derivations for a generic choice of the window size of the estimators hi,t which depends on the arm i P JKK and on the
round t P JT K. When needed, we will particularize the choice for the case in which the window size depends on the number
of pulls only hi,t “ hpNi,t´1q.

D.1. Proofs of Section 3

Lemma D.1. Under Assumption 2.1, for every i P JKK, j, k P N with k ă j, it holds that:

γipjq ď
µipjq ´ µipkq

j ´ k
.

Proof. Using Assumption 2.1, we get:

γipjq “
1

j ´ k

j´1
ÿ

l“k

γipjq ď
1

j ´ k

j´1
ÿ

l“k

γiplq “
1

j ´ k

j´1
ÿ

l“k

pµipl ` 1q ´ µiplqq “
µipjq ´ µipkq

j ´ k
,

where the first inequality comes from the concavity of the expected reward function (Assumption 2.1), and the second
equality comes from the definition of increment.
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Lemma D.2. For every arm i P JKK, every round t P JT K, and window width 1 ď hi,t ď tNi,t´1{2u, let us define:

rµTi pNi,tq :“
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

ˆ

µiplq ` pT ´ lq
µiplq ´ µipl ´ hi,tq

hi,t

˙

,

otherwise if hi,t “ 0, we set rµTi pNi,tq :“ `8. Then, rµTi pNi,tq ě µipT q and, if Ni,t´1 ě 2, it holds that:

rµTi pNi,tq ´ µipT q ď
1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1q γipNi,t´1 ´ 2hi,t ` 1q.

Proof. Following the derivation provided above, we have for every l P J2, . . . , Ni,T´1K:

µipT q “ µiplq `

T´1
ÿ

j“l

γipjq

ď µiplq ` pT ´ lq γipl ´ 1q (12)

ď µiplq ` pT ´ lq
µiplq ´ µipl ´ hi,tq

hi,t
, (13)

where Equation (12) follows from Assumption 2.1, and Equation (13) is obtained from Lemma D.1. By averaging over the
most recent 1 ď hi,t ď tNi,t´1{2u pulls, we get:

µipT q ď
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

ˆ

µiplq ` pT ´ lq
µiplq ´ µipl ´ hi,tq

hi,t

˙

“:
rµTi pNi,tq.

For the bias bound, when Ni,t´1 ě 2, we retrieve:

rµTi pNi,tq ´ µipT q “
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

ˆ

µiplq ` pT ´ lq
µiplq ´ µipl ´ hi,tq

hi,t

˙

´ µipT q (14)

ď
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

pT ´ lq
µiplq ´ µipl ´ hi,tq

hi,t

“
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

pT ´ lq
1

hi,t

l´1
ÿ

j“l´hi,t

γjplq

ď
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

pT ´ lq γipl ´ hi,tq (15)

ď
1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1q γipNi,t´1 ´ 2hi,t ` 1q, (16)

where Equation (14) follows from Assumption 2.1 applied as µiplq ď µipNi,tq, Equation (15) follows from Assumption 2.1
and bounding 1

hi,t

řl´1
j“l´hi,t

γjplq ď γipl ´ hi,tq, and Equation (16) is derived still from Assumption 2.1, γipl ´ hi,tq ď

γipNi,t´1 ´ 2hi,t ` 1q and computing the summation.

Lemma D.3. For every arm i P JKK, every round t P JT K, and window width 1 ď h ď tNi,t´1{2u, let us define:

µ̌Ti pNi,tq :“
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

ˆ

Xiplq ` pT ´ lq
Xiplq ´Xipl ´ hi,tq

hi,t

˙

,

β̌Ti pNi,tq “ σpT ´Ni,t´1 ` hi,t ´ 1q

c

a

h3i,t
,

where Xiplq denotes the reward collected from arm i when pulled for the l-th time. Otherwise, if hi,t “ 0, we set
µ̌Ti ptq :“ `8 and β̌Ti ptq :“ `8 . Then, if the window size depends on the number of pulls only hi,t “ hpNi,t´1q, it holds
that:

P
`

@t P JT K :
ˇ

ˇµ̌Ti pNi,tq ´ µ̃Ti pNi,tq
ˇ

ˇ ą β̌Ti pNi,tq
˘

ď 2T exp
´

´
a

10

¯

.
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Proof. Before starting the proof, it is worth noting that under the event thi,t “ 0u, it holds that µ̌Ti ptq “ µ̃Ti ptq “ β̌Ti ptq “

`8. Thus, under the convention that 8 ´ 8 “ 0, then 0 ą β̌Ti ptq is not satisfied. For this reason, we need to perform our
analysis under the event thi,t ě 1u.

The first thing to do is to remove the dependence on the number of pulls that, in a generic time instant, represents a random
variable. So, we can write:

P
`

@t P JT K :
ˇ

ˇµ̌Ti pNi,tq ´ µ̃Ti pNi,tq
ˇ

ˇ ą β̌Ti pNi,tq
˘

ď P
`

Dn P J0, T K s.t. hi,n ě 1 : |µ̌Ti pnq ´ µ̃Ti pnq| ą β̌Ti pnq
˘

ď
ÿ

nPJ0,T K:hi,ně1

P
`

|µ̌Ti pnq ´ µ̃Ti pnq| ą β̌Ti pnq
˘

, (17)

where Equation (17) follows form a union bound over the possible values of Ni,t.

Now that we have a fixed value of n, consider a generic time t in which arm i has been pulled. We will observe a reward xt
composed by the mean of the process µipNi,tq plus some noise. The noise will be equal to ηipNi,tq “ xt ´ µipNi,tq, i.e., as
the difference (not known) between the observed value for the arm i at time t and its real value at the same time. Let us
rewrite the quantity to be bounded as follows for every n:

hi,n
`

µ̌Ti pnq ´ µ̃Ti pnq
˘

“

n
ÿ

l“n´hi,n`1

ˆ

ηiplq ´ pT ´ lq ¨
ηiplq ´ ηipl ´ hi,nq

hi,n

˙

“

n
ÿ

l“n´hi,n`1

ˆ

1 ´
T ´ l

hi,n

˙

¨ ηiplq ´

n
ÿ

l“n´hi,n`1

ˆ

T ´ l

hi,n

˙

¨ ηipl ´ hi,nq.

Here, notice that all the quantities ηiplq and ηipl ´ hi,nq are independent since the number of pulls l is fully determined by
n and hi,n, that now are non-random quantities.

Now, we apply the Azuma-Hoëffding’s inequality of Lemma C.5 from Metelli et al. (2022) for weighted sums of subgaussian
martingale difference sequences. To this purpose, we compute the sum of the square weights:

n
ÿ

l“n´hi,n`1

ˆ

1 ´
T ´ l

hi,n

˙2

`

n
ÿ

l“n´hi,n`1

ˆ

T ´ l

hi,n

˙2

ď hi,n ¨

ˆ

1 `
T ´ n` hi,n ´ 1

hi,n

˙2

` hi,n ¨

ˆ

T ´ n` hi,n ´ 1

hi,n

˙2

ď
5pT ´ n` hi,n ´ 1q

hi,n
.

Given the previous argument, we have, for a fixed n:
P
`

|µ̌Ti pnq ´ µ̃Ti pnq| ě β̌Ti pnq
˘

ď P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

l“n´hi,n`1

ˆ

1 ´
T ´ l

hi,n

˙

ηipT q ´

n
ÿ

l“n´hi,n`1

ˆ

T ´ l

hi,n

˙

ηipT ´ hi,nq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě hi,nβ̌
T
i ptq

˛

‚

ď 2 exp

¨

˝´
h2i,nβ̌

T
i pnq2

2σ2
´

5pT´n`hi,n´1q

hi,n

¯

˛

‚

“ 2 exp
´

´
a

10

¯

.

By replacing the obtained result into Equation (17) we get:
ÿ

nPJ0,T K:hi,ně1

2 ¨ exp
´

´
a

10

¯

ď

t
ÿ

n“1

2 exp
´

´
a

10

¯

ď 2T exp
´

´
a

10

¯

.
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Lemma D.4. For every arm i P JKK, every round t P JT K, and window width 1 ď hi,t ď tNi,t´1{2u, let us define:

µ̄ipNi,tq :“
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

µiplq,

otherwise, if hi,t “ 0, we set µ̄ipNi,tq :“ `8. Then, µ̄Ti pNi,tq ď µipT q and, if Ni,t´1 ě 2, it holds that:

µipT q ´ µ̄ipNi,tq ď
1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1qγipNi,t´1 ´ hi,t ` 1q.

Proof. Following the derivation provided above, we have for every l P t2, . . . , Ni,T´1u:

µipT q “ µiplq `

T´1
ÿ

j“l

γipjq ě µiplq. (18)

Thus, by averaging over the most recent 1 ď hi,t ď tNi,t´1{2u pulls, we get:

µipT q “
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

˜

µiplq `

T´1
ÿ

j“l

γipjq

¸

“ µ̄ipNi,tq `
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

T´1
ÿ

j“l

γipjq

ď µ̄ipNi,tq `
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

T´1
ÿ

j“l

γipjq

ď µ̄ipNi,tq `
1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1qγipNi,t´1 ´ hi,t ` 1q,

where we used Assumption 2.1.

Lemma D.5. For every arm i P JKK, every round t P JT K, and window width 1 ď h ď tNi,t´1{2u, let us define:

µ̂Ti pNi,tq :“
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

Xiplq,

β̂Ti pNi,tq “ σ

c

a

hi,t
,

where Xiplq denotes the reward collected from arm i when pulled for the l-th time. Otherwise, if hi,t “ 0, we set
µ̂Ti ptq :“ `8 and β̂Ti ptq :“ `8 . Then, if the window size depends on the number of pulls only hi,t “ hpNi,t´1q, it holds
that:

P
´

@t P JT K : |µ̂ipNi,tq ´ µ̄ipNi,tq| ą β̂ipNi,tq
¯

ď 2T exp
´

´
a

2

¯

.

Proof. Before starting the proof, it is worth noting that under the event thi,t “ 0u, it holds that µ̂Ti ptq “ µ̄Ti ptq “ β̂Ti ptq “

`8. Thus, under the convention that 8 ´ 8 “ 0, then 0 ą β̂Ti ptq is not satisfied. For this reason, we need to perform our
analysis under the event thi,t ě 1u.

The first thing to do is to remove the dependence on the number of pulls that, in a generic time instant, represents a random
variable. So, we can write:

P
´

@t P JT K : |µ̂ipNi,tq ´ µ̄ipNi,tq| ą β̂ipNi,tq
¯

ď P
´

Dn P J0, T K s.t. hi,n ě 1 : |µ̂ipnq ´ µ̄ipnq| ą β̂ipnq

¯

ď
ÿ

nPJ0,T K:hi,ně1

P
´

|µ̂ipnq ´ µ̄ipnq| ą β̂ipnq

¯

, (19)

where Equation (19) follows form a union bound over the possible values of Ni,t.
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Now that we have a fixed value of n, consider a generic time t in which arm i has been pulled. We will observe a reward xt
composed by the mean of the process µipNi,tq plus some noise. The noise will be equal to ηipNi,tq “ xt ´ µipNi,tq, i.e., as
the difference (not known) between the observed value for the arm i at time t and its real value at the same time. Let us
rewrite the quantity to be bounded as follows, for every n:

hi,n pµ̂ipnq ´ µ̄ipnqq “

n
ÿ

l“n´hi,n`1

ηiplq.

Here we can note that all the quantities ηiplq and ηipl´ hi,nq are independent since the number of pulls l is fully determined
by n and hi,n, that now are non-random quantities.

Now, we apply the Azuma-Hoëffding’s inequality of Lemma C.5 from Metelli et al. (2022) for sums of subgaussian
martingale difference sequences. For a fixed n, we have:

P
´

|µ̂ipnq ´ µ̄ipnq| ě β̂ipnq

¯

ď P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

l“n´hi,n`1

ηipT q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě hi,n ¨ β̂Ti ptq

˛

‚

ď 2 exp

˜

´
hi,nβ̂

T
i pnq2

2σ2

¸

“ 2 exp
´

´
a

2

¯

.

By replacing the obtained result into Equation (19) we get:
ÿ

nPJ0,T K:hi,ně1

2 exp
´

´
a

2

¯

ď

t
ÿ

n“1

2 exp
´

´
a

2

¯

ď 2T exp
´

´
a

2

¯

.

Lemma 3.1 (Concentration of µ̂i). Under Assumption 2.1, for every a ą 0, simultaneously for every arm i P JKK and
number of pulls n P J0, T K, with probability at least 1 ´ 2TKe´a{2 it holds that:

β̂ipnq ´ ζ̂ipnq ď µ̂ipnq ´ µipnq ď β̂ipnq,

where:

β̂ipnq :“ σ

c

a

hpnq
,

and:
ζ̂ipnq :“

1

2
p2T ´ n` hpnq ´ 1q γipn´ hpnq ` 1q.

Proof. The proof simply combines Lemmas D.4 and D.5 and a union bound over the arms.

Lemma 3.2 (Concentration of µ̌Ti ). Under Assumption 2.1, for every a ą 0, simultaneously for every arm i P JKK and
number of pulls n P J0, T K, with probability at least 1 ´ 2TKe´a{10 it holds that:

β̌Ti pnq ď µ̌Ti pnq ´ µipnq ď β̌Ti pnq ` ζ̌Ti pnq,

where:

β̌Ti pnq :“ σ ¨ pT ´ n` hpnq ´ 1q

c

a

hpnq3
,

and:
ζ̌Ti pnq :“

1

2
p2T ´ n` hpnq ´ 1q γipn´ 2hpnq`1q.

Proof. The proof simply combines Lemmas D.4 and D.3 and a union bound over the arms.

D.2. Proofs of Section 4

In this appendix, we provide the proofs we have omitted in the main paper for what concerns the theoretical results about
R-UCBE. All the lemma below are assuming that the strategy we use for selecting the arm is R-UCBE.
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Let us define the good event Ψ corresponding to the scenario in which all (over the rounds and over the arms) the bounds
BTi pnq hold for the projection up to time T of the real reward expected value µipnq, formally:

Ψ :“
␣

@i P JKK,@t P JT K : |µ̌Ti ptq ´ µ̃Ti ptq| ă β̌Ti ptq
(

,

where µ̃Ti ptq is the deterministic counterpart of µ̌Ti ptq considering the expected payoffs µip¨q instead of the realizations,
formally:

µ̃Ti pNi,tq :“
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

ˆ

µiplq ` pT ´ lq
µiplq ´ µipl ´ hi,tq

hi,t

˙

.

Lemma D.6. Under Assumption 2.1 and assuming that the good event Ψ holds, the maximum number of pulls Ni,T of a
sub-optimal arm (i ‰ i˚pT q) performed by the R-UCBE is upper bounded by the maximum integer yipaq which satisfies the
following condition:

Tγiptp1 ´ 2εqyipaquq ` 2Tσ ¨

c

a

tεyipaqu3
ě ∆ipT q.

Proof. In the following, we will use µ̃Ti pNi,t´1q to bound the bias introduced by µ̌Ti pNi,t´1q and, subsequently, to find
a number of pulls such that the algorithm cannot suggest pulling a suboptimal arm. Using Lemma D.4, we have that
@i P JKK,@t P JT K and when 1 ď hi,t ď t1{2 ¨Ni,t´1u with Ni,t´1 ě 2, it holds that:

µ̃Ti pNi,t´1q ´ µipT q ď
1

2
¨ p2T ´ 2Ni,t´1 ` hi,t ´ 1q ¨ γipNi,t´1 ´ 2hi,t ` 1q. (20)

Let us assume that, at round t, the R-UCBE algorithm pulls the arm i P JKK such that i ‰ i˚pT q. From now on, to avoid
weighing down the notation, we will omit the dependence of the optimal arm i˚pT q on the budget T , simply denoting it
as i˚, and the window size will be denoted ad hi,t “ hpNi,t´1q. By construction, the algorithm chooses the arm with the
largest upper confidence bound BTi pNi,t´1q. Thus, we have that BTi pNi,t´1q ě BTi˚ pNi˚,t´1q. Now, we want to identify
the minimum number of pulls such that this event no longer occurs, assuming that the good event Ψ holds. We have that, if
we pull such an arm i ‰ i˚, it holds:

BTi pNi,t´1q ě BTi˚ pNi˚,t´1q

BTi pNi,t´1q ´BTi˚ pNi˚,t´1q ě 0

∆ipT q `BTi pNi,t´1q ´BTi˚ pNi˚,t´1q ě ∆ipT q.

Using the definition of ∆ipT q and the definition of the upper confidence bound BTi pNi,t´1q in Equation (3) for i and i˚, we
have:

µi˚ pT q ´ µipT q ` µ̌Ti pNi,t´1q ` β̌Ti pNi,t´1q ´ µ̌Ti˚ pNi˚,t´1q ´ β̌Ti˚ pNi˚,t´1q ě ∆ipT q.

Given Assumption 2.1 we have that µi˚ pT q ď µ̃Ti˚ pNi˚,t´1q, and, therefore, we have:

µ̃Ti˚ pNi˚,t´1q ´ µipT q ` µ̌Ti pNi,t´1q ` β̌Ti pNi,t´1q ´ µ̌Ti˚ pNi˚,t´1q ´ β̌Ti˚ pNi˚,t´1q ě ∆ipT q,

and, since under the good event Ψ, it holds that µ̃Ti˚ pNi˚,t´1q ´ µ̌Ti˚ pNi˚,t´1q ´ β̌Ti˚ pNi˚,t´1q ă 0, we have:

´µipT q ` µ̌Ti pNi,t´1q ` β̌Ti pNi,t´1q ě ∆ipT q

´µipT q ` β̌Ti pNi,t´1q ` µ̃Ti pNi,t´1q ` µ̌Ti pNi,t´1q ´ µ̃Ti pNi,t´1q
looooooooooooooomooooooooooooooon

pDq

ě ∆ipT q,

where we added and subtracted µ̃Ti pNi,t´1q in the last equation. Under the good event Ψ, we can upper bound |pDq| “

|µ̃Ti pNi,t´1q ´ µ̌Ti pNi,t´1q| ă β̌Ti pNi,t´1q:
µ̃Ti pNi,t´1q ´ µipT q ` 2β̌Ti pNi,t´1q ě ∆ipT q.

Using Equation (20), and substituting the definition of β̌Ti pNi,t´1q provided in Equation (4), we have:
1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1q
looooooooooooooomooooooooooooooon

ď2T

¨γipNi,t´1 ´ 2hi,t ` 1q`

`2σ ¨ pT ´Ni,t´1 ` hi,t ´ 1q
looooooooooooomooooooooooooon

ďT

¨

c

a

h3i,t
ě ∆ipT q
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T ¨ γiptp1 ´ 2εqNi,tuq
loooooooooooomoooooooooooon

pAq

` 2σT

c

a

tεNi,tu3
loooooooomoooooooon

pBq

ě ∆ipT q, (21)

where we used the definition of hi,t :“ tεNi,tu and the fact that Ni,t´1 “ Ni,t ´ 1 since at time t the algorithm pulls the
i-th arm.

This concludes the proof.

Theorem 4.1. Under Assumption 2.1, let a˚ be the largest positive value of a satisfying:

T ´
ÿ

i‰i˚pT q

yipaq ě 1, (5)

where for every i P JKK, yipaq is the largest integer for which it holds:

Tγiptp1 ´ 2εqyuq
looooooooomooooooooon

pAq

` 2Tσ

c

a

tεyu3
loooooomoooooon

pBq

ě ∆ipT q. (6)

If a˚ exists, then for every a P r0, a˚s the error probability of R-UCBE is bounded by:

eT pR-UCBEq ď 2TK exp
´

´
a

10

¯

. (7)

Proof. From the definition of the error probability, we have:

eT pR-UCBEq “ P
´

Î˚pT q ‰ i˚pT q

¯

“ P pIT`1 ‰ i˚pT qq .

Therefore, we need to evaluate the probability that the R-UCBE algorithm would pull a suboptimal arm in the T ` 1 round.
Given that Assumption 2.1 and that each suboptimal arms have been pulled a number of times Ni,T at the end of the time
budget T , under the good event Ψ, we are guaranteed to recommend the optimal arm if:

T ´
ÿ

i‰i˚pT q

Ni,T ě 1. (22)

If Equation (22) holds, a suboptimal arm can be selected by R-UCBE for the next round T ` 1 only if the good event Ψ
does not hold eT pR-UCBEq “ P pΨcq, where we denote with Ψc the complementary of event Ψ. This probability is upper
bounded by Lemma D.5 as:

eT pR-UCBEq “ P pΨcq ď 2TK exp
´

´
a

10

¯

.

We now derive a condition for a in order to make Equation (22) hold. Thanks to Lemma D.6 we know that Ni,T ď yipaq

where yipaq is the maximum integer such that:

Tγiptp1 ´ 2εqyipaquq ` 2Tσ

c

a

tεyipaqu3
ě ∆ipT q.

From this condition, we observe that yipaq is an increasing function of a. Therefore, we can select a in the interval r0, a˚s,
where a˚ is the maximum value of a such that:

T ´
ÿ

i‰i˚pT q

yipaq ě 1. (23)

Note that, we are not guaranteed that such a value of a˚ ą 0 exists. In such a case, we cannot provide meaningful guarantees
on the error probability of R-UCBE.

Corollary 4.2. Under Assumptions 2.1 and 2.2, if the time budget T satisfies:

T ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

c
1
β p1 ´ 2εq´1 pH1,1{βpT qq ` pK ´ 1q

¯

β
β´1

if β P p1, 3{2q
´

c
2
3 p1 ´ 2εq´ 2

3β pH1,2{3pT qq ` pK ´ 1q

¯3

if β P r3{2,`8q

, (8)
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there exists a˚ ą 0 defined as:

a˚ “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϵ3

4σ2

ˆ

´

T 1´1{β
´pK´1q

H1,1{βpT q

¯β

´ cp1 ´ 2εq´β

˙2

if β P p1, 3{2q

ϵ3

4σ2

ˆ

´

T 1{3
´pK´1q

H1,2{3pT q

¯3{2

´ cp1 ´ 2εq´β

˙2

if β P r3{2,`8q

,

where H1,ηpT q :“
ř

i‰i˚pT q
1

∆η
i pT q

for η ą 0. Then, for every a P r0, a˚s, the error probability of R-UCBE is bounded by:

eT pR-UCBEq ď 2TK exp
´

´
a

10

¯

.

Proof. We recall that Assumption 2.2 states that all the increment functions γipnq are such that γipnq ď cn´β . We use such
a fact to provide an explicit solution for the optimal value of a˚. From Theorem 4.1 and using the fact that γipnq ď cn´β ,
we have that Equation (6) becomes:

Tc

tp1 ´ 2εqyuβ
`

2tTσa
1
2

tϵyu
3
2

ě ∆ipT q. (24)

Or, more restrictively:

Tc p1 ´ 2εq
´β

py ´ 1qβ
`

2Tσε´ 3
2 a

1
2

py ´ 1q
3
2

ě ∆ipT q.

Let us solve Equation (24) by analyzing separately the two cases in which one of the two terms in the l.h.s. of such equation
become prevalent.

Case 1: β P
“

3
2 ,8

˘

In this branch, we can upper bound the left-side part of the inequality in Equation (24) by:

Tc p1 ´ 2εq
´β

py ´ 1q
3
2

`
2Tσε´ 3

2 a
1
2

py ´ 1q
3
2

ě ∆ipT q.

Thus, we can derive:

yipaq ď 1 `

˜

Tc p1 ´ 2εq
´β

` 2Tσε´ 3
2 a

1
2

∆ipT q

¸
2
3

. (25)

Using the above value in Equation (23), provides:

T ´
ÿ

i‰i˚pT q

yipaq ą 0

T ´ pK ´ 1q ´

´

Tc p1 ´ 2εq
´β

` 2Tσε´ 3
2 a

1
2

¯
2
3

ÿ

i‰i˚pT q

1

∆
2
3
i pT q

ą 0

T ´ pK ´ 1q ´

´

Tc p1 ´ 2εq
´β

` 2Tσε´ 3
2 a

1
2

¯
2
3

H1,2{3pT q ą 0

a ă

ˆ

pT 1{3
´T´2{3

pK´1qq
3
2

pH1,2{3pT qq
3
2

´ cp1 ´ 2εq´β

˙2

4σ2ε´3

a ă

ˆ

pT 1{3
´pK´1qq

3
2

pH1,2{3pT qq
3
2

´ cp1 ´ 2εq´β

˙2

4σ2ε´3
,

where the last expression is obtained by observing that T ě 1 and for obtaining a more manageable expression, under the

assumption that pT 1{3
´pK´1qq

3
2

pH1,2{3pT qq
3
2

´ cp1 ´ 2εq´β ě 0.

This implies a constraint on the minimum time budget T , which explicit form for the case β P
“

3
2 ,8

˘

is provided in
Lemma D.7
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Case 2: β P
`

1, 32
˘

In this case, we enforce the more restrictive condition:

Tc p1 ´ 2εq
´β

py ´ 1qβ
`

2Tσε´ 3
2 a

1
2

py ´ 1qβ
ě ∆ipT q,

the value for the number of pulls is:

yipaq ď 1 `

˜

Tc p1 ´ 2εq
´β

` 2Tσε´ 3
2 a

1
2

∆ipT q

¸
1
β

. (26)

and the value for a˚ becomes:

T ´
ÿ

i‰i˚pT q

Ni,T ą 0

T ´ pK ´ 1q ´

´

Tc p1 ´ 2εq
´β

` 2Tσε´ 3
2 a

1
2

¯
1
β

ÿ

i‰i˚pT q

1

∆
1
β

i pT q

ą 0

T ´ pK ´ 1q ´

´

Tc p1 ´ 2εq
´β

` 2Tσε´ 3
2 a

1
2

¯
1
β

H1,1{βpT q ą 0

a ă

´

pT 1´1{β
´T´1{β

pK´1qq
β

pH1,1{βpT qqβ
´ cp1 ´ 2εq´β

¯2

4σ2ε´3

a ă

´

pT 1´1{β
´pK´1qq

β

pH1,1{βpT qqβ
´ cp1 ´ 2εq´β

¯2

4σ2ε´3
,

where the last expression is obtained by observing that T ě 1 and for obtaining a more convenient expression, under the
assumption that pT 1´1{β

´pK´1qq
β

pH1,1{βpT qqβ
´ cp1 ´ 2εq´β ě 0.

Also here, this implies a constraint on the minimum time budget T for the case β P
`

1, 32
˘

, which explicit form is provided
in Lemma D.7

Lemma D.7. Under Assumptions 2.1 and 2.2, the minimum time budget T for which the theoretical guarantees of R-UCBE
hold is:

T ě

$

’

&

’

%

´

c
1
β p1 ´ 2εq´1 pH1,1{βpT qq ` pK ´ 1q

¯

β
β´1

if β P p1, 3{2q
´

c
2
3 p1 ´ 2εq´ 2

3β pH1,2{3pT qq ` pK ´ 1q

¯3

if β P r3{2,`8q

and H1,ηpT q :“
ř

i‰i˚pT q
1

∆η
i pT q

for η ď 1.

Proof. Given Corollary 4.2, we want to find the values of T such that a value of a P r0, a˚s should exist. This implies
having a˚ ě 0. Given the value of β, we can derive a lower bound for the time budget T .

Case 1: β P
“

3
2 ,8

˘

:
pT 1{3 ´ pK ´ 1qq

3
2

pH1,2{3pT qq
3
2

´ cp1 ´ 2εq´β ě 0.

From this, it follows:

T ě

´

c2{3p1 ´ 2εq´2{3β pH1,2{3pT qq ` pK ´ 1q

¯3

.

Case 2: β P
`

1, 32
˘

:
pT 1´1{β ´ pK ´ 1qqβ

pH1,1{βpT qqβ
´ cp1 ´ 2εq´β ě 0.

From this, it follows:

T ě

´

c
1
β p1 ´ 2εq´1 pH1,1{βpT qq ` pK ´ 1q

¯

β
β´1

.
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D.3. Proofs of Section 5

In this appendix, we provide the proofs we have omitted in the main paper for what concerns the theoretical results about
R-SR. We recall that with a slight abuse of notation, as done in Section 5, we denote with ∆piqpT q the ith gap rearranged in
increasing order, i.e., we have ∆piqpT q ď ∆pjqpT q for i ă j.

Lemma D.8. For every arm i P JKK and every round t P JT K, let us define:

µiptq “
1

hi,t

Ni,t´1
ÿ

l“Ni,t´1´hi,t`1

µiplq,

if Ni,t ě 2, then µiptq ě µiptq, and if hi,t ď Ni,t{2, it holds that:

µipT q ´ µipNi,tq ď TγiptNi,t{2uq. (27)

Proof. The proof follows trivially from Lemma D.2.

Lemma D.9 (Lower Bound for the Time Budget for R-SR). Under Assumptions 2.1 and 2.2, the R-SR algorithm is s.t. the
minimum value for the horizon T ensuring that @j P JK ´ 1K and @i P JKK:

T γipNj ´ 1q ď
∆pK`1´jqpT q

2
,

is:

T ě c
1

1´β 2
1`β
β´1 logpKq

β
β´1 max

iPJ2,KK

"

i
β

β´1∆
´ 1

β´1

piq pT q

*

.

Proof. First, using Assumption 2.2, we derive an upper bound on the bias between µipT q and µipNjq (r.h.s. of Equation 27),
where Nj is a generic time corresponding to the end of a phase of the R-SR algorithm:

TγiptNj{2uq ď cT tNj{2u´β .

Substituting the definition of Nj into the above equation, we get:

T tNj{2u´β ď T ¨

ˆ

1

logpKq
¨

T ´K

K ` 1 ´ j
´ 1

˙´β

(28)

ď T ¨

ˆ

1

logpKq
¨

T

K ` 1 ´ j
´ 1

˙´β

ď T ¨

ˆ

T

logpKq ¨ pK ` 1 ´ jq

˙´β

. (29)

Requiring that, for a generic Nj , the maximum possible bias is lower than a fraction of the suboptimality gap of arm
K ` 1 ´ j:

cT tNj{2u´β ď
∆pK`1´jqpT q

2

cT

ˆ

T

2logpKq ¨ pK ` 1 ´ jq

˙´β

ď
∆pK`1´jqpT q

2

T 1´β ď
∆pK`1´jqpT q

c21`β ¨
`

logpKq ¨ pK ` 1 ´ jq
˘β

T ě
∆

1
1´β

pK`1´jq
pT q

c
1

1´β 2
1`β
1´β ¨

`

logpKq ¨ pK ` 1 ´ jq
˘

β
1´β

.

Requiring that the above condition holds for all the phases j P JK ´ 1K we have:

T ě max
jPJK´1K

$

&

%

∆
1

1´β

pK`1´jq
pT q

c
1

1´β 2
1`β
1´β ¨

`

logpKq ¨ pK ` 1 ´ jq
˘

β
1´β

,

.

-
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ě c
1

1´β 2´
1`β
1´β logpKq

´
β

1´β max
jPJK´1K

#

ˆ

∆pK`1´jqpT q

pK ` 1 ´ jqβ

˙

1
1´β

+

ě c
1

1´β 2´
1`β
1´β logpKq

´
β

1´β ¨ max
jPJK´1K

"

´

pK ` 1 ´ jqβ∆´1
pK`1´jq

pT q

¯
1

β´1

*

ě c
1

1´β 2´
1`β
1´β logpKq

´
β

1´β max
iPJ2,KK

"

i
β

β´1∆
´ 1

β´1

piq pT q

*

.

Theorem 5.1. Under Assumptions 2.1 and 2.2, if the time budget T satisfies:

T ě 2
β`1
β´1 c

1
β´1 logpKq

β
β´1 max

iPJ2,KK

!

i
β

β´1∆piqpT q
´ 1

β´1

)

, (10)

then, the error probability of R-SR is bounded by:

eT pR-SRq ď
KpK ´ 1q

2
exp

ˆ

´
ε

8σ2
¨

T ´K

logpKqH2pT q

˙

,

where H2pT q :“ maxiPJKK
␣

i∆piqpT q´2
(

and logpKq “ 1
2 `

řK
i“2

1
i .

Proof. The R-SR algorithm makes an error when at the end of a phase j the optimal arm has a pessimistic estimator µ̂1pNjq
is smallest among the arms, formally:

eT pR-SRq ď P
`

Dj P JK ´ 1K Di P JK ` 1 ´ j,KK : µ̂p1qpNjq ă µ̂piqpNjq
˘

ď

K´1
ÿ

j“1

P
`

Di P JK ` 1 ´ j,KK : µ̂p1qpNjq ă µ̂piqpNjq
˘

ď

K´1
ÿ

j“1

K
ÿ

i“K`1´j

P
`

µ̂p1qpNjq ď µ̂piqpNjq
˘

,

where we use a union bound over the phases and over the arms still in the available arm set Xj´1 in each phase. Let us focus
on P

`

µ̂p1qpNjq ď µ̂piqpNjq
˘

. We have that the optimal arm has a smaller pessimistic estimator than the ith one when:

µ̂piqpNjq ě µ̂p1qpNjq

µ̂piqpNjq ´ µ̂p1qpNjq ě 0

µp1qpT q ´ µ̂p1qpNjq ` µ̂piqpNjq ´ µpiqpT q ě ∆piqpT q (30)

µp1qpT q ´ µp1qpNjq
looooooooooomooooooooooon

ďT ¨γp1qpNj´1q

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´µpiqpT q
looomooon

ď´µpiqpNjq

ě ∆piqpT q (31)

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´ µpiqpNjq ě ∆piqpT q ´ T ¨ γp1qpNj ´ 1q (32)
where we added ˘∆piqpT q to derive Equation (30), and added ˘µp1qpNjq to derive Equation (31), we used the results
in Lemma D.8 and from the fact that the reward function is increasing. Since we are with a time budget T satisfying
Theorem D.9, we have that:

Tγp1qpNj ´ 1q ď
∆piqpT q

2
. (33)

Substituting into Equation (32) the above, we have:

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´ µpiqpNjq ě
∆piqpT q

2
,

and the error probability becomes:

eT pR-SRq ď

K´1
ÿ

j“1

K
ÿ

i“K`1´j

P
ˆ

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´ µpiqpNjq ě
∆piqpT q

2

˙

.
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For the previous argumentation, we apply the Azuma-Hoëffding’s inequality to the latter probability:

eT pR-SRq ď

K´1
ÿ

j“1

K
ÿ

i“K`1´j

exp

¨

˚

˝

´

εNj

´

∆piqpT q

2

¯2

2σ2

˛

‹

‚

ď

K´1
ÿ

j“1

j exp

ˆ

´
εNj
8σ2

∆2
pK`1´jq

˙

.

Now, given that:
εNj
8σ2

∆2
pK`1´jq ě

ε

8σ2

T ´K

logpKqpK ` 1 ´ jq∆´2
pK`1´jq

ě
ε

8σ2

T ´K

logpKqH2pT q
,

we finally derive the following:

eT pR-SRq ď
KpK ´ 1q

2
exp

ˆ

´
ε

8σ2

T ´K

logpKqH2pT q

˙

,

which concludes the proof.

D.4. Proofs of Section 6

In this appendix, we provide the proofs of the lower bound on the error probability presented in Section 6.
Theorem 6.1. For every algorithm A, there exists a deterministic SRB satisfying Assumptions 2.1 and 2.2 such that the
optimal arm i˚pT q cannot be identified for some time budgets T unless:

T ě H1,1{pβ´1qpT q “
ÿ

i‰i˚pT q

1

∆ipT q
1

β´1

. (11)

Proof. We define for every suboptimal arm i P J2,KK the suboptimality gap reached at T Ñ `8 as ∆i P p0, 1{2s. We
consider the base instance ν (see Figure 5) in which define the (deterministic) reward functions are defined for β ą 1 and
n P N as:

µ1pnq “
1

2

`

1 ´ n1´β
˘

,

µipnq “ min

$

’

’

’

&

’

’

’

%

ˆ

1

2
` ∆i

˙

`

1 ´ n1´β
˘

looooooooooooomooooooooooooon

“:µ1
ipnq

,
1

2
´ ∆i

,

/

/

/

.

/

/

/

-

i P J2,KK.

Clearly, ν fulfills Assumption 2.1 and it is simple to show that also Assumption 2.1 is satisfied. Indeed, by first-order Taylor
expansion:

γ1pnq “ µ1pn` 1q ´ µ1pnq ď sup
xPrn,n`1s

B

Bx
µ1pxq (34)

“
β ´ 1

2
sup

xPrn,n`1s

x´β “
β ´ 1

2
n´β ,

γipnq “ µipn` 1q ´ µipnq ď sup
xPrn,n`1s

B

Bx
µ1
ipxq

“ pβ ´ 1q

ˆ

1

2
` ∆i

˙

sup
xPrn,n`1s

x´β “ pβ ´ 1qn´β

Thus, we simply take c “ β ´ 1 in Assumption 2.1. Let us define n˚
i the number of pulls in which arm i P J2,KK reaches

the stationary behavior:
ˆ

1

2
` ∆i

˙

`

1 ´ n1´β
˘

“
1

2
´ ∆i ùñ n˚

i “

ˆ

1{2 ` ∆i

2∆i

˙
1

β´1

.
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A sufficient condition on the time budget so that the optimal arm is 1 (i.e., i˚pT q “ 1) is given by T ě T˚, where T˚ is the
point in which the curve of the optimal arm intersects that of any of the suboptimal arms i P J2,KK:

1

2
p1 ´ T 1´βq “

1

2
´ ∆i ùñ T˚ :“ max

iPJ2,KK

ˆ

1

2∆i

˙
1

β´1

.

Consider now the regime in which T ě T˚. We proceed by contradiction. Suppose that there exists an algorithm A that
identifies the optimal arm such that on the bandit ν and that the suboptimal arm ī P J2,KK has an expected number of pulls
satisfying:

E
µ

rNīpT qs ă n˚
ī . (35)

Consider now the alternative bandit ν 1 constructed from ν by keeping all the arms unaltered, except for arm ī that is made
optimal:

µ1
īpnq “

ˆ

1

2
` ∆ī

˙

`

1 ´ n1´β
˘

,

µ1
jpnq “ µjpnq, j P JKKzt̄iu.

Clearly the bandit ν 1 fulfills Assumption 2.1 and, with calculations similar to those in Equation (34), we conclude that it
satisfies Assumption 2.2 with c “ β ´ 1. A sufficient condition on T for which arm ī is optimal in bandit ν 1 is that T ě T2
in which the curve of arm ī intersects that of the arms j such that ∆j ě ∆ī:

ˆ

1

2
` ∆ī

˙

p1 ´ T 1´βq “
1

2
´ ∆j ùñ T ě max

jPJKK:∆jě∆ī

ˆ

1{2 ` ∆ī

∆ī ` ∆j

˙
1

β´1

.

Thus, we take:

T2 :“

ˆ

1{2 ` ∆ī

2∆ī

˙
1

β´1

.

Clearly, for T˚ ě T2 since all the suboptimality gaps are at most 1{2. Thus, we continue in the regime T ě T˚. Since
µ1
ī
pnq “ µīpnq if n ă n˚

i , it follows that under condition (35), algorithm A cannot distinguish between the two bandits and,
consequently, cannot identify the optimal arm on bandit ν 1. Thus, it must follow, from the contradiction, that:

E
ν

rNīpT qs ě n˚
ī .

By summing over ī P J2,KK, we obtain:

T ě
ÿ

īPJ2,KK

E
ν

rNīpT qs ě
ÿ

īPJ2,KK

n˚
ī “

ÿ

īPJ2,KK

ˆ

1{2 ` ∆ī

2∆ī

˙
1

β´1

ě
ÿ

īPJ2,KK

ˆ

1

4∆ī

˙
1

β´1

“: T :.

Thus, we have found an interval T P rT˚, T :s in which identification cannot be performed. Notice that it is simple to
enforce that T : ą T˚ with a sufficiently large number of arms K ě 2

1
β´1 .

To conclude, we need to relate ∆i with ∆ipT q and ∆1
ipT q. We perform the computation for both the instances ν and ν 1, in

the regime T ě 2
1

β´1T˚. Let us start with ν:

∆ipT q “
1

2
p1 ´ T 1´βq ´

ˆ

1

2
´ ∆i

˙

“ ∆i ´
1

2
T 1´β ě

∆i

2
, i P J2,KK

We move to ν 1:

∆1
1pT q “

ˆ

1

2
` ∆ī

˙

p1 ´ T 1´βq ´
1

2
p1 ´ T 1´βq “ ∆īp1 ´ T 1´βq ě

∆ī

2
,

∆1
ipT q “

ˆ

1

2
` ∆ī

˙

p1 ´ T 1´βq ´

ˆ

1

2
´ ∆i

˙

ě ∆i ´
1

2
T 1´β ě

∆i

2
, i P J2,KKzt̄iu.

Thus, a necessary condition for the correct identification of the optimal arm is:

T ě
ÿ

īPJ2,KK

ˆ

1{2 ` 2∆īpT q

4∆īpT q

˙
1

β´1

ě
ÿ

īPJ2,KK

ˆ

1

8∆īpT q

˙
1

β´1

“ 2´ 1
β´1T :.

Similarly, with K ě 8
1

β´1 , we can enforce 2´ 1
β´1T : ě 2

1
β´1T˚.

Theorem 6.2. For every algorithm A run with a time budget T fulfilling Equation (11), there exists a SRB satisfying
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µ1pnq“µ1
1pnq

µi

n˚

i

1{2

µipnq

T˚ n

µ1

i
pnq

∆1

i
pT q

∆ipT q

Figure 5. Instances ν and ν 1 of SRB used in Theorem 6.1 and Theorem 6.2.

Assumptions 2.1 and 2.2 such that the error probability is lower bounded by:

eT pAq ě
1

4
exp

ˆ

´
8T

σ2H1,2pT q

˙

,

where:

H1,2pT q :“
ÿ

i‰i˚pT q

1

∆2
i pT q

.

Proof. The proof imports the technique from (Kaufmann et al., 2016, Theorem 16 and 17). We consider the Gaussian bandit
µ with variance σ2 equal for all the arms and the expected reward µipnq as in the base instance of proof of Theorem 6.1
(see Figure 5). Let us define by convention ∆1 “ ∆2. Let A be an algorithm, it is simple to show that there exists an arm
ī P JKK, such that:

E
µ

rNīpT qs ď
T

H`
2 ∆2

ī

,

where H`
2 “

řK
i“1 ∆

´2
i . We consider two cases. Suppose that ī “ 1 and we construct the alternative Gaussian bandit ν 1

with the same variance σ2 and the expected rewards defined as follows:

µ1
1pT q “ min

"

1

2

`

1 ´ n1´β
˘

,
1

2
´ 2∆1

*

,

µ1
ipT q “ µipT q, i P J2,KK.

For T sufficiently large as in Theorem 6.1, while in bandit ν the optimal arm is 1, in bandit ν 1 the optimal arm is 2. Instead,
suppose that ī ‰ 1 and we construct the alternative Gaussian bandit ν 1 with the same variance σ2 and the expected rewards
defined as follows:

µ1
īpT q “

ˆ

1

2
` ∆ī

˙

p1 ´ n1´βq,

µ1
ipT q “ µipT q, i P JKKzt̄iu.

For T sufficiently large as in Theorem 6.1, while in bandit ν the optimal arm is 1, in bandit ν 1 the optimal arm is ī. Let us
denote with νiptq the distribution of the reward at time t for arm i. By the Bretagnolle-Huber’s inequality, we obtain:

maxteT pνq, eT pν 1qu ě
1

4
exp

˜

´E
ν

«

T
ÿ

t“1

1tIt “ īuDKLpνīptq,ν
1
īptqq

ff¸

“
1

4
exp

˜

´E
ν

«

T
ÿ

t“1

1tIt “ īu
pµīpNī,tq ´ µ1

ī
pNī,tqq2

2σ2

ff¸

ě
1

4
exp

ˆ

´E
ν

rNīpT qs
p2∆īq

2

2σ2

˙

. “
1

4
exp

ˆ

´
2T

σ2H`
2

˙
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ě
1

4
exp

ˆ

´
2T

σ2H`
2

˙

,

where we observed that for every n P JT K, we have |µīpnq ´ µ1
ī
pnq| ď 2∆ī. To conclude, we relate H`

2 with H1,2pT q.
Using an argument analogous to that of the last part of the proof Theorem 6.1 it is simple to observe that, for sufficiently
large T , we have ∆i ď 2∆ipT q, from which we have:

H`
2 “

K
ÿ

i“1

∆´2
i “ ∆´2

1 `

K
ÿ

i“2

∆´2
i ě

K
ÿ

i“2

∆´2
i ě

1

4

K
ÿ

i“2

∆ipT q´2 “
1

4
H1,2pT q.

D.5. Auxiliary Lemmas

Lemma D.10 (Höeffding-Azuma’s inequality for weighted martingales). Let F1 Ă ¨ ¨ ¨ Ă Fn be a filtration andX1, . . . , Xn

be real random variables such that Xt is Ft-measurable, ErXt|Ft´1s “ 0 (i.e., a martingale difference sequence), and

ErexppλXtq|Ft´1s ď exp
´

λ2σ2

2

¯

for any λ ą 0 (i.e., σ2-subgaussian). Let α1, . . . , αn be non-negative real numbers.
Then, for every κ ě 0 it holds that:

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“1

αtXt

ˇ

ˇ

ˇ

ˇ

ˇ

ą κ

¸

ď 2 exp

ˆ

´
κ2

2σ2
řn
t“1 α

2
i

˙

.

Proof. For a complete demonstration of this statement, we refer to Lemma C.5 of Metelli et al. (2022).

Lemma D.11. Let β ą 1, then it holds that:

H1,1{βpT qβ{pβ´1q ě H1,1{pβ´1qpT q.

Proof. We prove the equivalent statement, being β ą 1:
H1,1{pβ´1qpT qpβ´1q{β ď H1,1{βpT q.

Recalling that the function p¨qpβ´1q{β is subadditive, being pβ ´ 1q{β ă 1, we have:

H1,1{pβ´1qpT qpβ´1q{β “

¨

˝

ÿ

i‰i˚pT q

1

∆ipT q1{pβ´1q

˛

‚

pβ´1q{β

ď
ÿ

i‰i˚pT q

1

∆ipT q1{β
“ H1,1{βpT q.

E. Theoretical Analysis of a baseline: RR-SW
In this appendix, we provide the theoretical analysis for the algorithm Round Robin Sliding Window (RR-SW), as
it represents the most intuitive baseline for this setting. First, we need to formalize the algorithm, whose pseudo-code is
provided in Algorithm 3.

Algorithm 3: RR-SW.
Input :Time budget T , Number of arms K,

Window size ε
1 Initialize t Ð 1

2 Estimate N Ð T
K

3 for i P JKK do
4 for l P JNK do
5 Pull arm i and observe xt

6 t Ð t ` 1
7 end
8 Update µ̂ipNq

9 end
10 Recommend pI˚

pT q P argmaxiPJKK µ̂ipNq
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Algorithm The algorithm takes as input the time budget T and the number of arms K. Then, it computes the number of
pulls N “ T

K we need to perform for each arm. After having computed the number of pulls, RR-SW plays all the arms
N times in a round-robin fashion. After the N pulls, it estimates µ̂ipNq using the last εN samples (i.e., the ones from
p1 ´ εqN to N ). Finally, it recommends I˚pT q, corresponding to the one which the highest estimated µ̂ipNq.

Error probability bound Before presenting the error probability bound for RR-SW, we need to introduce ∆p2qpT q, which
represents the minimum suboptimality gap at a given time budget T . It is actually the gap between the optimal arm and the
first sub-optimal one. Formally: ∆p2qpT q :“ mini‰i˚pT q t∆ipT qu. Given this quantity, the error probability for the RR-SW
algorithm can be bounded as follows.

Theorem E.1. Under Assumptions 2.1 and 2.2, considering a time budget T satisfying:

T ě 2
1

β´1 c
1

β´1 p1 ´ εq´
β

β´1 K
β

β´1 ∆
´ 1

β´1

p2q
pT q, (36)

the error probability of RR-SW is bounded by:

eT pRR-SWq ď K exp

ˆ

´
ε T

8 K σ2
∆2

p2qpT q

˙

.

Some comments are in order. First, it is worth noting how, as expected, by increasing the number of samples considered in
the estimator, we reduce the error probability eT p¨q at the cost of a more strict constraint on the time budget T . This is due
to the request that the arms must be already separated at the beginning of the window we use to estimate the µ̂ipNq. Second,
the error probability scales as an (inverse) function only of the smallest suboptimality gap ∆p2qpT q.

E.1. Proofs

Before demonstrating Theorem E.1, we need to introduce the following technical lemma.

Lemma E.2 (Lower Bound for the Time Budget). Under Assumptions 2.1 and 2.2, the RR-SW algorithm is s.t. the minimum
value for the horizon T ensuring that @i P JKK:

T γipp1 ´ εqpN ´ 1qq ď
∆p2qpT q

2
,

where N “ T
K and ε P p0, 1q is:

T ě 2
1

β´1 c
1

β´1 p1 ´ εq´
β

β´1 K
β

β´1 ∆
´ 1

β´1

p2q
pT q.

Proof. First of all, we recall that N “ T
K is the number of times each arm has been pulled, considering K arms by running

a round-robin procedure until we reach a time budget T . We consider the pessimistic estimator described in Section 3.
Considering such an estimator and the RR-SW algorithm, which runs a round-robin procedure, what we get at the end of the
time budget is a sliding-window estimator for the value of µipT q, which will include the lasts p1 ´ εq TK samples. In this
lemma, we want to find the minimum value of the time budget T for which, at the first samples we consider, the real process
of the arms are separated by at least ∆ipT q

2 . In this estimator, we consider samples in the range of rp1 ´ εq TK ,
T
K s, so we

need to ensure, given Assumption 2.1, that:

T γipp1 ´ εqpN ´ 1qq ď
∆p2qpT q

2
. (37)

Given that, for Assumptions 2.1 and 2.2, it holds:
T γipp1 ´ εqpN ´ 1qq ď T γipp1 ´ εqNq

“ T γi

ˆ

p1 ´ εq
T

K

˙

ď T c

ˆ

p1 ´ εq
T

K

˙´β

. (38)

By introducing the term derived in Equation (38) into Equation (37) we obtain:

T c

ˆ

p1 ´ εq
T

K

˙´β

ď
∆p2qpT q

2
.
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This implies that the minimum time budget T which guarantees the initial condition of Equation (38) is:

T ě 2
1

β´1 c
1

β´1 p1 ´ εq´
β

β´1 K
β

β´1 ∆
´ 1

β´1

p2q
pT q,

where ∆p2qpT q is the minimum suboptimality gap (∆p2qpT q “ mini‰i˚pT qt∆ipT qu).

Now, we can find the error probability eT pRR-SWq, which will hold for all the time budgets which satisfy the condition of
Lemma E.2.

Theorem E.1. Under Assumptions 2.1 and 2.2, considering a time budget T satisfying:

T ě 2
1

β´1 c
1

β´1 p1 ´ εq´
β

β´1 K
β

β´1 ∆
´ 1

β´1

p2q
pT q, (36)

the error probability of RR-SW is bounded by:

eT pRR-SWq ď K exp

ˆ

´
ε T

8 K σ2
∆2

p2qpT q

˙

.

Proof. The RR-SW algorithm makes an error in predicting the best arm when, at the end of the process (at T total pulls), the
optimal arm has a pessimistic estimator µ̂1pNq that is not the highest among the arms (we consider w.l.o.g. that the best arm
is the arm 1). Formally:

eT pRR-SWq “ P pDi P JKK : µ̂1pNq ă µ̂ipNqq

ď
ÿ

iPJKK

P pµ̂1pNq ă µ̂ipNqq .

Let us focus on a single arm i, where we want to upper bound the probability that P pµ̂1pNq ă µ̂ipNqq. Let us focus on the
term inside the probability:

µ̂ipNq ě µ̂1pNq

µ̂ipNq ´ µ̂1pNq ě 0

µ1pT q ´ µ̂1pNq ` µ̂ipNq ´ µipT q ě ∆ipT q (39)
µ1pT q ´ µ1pNq
loooooooomoooooooon

ďT ¨γ1pN´1q

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´µipT q
loomoon

ď´µipNq

ě ∆ipT q (40)

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´ µipNq ě ∆ipT q ´ T ¨ γ1pN ´ 1q (41)
where we added ˘∆ipT q to derive Equation (39), and added ˘µ1pNq to derive Equation (40), we used the results in
Lemma D.8 and from the fact that the reward function is increasing. Considering a time budget T satisfying Theorem E.2,
and ∆ipT q ě ∆p2qpT q, @i P JKK, we have that:

Tγ1pN ´ 1q ď
∆ipT q

2
. (42)

Equation (42) holds since we are considering a time budget T which satisfies a more restrictive condition (we are considering
a time budget at which this separation already holds for p1 ´ εqN , so it also holds now).

Substituting Equation (42) into Equation (41) the above, we have:

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´ µipNq ě
∆ipT q

2
,

and the error probability becomes:

eT pRR-SWq ď

K
ÿ

i“1

P
ˆ

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´ µipNq ě
∆ipT q

2

˙

.

For the previous argumentation, we apply the Azuma-Hoëffding’s inequality and the union bound:

eT pRR-SWq ď

K
ÿ

i“1

exp

¨

˚

˝

´
εN

´

∆ipT q

2

¯2

2σ2

˛

‹

‚

ď K exp

ˆ

´
εT

8Kσ2
∆2

p2qpT q

˙

.
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b c ψ

Arm 1 37 1 1
Arm 2 10 0.88 1
Arm 3 1 0.78 1
Arm 4 10 0.7 1
Arm 5 20 0.5 1

Table 2. Numerical values of the parameters characterizing the functions for the synthetically generated setting.

F. Experimental Details
In this section, we provide all the details about the presented experiments.

The payoff functions characterizing the arms shown in Figure 2 belong to the family:

F “

"

fpxq “ c

ˆ

1 ´
b

pb1{ψ ` xqψ

˙*

,

where c, ψ P p0, 1s and b P r0,`8q. Note that, by construction, all the functions laying in F satisfy the Assumptions 2.1
and 2.2. In particular, the largest value of β satisfying Assumption 2.2, for the setting presented in Section 7, is β “ 1.3. In
Table 2, we report the value of the parameters characterizing the function employed in the the synthetically generated setting
presented in the main paper.

F.1. Parameters Values for the Algorithms

This section provides a detailed view of the parameter values we employed in the presented experiments. More specifically,
the parameters, which may still depend on the time budget T and on the number of arms K, are set as follows:

• UCB-E: for the exploration parameter a, we used the optimal value, i.e., the one that minimizes the upper bound of the
error probability, as prescribed in Audibert et al. (2010), formally:

a “
25pT ´Kq

36H1
,

where H1 “
ř

i‰i˚pT q
1
∆2

i
;

• R-UCBE: we used the value prescribed by Corollary 4.2 where we set the value β “ 1.3;

• ETC and Rest-Sure: we set ρ “ 0.8 and U “ 1 as suggested by Cella et al. (2021).

F.2. Running Time

The code used for the results provided in this section has been run on an Intel(R) I7 9750H @ 2.6GHz CPU with 16 GB of
LPDDR4 system memory. The operating system was MacOS 13.1, and the experiments were run on Python 3.10. A run of
R-UCBE over a time budget of T “ 3200 takes « 0.07 seconds (on average), while a run of R-SR takes « 0.06 seconds
(on average).

G. Additional Experimental Results
In this section, we present additional results in terms of empirical error eT of R-UCBE, R-SR, and the other baselines
presented in Section 7.

G.1. Challenging scenario

Here we test the algorithms on a challenging scenario in which we consider K “ 3 arms whose increment changes abruptly.
The setting is presented in Figure 6a. The results corresponding to such a setting are presented in Figure 6b. In this case, the
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(b) Results on synthetic setting.

Figure 6. Challenging scenario in which the arm reward increment rate changes abruptly.

last time the optimal arm does not change anymore is T “ 400. Similarly to the synthetic setting presented in the main
paper, we have two different behaviors for time budgets T ă 400 and T ą 400. For short time budgets, the algorithm
providing the best performance is Rest-Sure, and the second best is R-UCBE. Conversely, for time budgets T ą 550
R-UCBE provides a correct suggestion in most of the cases providing an error eT pR-UCBEq ă 0.01. Instead, Rest-Sure
is not consistently providing reliable suggestions. This is allegedly due to the fact that such an algorithm has been designed
to work in less general settings than the one we are tackling. Even in this case, the R-SR starts providing a small value for
the error probability after R-UCBE does, at T « 1000. However, it is still better behaving than the other baseline algorithms.
Note that Rest-Sure has a peculiar behavior. Indeed, it seems that even for large values of the time budget, it does not
consistently suggest the optimal arm (i.e., the error probability does not go to zero). This is likely due to the nature of the
parametric shape enforced by the algorithm, which may result in unpredictable behaviors when it does not reflect the nature
of the real reward functions.

G.2. Sensitivity Analysis on the Noise Variance

In what follows, we report the analysis of the robustness of the analyzed algorithms as noise standard deviation σ changes in
the collected samples. The setting we considered is the one described in Section 7. The results are provided in Figure 7.
Let us focus on the performances of the R-UCBE algorithm. For small values of the standard deviation (σ ă 0.01), we
have the same behavior in terms of error probability, i.e., a progressive degradation of the performances for time budget
T “ 150. Indeed, at this time budget, the expected rewards of 3 arms are close to each other, and determining the optimal
arm is a challenging problem. However, the performances are better or equal to all the other algorithms even at this point.
Conversely, for values of the standard deviation σ ě 0.05, the performance of R-UCBE starts to degrade, with behavior for
σ “ 0.5 which is constant w.r.t. the chosen time budget with a value of eT pR-UCBEq “ 0.8. This suggests that such an
algorithm suffers in the case the stochasticity of the problem is significant. Let us focus on R-SR. This algorithm does not
change its performances w.r.t. changes in terms of σ. Indeed, only for σ “ 0.5, we have that it does not provide an error
probability close to zero for time budget T ą 1000. However, excluding R-UCBE, we have that the R-SR algorithm is the
best/close to the best performing algorithm. This is also true in the case of σ “ 0.5, in which the R-UCBE fails in providing
a reliable recommendation for the optimal arm with a large probability.

G.3. Real-world Experiment on IMDB dataset

Description We validate our algorithms and the baselines on an AutoML task, namely an online best model selection
problem with a real-world dataset. We employ the IMDB dataset, made of 50, 000 reviews of movies (scores from 0
to 10). We preprocessed the data as done by Metelli et al. (2022), and run the algorithms for time budgets T P T :“
t500, 1000, . . . , 15000, 20000, 30000u. A graphical representation of the reward (in this case, represented by the accuracy)
of the different models is presented in Figure 8. Since, in this case, we only had a single realization to estimate the error
probability ēT pAq, we report the success rate RpAq instead, i.e., the ratio between the number of times an algorithm provides
a correct suggestion and the number of budget values we considered, formally defined as RpAq :“ 1

|T |

ř

TPT 1tÎ˚ “ i˚u

(the larger, the better).
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(b) σ “ 0.005
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102 102.5 103 103.5

0

0.2

0.4

0.6

0.8

1

Time Budgets T

E
m
p
ir
ic
al

E
rr
or

e T

R-UCBE

R-SR

RR

RR-SW

UCB-E

SR

Prob-1

ETC

Rest-Sure

(f) σ “ 0.5

Figure 7. Empirical error probability for the synthetically generated setting, with different values of the noise standard deviation σ.
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Figure 8. Rewards for the arms of the IMDB experiments.

T
RpUq500 1000 2000 3000 4000 5000 7000 10000 15000 20000 30000

Optimal Arm 5 5 2 2 2 2 2 2 2 2 2

A
lg

or
ith

m
s

R-UCBE (ours) 6 5 2 5 2 2 2 2 2 2 2 9{11
R-SR (ours) 5 5 5 5 5 5 5 5 2 2 2 5{11

RR 5 5 5 5 5 5 5 5 5 5 5 2{11
RR-SW 5 5 5 5 5 5 5 5 5 2 2 4{11
SR 5 5 5 5 5 5 5 5 5 5 2 3{11

UCB-E 5 5 5 5 5 5 5 5 5 5 5 2{11
Prob-1 1 5 2 5 5 5 5 1 5 6 2 3{11
ETC 5 5 5 5 5 5 5 5 5 5 2 3{11

Rest-Sure 6 5 2 2 2 1 0 2 5 0 2 6{11

Table 3. Optimal arm for different time budgets on the IMDB dataset (first row) and corresponding recommendations provided by the
algorithms (second to last row). In the last column, we compute the corresponding success rate.

Results The results are reported in Table 3. The algorithm with the largest success rate RpUq is the R-UCBE, while R-SR
provides the third best success rate. Moreover, Rest-Sure, the only algorithm providing a success rate larger than R-SR,
has issues with large time budgets since for T ě 5000 is able to provide only 2 correct guesses of the optimal arm over 6
attempts. Conversely, our algorithms progressively provide more and more correct guesses as the time budget T increases.
The above results on a real-world dataset corroborate the evidence presented above that the proposed algorithms outperform
state-of-the-art ones for the BAI problem in SRB.


