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Abstract. We propose a low rank filter approximation based continual learn-
ing approach which decomposes convolution filters into compact basis filters and
remixing coefficients. For lifelong learning, we keep the same basis filters to al-
low knowledge sharing, but add separate coefficients for each new task. Task
specific feature maps are computed by a sequence of convolutions, first with
shared basis filters and followed by the task specific coefficients. This method
enables the model to preserve the previously learned knowledge, thus avoiding
the problem of catastrophic forgetting. Additionally, choosing compact basis lets
us get away with using a small number of basis filters which enables reduction in
FLOPs and number of parameters in the model. To demonstrate efficiency of the
proposed approach, we evaluate our model on a variety of datasets and network
architectures. With Resnet18 based architecture, we report performance improve-
ment on CIFAR100 with significantly low FLOPs and parameters as compared
to other methods. For ImageNet our method achieves comparable performance to
other recent methods with reduced FLOPs.

Keywords: Neural network compression · Continual Learning · Convolutional
neural networks · Image classification

1 INTRODUCTION

Recent progress in machine learning research has led to impressive advances and has
enabled many practical applications of the deep learning models [1, 2]. These conven-
tional methods however assume that all training data is available at once which is hardly
the case in real world applications. For instance, imagine a warehouse robot tasked with
visually scanning items. If traditional training pipeline is used, every time a set of new
items classes are added to the inventory the model will need to be trained again from
scratch, with all previous and newly available data. This process is not only time con-
suming but also needlessly computationally expensive. Additionally, previous training
data may not be available now. Naively training the model on new dataset alone makes
the model encounter catastrophic forgetting, where the model forgets the previously
learned representations while adapting to new data only. This limitation is one of the
major barriers hindering the widespread adoption of deep learning methods.

This problem (referred to as continual learning or lifelong learning in the literature)
is an active area of research. Lifelong learning aims to train a model incrementally, as
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Fig. 1. Our Efficient Lifelong Learning (ELL) method. We substitute the original filters H with
shared basis filters F and a set of task specific coefficients wt. Combination of these two lets us
compute task specific features throughout the network.

new data becomes available while also preserving the previously learned representa-
tions. To solve this problem several methods have been introduced among them, net-
work expansion based methods work have shown potential. These methods add ded-
icated parameters to the model for each new task which can be used to calculate the
task specific feature maps, thus avoiding forgetting. For example Rusu et al. [3], Yoon
et al. [4] and Jerfel et al., 2019 [5] proposed incrementally adding parameters to the
model for each new task. Vinay et. al. [6] suggested adding several task specific feature
map transformation layers to the model which add a small number of additional param-
eters. Similarly, Miao et. al. [7] proposed a low rank sub-space based approach which
decompose original filters into a set of task specific atoms and shared coefficients. Task
specific filters are obtained at inference time by multiplying the shared coefficients with
corresponding filter atoms.

To address the problem of Life Long Learning, we propose a filter decomposition
based approach. Our method enables knowledge sharing between tasks using shared
basis filters while task specific coefficients enable the model to compute task specific
feature maps. We leverage the low rank approximation of convolution filters H to de-
compose them into compact basis filters F and coefficients w. We share the filters
F among all tasks while new coefficients (w) are added to the model for each addi-
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Fig. 2. Illustration of low rank filter decomposition. On top is the 2D convolution with filters H,
which can be decomposed into basis filters F and coefficients w as shown below. A convolution
with F followed by w yields y′ that approximates the original output y.

tional task. In contrast to Miao et al. [7], task specific feature maps are computed by
a sequence of convolutions with F followed by wt, as as depicted in Fig. 1. Finally
choosing compact basis to represent H lets us get away with using a small number of
basis filters. This enables significant reduction in FLOPs and number of parameters in
the model.

To demonstrate efficiency of the proposed approach, we evaluate our model on a
variety of datasets and network architectures. With Resnet18 [1] based architecture, we
report performance improvement on CIFAR100 [8] with significantly low FLOPs and
parameters as compared to other methods. While for ImageNet [9] our method achieves
comparable performance to the recent methods.

2 RELATED WORK

2.1 LIFELONG LEARNING

A lot of research has been done on lifelong learning in recent years. We have followed
Delange et al. [10] to divide these methods into following groups based on the way they
tackle forgetting of the previously learned knowledge.

Network Expansion methods are most relevant to our proposed approach. These
methods prevent catastrophic forgetting by adding dedicated parameters for each new
task to calculate the task specific feature maps. However unconstrained parameter growth
can very quickly overwhelm the memory resources, so the rate of parameter growth is
a matter of concern here.

Rusu et al. [3], Yoon et al. [4] and Jerfel et al., 2019 [5] proposed incrementally
adding parameters to the model. While Mallaya et al. [11] prunes the previous tasks
parameters before introducing new task. Similarly, Wortsman et al., 2020 [12] presented
a masking mechanism to train separate subnetwork for each task. Recently, Vinay et.
al. [6] suggested adding several task specific feature map transformation layers to the
model which add a small number of additional parameters. Miao et. al. [7] proposed a
low rank sub-space based approach which decompose original filters into a set of task
specific atoms and shared coefficients. Task specific filters are obtained at inference
time by multiplying the shared coefficients with corresponding filter atoms.
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Algorithm 1 Training procedure of the proposed method
TRAIN(H, k, D1 ... DT )

Train model using D1, acc. to Eq. 3
Decompose H in each Conv2D layer into F and w
Truncate k% filters in F and update w accordingly
for (task: t = 1 to T ) do

if (t == 1)
w1 ← w
Finetune F and w1 using D1, acc. to Eq. 4

else
wt ← w1

Train wt using Dt, acc. to Eq. 5
end if

end for
return (F, w1 .. wT )

Replay Methods assign a small memory to store a subset of previous task samples
or train a generator model to synthesise pseudo-samples. These samples are then used
to train the model along with new task data to make sure that previously learned knowl-
edge is retained. Storing samples from previous tasks however raises privacy concerns
which is a drawback of these methods.

Shin et al. [13] proposed training a generative model to produce samples for pre-
vious tasks. Rebuffi et al. [14] stores a subset of exemplars per class, selected to best
approximate class means in the learned feature space. Rolnick et al. [15] suggest a sam-
pling strategy to limit size of the memory buffer. Yan et al. [16] proposed combining
the network expansion with a memory buffer to store previous task samples.

Regularization-based methods avoid storing any samples and instead add a reg-
ularization term to the loss function meant to prevent the drift in previous task’s loss
landscape. These methods need to carefully balance the plasticity vs stability of the
model to make sure the new information is ingested properly while also preventing
catastrophic forgetting.

Li et al. [17] propose a knowledge distillation based technique, where previous task
outputs as the soft labels to mitigate forgetting and transfer knowledge. Kirkpatrick
et al. EWC [18] estimate the Fisher information matrix which is used to identify the
important parameters for previous tasks. Training algorithm then selectively penalizes
changes to these parameters. Similarly, Aljundi et al. MAS [19] suggest unsupervised
importance estimation using gradient magnitude. Finally, Titsias et al. [20] introduced
Bayesian functional approach which avoids forgetting by constructing an approximate
posterior belief of previous tasks.

2.2 LOW RANK APPROXIMATION

Our work takes inspiration from class of techniques that rely on low-rank approxima-
tions to represent the convolution filters. Jaderberg et al. [21] replace the pretrained
4D filter tensor by a set of separable rank-1 filters and proposed to approximate the re-
sponse of the original filters by minimizing a L2 norm. In Denton et al. [22], the authors
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form clusters in the higher filter layers, and then approximate the clusters using a sum
of the outer-products of separable 1D filters. Zhang et al. [23] have employed a similar
linear combination architecture to ours, but they approximate the response of the filters
at each layer. Finally Qiu et al. [24] also proposes an convolutional filter decomposition
as a truncated expansion with prefixed basis filters.

3 METHOD

Our lifelong learning method has been inspired from low rank filter decomposition-
based methods [21,22]. We show that this formulation can not only be used to compress
the pretrained convolution layer but also naturally extends to adapt the model for life-
long learning problem setting. It has been observed by [22] that task parameters lie in
low dimensional sub space of the convolutional filters. We have exploited this fact for
CNN compression by substituting the trained convolutional filters, of the first task, with
compact filter basis F and coefficients w, as shown in Fig. 2. For lifelong learning prob-
lem setting the basis filters are shared (and are kept fixed) while separate coefficients
are added and trained for each new task. The combination of shared basis filters and
task specific coefficients enables the model to preserve previously learned knowledge
and avoid forgetting altogether.

3.1 LOW RANK APPROXIMATIONS OF FILTERS

To find these compact basis filters and coefficients, consider the fundamental 2D con-
volution operation in a CNN. Assume that an input tensor x is convolved with a set of
filters H ∈ RP×L×D×D, where P is the number of filters in H and with each filter of
size L×D ×D. The output y, of this convolution operation is expressed as

y = x ∗H (1)

We know that eigen decomposition results in a compact basis that minimizes the
reconstruction error achieved by a linear combination of basis functions. We therefore
choose F as the eigen filters that represent the sub-space in which the original filters H
lie. The method for obtaining these is also well-known and straightforward. To approx-
imate the compact sub-space these filters are flattened and arranged as columns of the
matrix H̃ ∈ RP×A, where A = LD2. We then compute its singular value decomposi-
tion as H̃ = USVT and initialize F̃ with the columns of VT corresponding to non zero
eigen values. This leads to w̃ = F̃T H̃ and finally appropriate reshaping of F̃ and w̃ lets
us rewrite the convolution operation defined in Eq. 1 as a sequence of of two successive
convolutions:

y′ = (x ∗ F) ∗w (2)

where F ∈ RP×L×D×D and w ∈ RP×P×1×1. We refer to the construct intro-
duced in Eq. 2 as decomposed convolution. This representation is typically used to
compress the model in terms of FLOPs and number of parameters however in its cur-
rent form it actually increases FLOPs and parameters. To compress the model we dis-
card k% the basis filters in F corresponding to the smallest eigen values. This results in



6 Muhammad Tayyab and Abhijit Mahalanobis

1 5 10 15 20
10

20

30

40

50

60

70

80

90

100

Task #

A
cc

ur
ac

y(
%

)

DMC [25]
EFT [6]
LwF [17]
RWalk [26]
SI [27]
Ours (k=0%)
Ours (k=75%)

1 2 3 4 5
20

30

40

50

60

70

80

90

Task #

A
cc

ur
ac

y(
%

)

DMC [25]
EFT [6]
LwF [17]
RWalk [26]
SI [27]
Ours (k=0%)
Ours (k=75%)

(a) 20-split CIFAR100 (b) 5-split CIFAR100

Fig. 3. Comparison of CIL accuracy with Resnet18 architecture on CIFAR100 dataset.

Table 1. Comparison of CIL accuracy with Resnet18 architecture on 10-split CIFAR100 dataset.

Method / Task ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Avg.

LwF [17] 88.5 70.1 54.8 45.7 39.4 36.3 31.4 28.9 25.5 23.9 44.5
EWC [18] 88.5 52.4 48.6 38.4 31.1 26.4 21.6 19.9 18.8 16.4 36.2
SDC [28] 88.5 78.8 75.8 73.1 71.5 60.7 53.9 43.5 29.5 19.3 59.5

SI [27] 88.5 52.9 40.7 33.6 31.8 29.4 27.5 25.6 24.7 23.3 37.8
MAS [19] 88.5 42.1 36.4 35.1 32.5 25.7 21.0 19.2 17.7 15.4 33.4

RWalk [26] 88.5 55.1 40.7 32.1 29.2 25.8 23.0 20.7 19.5 17.9 35.3
DMC [25] 88.5 76.3 67.5 62.4 57.3 52.7 48.7 43.9 40.1 36.2 57.4
EFT [6] 90.2 76.2 70.1 63.1 57.9 53.6 52.1 49.6 47.6 45.5 60.6

Ours (k=0%) 92.4 76.3 67.1 63.6 62.0 58.6 56.4 54.3 52.1 49.8 63.3
Ours (k=75%) 89.1 74.7 65.1 61.6 59.8 55.6 53.7 51.4 49.4 47.3 60.8

F ∈ RQ×L×D×D and correspondingly w ∈ RP×Q×1×1, where Q = ⌈P − kP/100⌉.
Analysis of FLOPs and parameters required for implementing Eq. 2 is presented in Sec.
3.3.

3.2 EFFICIENT LIFELONG LEARNING

The objective of lifelong learning algorithm is to incrementally train the model on a set
of disjoint classes with some data availability constraints. Formally, the model observes
data (Xt,Yt) randomly drawn from distribution Dt, corresponding to task t. Where Xt

and Yt represents the input images and corresponding ground truth labels respectively.
The goal of a continual learning algorithm is to train model on Dt while also preserving
the previously learned knowledge. However, this data availability constraint introduces
the problem of catastrophic forgetting [17,18] where model forgets the previous knowl-
edge and ends up performing poorly on previous tasks.

We seek to solve this catastrophic forgetting problem by using the decomposed
convolution structure. We initially train first task on a vanilla neural network with con-
volution filters H, given the data samples (X1,Y1).

argmin
H

∑
D1

ℓ(f(X1;H),Y1) (3)



Leveraging low rank filters for efficient and knowledge-preserving lifelong learning 7

Table 2. Comparison of TIL accuracy with AlexNet architecture on 10-split ImageNet.

Method / Task ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Avg.

LwF [17] 27.6 37.2 42.0 44.4 50.5 56.6 57.9 61.2 62.0 62.7 50.2
IMM [29] 68.5 53.6 52.1 51.7 52.5 55.5 54.7 53.5 54.2 51.8 54.8
EWC [18] 21.8 26.5 29.5 32.9 35.6 40.4 40.0 44.7 47.8 61.1 38.0

PackNet [11] 67.5 65.8 62.2 58.4 58.6 58.7 56.0 56.5 54.1 53.6 59.1
EFT [6] 69.0 63.2 60.1 62.5 53.6 57.2 55.1 52.8 55.7 62.5 59.4

Ours (k=0%) 65.6 63.3 60.7 63.9 56.5 57.4 55.0 52.8 55.7 64.1 59.5
Ours (k=25%) 65.0 63.0 59.7 62.8 55.5 56.3 54.5 52.4 55.0 63.5 58.8

Table 3. Comparison of TIL accuracy with VGG16 architecture on 10-split TinyImageNet.

Method / Task ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Avg.

LfL [30] 32.4 35.4 43.4 44.1 45.0 55.9 49.4 51.1 58.6 61.4 47.7
LwF [17] 45.1 45.5 53.5 57.6 56.2 65.7 63.5 58.4 59.6 58.5 56.4
IMM [29] 50.6 38.5 44.7 49.2 47.5 51.9 53.7 47.7 50.0 48.7 48.3
EWC [18] 33.9 35.4 43.6 46.7 49.5 52.5 47.8 50.2 56.6 61.4 47.8
HAT [31] 46.8 49.1 55.8 58.0 53.7 61.0 58.7 54.0 54.6 50.3 54.2

PackNet [11] 52.5 49.7 56.5 59.8 55.0 64.7 61.7 55.9 55.2 52.5 56.4
TFM [32] 48.2 47.7 56.7 58.2 54.8 62.2 61.5 57.3 58.5 54.8 56.0
EFT [6] 67.2 62.5 69.4 62.6 68.3 69.6 59.0 67.8 71.5 70.1 66.8

Ours (k=0%) 64.3 64.6 70.8 65.9 68.0 70.6 60.2 69.4 71.2 69.0 67.4
Ours (k=50%) 64.2 64.6 69.1 64.0 68.4 68.7 60.4 67.5 72.1 69.7 66.9

Where f(:) represents model function and l is the loss function. Once the model is
trained we decompose and compress the trained filters as described in Sec. 3.1. Compact
nature of basis filters allows us to discard up to 25% of the total filters corresponding to
the smallest eigen values, without an adverse affect on model’s performance. However
with even higher levels of compression model encounters performance degradation. To
counter that we fine tune F and w1 to minimize the same loss as before.

argmin
F,w1

∑
D1

ℓ(f(X1;F,w1),Y1) (4)

It is important to note that initial training and fine tuning is done using D1 only. For
each new task t > 1, we add additional task specific coefficients wt and initialize them
with w1. This is followed by training the model using Dt as follows.

argmin
wt

∑
Dt

ℓ(f(Xt;wt),Yt) (5)

To compute the task specific feature maps, we first convolve the input tensor with
the shared basis filters followed by a convolution with corresponding task specific co-
efficients, as depicted in Fig. 1. Since shared basis filters are only trained once, this
formulation allows us to preserve the learned task specific representations perfectly
through out the model and thus avoids the catastrophic forgetting problem entirely.
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Table 4. Average CIL with Resnet32 ar-
chitecture on non uniform 6-split and 11-
split CIFAR100. Dataset is divided into tasks
such that first task contains 50 classes and re-
maining are equally divided into 5 or 10 sets.

Method 6-split 11-split

LwF [17] 57.03 56.82
EWC [18] 56.28 55.41
iCaRL [14] 57.17 52.57
SDC [28] 57.10 56.80
BiC [33] 59.36 54.20

Rebalancing [34] 63.12 60.14
FAS-a [7] 60.23 55.54
FAS-b [7] 65.44 62.48

Ours (k=0%) 66.65 62.54
Ours (k=25%) 62.73 59.23

Table 5. Average TIL accuracy and task pre-
diction accuracy for Resnet32, trained on
non-uniform split CIFAR100.

Method 6-split11-split

TIL (K=0%) 88.6 93.4
TIL (K=25%) 87.5 93.0

Task Prediction (K=0%) 79.1 74.5
Task Prediction (K=25%) 76.7 73.2

3.3 FLOPS AND PARAMETER GROWTH

In this section we present a theoretical analysis of the impact of our method on FLOPs
and parameter growth in the model. Depending on the values of P and Q, the proposed
compression scheme lead to substantial reduction in the number of multiplication oper-
ations. If the size of the filters is D×D×L, and the size of the input data is M×N×L,
It is easy to show that O = LD2(M −D+1)(N −D+1). Therefore, multiplications
required in Eq. (1) is

A = PO = PLD2(M −D + 1)(N −D + 1) (6)

while multiplications required to obtain output of Eq (2) is

B = QLD2(M −D + 1)(N −D + 1)+

PQ(M −D + 1)(N −D + 1)

= Q[L2 + P ](M −D + 1)(N −D + 1)

(7)

We see that the ratio of the two is

A

B
=

PLD2(M −D + 1)(N −D + 1)

Q[LD2 + P ](M −D + 1)(N −D + 1)

=
PLD2

Q[LD2 + P ]

(8)

Thus, as long as LD2 >> P , the number of multiplications will be reduced by a
factor close to P/Q (i.e. the ratio of the the original number of filters and the number
of basis filters used).

New recall that number of parameters in the original filters is LD2. Since there are
P such filters, the total number of original parameters is PLD2. However, the total
number of parameters for decomposed convolution is (QLD2 +QP ) (depicted in Fig.
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1 as a Q basis filters with LD2 parameters and P one-dimensional filters of length
Q). Therefore, the reduction in the number of parameters is PLD2/Q(LD2 + P ). If
LD2 >> P , the number of parameters is also reduced by a factor of P/Q. Finally since
each new task adds additional coefficients wt, so parameters growth is proportional to
PQ.

4 EXPERIMENTS

We evaluated our method on two lifelong learning scenarios; Task Incremental Learning
(TIL) and Class Incremental Learning (CIL). These two scenarios differ in the manner
in with new task is treated at inference time. In TIL it is assumed that the task ID is
known at inference time which can be used to select the corresponding wt to calculate
task specific representations. In CIL task ID is not provided and has be to predicted
at inference time. We adopted a simple entropy based strategy to predict the task ID,
where task ID of an unknown sample is chosen to be the ID of classification head with
least entropy.

We also evaluated our method for compression (in Sec. 3.3) by calculating the
FLOPs and parameters required for a given model. We opted FLOPs over wall clock
time as a measure of model’s efficiency, since FLOPs are machine and implementation
independent and can be easily estimated in Pytorch.

To train the models, we used SGD optimizer with momentum 0.9, weight decay of
5E-4 and starting learning rate of 0.1. We divided the learning rate by 10 at 100, 150
and 200 epoch mark and train the model for 250 epochs with a batch size of 64.

4.1 CLASS INCREMENTAL LEARNING (CIL)

Resnet18: To evaluate our method on CIL we first adopted Resnet18 network archi-
tecture and train it on three uniform splits of CIFAR100. Specifically we divide the
100 classes into 5, 10 and 20 sets of tasks and refer to them as 5-split, 10-split and
20-split respectively. These splits cover a wide range of problem difficulty as 20-split
CIFAR100 tests models ability to adapt to large number of new tasks while 5-split set-
ting tests model’s ability to train on a larger number of classes per task. For each one of
these splits we trained Resenet18 at two compression levels with value of k set to 0%
and 75% (k is the percentage of basis filters discarded). Results of these experiments
are summarised in Tab. 1 and Fig.3. We notice that our method outperform others even
with very high levels of compression. When compared with EFT [6] our Resnet18 with
k = 75% performs slightly better with 60.8% average CIL accuracy as compared to
EFT’s 60.6%. Additionally truncation of large number of basis filters significantly re-
duces the FLOPs and number of parameters in the model (detailed comparison in Sec.
4.5).

Resnet32: For evaluating Resnet32 on CIFAR100 where followed the FAS’s [7]
non uniform split. This split is different form the previous ones because here the first
tasks always contains 50 classes while the remaining 50 are divided into sets of 5 or 10.
This experiment evaluates a significantly different and harder problem as now we have
very uneven number of classes per task. As we can see in Tab. 4 our method with k = 0
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Table 6. Comparison of average test accuracy and forgetting for 20-split CIFAR100 and 20-split
miniImageNet datasets using ResNet18 architecture.

Method 20-split CIFAR100 20-split miniImageNet
Accuracy Forgetting Accuracy Forgetting

EWC [18] 43.2 26 34.8 24
ICARL [14] 46.4 16 44.2 24.7
AGEM [35] 60.3 11.0 42.3 17.0
ER-Ring [36] 59.6 0.1 49.8 12.0
Ortho sub [37] 63.4 8.4 51.4 10.0
Adam-NSCL [38] 74.3 9.5 57.9 13.4
IBP-WF [39] 68.3 0 55.8 0
ITLIR [40] 68.5 0 59.3 0
Ours (k=0%) 91.3 0 85.4 0
Ours (k=95%) 87.4 0 79.8 0
Parallel full-rank 92.7 0 94.5 0
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Fig. 4. Evaluation of Forward Knowledge Transfer (FWT). We conducted two experiments for
three values of k (0%, 75% and 90%). In one set of experiments we initialize task specific coeffi-
cients wi randomly (w/o FWT) while for the other one we initialized it with wi−1 (w/ FWT). As
we can see, models using wi−1 initialization perform better then the ones using random initial-
ization

out performs other methods. However due to non-uniformity of the splits our method
does not perform equally well with high compression. This performance degradation
mainly comes from the failure of task prediction mechanism as shown in Tab. 5.

4.2 TASK INCREMENTAL LEARNING (TIL)

We tested our method on TIL with AlexNet and VGG16 architectures. We trained these
models on uniform 10-split ImageNet [9] and TinyImageNet datasets respectively. Im-
ageNet is a classification dataset containing 1000 classes, while TinyImageNet is a
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Table 7. Ablation on k for CIL with Resnet18 architecture on 10-split CIFAR100

k / Task ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Avg.

0% 92.4 76.3 67.1 63.6 62.0 58.6 56.4 54.3 52.1 49.8 63.3
25% 90.4 76.3 65.7 61.75 61.0 58.2 55.9 53.3 50.9 48.9 62.2
75% 89.1 74.7 65.1 61.6 59.8 55.6 53.7 51.4 49.4 47.3 60.8
90% 88.1 71.6 61.6 58.3 56.9 54.0 51.2 49.3 47.3 45.8 58.4

smaller subset of ImageNet dataset containing 200 classes, downsampled to 64 × 64
spatial resolution. The results of these experiments are shown in the Tab. 2 and Tab.
3. We can see that, for both ImageNet and TinyImageNet our uncompressed models
(k = 0%) achieves better average accuracy compared to the other methods. While the
compressed variants attain results comparable to the previous SOTA.

For TIL we also evaluated our method on Resnet18 architecture with 20-split CI-
FAR100 and miniImageNet datasets. For this set of experiments, along with the average
accuracy we also report the model’s forgetting. Forgetting is defined in literature [37]
as follows. Let at,j be the test accuracy of task j < t after the model has finished learn-
ing task t ∈ {1, ..., T} in a incremental manner. Forgetting Ft is the decrease in the
accuracy of a task after its training, and after one or several tasks are learned incremen-
tally and is defined as Ft =

1
t−1

∑t−1
j=1(aj,j − at,j). Table 6 summarizes the results of

these experiments. Our method demonstrates a substantial improvement in comparison
to compared approaches. Of particular interest is [40], which employs a filter decom-
position structure similar to ours. However, our method diverges by compressing the
model subsequent to training on the first task, rather than truncating randomly initial-
ized filters. As a result, our shared basis filters learn more meaningful representations
for continual learning, thereby improving the overall model’s accuracy.

4.3 FORWARD TRANSFER (FWT)

Forward transfer (FWT) is an important metric of the quality of representations learned
by a lifelong learning system. It measures the ability of the model to positively influ-
ence a future task’s performance based on the existing representations. FWT is formally
defined in Equation 4 by Lopez-Paz et. al [41]. However we followed the experimental
setup proposed in EFT [6] to informally present this metric. We argue that our model en-
ables FWT by two mechanisms, first by sharing basis filters among all tasks and second,
by initializing wi with previously trained wi−1. To empirically show this, we conducted
two experiments for three values of k (0%, 75% and 90%). In one set of experiments
we initialize task specific coefficients wi randomly (w/o FWT) while for the other one
we initialized it with wi−1 (w/ FWT). As we can see in the Figure 4, models using wi−1

initialization perform better then the ones using random initialization. Secondly the gap
between these curves increase for larger values of k. Form these experiments we deduce
that our model should get better at FWT with increasing compression.



12 Muhammad Tayyab and Abhijit Mahalanobis

4.4 SELECTION OF k

Value of k impact the number of parameters in the model which consequently impacts
the model’s accuracy. For all experiments we have reported results for an uncompressed
model (with k = 0%) and we empirically select another value of k which is compet-
itive with other methods in terms of accuracy. Table 7 presents additional results with
Resnet18 for different values of k.

4.5 ANALYSIS OF FLOPS AND PARAMETERS

In this section we have compared the FLOPs and parameters of various network archi-
tectures used in our experiments. For our method, number of total tasks does not impact
the FLOPs of a single input image. As can be deduced from Eq. 2, output at each layer
is obtained by convolving the input tensor with the shared basis filters followed by the
convolution with a single task specific wt. However as more tasks are added to the
model, additional coefficients and classification heads increase the number of parame-
ters in the model drastically. For our comparisons we picked the Resnet18, VGG16 and
ALexNet to contain 10 task specific wt’s in each layer. Tab. 8 show the FLOPs and
parameters for 4 levels of compression.

We can see that our Resnet18 trained for CIL, with k = 75% needs 0.32 Billion
FLOPs and 7.24 Million parameters. In comparison EFT [6] performs equally well but
needs 1.21 Billion FLOPs and 11.60 Million parameters. Similarly our Resnet32 with
k = 0% outperforms FAS-b [7] on non-uniform split CIFAR100 and needs only 0.15
Billion FLOPs as compared to 0.28 Billion required by FAS-b [7].

Table 8. Comparison of FLOPs and parameters for various models used in our experiments.

k FLOPs (Billions) Params (Millions)
Resnet18 Resnet32 VGG16 AlexNet Resnet18 Resnet32 VGG16 AlexNet*

Baseline 1.11 0.14 2.50 1.74 11.16 0.46 14.76 2.88
0% 1.25 0.15 2.84 2.00 26.84 0.80 33.24 9.77

25% 0.95 0.12 2.10 1.50 20.61 0.60 25.05 8.36
50% 0.64 0.08 1.43 1.00 14.38 0.41 16.86 6.94
75% 0.32 0.04 0.72 0.48 7.24 0.21 8.66 5.52

5 CONCLUSION

We propose a method for continual learning which leverages ideas from neural network
compression and applies them to incrementally learn new tasks. Our method takes in-
spiration from filter decomposition-based methods and we show that this formulation
naturally extends to the continual learning domain. It is well known that task parameters
lie in low dimensional sub space of the convolutional filters, this fact can be exploited
to represent the convolutional filters in a compact form by using the basis filters and
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remixing coefficients. For continual learning problem setting the basis filters are shared
while separate coefficients are added for each new task. This enables the model to per-
fectly preserve the previously learned knowledge, thus avoiding the catastrophic for-
getting entirely. We applied this method to several image classification based continual
learning problems and show that our method obtains performance gains with uncom-
pressed model while achieving competitive results when a large number of basis filters
are discarded.
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