
To Believe or Not to Believe Your LLM: Iterative
Prompting for Estimating Epistemic Uncertainty

Yasin Abbasi Yadkori
Google DeepMind

yadkori@google.com

Ilja Kuzborskij
Google DeepMind
iljak@google.com

András György
Google DeepMind

agyorgy@google.com

Csaba Szepesvári
Google DeepMind and University of Alberta

szepi@google.com

Abstract

We explore uncertainty quantification in large language models (LLMs), with
the goal to identify when uncertainty in responses given a query is large. We
simultaneously consider both epistemic and aleatoric uncertainties, where the
former comes from the lack of knowledge about the ground truth (such as about
facts or the language), and the latter comes from irreducible randomness (such
as multiple possible answers). In particular, we derive an information-theoretic
metric that allows to reliably detect when only epistemic uncertainty is large, in
which case the output of the model is unreliable. This condition can be computed
based solely on the output of the model obtained simply by some special iterative
prompting based on the previous responses. Such quantification, for instance,
allows to detect hallucinations (cases when epistemic uncertainty is high) in both
single- and multi-answer responses. This is in contrast to many standard uncertainty
quantification strategies (such as thresholding the log-likelihood of a response)
where hallucinations in the multi-answer case cannot be detected. We conduct a
series of experiments which demonstrate the advantage of our formulation. Further,
our investigations shed some light on how the probabilities assigned to a given
output by an LLM can be amplified by iterative prompting, which might be of
independent interest.

1 Introduction

Language models too occasionally suffer from hallucinations, or responses with low truthfulness, that
do not match our own common or textbook knowledge (Bubeck et al., 2023; Gemini Team, Google,
2023). At the same time, since LLMs work by modeling a probability distribution over texts, it is
natural to view the problem of truthfulness through the lens of statistical uncertainty. In this paper
we explore uncertainty quantification in LLMs. We distinguish between two sources of uncertainty:
epistemic and aleatoric (Wen et al., 2022; Osband et al., 2023; Johnson et al., 2024). Epistemic
uncertainty arises from the lack of knowledge about the ground truth (e.g., facts or grammar in the
language), stemming from various reasons such as insufficient amount of training data or model
capacity. Aleatoric uncertainty comes from irreducible randomness in the prediction problem, such
as multiple valid answers to the same query. Hence, truthfulness can be directly analyzed via looking
at the epistemic uncertainty of a model in the sense that when the epistemic uncertainty is low, the
model predictions must be close to the ground truth.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Rigorously identifying when (either) uncertainty is small1 is notoriously hard, especially in deep
neural networks (Blundell et al., 2015; Antorán et al., 2020). This is because we generally lack
guarantees about learning the ground truth (consistency), or even a weaker guarantee about how large
the variance of a learning algorithm is. At the same time, there exist many heuristic approaches
for uncertainty quantification based on simply looking at the log-likelihood of responses (Kadavath
et al., 2022), estimating entropy (Kuhn et al., 2023), ensembling (Lakshminarayanan et al., 2017b;
Dwaracherla et al., 2023; Osband et al., 2023), or sometimes even more principled formulations,
such as conformal prediction (Angelopoulos et al., 2023; Ravfogel et al., 2023; Yadkori et al., 2024)
(which however come with strong assumptions).

To the best of our knowledge, a common limitation of these approaches is that they are only
meaningful in problems where there exists a single correct response (e.g. label) as they aim for
detecting if one response is dominant (or multiple responses with the same meaning), that is, if
there is only little uncertainty in the prediction. On the other hand, when multiple responses are
correct, that is, there is aleatoric uncertainty in the ground truth, simply estimating the amount of
uncertainty in the LLM’s output is insufficient, as the perfect (ground-truth) predictor may have large
aleatoric uncertainty and no epistemic uncertainty, while a completely useless predictor may have
large epistemic uncertainty only, but the total amount of uncertainty of the two predictors might be
the same.

Contributions. In this paper we address the above problem directly, and design methods to decou-
ple epistemic and aleatoric uncertainty, allowing us to effectively deal with multi-response queries.
Rather than trying to quantify how small epistemic uncertainty can be, we aim to identify when only
the epistemic uncertainty is large, in which case we can suspect that the response is hallucinated.2

As a starting point we make a simple observation: If multiple responses are obtained to the same
query from the ground truth (the language), they should be independent from each other, that is, in
probabilistic interpretation, the joint distribution of these multiple responses, for a fixed query, must
be a product distribution.

This observation can be used to measure how far the language model can be from the ground truth.
The sequential model implemented by a language model allows us to construct a joint distribution
over multiple responses, which is done through iterative prompting of an LLM based on its previous
responses and the application of the chain rule of probability: first the model is asked to provide
a response given a query, then to provide another response given the query and the first response,
then a third one given the query and the first two responses, an so on. This is in contrast to some of
the earlier works that approached decoupling epistemic and aleatoric uncertainty for classification
problems by training the model with label pairs (or tuples) (Wen et al., 2022; Johnson et al., 2024).

So, if the response to a prompt containing the query and previous responses is insensitive to the
previous responses, we have the desired independence and the LLM-derived joint distribution can be
arbitrarily close to the ground truth. On the other hand, if the responses within the context heavily
influence new responses from the model then, intuitively speaking, the LLM has low confidence
about the knowledge stored in its parameters, and so the LLM-derived joint distribution cannot be
close to the ground truth. As more responses are added to the prompt, this dependence can be made
more apparent, allowing to detect epistemic uncertainty via our iterative prompting procedure.

Interestingly, as we will see in Section 3, we can force an LLM to provide a desired (possibly
incorrect) response by adding this response repeatedly to the prompt. This phenomenon is then
further investigated from the viewpoint of a transformer LLM architecture in Section 4.

The iterative prompting procedure then leads to the following main contributions:

(i) Based on the above iterative prompting procedure, we derive an information-theoretic metric
of epistemic uncertainty in LLMs (Section 5), which quantifies the gap between the LLM-derived
distribution over responses and the ground truth. This gap is insensitive to aleatoric uncertainty,
allowing to quantify epistemic uncertainty even in cases where there are multiple valid responses.

(ii) We derive a computable lower bound on this metric, which turns out to be a mutual information
(MI) of an LLM-derived joint distribution over responses, and propose a finite-sample estimator for it.

1For instance, by saying that predictions live in a confidence set with high probability.
2In technical terms this corresponds to giving a lower bound, rather than an upper bound, on the quantity

capturing the uncertainty.

2

We prove that this finite-sample MI estimator sometimes suffers only a negligible error even though
LLMs and their derived joint distributions are defined over potentially infinite supports (all possible
strings in a language).

(iii) We discuss an algorithm for hallucination detection based on thresholding a finite-sample MI
estimator, where the threshold is computed automatically through a calibration procedure. We show
experimentally on closed-book open-domain question-answering benchmarks (such as TriviaQA,
AmbigQA, and a dataset synthesized from WordNet) that when the data is mostly composed of
either single-label or multi-label queries, our MI-based hallucination detection method surpasses a
naive baseline (which is based on the likelihood of the response), and achieves essentially similar
performance to that of a more advanced baseline which is based on the entropy of the output as a
proxy for uncertainty. However, on datasets which contain both single- and multi-label samples at
the same time, our method also significantly outperforms the entropy-based baseline, by achieving a
much higher recall rate on samples with high output entropy while maintaining similar error rates.

(iv) Focusing on a single self-attention head, we identify a simple mechanistic explanation for how
the model output can be changed through iterative prompting using previous responses, as discussed
earlier. Suppose that the prompt is composed from a query and a repeated element (e.g., a possibly
wrong answer). If the query lies within the space spanned by the large principal components of a
key-query matrix product, then the output will be generated according to the knowledge extracted
from the training data (now stored in a value matrix). On the other hand, if the query has little overlap
with the large principal components, then the repeated element is likely to be copied from the prompt.

2 Preliminaries
Conditional distributions and prompting. Let X be the space of finite text sequences, that is
X ⊂ Σ∗ where Σ is a finite alphabet (and Σ∗ =

⋃∞
n=1 Σn). Moreover, consider a family of

conditional distributions P = {µ : X → [0, 1] |
∑
x∈X µ(x | x′) = 1 ∀x′ ∈ X}. In the following,

we let P ∈ P be the ground-truth conditional probability distribution over text sequences (responses)
given a prompt, and we let Q ∈ P be the learned language model. Given a fixed query x ∈ X and
possible responses Y1, . . . , Yt, we define a family of prompts F = {Ft : X → X | t ∈ N}, such that
Ft(x, Y1, . . . , Yt) is defined as:

Consider the following question: Q: x
One answer to question Q is Y1. Another answer to question Q is
Y2.[. . .] Another answer to question Q is Yt.
Provide an answer to the following question:
Q: x. A:

Information-theoretic notions. Let µ, µ′ be distributions supported on set Z = Z1 × · · · × Zn
where (Zi)i is a collection of countable sets. The entropy of a distribution µ is defined as H(µ) =∑

z∈Z µ(z) ln(1/µ(z)).3 If µ, µ′ are such that µ′(z) = 0 only if µ(z) = 0, we have a Kullback-
Leibler divergence between them defined as DKL(µ, µ′) =

∑
z∈Z µ(z) ln(µ(z)/µ′(z)). For any

z ∈ Z , we denote z\i = (z1, . . . , zi−1, zi+1, . . . , zn), and the marginal of the ith coordinate of µ
is given by µi(z) =

∑
z\i∈Zn−1 µ(z). The product distribution of the marginals of µ is given by

µ⊗(z) =
∏n
i=1 µi(z), and the mutual information of µ is defined as I(µ) = DKL(µ, µ⊗).

3 Probability amplification by iteratively prompting

In this section we demonstrate that, as mentioned in the introduction, repeating possible responses
several times in a prompt can have pronounced effects on the output of a language model. Consider
x =“What is the capital of the UK?” and Y1 = · · · = Yt =“Another answer to question Q is Paris.”
Here we can repeat the sentence “Another answer to question Q is Paris.” an arbitrary number of
times. Although the number of repetitions changes the behavior of the LLM, the correct response
maintains a significant probability: as Figure 1 shows, the conditional normalized probability4 of

3Following the usual convention, we define 0 ln 0 = 0 and a ln(a/0) = ∞ for any a > 0.
4To obtain conditional normalized probabilities, we consider the probabilities of the two responses, and

normalize them so that they add to 1.

3

Q: What is the capital of the UK? A:
London (≈ 1.0) and Paris (1.29 ×
10−10).

Q: Who was the first US president?
A: George Washington (0.999) and
Abraham Lincoln (3.1× 10−06).

Q: Who is the author of The Grapes
of Wrath? A: John Steinbeck (≈
1.0) and Ernest Hemingway (1.34×
10−10).

Q: What is the largest country in the
world? A: Russia (0.999) and United
Kingdom (9.02× 10−06).

Figure 1: Single-label queries with low epistemic uncertainty: Conditional normalized probability of
the correct completion given repetitions of an incorrect response. Each figure shows the query and the
considered two responses with their initial probabilities, as a response for the query, in parentheses
(the first response is the correct one).

Q: What is the national instrument of
Ireland? A: The harp (0.936) and
Uilleann pipes (0.063).

Q: Which actor became M in the
Bond film Skyfall? A: Ralph Fiennes
(0.651) and Judi Dench (0.348).

Q: Which can last longer with out wa-
ter a camel or a rat? A: A rat (0.538)
and A camel (0.461).

Q: If Monday’s child is fair of face
what is Saturday’s child? A: Work
hard for a living (0.093) and Full of
grace (0.906).

Figure 2: Single-label queries with high epistemic uncertainty: Conditional normalized probability of
the correct completion given repetitions of an incorrect response. Each figure shows the query and the
considered two responses with their initial probabilities, as a response for the query, in parentheses
(the first response is the correct one).

Q: Name a city in the UK A: London
(0.958) and Manchester (0.041).

Q: Name a yellow fruit A: Banana
(0.715) and Lemon (0.284).

Q: Name an alcoholic drink, A: Wine
(0.685) and Beer (0.314).

Q: Name a ball game that is played
by more than 5 players A: Volleyball
(0.542) and Soccer (0.457).

Figure 3: Multi-label queries with aleatoric uncertainty: Conditional normalized probability of the
first of the two provided responses, both of which are correct, given repetitions of the second response
in the prompt. Each figure shows the query and the considered two responses with their initial
probabilities, as a response for the query, in parentheses.

the correct response, “London”, reduces from approximately 1 to about 96% as we increase the
number of repetitions of the incorrect response to 100. Figure 1 shows 3 more examples where, with
initially low epistemic uncertainty in the response to the query (the aleatoric uncertainty is also low as
we consider single-response queries), the correct response maintains a significant or non-negligible
probability even in the presence of repetitions of incorrect information, while the probability of
predicting the latter is increased.

Next, we consider a queries for which the model is more uncertain. For the prompt “What is the
national instrument of Ireland?”, we observe that responses “The harp” and “Uilleann pipes” both
have significant probabilities (the first answer is the correct one). This time, by incorporating the
incorrect response in the prompt multiple times, the probability of the correct answer quickly collapses
to near zero, as shown in Figure 2, with significant epistemic uncertainty.

Finally, we consider multi-label queries for which the LLM confidently knows a correct answer. This
time, by incorporating a potential response in the prompt, the probabilities of other correct answers
stay relatively large. Figure 3 shows four such examples.

4

4 Explanation through the lens of in-context vs. in-weight learning

The sensitivity of the response of an LLM to extra in-context information, as observed above, can
already be observed in a single attention head as explained next.

We consider an idealized attention mechanism as follows. Let Z ∈ Rn×d′ be an input matrix
comprised of n semantic feature vectors each of dimension d′. Each row is meant to represent a
complete statement (such as “What is the capital of the UK?” or “One answer to the question is
Paris.”, etc.) rather than a single token. Let X> ∈ R1×d′ be the first row of Z, which represents
the query of interest, such as “What is the capital of the UK?”. Let E> ∈ R1×d′ be a special
vector indicating the end of the input. The matrix Z \X , denoting the Z matrix without its first row,
represents the in-context information.

We assume the ground-truth distribution P is such that a query vector is mapped to its response, but a
statement is simply copied. For example, for V = “What is the capital of the UK?”, P (· | V) would
be a distribution with support on “London” and its variations, while for V ′ = “What is the capital of
the UK? One answer to the question is Paris.”, P (· | V ′) returns the same distribution. We assume a
parameter matrix WV is learned such that V >WV estimates P (· | V) for vector V .

Let WQ,WK,WV ∈ Rd′×d be the query, key, and value matrices. A self-attention head with query
X and context Z \X is defined as

f(Z;WQ,WK,WV) = Softmax
(

1√
d
E>WQ(ZWK)>

)
ZWV

where the output of the softmax is a row vector of length n.

If X has appeared many times in the training data, then parameters WQ and WK could be learned
such that E>WQ(WK)>X is large, that is, X is within the space spanned by the large prin-
cipal components of the key-query matrix product. Then, no matter what in-context informa-
tion appears in Z, the probability assigned to X will dominate the softmax, and we will have
Softmax

(
1√
d
E>WQ(ZWK)>

)
Z ≈ X>, and therefore f(Z;WQ,WK,WV) ≈ P (· | X).

Now, consider the case that X has not appeared many times in the training data, and vector Y is
copied in many rows of Z. Then E>WQ(WK)>X could be small as X is not in the span of the
large principal components of the key-query matrix product. Therefore f(Z;WQ,WK,WV) ≈ Y
since Softmax

(
1√
d
E>WQ(ZWK)>

)
Z ≈ Y >. Even if X is in the span, repeating Y t times in Z

would give a t-times increased total weight to Y inside the softmax, which can dominate the weight
assigned to X when t is large enough, also resulting in Y as the answer.

5 Metric of epistemic uncertainty and its estimation

In this section we apply iterative prompting to estimate the epistemic uncertainty of a language model
about responding to some query. The idea is to utilize the different behavior patterns observed in
Section 3, which can be used to differentiate between two modes of high uncertainty: when the
aleatoric uncertainty is high vs. when only the epistemic uncertainty is high. We then apply our new
uncertainty metric to design a score-based hallucination detection algorithm.

We will first present the uncertainty metric and its estimate for a distribution defined on the direct
outputs of an LLM; the changes needed to take semantic equivalences of language into account are
deferred to Appendix A (Kuhn et al., 2023; Farquhar et al., 2024).

Our uncertainty metric, similarly to the ones considered by, e.g., Wen et al. (2022); Osband et al.
(2023), is based on analyzing the joint distribution of responses: if multiple responses are sampled
jointly according to the ground-truth distribution, they should be independent (as one instantiation of
a response should not affect other responses). To make this notion precise, we start with defining
a notion of the joint distribution over responses given a query, derived from the language model
through the prompting mechanism F defined in Section 2:
Definition 5.1 (Pseudo joint distribution). Given a family of prompt functions F , a conditional
distribution µ ∈ P , and n ∈ N, we use notation ·̃ to denote a pseudo joint distribution defined as
µ̃(Y1, . . . , Yn | x) = µ(Y1 | F0(x))µ(Y2 | F1(x, Y1)) · · ·µ(Yn | Fn−1(x, Y1, . . . , Yn−1)) . (1)

5

The above is a pseudo joint distribution since the standard conditioning in the chain-rule is replaced
with prompt functions of the conditioning variables. In the following we focus on Q̃ derived from the
LLM and P̃ derived from the ground truth.

Remark 5.2 (Sampling from Q̃). Note that sampling from Q̃ can be simply done through a chain-
rule-like procedure as can be seen from the above definition, that is, to have (Y1, . . . , Yn) ∼ Q̃ we
draw Y1 ∼ Q(· | F0(x)), Y2 ∼ Q(· | F1(x, Y1)), Y3 ∼ Q(· | F2(x, Y1, Y2)), and so on.

In the rest of the paper we drop subscripts in joint distributions and conditioning on query x (which
is understood implicitly), for example, P̃ ≡ P̃Y1···Yn|x.

For any query x ∈ X , let YQ̃(x) denote the support of Q̃. We make the following assumption
about the ground truth, which states that the model Q generates reasonable responses and that the
distribution of such responses are independent according to the ground truth:
Assumption 5.3 (Ground truth independence assumption). For any query x ∈ X , (i) there exists a
sequence of valid responses Y(x) ⊂ X such that the ground-truth distribution satisfies

P (Yt | Ft−1(x, Y1, . . . , Yt−1)) = P (Yt | x) for any t ∈ N and any (Y1, . . . , Yt) ∈ Y(x);

(ii) YQ̃(x) ⊂ Y(x), that is, the model Q generates reasonable responses.

Note that the above assumption is heavily dependent on our prompt construction and the assumption
that Y1, . . . , Yt−1 are valid responses; without these the independence assumption would not hold,
for example, if Y1, . . . , Yt were partial answers, such as a step of an algorithm or a part of a story,
or would completely redefine the problem (“Disregard the previous question. Instead answer the
following...”), because in such cases Yt might indeed depend on the previous outputs Y1, . . . , Yt−1.
Roughly speaking, the assumption tells that the response distribution is insensitive to a query based
on previously sampled responses. For example, for query x =“Capital of the UK:”, the probability
of Y2 =“London” essentially does not change if a city is Y1 =“Paris”.

To measure epistemic uncertainty, we need to quantify how far the estimated pseudo joint distribution
Q̃ is from the ground truth P̃ . One natural choice is the following definition:
Definition 5.4 (Epistemic uncertainty metric). Given an input x ∈ X , we say that the epistemic
uncertainty of Q̃ is quantified by DKL(Q̃, P̃).

Here DKL measures how well Q̃ approximates P̃ for a given query x. Namely, this metric determines
if Q̃ assigns a large probability to an event which has a small probability under P̃ . In case of LLMs,
this means the LLM generates a sequence that is unlikely in the typical usage of the language. Given
an input x, we want to estimate the above hallucination metric, but we only have access to Q̃, and
so computing it explicitly is impossible. However, next we show that under Assumption 5.3 we can
lower bound DKL(Q̃, P̃) by a quantity which only depends on Q̃ (the proof is given in Appendix E).

Theorem 5.5. For all pseudo joint distributions P̃ and Q̃ satisfying Assumption 5.3, DKL(Q̃, P̃) ≥
I(Q̃).

The lower bound in the theorem holds uniformly for all P̃ , and it is computable solely based on Q̃.
This makes the bound applicable for decision making; in fact we chose to consider DKL(Q̃, P̃) as
the measure of epistemic uncertainty (out of similar distance measures) since it admits this property.

Also, note that we have I(Q̃) = DKL(Q̃, Q̃⊗) , Q̃⊗ =
∏
i

∑
y\i Q̃(y1, . . . , yi−1, Yi, yi+1, . . . , yn).

In general
∑
y\i Q̃(y1, . . . , yi−1, Yi, yi+1, . . . , yn) 6= Q̃(Yi), because the independence assumption

Assumption 5.3 does not necessarily (and, in practice, almost never) holds for Q.

Finally, a quantity related to DKL(Q̃, P̃) is DKL with arguments arranged in the opposite order, that
is DKL(P̃ , Q̃) which is a (query) conditional excess risk of the LLM-derived pseudo joint distribution
Q̃, under the logarithmic loss. Controlling the excess risk (for instance, upper-bounding it) for various
algorithms is one of the central questions in learning theory, however it is a much harder task than the
one we consider here, because for the former we need to theoretically control all sources of errors
(such as generalization, estimation, and approximation error).

6

1: Input:
µ ∈M1(Xn) any (pseudo-) joint distribution over Xn

k ∈ N . sample size

γ1, γ2 ≥ 0 . stabilization parameters (typically selected as 1/k)

2: Independently sample tuples X1, . . . , Xk ∼ µ ∈M1(Xn)
3: Construct a set of indices of unique elements U =

{
i ∈ [k] : Xi 6= Xj ∀j < i

}
4: Construct empirical distributions: let Z =

∑
j∈U µ(Xj), and for all i ∈ U , compute

µ̂(Xi) =
µ(Xi)

Z
and µ̂⊗(Xi) =

n∏
j=1

∑
t∈U :Xt,j=Xi,j

µ̂(Xt,1, . . . , Xi,j , . . . , Xt,n)

5: Compute estimate of MI Îk(γ1, γ2) =
∑
i∈U µ̂(Xi) ln

(
µ̂(Xi)+γ1
µ̂⊗(Xi)+γ2

)
Algorithm 1: MI estimator.

5.1 A computable lower bound on epistemic uncertainty

Theorem 5.5 gives a lower bound on the epistemic uncertainty by the mutual information. However,
to compute the mutual information term, in practice we need to evaluate Q̃ on its entire support,
which is potentially infinite. Practically speaking, it is impossible to observe probabilities of all
strings under the language model and so we must rely on a finite sample. Therefore, we replace Q̃
with an empirical distribution with a finite support; in the following we show that the error induced by
such an approximation is controlled. To estimate the MI we employ the method given in Algorithm 1;
for generality it is presented for an arbitrary (pseudo) joint distribution µ, but we keep in mind
that our case of interest is µ = Q̃. Note that most terms in the summations defining the product
distribution µ̂⊗ are zero (except the ones which correspond to the observed data). Adding γ1 and γ2

in the estimator Îk(γ1, γ2) is intended to account for the total probability of missing observations,
not included while constructing µ̂ and µ̂⊗, making sure the estimate is bounded.

The bias introduced by (γ1, γ2) in the last equation allows us to rigorously bound the error in
estimating I(µ) via Îk(γ1, γ2), which is explored next. In particular, in Theorem 5.6 we prove a
high-probability lower bound on I(µ) in terms of Îk. The core of controlling the estimation error is
in accounting for the missing mass, or in other words, how much of µ we miss out by only observing
a finite sample. In Appendix F, we present a more complete discussion and the proof of the bound on
the estimation error for mutual information. Here we adapt this result to our particular case.

Define the missing mass as Uk =
∑
x∈Xn µ(x) I

{
x 6∈ {X1, . . . , Xk}

}
. Using this quantity, we are

ready to present a non-asymptotic bound on the estimation error, which depends on the estimator
Îk(γ1, γ2), the expected missing mass, and the sample size:

Theorem 5.6. Suppose that Îk(γ1, γ2) is given by Algorithm 1, and assume that X is finite. For
γ1 = 1/(k |Xn|), and γ2 satisfying γ2 ≥ γ1 + n(1− Z), with probability at least 1− δ, we have

I(µ) ≥ (1− εk) Îk(γ1, γ2)−
(

1

k
+ (1 + n ln

(
1 + k |X |)

)
εk

)
where εk = E[Uk] +

√
ln(1

δ)

k
.

Furthermore, given δsupp ∈ [0, 1), let X̃ ⊆ Xn such that µ(X̃) ≥ 1 − δsupp. Then, for γ1 =

1/(k |X̃ |), and γ2 satisfying γ2 ≥ γ1 + n(1− Z), with probability at least 1− δ, we have

I(µ) ≥ (1− εk) Îk(γ1, γ2)−
(

1

k
+ (1 + ln

(
1 + k |X̃ |)

)
(δsupp + εk)

)
.

The theorem is a corollary of Theorem F.4 shown in Appendix F. Note that in Theorem 5.6 we consider
two bounds. The first one is pessimistic in the sense that it does not expect that the samples carry much
information about the support, and it is most suitable in situations where we expect µ to be spread out
(uniformly) across its entire support. The price of not having samples covering the whole support in

7

this case is a factor n ln |X | appearing in the bound. For example, in case of a language model with
10, 000 tokens, considering all possible strings of length T tokens yields n ln |X | = nT ln(10000),
and so I(µ) ≥ (1 − εk) Îk(γ1, γ2) − (1/k + (1 + nT ln(1 + k ln(10000))) εk). Arguably, in
practice, such situations are rare, as in natural languages we will not encounter all possible strings.
To this end, we consider an optimistic scenario where the effective support of µ, denoted by X̃ , is
small with high probability. In this case, we can replace the size of the support for strings of length
n, |X |n, in the first bound with the effective support size |X̃ |, and we only pay essentially a factor
ln(1 + k|X̃ |) instead of n ln(1 + k|X |). In case the effective sample size is only polynomial in n,
this leads to an exponential reduction in n for the second term in the bounds. In fact, in Appendix F.4
we demonstrate some empirical evidence that on two question-answering benchmarks, |X̃ | rarely
exceeds ≈ 100 with µ(X̃) ≥ 0.95, while sampling responses from an LLM given a query.

Next we consider sufficient conditions for the estimator to converge to the mutual information. In
particular, using the first bound in the theorem, we have (hiding logarithmic factors) I(µ) = Ω̃((1−
E[Uk]) Îk(γ1, γ2) − E[Uk]) as k → ∞. This tells us that the rate of estimation error is essentially
controlled by the expected missing mass E[Uk], which, as we will see, converges to zero as k →∞,
however the decay can be very slow in general. For example, it is known that for a finite support
of size N , E[Uk] ≤ e−

k
N when k ≤ N and E[Uk] ≤ N/(e k) otherwise (Berend and Kontorovich,

2012). For countable distributions with entropy bounded by h, one has E[Uk] ≤ h/ ln(k).

Despite these pessimistic bounds, in reality we expect the expected missing mass to be significantly
smaller, especially when µ is heavy-tailed. It is well-known that natural languages (and many artificial
ones) follow a Zipf distribution, where probability of each word (or a text piece) is proportional
to 1/freq(text)

α for some exponent α > 1, where freq() is a frequency of occurrence in the
corpus (Piantadosi, 2014). Then, we expect that E[Uk] should be much smaller than in such a case,
since sampling from the tail of Zipf distribution is a rare event. To this end, in Appendix F we show
that if Q̃ is Zipf with exponent α > 1, then for any free parameter β > 0, E[Uk] = O(k−(α−1

α −β)) .
Hence, the rate at which the expected missing mass vanishes can be very fast (potentially matching a
concentration rate 1/

√
k for α = 2).

Finally in Appendix F.4 we present a data-dependent estimation of E[Uk] based on a concentration
inequality for a missing mass and repetitive sampling from LLM, in the context of Q/A datasets
showing that the expected missing mass is highly concentrated close to 0.

5.2 Score-based hallucination tests

Let Îk(γ, x) ≡ Îk(γ) computed as in Algorithm 1 for µ = Q̃, to emphasize the explicit dependence
on the query x. The uncertainty estimate Îk(γ, x) derived above can be used as a score indicating the
strength of our belief that the LLM hallucinates for the given query x. Such a score can then be used
to design abstention policies: if the response is deemed to be hallucinated, the system abstains from
responding, while a response is provided otherwise. Score-based abstention methods usually compute
a score chosen by the user (such as the response likelihood or the estimator Î(γ) discussed earlier),
and declare hallucination if the score is above or below a threshold, which is determined through
calibration. To detect hallucinations successfully, the threshold can be adjusted through calibration
on a given task using a hold-out (ground-truth) sample, see, for instance, the paper of Yadkori et al.
(2024) where this calibration is discussed in detail.

Given our estimated lower bound on the epistemic uncertainty, we can define an abstention policy (a
policy which decides when the LLM should abstain from prediction) as aλ(x) = 0 if Îk(γ1, γ2, x) <

λ and aλ(x) = 1 if Îk(γ1, γ2, x) ≥ λ, where λ > 0 is a threshold parameter tuned on a hold-out
sample of some particular task. This policy abstains (aλ(x) = 1) when the epistemic uncertainty
in the prediction (response) is large. When the policy does not abstain (aλ(x) = 0), any prediction
from Q̂ can be served. In the experiments, we compare a number of scoring functions for detecting
hallucinations, including Î(γ), the probability of the greedy (temperature zero) response, and an
estimate of the entropy of the response distribution.

8

6 Experiments

In this section we evaluate our abstention method derived based on the MI estimate in Section 5.2 on
a variety of closed-book open-domain question-answering tasks. In our experiments we either sweep
through all abstention thresholds (Figure 4), or optimize the threshold on some calibration data, as
explained in the description of the relevant experiment (Figure 5).

Language model. We used a Gemini 1.0 Pro model (Gemini Team, Google, 2023) to generate
outputs and scores. Similar results were obtained with a – much smaller – Gemini 1.0 Nano-1 model,
which are deferred to Appendix H.

Datasets. We consider three different datasets and their combinations: As base datasets, we consider
(i) a random subset of 50, 000 datapoints from the TriviaQA dataset (Joshi et al., 2017), and (ii) the
entire AmbigQA dataset (with 12038 datapoints) (Min et al., 2020). These datasets mostly contain
single-label queries, and only contain a few multi-label ones.5 Moreover, we created a multi-label
dataset based on the WordNet dataset (Fellbaum, 1998): We extracted all (6015) datapoints from
WordNet at depth 4 or more of the physical_entity subtree. For each datapoint (entity,
children) in WordNet, we constructed a query of the form “Name a type of entity.” and
children are considered target labels.

Comparison of responses and computing the output distributions. We use the F1 score thresh-
olded at 0.25 to decide if two text sequences match. Additional details are provided in Appendix G.

Baselines. We consider abstention policies based on four scoring methods: (i) the probability of the
greedy response (denoted by T0); (ii) the semantic-entropy method of Kuhn et al. (2023) whose
score is the entropy of k = 10 generated samples (denoted by S.E.); (iii) our proposed mutual
information score as defined in Section 5 (and denoted by M.I.) with the choices of k = 10, n = 2,
and γ1 = γ2 = 0 (the latter choice approximates the case that the number of potential responses
can be very large in which case the theoretical choice of γ1 and γ2 would be very small); (iv) the
self-verification method of Kadavath et al. (2022) (denoted by S.V.). Additional details are provided
in Appendix G.

Results. We consider the precision-recall (PR) trade-off for the various methods on the different
datasets. Here, recall is the percentage of queries where the method does not abstain, and precision
is the percentage of correct decisions among these queries.6 Figure 4ab show PR-curves for the
baselines and the proposed method on TriviaQA and AmbigQA. As can be seen, our method is
better than the T0 and S.V. baselines, but performs similarly to the S.E. method. This is because
the TriviaQA and AmbigQA datasets contain mostly single-label queries, and therefore a first-order
method such as S.E. is sufficient to detect hallucinations. The AmbigQA dataset contains a few
multi-label queries, but upon closer inspection, we observe that the LLM has low entropy on most
of these queries.Therefore, a first-order method can perform as well as our method on such queries.
Our proposed method, as well as the baselines, make no mistakes on the WordNet dataset (as the
prediction of the LLM is always correct), hence we omit those results. The S.V. baseline performs
significantly worse than the other methods when the recall is not high (is below about 0.8).

The similar performance for the S.E. and M.I. methods shown in Figure 4ab is due to the fact that the
LLM has low entropy on most multi-label queries. However, ideally, an LLM should have higher
entropy on multi-label queries (which would demonstrate broader knowledge, not focusing on a
single possible answer). To include such queries, we mix the TriviaQA and AmbigQA datasets with
our WordNet-based dataset with “truely” multi-label queries as constructed above. To enhance the
intended effect, we filter our WordNet dataset by keeping only queries with entropy higher than 0.7
(approximately the entropy of the uniform distribution over two atoms). Then we have 842 remaining
datapoints in WordNet. Note that when considered in isolation, both our proposed method and the
semantic entropy method rarely make mistakes on this dataset. Then we create two new datasets
by combining our 842 WordNet datapoints with 842 randomly selected datapoints from TriviaQA
and AmbigQA, respectively, resulting in the TriviaQA+WordNet and AmbigQA+WordNet datasets.
Figure 4cd show PR-curves for the S.E. and M.I. methods on these two combined datasets. Apart
from low recall values, the performance of the S.E. method degrades noticeably with the addition

5Note that the multi-label queries in these datasets typically behave as single-label ones in the sense that the
LLM assigns overwhelming probability to a dominant response.

6In some figures, for better illustration, we show the error rate which is one minus the precision.

9

(a) TriviaQA (b) AmbigQA (c) TriviaQA+WordNet (d) AmbigQA+WordNet

Figure 4: PR-curve for the baseline and the proposed methods on various datasets. On the TriviaQA
and AmbigQA datasets, M.I. and S.E. perform nearly identically, but they outperform the T0 and S.V.
baselines. For the S.E. and M.I. methods, the responses for a large number of queries can be clustered
into a single group, and therefore the semantic entropy and mutual information scores are zero. This
is why the starting point of their curves is at a higher recall values. On the TriviaQA+WordNet and
AmbigQA+WordNet datasets with a significant number of high entropy multi-label queries, M.I.
outperforms the S.E. baseline. The methods perform nearly identical on the not shown recall area.

(a) TriviaQA+WordNet (b) TriviaQA+WordNet (c) AmbigQA+WordNet (d) AmbigQA+WordNet

Figure 5: Recall and error rates (one minus precision: percentage of mistakes when not abstaining) of
the proposed and the baseline method on TriviaQA+WordNet and AmbigQA+WordNet datasets. On
TriviaQA+WordNet and AmbigQA+WordNet datasets, the methods are calibrated at target loss of
0.05 and 0.15, respectively. On the x-axis, the queries are partitioned according to the entropy of the
LLM’s output. Error bars show 2 standard deviation confidence intervals (based on 10 repetitions).
While the first-order S.E. method has similar recall and error rates to those of the proposed M.E.
method on low-entropy queries, its recall values are nearly zero for queries with higher entropy.

of extra multi-label data. This precision/recall curve might look somewhat strange (with precision
sometimes increasing with recall); this is due to the fact that both methods are always correct on the
large number of high-entropy WordNet queries, where the LLM’s default predictions are correct.

The hardness with the combined datasets is that the predominantly single-label datasets (TriviaQA,
AmbigQA) might need a different calibration threshold than the multi-label WordNet dataset, and this
is better handled by our proposed method than by S.E. To better illustrate the improved abstention
properties of our method, we examine how the two methods handle when the output of the LLM is
diverse (i.e., has high entropy). In order to do this, we perform the following experiment: We create
a calibration dataset by adding 500 random datapoints from the WordNet dataset to 500 random
datapoints from TriviaQA, and another such random dataset for test. We determine the abstention
thresholds on the calibration dataset for both the S.E. and the M.E. methods,7 and measure the
performance (error rate, i.e., 1 minus precision, and recall) of the resulting abstention policies on the
test set. We repeat this process 10 times and report mean values and 95% confidence intervals with
Gaussian approximation. We perform a similar evaluation process for mixtures of AmbigQA and
WordNet datasets. Figure 5 show that while the S.E. method has similar recall and error rates to those
of the proposed method on low-entropy queries, its recall values are much lower for queries with
higher entropy, while the M.E. method makes only few mistakes on these queries.

References
Gustaf Ahdritz, Tian Qin, Nikhil Vyas, Boaz Barak, and Benjamin L. Edelman. Distinguishing the

knowable from the unknowable with language models, 2024. URL https://arxiv.org/abs/
2402.03563.
7This is done by fixing the target loss rates of 0.05 for TriviaQA and 0.15 for AmbigQA, and finding threshold

parameters that lead to these rates on the calibration set.

10

https://arxiv.org/abs/2402.03563
https://arxiv.org/abs/2402.03563

Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle introduction.
Foundations and Trends R© in Machine Learning, 16(4):494–591, 2023.

Javier Antorán, James Allingham, and José Miguel Hernández-Lobato. Depth uncertainty in neural
networks. Conference on Neural Information Processing Systems (NeurIPS), 2020.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when its lying. In Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2023.

Daniel Berend and Aryeh Kontorovich. The missing mass problem. Statistics & Probability Letters,
82(6):1102–1110, 2012.

Daniel Berend and Aryeh Kontorovich. On the concentration of the missing mass. Electronic
Communications in Probability, 2013.

Daniel Berend, Aryeh Kontorovich, and Gil Zagdanski. The expected missing mass under an entropy
constraint. Entropy, 19(7):315, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International Conference on Machine Learing (ICML), 2015.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4.
arXiv preprint arXiv:2303.12712, 2023.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language
models without supervision. In International Conference on Learning Representations (ICLR),
2023.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. INSIDE:
LLMs’ internal states retain the power of hallucination detection. In International Conference on
Learning Representations (ICLR), 2024a.

Shiqi Chen, Miao Xiong, Junteng Liu, Zhengxuan Wu, Teng Xiao, Siyang Gao, and Junxian He.
In-context sharpness as alerts: An inner representation perspective for hallucination mitigation. In
Forty-first International Conference on Machine Learning, 2024b. URL https://openreview.
net/forum?id=s3e8poX3kb.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation, 2023.

Jeremy R. Cole, Michael JQ Zhang, Daniel Gillick, Julian Martin Eisenschlos, Bhuwan Dhingra,
and Jacob Eisenstein. Selectively answering ambiguous questions. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2019.

Vikranth Dwaracherla, Zheng Wen, Ian Osband, Xiuyuan Lu, Seyed Mohammad Asghari, and Ben-
jamin Van Roy. Ensembles for uncertainty estimation: Benefits of prior functions and bootstrapping.
Transactions on Machine Learning Research (TMLR), 2023. ISSN 2835-8856.

S. Farquhar, J. Kossen, L. Kuhn, and Yarin Gal. Detecting hallucinations in large language models
using semantic entropy. Nature, 2024.

Christiane Fellbaum. WordNet: An electronic lexical database. MIT press, 1998.

Yarin Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.

Gemini Team, Google. Gemini: A family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. [Online; accessed 01-February-2024].

11

https://openreview.net/forum?id=s3e8poX3kb
https://openreview.net/forum?id=s3e8poX3kb

Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decomposing
uncertainty for large language models through input clarification ensembling. In International
Conference on Machine Learing (ICML), 2024.

Mingjian Jiang, Yangjun Ruan, Sicong Huang, Saifei Liao, Silviu Pitis, Roger Grosse, and Jimmy Ba.
Calibrating language models via augmented prompt ensembles. In Workshop on Challenges in
Deployable Generative AI at International Conference on Machine Learning, 2024.

Daniel D. Johnson, Daniel Tarlow, David Duvenaud, and Chris J. Maddison. Experts don’t cheat:
Learning what you don’t know by predicting pairs. arXiv preprint arXiv:2402.08733, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Transactions of the Association for
Computational Linguistics (ACL), pages 1601–1611, 2017.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield Dodds, Nova DasSarma, Eli Tran-Johnson, and et al. Language models
(mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.

Nora Kassner and Hinrich Schütze. Negated and misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Transactions of the Association for Computational Linguistics
(ACL), 2020.

Satyapriya Krishna. On the intersection of self-correction and trust in language models, 2023. URL
https://arxiv.org/abs/2311.02801.

Satyapriya Krishna, Chirag Agarwal, and Himabindu Lakkaraju. Understanding the effects of iterative
prompting on truthfulness. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=KjazcKPMME.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. In International Conference on Learning
Representations (ICLR), 2023.

Philippe Laban, Lidiya Murakhovs’ka, Caiming Xiong, and Chien-Sheng Wu. Are you sure?
challenging llms leads to performance drops in the flipflop experiment, 2024. URL https:
//arxiv.org/abs/2311.08596.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Conference on Neural Information Processing
Systems (NeurIPS), volume 30, 2017a.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Conference on Neural Information Processing
Systems (NeurIPS), 2017b.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix Yu,
and Sanjiv Kumar. Large language models with controllable working memory. In Transactions of
the Association for Computational Linguistics (ACL), 2023.

Moxin Li, Wenjie Wang, Fuli Feng, Fengbin Zhu, Qifan Wang, and Tat-Seng Chua. Think twice
before trusting: Self-detection for large language models through comprehensive answer reflection,
2024. URL https://arxiv.org/abs/2403.09972.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifica-
tion for black-box large language models. arXiv preprint arXiv:2305.19187, 2023.

Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer Singh.
Entity-based knowledge conflicts in question answering. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2021.

Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction. In
International Conference on Learning Representations (ICLR), 2020.

12

https://arxiv.org/abs/2311.02801
https://openreview.net/forum?id=KjazcKPMME
https://arxiv.org/abs/2311.08596
https://arxiv.org/abs/2311.08596
https://arxiv.org/abs/2403.09972

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. SelfCheckGPT: Zero-resource black-box
hallucination detection for generative large language models. In Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2023.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-Lan Boureau. Reducing conversational agents’
overconfidence through linguistic calibration. In Transactions of the Association for Computational
Linguistics (ACL), 2022.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. AmbigQA: Answering
ambiguous open-domain questions. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

R. M. Neal. Bayesian learning for neural networks. Springer Science & Business Media, 2012.

Ella Neeman, Roee Aharoni, Or Honovich, Leshem Choshen, Idan Szpektor, and Omri Abend. Dis-
entqa: Disentangling parametric and contextual knowledge with counterfactual question answering.
arXiv preprint arXiv:2211.05655, 2022.

Mesrob I Ohannessian and Munther A Dahleh. Distribution-dependent performance of the good-
turing estimator for the missing mass. In 19th International Symposium on Mathematical Theory
of Networks and Systems, MTNS, 2010.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Conference on Neural Information Processing Systems (NeurIPS), volume 29,
2016.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. In Conference on Neural
Information Processing Systems (NeurIPS), 2023.

Steven T Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic bulletin & review, 21:1112–1130, 2014.

Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. Cambridge University
Press, 2024.

Stephan Rabanser, Anvith Thudi, Kimia Hamidieh, Adam Dziedzic, and Nicolas Papernot. Selective
classification via neural network training dynamics. arXiv preprint arXiv:2205.13532, 2022.

Shauli Ravfogel, Yoav Goldberg, and Jacob Goldberger. Conformal nucleus sampling. In Trans-
actions of the Association for Computational Linguistics (ACL), pages 27–34. Association for
Computational Linguistics, 2023.

Robert J Tibshirani and Bradley Efron. An introduction to the bootstrap. Monographs on statistics
and applied probability, 57(1), 1993.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations (ICLR), 2022.

Ziyu Wang and Chris Holmes. On subjective uncertainty quantification and calibration in natural
language generation, 2024. URL https://arxiv.org/abs/2406.05213.

Zheng Wen, Ian Osband, Chao Qin, Xiuyuan Lu, Morteza Ibrahimi, Vikranth Dwaracherla, Moham-
mad Asghari, and Benjamin Van Roy. From predictions to decisions: The importance of joint
predictive distributions. arXiv preprint arXiv:2107.09224, 2022.

Yasin Abbasi Yadkori, Ilja Kuzborskij, David Stutz, András György, Adam Fisch, Arnaud Doucet,
Iuliya Beloshapka, Wei-Hung Weng, Yao-Yuan Yang, Csaba Szepesvári, Ali Taylan Cemgil,
and Nenad Tomasev. Mitigating llm hallucinations via conformal abstention. arXiv preprint
arXiv:2405.01563, 2024.

Fan Yin, Jayanth Srinivasa, and Kai-Wei Chang. Characterizing truthfulness in large language model
generations with local intrinsic dimension. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=7DbIyQlfaO.

13

https://arxiv.org/abs/2406.05213
https://openreview.net/forum?id=7DbIyQlfaO

Gal Yona, Roee Aharoni, and Mor Geva. Narrowing the knowledge evaluation gap: Open-domain
question answering with multi-granularity answers. arXiv preprint arXiv:2401.04695, 2024.

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Malin, and Sricharan Kumar. Sac3: Reliable
hallucination detection in black-box language models via semantic-aware cross-check consistency.
In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In In International Conference on Machine Learning,
2021.

Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Chong Meng, Shuaiqiang Wang, Zhicong
Cheng, Zhaochun Ren, and Dawei Yin. Knowing what LLMs do not know: A simple yet effective
self-detection method. arXiv preprint arXiv:2310.17918, 2024.

14

A Additional algorithms for taking semantic equivalences into account

Although Theorem 5.5 and Theorem 5.6 provide a lower bound for the divergence between the
output distribution Q of the LLM and the ground truth P , these distributions ignore the semantic
equivalences between texts, and hence they are less concentrated than their variants which only
consider semantically different outputs. Given a semantic equivalence definition, similarly to Kuhn
et al. (2023); Farquhar et al. (2024), we propose constructing new ground-truth distribution P ′
and LLM output distribution Q′, where we cluster together semantically equivalent texts, and the
probability of a cluster is the sum of probabilities of all semantically equivalent texts in that cluster.
We use a similarity function s to define semantic equivalences: two texts are considered equivalent
if their similarity is greater than a given threshold τ . Our choices for similarity functions in the
experiments are described in Section 6. We assume the similarity function and the similarity threshold
induce a clustering of the space X , i.e., s(Y, Y ′) ≥ τ for Y, Y ′ ∈ X if and only if they are in the
same cluster.

In practice, rather than constructing the aforementioned distribution Q′ explicitly, we can draw sam-
ples from Q′ by sampling from Q and aggregating samples according to their clusters. The modified
uncertainty-estimation algorithm is given in Algorithm 2 in Appendix A. The estimator is constructed
using only (semantically) different elements in the sample (the indices of these representative elements
are collected in S), that is, we do not account for duplicate samples and we aggregate probabilities
of samples that are lexically different but semantically equivalent. Algorithm 2 works with the
aggregated probability distribution µ′ = Q̃′ (line 4) by summing over cumulative probabilities over
clusters. Note that DKL(µ) ≥ DKL(µ′) by monotonicity property of KL-divergence (Polyanskiy and
Wu, 2024, Theorem 2.16) (this is because µ′ is defined on a smaller support). Therefore, Theorem 5.6
implicitly gives a bound on I(µ′), and eventually we have I(µ) ≥ I(µ′). More importantly, we
can also directly apply Theorem 5.5 and Theorem 5.6 to the distributions P ′ and Q′ and obtain that
DKL(Q̃′, P̃ ′) ≥ I(Q̃′), giving a lower bound on the much reduced (epistemic) uncertainty after
taking semantic equivalences into account.

15

1: Input:
µ ∈M1(Xn) any (pseudo-) joint distribution over Xn

k ∈ N . sample size

γ1, γ2 ≥ 0 . stabilization parameters (typically selected as 1/k)

s : Xn ×Xn → R a similarity function

τ ∈ R . a similarity threshold

2: Independently sample tuples X1, . . . , Xk ∼ µ ∈M1(Xn)
3: Construct a set of indices of unique elements U =

{
i ∈ [k] : Xi 6= Xj ∀j < i

}
4: Construct cluster centers S ⊂ U according to the similarity function such that for all i, t ∈ S,

we have s(Xi, Xt) < τ and the cluster associated with Xi is D(i) =
{
j ∈ U : s(Xi, Xj) ≥ τ

}
.

Compute the aggregated probabilities: for all i ∈ S,

µ′(Xi) =
∑
j∈D(i)

µ(Xj)

5: Construct empirical distributions: for all i ∈ S,

µ̂(Xi) =
µ′(Xi)

Z
, where Z =

∑
j∈S

µ′(Xj)

µ̂⊗(Xi) =

n∏
j=1

∑
t∈S:Xt,j=Xi,j

µ̂(Xt,1, . . . , Xi,j , . . . , Xt,n)

6: Compute estimate

Îk(γ1, γ2) =
∑
i∈S

µ̂(Xi) ln

(
µ̂(Xi) + γ1

µ̂⊗(Xi) + γ2

)

Algorithm 2: MI estimator. Python implementation with usage example is given in Appendix B.

16

1: Input:
µ ∈M1(X) . any distribution over X
k ∈ N . sample size

γ1, γ2 ≥ 0 . stabilization parameters (typically selected as 1/k)

s : X × X → R a similarity function

τ ∈ R . a similarity threshold

2: Independently sample outputs X1, . . . , Xk ∼ µ ∈M1(X)
3: Construct a set of indices of unique elements U =

{
i ∈ [k] : Xi 6= Xj ∀j < i

}
4: Construct cluster centers S ⊂ U according to the similarity function: for all i, t ∈ S, we

have s(Xi, Xt) < τ and cluster associated with Xi is D(i) =
{
j ∈ U : s(Xi, Xj) ≥ τ

}
.

Aggregated probabilities: for all i, t ∈ S,

µ′1(Xi) =
∑
j∈D(i)

µ(Xj), µ′2(Xt |Xi) =
∑

j∈D(t)

µ(Xj |Xi)

5: Construct empirical distributions: for all i, t ∈ S,

µ̂1(Xi) =
µ′1(Xi)

Z
, where Z =

∑
j∈S

µ′1(Xj)

µ̂2(Xt |Xi) =
µ′2(Xt |Xi)

Zi
, where Zi =

∑
j∈S

µ′2(Xj |Xi)

µ̂(Xi, Xt) = µ̂1(Xi)µ̂2(Xt |Xi) , µ̂⊗(Xi, Xt) = µ̂1(Xi)
∑
j∈S

µ̂1(Xj)µ̂2(Xt |Xj)

6: Compute estimate

Îk(γ1, γ2) =
∑
i,t∈S

µ̂(Xi, Xt) ln

(
µ̂(Xi, Xt) + γ1

µ̂⊗(Xi, Xt) + γ2

)

Algorithm 3: Alternative MI estimator. A usage example is given in Appendix C

17

B Implementation and usage examples of Algorithm 1 and Algorithm 2

In this section we present an implementation of Algorithm 1 and Algorithm 2 in Python with a simple
usage example. In particular, the code given in Listing 1 generates a synthetic joint distribution
over binary tuples with correlated elements (function create_synthetic_distribution). Then,
we compute an exact mutual information of the distribution (function compute_MI_exactly)
and use implementation of our estimator (function MI_estimator) to estimate a mutual in-
formation. This is done for various sample sizes, number of random variables, and levels of
correlation (a single experiment is implemented by run_experiment) The results of these
multiple experiments are eventually presented in as plots showing convergence of the estimate to
the exact value of the mutual information. In practical applications, synthetic joint distribution
(function create_synthetic_distribution) can be replaced by an LLM-derived pseudo-joint
distribution (see Definition 5.1). More detailed description of each function is given in Appendix B.1.

The example can be easily copied from listing.tex within https://arxiv.org/src/
2406.02543.

Listing 1: Implementation and usage examples of Algorithm 1 and Algorithm 2 on a synthetic joint
distribution
Copyright 2024 DeepMind Technologies Limited.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
https://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
from itertools import product, combinations
import numpy as np
from matplotlib import pyplot as plt

def create_synthetic_distribution(space, temp):
potential = lambda z: np.mean([x * y for x, y in combinations(z, 2)])
y = np.array([-np.exp(potential(x) / temp) for x in space])
return y / y.sum()

def sample_from_joint_distribution(space, joint_dist, k):
indices = np.arange(len(joint_dist))
sampled_indices = np.random.choice(indices, p=joint_dist, size=k)
sampled_tuples = space[sampled_indices]
return sampled_tuples, sampled_indices

def cluster(tuples, joint_dist):
return tuples, joint_dist

def sample_from_joint_distribution_and_cluster(space, joint_dist, k):
sampled_tuples, sampled_tuple_indices = sample_from_joint_distribution(space, joint_dist, k)
_, indices_of_uniques_in_sample = np.unique(sampled_tuples, axis=0, return_index=True)
sampled_tuples = sampled_tuples[indices_of_uniques_in_sample]
sampled_tuple_indices = sampled_tuple_indices[indices_of_uniques_in_sample]
joint_dist_on_sample = joint_dist[sampled_tuple_indices]
sampled_tuples, joint_dist_on_sample = cluster(sampled_tuples, joint_dist_on_sample)
return joint_dist_on_sample, sampled_tuples

def compute_MI_exactly(space, mu):
total = 0
for (x_i, x) in enumerate(space):

mu_x = mu[x_i]
mu_x_prod = 1
for i in range(len(x)):

marg_indices = [j for (j, z) in enumerate(space) if z[i] == x[i]]
mu_x_prod *= mu[marg_indices].sum()

total += mu_x * np.log(mu_x/mu_x_prod)

return total

def MI_estimator(sampled_tuples, mu_on_sample, gamma_1, gamma_2):
"""Implements MI estimator (Algorithm 1).

18

https://arxiv.org/src/2406.02543
https://arxiv.org/src/2406.02543

Args:
sampled_tuples: A numpy array of tuples sampled from the distribution after deduplication and clustering.
mu_on_sample: A numpy array of probabilities of the clusters.
gamma_1: stabilization parameter.
gamma_2: stabilization parameter.

Returns: (float) mutual information.
"""

Constructing empirical distribution (\hat{\mu})
hat_mu_on_sample = mu_on_sample / mu_on_sample.sum()

Constructing empirical product distribution (\hat{\mu}^{\otimes})
hat_mu_prod_on_sample = np.zeros((len(hat_mu_on_sample),))
for (x_i, x) in enumerate(sampled_tuples):

hat_mu_x_prod = 1
for i in range(len(x)):

marg_indices = [j for (j, z) in enumerate(sampled_tuples) if z[i] == x[i]]
hat_mu_x_prod *= hat_mu_on_sample[marg_indices].sum()

hat_mu_prod_on_sample[x_i] = hat_mu_x_prod

Computing MI estimate
mi_estimate = hat_mu_on_sample * np.log((hat_mu_on_sample + gamma_1) / (hat_mu_prod_on_sample + gamma_2))
mi_estimate = mi_estimate.sum()
return mi_estimate

def run_experiment(n, temp, ax):
np.random.seed(1)
space = np.array(list(product([-1, 1], repeat=n)))
mu = create_synthetic_distribution(space, temp=temp)
mi_exact = compute_MI_exactly(space, mu)
k_range = np.linspace(10, 1000, 20, dtype=int)

all_mi_estimate = []
for k in k_range:

mu_on_sample, sampled_tuples = sample_from_joint_distribution_and_cluster(space=space, joint_dist=mu, k=k)

gamma_1 = gamma_2 = 1/k
mi_estimate = MI_estimator(sampled_tuples, mu_on_sample, gamma_1, gamma_2)
all_mi_estimate.append(mi_estimate)

ax.axhline(mi_exact, linewidth=3, label="MI (exact value)", color="black")
ax.plot(k_range, all_mi_estimate, linewidth=3, label="MI estimator")
ax.grid(); ax.legend(); ax.set_xlabel("k"); ax.set_ylabel("MI estimate"); ax.set_title(r"$n=$"+str(n)+r", $\tau=$"+str(temp))

temp_range = [0.01, 0.1, 1, 10]
n_range = [2, 4, 8]

fig, axs = plt.subplots(len(temp_range), len(n_range), figsize=(5*len(temp_range), 5*len(n_range)), squeeze=False)
fig.suptitle(r"""MI estimation of n-dimensional distribution $\propto \exp(-\sum_{i < j}^n x_i x_j / \tau)$""")

for (i, temp) in enumerate(temp_range):
for (j, n) in enumerate(n_range):

ax = axs[i,j]
run_experiment(n=n, temp=temp, ax=ax)

plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.show()

B.1 Additional documentation for functions in Listing 1

• def create_synthetic_distribution(space, temp)

Creates synthetic distribution which introduces dependendencies between variables.

Args:
space: a list of tuples that the joint distribution is supported on (e.g. a cartesian product).
temp: temperature parameter.

Returns:
A numpy array of probabilities (same length as space).

• def sample_from_joint_distribution(space, joint_dist, k)

Samples k tuples from a joint distribution.

Args:

19

space: a list of tuples that the joint distribution is supported on (e.g. a cartesian product).
joint_dist: probability distribution (1-D numpy array) where each entry is a probability of a tuple.
k: sample size.

Returns:
A numpy array of tuples sampled from the distribution.
A numpy array of indices of sampled tuples in space.

• def cluster(tuples, joint_dist)

Clusters tuples and aggregates probabilities of them in the same cluster.

Args:
tuples: A numpy array of tuples sampled from the distribution
after deduplication.
joint_dist: probability distribution (1-D numpy array) where each entry
is a probability of a tuple.

Returns:
A numpy array of tuples sampled from the distribution each represening
a cluster.
A numpy array of probabilities of clusters. Each probability is the
aggregate of probabilities of all tuples in the cluster.

• def sample_from_joint_distribution_and_cluster(space, joint_dist, k)

Samples k tuples from a joint distribution and retains only
representative elements (removes all duplicates).

Args:
space: a list of tuples that the joint distribution is supported on (e.g. a cartesian product).
joint_dist: probability distribution (1-D numpy array) where each entry is a probability of a tuple.
k: sample size.

Returns:
A numpy array of tuples sampled from the distribution after deduplication.
A numpy array of probabilities of deduplicated tuples.

• def compute_MI_exactly(space, mu)

Computes mutual information of probability distribution mu exactly
Args:

space: Tuple space (cartesian product).
mu: probability distribution (1-D numpy array).

Returns: (float) mutual information.

• def MI_estimator(sampled_tuples, mu_on_sample, gamma_1, gamma_2)

Implements MI estimator (Algorithm 1).

Args:
sampled_tuples: A numpy array of tuples sampled from the distribution after deduplication and clustering.
mu_on_sample: A numpy array of probabilities of the clusters.
gamma_1: stabilization parameter.
gamma_2: stabilization parameter.

Returns: (float) mutual information.

• def run_experiment(n, temp, ax)

Runs one experiment comparing exact mutual information estimation with
Algorithm 1. Plots results.

Args:
n: number of variables in a joint distribution.
temp: temperature of a Gibbs distribution (joint distribution). Higher
temperature typically means smaller MI.
ax: pyplot axis object for plotting.

20

C Usage example of Algorithm 3

Algorithm 3 is a slight modification of Algorithm 2 that we use in our experiments. We first explain
Algorithm 3 via an example and then highlight the differences with Algorithm 2. In order to explain
the implementation, we consider a running example with query x =“What is the capital of the UK?”,
F1 score as the similarity function s, similarity threshold τ = 0.25, and number of samples k = 5.
Algorithm 3 also takes the LLM distribution Q as input µ = Q.

Given the query, in step (2) of Algorithm 3, we sample k outputs from Q. Let’s assume these samples
are X1 =“London”, X2 =“London”, X3 =“London, UK”, X4 =“Paris”, and X5 =“Berlin”.
In step (3), we construct a set of indices of unique elements. In our example, we would have
U = {1, 3, 4, 5}. In step (4), we cluster responses and aggregate probabilities of each cluster. More
precisely, if the F1 score of two responses is above 0.25, then they are in the same cluster. In our
example, we have that F1(X1, X3) > 0.666 > 0.25 and F1(X1, X4) = F1(X1, X5) = 0, and
therefore cluster centers are S = {1, 4, 5}. For query x, let’s assume LLM probabilities are

Q(X1 |x) = 0.5, Q(X3 |x) = 0.2, Q(X4 |x) = 0.1, Q(X5 |x) = 0.05, · · ·

Also assume conditional distributions are

Q(X1 |F1(x,X1)) = 0.6, Q(X3 |F1(x,X1)) = 0.15, Q(X4 |F1(x,X1)) = 0.05,

Q(X5 |F1(x,X1)) = 0.04, · · ·

and so on (we have omitted writing Q(. |F1(x,X4)) and Q(. |F1(x,X5))). Then after step (4), the
aggregated probabilities are

Q′(X1 |x) = 0.7, Q′(X4 |x) = 0.1, Q′(X5 |x) = 0.05, · · ·

and aggregated conditional probabilities are

Q′(X1 |F1(x,X1)) = 0.75, Q′(X4 |F1(x,X1)) = 0.05, Q′(X5 |F1(x,X1)) = 0.04, · · ·

and so on (we have similar aggregations for Q′(. |F1(x,X4)) and Q′(. |F1(x,X5))). Next, in step
(5), we construct empirical estimates. We will have that Z = 0.85 and

Q̂1(X1 |x) ≈ 0.82, Q̂1(X4 |x) ≈ 0.11, Q̂1(X5 |x) ≈ 0.05, · · ·

For estimated conditional distributions, we will have Z1 = 0.84, and

Q̂2(X1 |F1(x,X1)) ≈ 0.89, Q̂2(X4 |F1(x,X1)) ≈ 0.06, Q̂2(X5 |F1(x,X1)) = 0.04, · · ·

and so on. The joint distribution Q̂(., . |x), the product of marginals Q̂⊗(., . |x), and the estimated
mutual information Îk are trivially obtained by the equations in steps (5) and (6).

Next, we highlight the differences between Algorithm 2 (with the choice of n = 2) and Algorithm 3.
The input distribution to Algorithm 2 is the pseudo-joint distribution Q̃, while the input to Algorithm 3
is the LLM distribution Q. So in step (2) of Algorithm 2, each sample is a tuple such as (“London”,

“Paris”), while a sample in step (2) of Algorithm 3 is an LLM output such as “London”. Steps (3) and
(4) of Algorithm 2 are similarly modified, and now the similarity function is defined over tuples.

21

D Related work

In this section we present an overview of the related literature.

D.1 Bayesian neural networks

In a Bayesian framework, we can estimate the epistemic uncertainty by the uncertainty in the posterior
distribution (Neal, 2012; Gal, 2016; Wang and Holmes, 2024). Implementing a Bayesian neural
network however can be very challenging.

D.2 Iterative prompting

A number of iterative prompting strategies are developed to improve the factuality of LLMs (Chen
et al., 2023; Krishna, 2023; Laban et al., 2024). The idea is to follow-up the LLM response with
another question such as “Are you sure?”. Krishna et al. (2024) show that such strategies might in
fact degrade LLM truthfulness due to a pattern of apologetic responses. Krishna et al. (2024) propose
improved iterative prompting strategies, where instead of asking the LLM to re-think its response,
the same question is posed again. They also propose strategies to collect more supporting facts and
refine the final response accordingly. Li et al. (2024) propose an iterative prompting that instructs
LLM to generate justifications for each answer before evaluating the correctness of the final answer.
Different from these works, we assess hallucinations by measuring how LLM response changes with
our iterative prompting scheme.

Perhaps the most related work to ours is the parallel and independent work of Ahdritz et al. (2024).
Similar to us, Ahdritz et al. (2024) observe that in presence of high epistemic uncertainty, an LLM
is more likely to copy the information provided in its context. For a given query, Ahdritz et al.
(2024) propose considering top-k completions of the model, and then computing the entropy of the
model conditioned on an iterative prompt composed of the original query and each completion. The
minimum of these entropies is considered as a measure of the epistemic uncertainty. The method
as it is, might fail on single-response queries where the model has low uncertainty. Nevertheless,
we can design a two-stage process where we only consider completions that have probability higher
than certain threshold in the first stage, and then compute the entropy of the model conditioned on an
iterative prompt composed of the original query and each candidate completion in the second stage.
By a proper tuning of the threshold of the first stage, we can potentially avoid mis-classification
of low-uncertainty single-response queries. Tuning this threshold, however, would introduce extra
complications. In contrast, we propose a principled test using a mutual information score that is
guaranteed to be a lower bound on the KL-divergence between the LLM and the ground-truth. Further,
we provide a mechanistic explanations for why LLMs behave as described in the presence of high
epistemic uncertainty.

D.3 Training models with pairs of responses

Wen et al. (2022); Osband et al. (2023); Johnson et al. (2024) show that we can decouple epistemic
and aleatoric uncertainty if we train a model with paired observations.

We discuss the more recent work of Johnson et al. (2024) in more detail. The proposed approach
first estimates a model p̂Y1,Y2|x(y1, y2|x) over pairs using a training dataset of the form “query, first
observation, second observation”. At test time, for a prompt x and response y, Johnson et al. (2024)
consider

V̂ (y | x) = p̂Y1
(y | x)

(
p̂Y2|Y1

(y | y, x)− p̂Y1
(y | x)

)
= p̂Y1,Y2(y1, y2 | x)− p̂Y1(y | x)p̂Y1(y | x)

as a measure of epistemic uncertainty. Assume that an equivalence class Φ (that maps a prompt to
the set of equivalent prompts) is given, and let ν(. | Φ(x)) be a distribution (say, uniform) over class
Φ(x). If the trained model is second order calibrated with respect to the equivalence class and the

22

distribution ν, i.e.

p̂Y1
(y1 | x) =

∑
x′∈Φ(x)

ν(x′ | Φ(x))p(y1 | x′) ,

p̂Y1,Y2
(y1, y2 | x) =

∑
x′∈Φ(x)

ν(x′ | Φ(x))p(y1 | x′)p(y2 | x′) ,

then it follows from definitions that in the class associated with x,∑
x′∈Φ(x)

ν(x′ | Φ(x))(p̂Y1
(y | x′)− p(y | x′))2 =

∑
x′∈Φ(x)

ν(x′ | Φ(x))V̂ (y | x′) .

The quantity on the right-hand side is a measure of epistemic uncertainty. Notice that the equality
states a coverage result, and it is not point-wise. Requiring the model to be second order calibrated is
also a strong condition and ensuring it is highly non-trivial.

D.4 Epistemic neural nets

Ensemble methods are based on the classical idea of bootstrap for confidence estimation (Tibshirani
and Efron, 1993), where multiple estimators for the regression function, each computed on a perturbed
version of the data (e.g., by drawing samples from the empirical distribution over the data), are
combined.

The empirical distribution of the resulting estimates is then used to construct confidence intervals.
While many of these methods can be interpreted as sample-based approximations to Bayesian methods,
model-hyperparameter selection (e.g., scale of perturbations, learning) for ensemble methods is
typically done using a validation on holdout data (a subset of the training data). Many recent papers
have studied ensemble methods in the context of deep learning and reinforcement learning (Osband
et al., 2016; Lakshminarayanan et al., 2017a; Malinin and Gales, 2020). In the context of LLMs, the
methods require training multiple language models, which is very expensive. Osband et al. (2023)
introduces epistemic neural networks (epinets), which approximate ensemble methods by training a
single network with an artificially injected (controlled) source of randomness. Rabanser et al. (2022)
proposes to use intermediate model checkpoints to quantify the uncertainty of the final model in its
responses. While these approaches aim to mimic the bootstrap procedure during prediction, their
validity is not justified by theoretical considerations, and hence remain heuristic approximations.

D.5 Hallucination detection using first-order methods

First-order methods consider variance in the response distribution as a measure of hallucination (Ka-
davath et al., 2022; Cole et al., 2023; Manakul et al., 2023; Lin et al., 2023; Kuhn et al., 2023; Wang
et al., 2022; Jiang et al., 2024; Zhang et al., 2023; Zhao et al., 2024; Yadkori et al., 2024). A common
limitation of these approaches is that they are only applicable to prompts where there exists a single
correct response, as they aim for detecting if one response (or multiple responses with the same
meaning) is dominant. On the other hand, when multiple responses are correct, there is an aleatoric
uncertainty in the ground truth: If an LLM correctly assigns non-negligible scores to multiple correct
responses, most of these (if not all) will be declared as hallucination since, by design, only very few
(typically at most one) responses can have scores higher than the threshold at the same time. Thus,
hallucination detectors unaware of aleatoric uncertainty will invalidate most of the correct answers.

Yona et al. (2024) design a method that generates multiple responses, and then aggregates them into a
single response at a (typically higher) granularity level where no further uncertainty (contradiction)
is left compared to the generated responses. Although not a strictly first order method, it does not
differentiate between aleatoric and epistemic uncertainty.

D.5.1 Asking language models to quantify uncertainty (self-verification)

Kadavath et al. (2022) propose to use LLM self-prompting to measure a model’s uncertainty in its
responses. More specifically, for a given query, a number of responses are generated, and then the
model is queried if the responses are correct. For this query, the log-probability of “True" is returned
as a measure of uncertainty. Related approaches are studied by Mielke et al. (2022).

23

D.6 Uncertainty estimation based on sensitivity to contexts

Kassner and Schütze (2020); Zhao et al. (2021) show that an LLM’s responses can be influenced by
irrelevant contexts. Longpre et al. (2021); Neeman et al. (2022) study two sources of knowledge:
parametric knowledge stored in the network weights, and contextual knowledge retrieved from
external sources. They view reliance of the model on its parametric knowledge and ignoring relevant
contextual information as hallucination. These works are mainly motivated by situations where the
LLM’s knowledge is outdated and it is instructed to use the (new) contextual information. Accordingly,
they design strategies to prioritize contextual information over parametric knowledge. Longpre et al.
(2021) also show that larger models are more likely to ignore in-context information in favor of
in-weight information. They propose creating training data with modified contextual information so
that the model learns to favor the contextual information. Neeman et al. (2022) propose to train a
model that predicts two answers: one based on parametric knowledge and one based on contextual
information.

Similarly to Neeman et al. (2022), Li et al. (2023) aims to design a mechanism such that the model’s
behavior is influenced more by relevant context than by its parametric knowledge (controllability),
while the model is robust to irrelevant contexts (robustness). They improve controllability and
robustness using finetuning.

Hou et al. (2024) study an approach to estimate model uncertainty due to ambiguity in a question. For
a given question, their method generates multiple input clarification questions, and a new question
is formed by augmenting the original question with each clarification question. The clarification
questions are generated using an LLM with the aim of removing ambiguity in the question. This
is different than the problem we study as the model can be uncertain about the answer even if the
query itself has no ambiguity. For such queries, the method of Hou et al. (2024) might decide that no
clarification is needed, and therefore there is no uncertainty.

D.7 Hallucination detection using internal states of LLMs

There are a number of papers that try to extract knowledge/truthfulness by inspecting hidden-layer
activations of LLMs (Burns et al., 2023; Azaria and Mitchell, 2023; Chen et al., 2024a,b; Yin et al.,
2024). Such methods clearly require access to the LLM’s internal states, which is not always possible,
and severely limits the applicability of these methods.

24

E Omitted proofs

Proof of Theorem 5.5. In the following we will use abbreviations∑
y

=
∑

y1,...,yn

,
∑
y\i

=
∑

y1,...,yi−1,yi+1,...,yn

where each n-tuple y belongs to Y . Now,

DKL(Q̃, P̃) = −H(Q̃) +
∑
y

Q̃(y1, . . . , yn) ln
1

P̃ (y1, . . . , yn)

= −H(Q̃) +
∑
y

Q̃(y1, . . . , yn) ln
1∏

i P
(
yi | Fi−1(y1, . . . , yi−1)

)
(using Definition 5.1)

= −H(Q̃) +
∑
y

Q̃(y1, . . . , yn) ln
1∏

i P (yi)
. (by the independence assumption)

Focusing on the last (cross-entropy) term∑
y

Q̃(y1, . . . , yn) ln
1∏

i P (yi)

=
∑
y

Q̃(y1, . . . , yn)
∑
i

ln
1

P (yi)

=
∑
i

∑
yi

∑
y\i

Q̃(y1, . . . , yn) ln
1

P (yi)

(a)

≥
∑
i

∑
yi

∑
y\i

Q̃(y1, . . . , yn) ln
1∑

y\i Q̃(y1, . . . , yn)

=
∑
y

Q̃(y1, . . . , yn) ln
1∏

i

∑
y\i Q̃(y1, . . . , yn)

where in (a) we used the fact that entropy is no larger than cross-entropy. Thus,

DKL(Q̃, P̃) ≥
∑
y

Q̃(y1, . . . , yn) ln
Q̃(y1, . . . , yn)∏

i

∑
y\i Q̃(y1, . . . , yn)

= I(Q̃;Y1, . . . , Yn) .

25

F Estimation of mutual information and missing mass problem

In this section, we discuss how to estimate the mutual information from a finite sample, which may
not cover the full distribution. To control the estimation error, we first introduce the concept of
missing mass.

F.1 The missing mass problem

Let X be a countable set and suppose that X1, . . . , Xk ∼ µ ∈ M1(Xn) independently. In the
following x is used as an element of Xn rather than the query (as in Section 5). Then, the missing
mass is defined as the random variable

Uk =
∑
x∈Xn

µ(x) ξ(x) , ξ(x) = I{x 6∈ {X1, . . . , Xk}} .

Here we are primarily interested in two questions: (i) how quickly Uk approaches the expected
missing mass EUk, where it is not hard to see that

EUk =
∑
x∈Xn

µ(x)(1− µ(x))k ;

and (ii) we are also interested in giving an estimate for EUk given µ and k. The first question is
answered by the following theorem:

Theorem F.1 (Concentration of a missing mass (Berend and Kontorovich, 2013)). For any t > 0, we
have an upper-tail bound

P (Uk > EUk + t) ≤ e−tk
2

,

and moreover for a universal constant c ≈ 7.6821, we have an lower-tail bound

P (Uk < EUk − t) ≤ e−ctk
2

.

Notably Uk exhibits a sub-gaussian concentration (i.e. 1/
√
k), which is surprisingly fast. As we will

see next, the main bulk of the error incurred for missing a subset of the support is hidden in EUk.

In particular, when X is finite with |X | = N , Berend and Kontorovich (2012) showed that

EUk ≤
{
e−

n
N , if n ≤ N ;

N
en , if n > N.

In the countably infinite X , we cannot generally have a non-trivial bound on EUk only in terms of
n. In fact, Berend and Kontorovich (2012) show a bound that depends on µ which is expected to
be finite for rapidly decaying atoms. Interestingly, when the entropy of µ is bounded, one has the
following result (Berend et al., 2017):

Theorem F.2. Let H(µ) ≤ h <∞. For all n ≥ 1, we have EUk ≤ h∑k
i=1 i

−1 ≤ h
ln(n) .

Note that these estimates are very pessimistic, and in reality we expect the expected missing mass to
be significantly smaller. Since natural (and many artificial) languages follow a Zipf distribution (Pi-
antadosi, 2014), we expect that E[Uk] should be much smaller than in the above cases, since sampling
from the tail of a Zipf distribution is a rare event. In Appendix F.4 we show the following:

Corollary F.3 (Expected missing mass of Zipf distribution). Consider distribution µ(i) =

i−α/H(α,N) for i ∈ [N], where α > 1 and H(α,N) =
∑N
i=1 i

−α. Then, for any β > 0,

E[Uk] = O
(
k−(α−1

α −β)
)
.

Proof. The statement followss by combining Lemma F.9 and Proposition F.10.

26

F.2 Estimating mutual information from the partial support

Our goal is to estimate

I(µ) = DKL(µ, µ⊗) =
∑
x∈Xn

µ(x) ln

(
µ(x)

µ⊗(x)

)
by only having access to X1, . . . , Xk ∼ µ. Note that that the sample might cover only some part of
the support of X and therefore we are facing a missing mass problem. In the following we consider
estimator Îk(γ) given by Algorithm 1.

In particular in Appendix F.3 we show the following

Theorem F.4. Fix X̃ ⊆ Xn. Fix γ1 > 0 and suppose that γ2 ≥ n(1− Z) + γ1. Then for any fixed
δ ∈ (0, 1), with probability at least 1− δ,

(1− εk) Îk(γ1, γ2)−
(
|X̃ |γ1 + ln

(
e+

e

γ1

)(
µ(Xn \ X̃) + εk

))
≤ I(µ)

where

εk = EUk +

√
ln(1

δ)

k
.

In particular, Theorem F.4 implies the following:

Corollary F.5. Under conditions of Theorem F.4, there exists (γ∗1 , γ
∗
2) ∈ (0, 1)2 such that

(1− εk) Îk(γ∗1 , γ
∗
2)−

(
1

k
+ (1 + n ln

(
1 + k |X |)

)
εk

)
≤ I(µ) .

Note that, choosing any of the upper bounds on EUk discussed in Appendix F.1, we can see that
Corollary F.5 implies asymptotic convergence in as a sense

lim
k→∞

Îk(γ∗1 , γ
∗
2) ≤ I(µ) .

F.3 Proof of Theorem F.4

The proof will heavily rely on the simple fact that

1− ξ(x) =

{
1, if x ∈ {X1, . . . , Xk};
0, otherwise.

(2)

Recalling that S =
{
i ∈ [k] : Xi 6= Xj ∀j < i

}
, this immediately implies the following

connection between Uk and the quantities used in Algorithm 1:

Proposition F.6. We have that∑
j∈S

µ(Xj) =
∑
x∈Xn

(1− ξ(x))µ(x) = 1− Uk .

Recall that the product distribution of µ is defined as

µ⊗(x) =

n∏
i=1

∑
x\i

µ(x1, . . . , xi−1, xi, xi+1, . . . , xn) .

27

Note that we use
∑
x\i µ(· · ·) instead of µ(xi) since these are not necessarily equal for some µ. Now,

using the definitions of Îk, µ̂, and µ̂⊗,

Îk(γ1, γ2) =
1

Z

∑
i∈S

µ(Xi)

(
ln

(
µ(Xi)

Z
+ γ1

)
− ln

(
µ̂⊗(Xi) + γ2

))
=

1

Z

∑
x∈Xn

(1− ξ(x))µ(x)

(
ln

(
µ(x)

Z
+ γ1

)
− ln

(
µ̂⊗(Xi) + γ2

))
(by Eq. (2))

=
1

Z

∑
x∈Xn

(1− ξ(x))µ(x)

(
ln

(
µ(x) + γ1

µ⊗(x) + γ1

)
+ ln

(
µ⊗(x) + γ1

µ̂⊗(x) + γ2

)
+ ln

1

Z

)
=

1

Z

∑
x∈Xn

µ(x) ln

(
µ(x) + γ1

µ⊗(x) + γ1

)
︸ ︷︷ ︸

(i)

+
1

Z

∑
x∈Xn

ξ(x)µ(x) ln

(
µ⊗(x) + γ1

µ(x) + γ1

)
︸ ︷︷ ︸

(ii)

+ ln
1

Z︸︷︷︸
(iii)

+
1

Z

∑
x∈Xn

(1− ξ(x))µ(x) ln

(
µ⊗(x) + γ1

µ̂⊗(x) + γ2

)
︸ ︷︷ ︸

(iv)

Now we control each of the terms individually. To control (i) we will first need the fact that
q ln((q + γ1)/p) ≤ q ln(q/p) + γ1 for any q, p ∈ [0, 1], γ1 > 0. Note that this follows since

q ln

(
q + γ1

p

)
= q ln

(
1 +

γ1

q

)
+ q ln

(
q

p

)
≤ γ1 + q ln

(
q

p

)
(3)

using that ln(1 + a) ≤ a for a > −1. Getting back to (i), and using the aforementioned inequality,
we get

(i) =
1

Z

∑
x∈Xn

µ(x) ln

(
µ(x) + γ1

µ⊗(x) + γ1

)
=

1

Z

∑
x∈X̃

µ(x) ln

(
µ(x) + γ1

µ⊗(x) + γ1

)
+

1

Z

∑
x∈Xn\X̃

µ(x) ln

(
µ(x) + γ1

µ⊗(x) + γ1

)

≤ 1

Z

∑
x∈X̃

µ(x) ln

(
µ(x) + γ1

µ⊗(x) + γ1

)
+

1

Z
ln

(
1 + γ1

γ1

)
µ(Xn \ X̃)

≤ 1

Z

∑
x∈X̃

(
µ(x) ln

(
µ(x)

µ⊗(x)

)
+ γ1

)
+

1

Z
ln

(
1 +

1

γ1

)
µ(Xn \ X̃) (by Equation (3))

=
1

Z

(
DKL(µ, µ⊗) + |X̃ | γ1

)
+

1

Z
ln

(
1 +

1

γ1

)
µ(Xn \ X̃) .

Furthermore,

(ii) ≤ 1

Z

∑
x∈Xn

ξ(x)µ(x) ln

(
1 +

1

γ1

)
=

1− Z
Z

ln

(
1 +

1

γ1

)
.

Next, observe that (iii) ≤ ln(1/Z). Finally, term (iv) is controlled through the following fact shown
at the end of this section:
Lemma F.7. Suppose that γ1 ≥ 0 while γ2 ≥ γ1 + n(1− Z). Then,

1

Z

∑
x∈Xn

(1− ξ(x))µ(x) ln

(
µ⊗(x) + γ1

µ̂⊗(x) + γ2

)
≤ 0 .

Putting everything together, we obtain

Îk(γ1, γ2) ≤ 1

Z

(
DKL(µ, µ⊗) + |X̃ |γ1

)
+

1

Z
ln

(
1 +

1

γ1

)(
µ(Xn \ X̃) + 1− Z

)
+ ln(1/Z) .

28

Finally, multiplying through by Z the entire inequality, and using the fact that Z ln(1/Z) ≤ 1− Z,
we get

Z Îk(γ1, γ2) ≤ DKL(µ, µ⊗) + |X̃ |γ1 + ln

(
1 +

1

γ1

)(
µ(Xn \ X̃) + 1− Z

)
+ 1− Z

≤ DKL(µ, µ⊗) + |X̃ |γ1 + ln

(
e+

e

γ1

)(
µ(Xn \ X̃) + 1− Z

)
.

To complete the proof we need to give a lower bound on Z. Note that Z = 1− Uk by the definition
of Z and Proposition F.6, and so by Theorem F.1

P (1− EUk > 1− Uk + t) ≤ e−tk
2

.

Using this concentration bound together with the choices of γ (also setting δsupp = 0 for the first
inequality in the main statement) completes the proof of Theorem F.4. �

Proof of Lemma F.7. Observe that

µ̂⊗(x) = (1− ξ(x))

n∏
j=1

∑
t∈S:Xt,j=xj

µ̂(Xt,1, . . . , xj , . . . , Xt,n)

=
1

Zn
(1− ξ(x))

n∏
j=1

∑
t∈S:Xt,j=xj

µ(Xt,1, . . . , xj , . . . , Xt,n)

=
1

Zn
(1− ξ(x))

n∏
j=1

∑
x′∈Xn

(1− ξ(x′)) I{x′j = xj}µ(x′1, . . . , xj , . . . , x
′
n)

=
1

Zn
(1− ξ(x))

n∏
j=1

∑
x′
\j

(1− ξ(x′1, . . . , xj , . . . , x′n))µ(x′1, . . . , xj , . . . , x
′
n) .

Now, using that fact that∑
x′
\j

ξ(x′1, . . . , xj , . . . , x
′
n)µ(x′1, . . . , xj , . . . , x

′
n)

≤
∑

x′
\j
,xj

ξ(x′1, . . . , xj , . . . , x
′
n)µ(x′1, . . . , xj , . . . , x

′
n)

= 1− Z

we arrive at

µ̂⊗(x) ≥ 1

Zn
(1− ξ(x))

 n∏
j=1

∑
x′
\j

µ(x′1, . . . , xj , . . . , x
′
n) + Z − 1

+

(a)

≥ 1

Zn
(1− ξ(x))

 n∏
j=1

∑
x′
\j

µ(x′1, . . . , xj , . . . , x
′
n)− n(1− Z)

+

=
1

Zn
(1− ξ(x))

(
µ⊗(x)− n (1− Z)

)
+

where to get (a) we used:

Proposition F.8. For any p1, . . . , pn ∈ [0, 1] and a ≥ 0, we have

n∏
i=1

(pi − a) ≥
(n∏
i=1

pi
)
− na .

29

Proof. The statement following by lower-bounding the left-hand side by its linearization in a (deriva-
tive at 0), while realizing that it is a convex function of a.

The above gives us that

1

Z

∑
x∈Xn

(1− ξ(x))µ(x) ln

(
µ⊗(x) + γ1

µ̂⊗(x) + γ2

)

≤ 1

Z

∑
x∈Xn

(1− ξ(x))µ(x) ln

(
µ⊗(x) + γ1

1
Zn (1− ξ(x)) (µ⊗(x)− n(1− Z))+ + γ2

)
and focusing on the case 1− ξ(x) = 1 (otherwise both sides are 0) the above equals to

1

Z

∑
x∈Xn

µ(x) ln

(
µ⊗(x) + γ1

1
Zn (µ⊗(x)− n(1− Z))+ + γ2

)

≤ 1

Z

∑
x∈Xn

µ(x) ln

(
µ⊗(x) + γ1

(µ⊗(x)− n(1− Z))+ + γ2

)
≤ 1

Z

∑
x∈Xn

µ(x) ln

(
µ⊗(x) + γ1

µ⊗(x)− n(1− Z) + γ2

)
≤ 0

by setting γ2 ≥ γ1 + n(1− Z).

F.4 Expected missing mass under Zipf distribution

We will rely on some machinery used by Ohannessian and Dahleh (2010) who established distribution-
dependent bounds on the expected missing mass. As before let µ be supported on a countable set.
The accrual function is defined as

F (v) =
∑
µ(i)≤v

µ(i) (v ∈ [0, 1])

and moreover the accrual rates are defined as

ρ = lim inf
v→0

lnF (v)

ln v
, ρ = lim sup

v→0

lnF (v)

ln v

We use the following result:
Lemma F.9 (Ohannessian and Dahleh, 2010, Theorem 1). Let µ have lower and upper accrual rates
0 < ρ ≤ ρ <∞. Then for every β > 0 there exists k0 such that for all k > k0 we have:

k−(p+β) ≤ E[Uk] ≤ k−(p−β)

or, equivalently, for every β > 0 we have that E[Uk] is both Ω(k−(p+β)) and O(k−(p−β)).
Proposition F.10. Consider the distribution µ(v) = i−α/H(α,N) for i ∈ [N] where α > 1 and
H(α,N) =

∑N
i=1 i

−α. Then, ρ = Ω(α−1
α) as N →∞.

Proof. The idea is to use Lemma F.9 to give an upper bound on the missing mass. Therefore, we
need to establish a lower bound on lnF (v). For now, abbreviate

u = (v H(α,N))−
1
α .

First note that for some 1 ≤ u ≤ N
N∑
i≥u

i−α ≥
∫ N

u

(1 + i)−α di =
1

α− 1

(
(1 + u)1−α − (1 +N)1−α) .

30

On the other hand,

N∑
i=1

i−α ≤
∫ N

1

(1 + i)−α di ≤ 1

α− 1
(1−N1−α) .

So,

lnF (v) ≥ ln
(
(1 + u)1−α − (1 +N)1−α)− ln(1−N1−α)

≥ ln
(
(1 + u)1−α − (1 +N)1−α)

and then

lnF (v) = Ω ((1− α) ln(1 + u)) (asN →∞)

= Ω ((1− α) ln(u))

= Ω
(

(1− α) ln((v H(α,N))−
1
α)
)

= Ω

(
α− 1

α
ln(v) +

α− 1

α
lnH(α,N)

)
= Ω

(
α− 1

α
ln(v)

)
.

Data-dependent estimate of the expected missing mass We perform an experiment designed to
give a data-dependent estimate of the expected missing mass E[Uk] for some specific datasets. Clearly,
we cannot simply apply a concentration bound discussed in Appendix F.1 since the complete support
of the pseudo joint distribution derived from the LLM is unknown. To this end, we approximate it with
a finite support driven by the language model itself. In particular, given a query we sample responses
(at temperature 0.9) until their total probability mass reaches 0.95 or we reach 1000 responses per
query. In case of TriviaQA, we performed 1233 queries in total. The mean and the median number
of unique responses per query was eventually 118.3 and 22, respectively. In case of the AmbigQA
dataset, we performed 700 queries, while the mean and the median number of unique responses was
277 and 69, respectively.

At this point, we denote the set of responses by X̃ and let Ũk be the missing mass computed on X̃ .
Then, we have

E[Uk] ≤ Uk +

√
ln(1

δ)

k
≤ Ũk + Uk − Ũk +

√
ln(1

δ)

k
≤ Ũk + 1− P (X̃) +

√
ln(1

δ)

k
,

which can be computed in practice. In Figure 6 we present our results in the form of empirical
distributions of different quantities, where each observation corresponds to a single query. We
compute the bounds for TriviaQA and AmbigQA datasets (see Section 6 for details about these
datasets). From Figure 6 we can conclude that the expected missing mass for both datasets is
very small: Both the missing mass computed on X̃ and the resulting upper bound on E[Uk] are
concentrated close to 0, while the cumulative probability of the approximate support X̃ is close to 1
most of the time, showing that our approximations are meaningful.

31

0.2 0.4 0.6 0.8 1.0
Value of upper bound

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

H.p. upper bound on [Uk]

0.0 0.2 0.4 0.6 0.8 1.0

Value of Uk

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Uk

0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Total mass of sampled responses

TriviaQA dataset

0.2 0.4 0.6 0.8 1.0
Value of upper bound

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

H.p. upper bound on [Uk]

0.0 0.2 0.4 0.6 0.8 1.0

Value of Uk

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Uk

0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Total mass of sampled responses

AmbigQA dataset

Figure 6: Distributions of bounds on the missing mass. The left figure for each dataset presents the
empirical distribution of the upper bounds on the missing mass E[Uk]. The middle figure presents the
empirical distribution of Ũk, the missing mass computed on a finite support approximation (where the
support is obtained by taking samples from the LLM until a cumulative probability of 95% or 1000
samples are achieved). The right graph shows the empirical distribution of P (X̃), the cumulative
probabilities of all responses generated by the language model. For each figure, one observation
(sample) corresponds to a single query. The black curves represent the corresponding empirical
cumulative distribution functions for the upper bounds on EUk and for Ũk, and the empirical survival
function (1 minus the empirical distribution function) for the distribution of P (X̃).

32

G Additional experiments details

Comparison of responses and computing the output distributions. We use the F1 score8 thresh-
olded at 0.25 to decide if two text sequences match. When multiple responses are sampled, we
approximate the output distribution of an LLM in a semantically meaningful way by collapsing
matching responses into a single response: we sample k = 10 responses at temperature 0.9 for
each query, and after eliminating repetitions, all those that match (according to the F1 score) are
considered identical and their probabilities are aggregated. We only consider queries for which the
greedy (temperature zero) and at least one of the random responses are shorter than 20 characters.
This is because the F1 score (as a match function) and log-probabilities (as a measure of uncertainty)
are less reliable for longer sequences. After this filtering, we are left with 38870 datapoints for
TriviaQA, 5315 datapoints for AmbigQA, and 3296 datapoints for WordNet.

As shown in prior works (e.g. Kuhn et al. (2023); Yadkori et al. (2024)), we can use LLM self-
prompting to obtain more reliable text comparisons specially for longer outputs. Such an approach
however is computationally much more expensive.

Baselines. We consider abstention policies based on four scoring methods. The first three are
as follows: (i) the probability of the greedy response (denoted by T0); (ii) the semantic-entropy
method of Kuhn et al. (2023) whose score is the entropy of k = 10 generated samples (denoted by
S.E.). To calculate entropy, we first aggregate probabilities of equivalent responses and normalize the
probabilities so that they sum to 1 (as described above); and (iii) our proposed mutual information
score as defined in Section 5 (and denoted by M.I.) with the choices of k = 10, n = 2, and
γ1 = γ2 = 0 (the latter choice approximates the case that the number of potential responses can
be very large in which case the theoretical choice of γ1 and γ2 would be very small). To calculate
the mutual information, as shown in Algorithm 3 (given in Appendix A), we first generate k = 10
random samples. Then for any response Y , we calculate the probability of all generated responses
given the prompt F1(x, Y). We construct estimates Q̂(Y) and Q̂(Y ′|Y) by aggregating probabilities
of equivalent responses, and normalizing the probabilities so that they sum to 1.

The calculation of the mutual information is slightly different than the algorithms presented in
Algorithm 1 and Algorithm 2 and takes advantage of the available log-likelihood function in LLMs.
Notice that the input µ in Algorithm 3 is the LLM’s output distribution Q as opposed to being
the pseudo joint distribution Q̃ in Algorithm 1. Another difference is that the similarity function
s now takes two texts as input (as opposed to taking two n-dimensional arrays of texts as inputs
in Algorithm 2). As explained earlier, we use the F1 score as the similarity function and we use
τ = 0.25 as the similarity threshold.

Each baseline also has a default choice which is taken when the relevant score is above a threshold,
and hence the method does not abstain. For T0, the default choice is the greedy (temperature zero)
response. For S.E., the default choice is the response with the highest (aggregate) probability among
the generated random responses. For the M.I. method, the default choice is the sampled response
with the highest probability according to the marginalized pseudo joint distribution.

We also consider a version of the self-verification method of Kadavath et al. (2022) (denoted by S.V.)
that, for a query x, first finds Y1, the element with the largest (aggregated) probability (which is the
default choice of S.E. method), and then calculates the probability of token “True” (normalized for
the two tokens “True” and “False”) for the following query: “Consider the following question: Q: x.
One answer to question Q is Y1. Is the above answer to question Q correct? Answer True or False.
A:”. The default choice of this baseline is the same as the default choice of the S.E. method. By this
design, our intention is to construct a score that (unlike the first-order scores9 we consider) is not
sensitive to the size of the label set.

8In this context, the F1 score is calculated based on token inclusion (Joshi et al., 2017; Devlin et al., 2019):
for two sequences a = (a1, . . . , an) and b = (b1, . . . , bm), defining p = |a ∩ b|/n and r = |a ∩ b|/m (where
|a∩b| is the size of the intersection of a and b, in which for repetitions of an element y, we consider the minimum
number of repetitions in a and b, i.e., minc∈{a,b} |{i : ci = y}|, in calculating the size of the intersection) we
define F1 = 2pr/(p+ r). Relating to the standard definition of the F1 score, p and r play the role of precision
and recall, respectively, if a is thought of as a prediction of b.

9The scores T0 and S.E. are first order because they only consider the marginal distribution of a single
response, unlike our uncertainty score which is based on MI estimation by considering (pseudo) joint distributions
over multiple responses.

33

H Experiments with Gemini 1.0 Nano-1 model

In order to show that our findings are not limited to models of certain size, we conducted experiments
with much smaller Gemini Nano model with 2B parameters. The results are shown in Figures 7 and
8.

(a) TriviaQA (b) AmbigQA (c) TriviaQA+WordNet (d) AmbigQA+WordNet

Figure 7: The same figure as Figure 4, but for a much smaller Gemini Nano model with 2B parameters.
PR-Curve for the baseline and the proposed methods on various datasets. On TriviaQA and AmbigQA
datasets, S.E. outperforms M.I. when the recall is low, but they perform similarly as the recall increases
(note that the large-looking difference on AmbigQA is actually at most 3%-points throughout, and it
is also about at most the same for TriviaQA when the recall is above 0.4). For larger recalls, the two
methods perform similarly, with the S.E. method somewhat outperforming our M.I. method. Note
that the performance of the Nano model is quite weak, especially compared to the Gemini Pro results
presented in the paper. On TriviaQA+WordNet and AmbigQA+WordNet datasets with the additional
high entropy multi-label queries, M.I. outperforms S.E. baseline. Similarly to the experiments with
Gemini Pro, the precision increases as the recall grows (above around 0.5), as the previously rejected
WordNet data is accepted more and more.

(a) TriviaQA+WordNet (b) TriviaQA+WordNet (c) AmbigQA+WordNet (d) AmbigQA+WordNet

Figure 8: Recall and error rates (percentage of mistakes when not abstaining) for TriviaQA and
AmbigQA as a function of the entropy of model responses. The methods are calibrated at error rate
0.07 (as before, this error rate is computed by considering abstention as no error, i.e., error rate =
errors/(predictions + abstentions)), based on 50 random samples. One can see that when the response
entropy is small (the histogram is created with bins of withs 0.2), M.I. and S.E. have similar error and
recall rates. On the other hand, for larger entropies, S.E. rejects all samples, while M.I. accepts some
of them with a reasonably small error rate. This is again very similar to our findings for the Gemini
Pro model.

34

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
scope, contributions, claims, and results.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the introduction.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

35

Justification: For each theoretical result, the paper provides the full set of assumptions and
proofs. Some proofs are included in appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we disclose all the required information to reproduce our results in
experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

36

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the data is publicly available. Code is currently not available: our organiza-
tional policy forbids immediate publication of the source code without an internal review
process. As the review process is long, it is unlikely that NeurIPS deadline could be met if
we were to undergo a code review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details are included in experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Confidence intervals are present in all relevant plots (with details therein).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is provided in the experimental section.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors followed the principles outlined in NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impact statement is made at the beginning of the appendix.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

38

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work uses existing and publicly-available language models, so all the
standard safeguards relevant models apply.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We correctly reference the datasets, the only external assets used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

39

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets in this paper.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our study does not involve human subjects or crowdsourcing.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve any human subjects or approval from IRB or
equivalent.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

40

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41

	Introduction
	Preliminaries
	Probability amplification by iteratively prompting
	Explanation through the lens of in-context vs. in-weight learning
	Metric of epistemic uncertainty and its estimation
	A computable lower bound on epistemic uncertainty
	Score-based hallucination tests

	Experiments
	Additional algorithms for taking semantic equivalences into account
	Implementation and usage examples of alg:MI and alg:MI-se
	Additional documentation for functions in lst:MI

	Usage example of alg:MI2
	Related work
	Bayesian neural networks
	Iterative prompting
	Training models with pairs of responses
	Epistemic neural nets
	Hallucination detection using first-order methods
	Asking language models to quantify uncertainty (self-verification)

	Uncertainty estimation based on sensitivity to contexts
	Hallucination detection using internal states of LLMs

	Omitted proofs
	Estimation of mutual information and missing mass problem
	The missing mass problem
	Estimating mutual information from the partial support
	Proof of thm:emp-wav-MI
	Expected missing mass under Zipf distribution

	Additional experiments details
	Experiments with Gemini 1.0 Nano-1 model

