NEMOTRON-CORTEXA: Enhancing LLM Agents for Software Engineering
Tasks via Improved Localization and Solution Diversity

Atefeh Sohrabizadeh *! Jialin Song“' Mingjie Liu' Rajarshi Roy' Chankyu Lee'! Jonathan Raiman '
Bryan Catanzaro '

Abstract

Large Language Models (LLMs) have demon-
strated significant potential in code generation by
following natural language instructions. Unfor-
tunately, crucial real-world software engineering
tasks, such as debugging or repository-level fea-
ture implementation, involve processing exten-
sive contexts beyond current LLM context sizes
and performing complex reasoning that is brit-
tle using standard autoregressive decoding. En-
hancing LLMs’ performance in these scenarios
requires careful consideration of the contextual
information provided to the model, optimizing
how the model leverages that, and identifying
tools that enable more effective navigation of the
development environment. To address these chal-
lenges, we introduce NEMOTRON-CORTEXA, an
agentic system built on a predefined scaffold that
enhances LLLMs’ ability to navigate and reason
efficiently in complex software engineering con-
texts. Specifically, we develop a novel code em-
bedding model that retrieves the most relevant
files with greater precision, along with a localiza-
tion agent that refines the granularity of the re-
trieval process. Additionally, we demonstrate that
providing diverse contextual information and uti-
lizing different prompt formats enable the model
to identify and resolve issues more efficiently.
We evaluate NEMOTRON-CORTEXA using SWE-
bench (Jimenez et al., 2023), a benchmark derived
from real-world GitHub issues. Compared to
the widely used Agentless framework (Xia et al.,
2024), NEMOTRON-CORTEXA achieves a higher
issue resolution rate at a lower cost, highlight-
ing its practical impact in addressing real-world
software engineering challenges.

“Equal contribution 'NVIDIA, Santa Clara, CA,
USA. Correspondence to: Atefeh Sohrabizadeh <asohra-
bizade @nvidia.com>, Jialin Song <jialins @nvidia.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction

Recent advancements in Large Language Models (LLMs)
have demonstrated remarkable capabilities across various
domains, ranging from creative writing to analytical reason-
ing (Wei et al., 2022; Yuan et al., 2022; Gémez-Rodriguez
& Williams, 2023; Ahn et al., 2024). The influence of LLMs
on software engineering has been especially widespread and
recognized. Early models showcased their proficiency in
generating syntactically correct code and solving interview-
style programming questions (Chen et al., 2021; Roziere
et al., 2023; Li et al., 2023; Guo et al., 2024). Building on
this progress, recent efforts in LLM research on program-
ming have shifted from snippet and function-level gener-
ation towards developing LLM coding agents capable of
tackling entire real-world software engineering tasks (Yang
et al., 2024; Xia et al., 2024; Wang et al., 2024a; Antoni-
ades et al., 2024; Liu et al., 2024b; Xie et al., 2025). These
coding agents are equipped to utilize tools commonly used
by human engineers, including Command Line Interfaces
(CLD) and Integrated Development Environments (IDE),
to perform critical tasks such as debugging and applying
patches in a repository. A key benchmark for evaluating the
effectiveness of these LLM agents is SWE-bench (Jimenez
et al., 2023), which features real-world software engineering
problems derived from GitHub issues, aimed at generating
patches that successfully resolve them. The rapid improve-
ments on the SWE-bench leaderboard highlight the growing
interest in building powerful LLM software agents and un-
derscore their potential to automate software engineering
tasks. In this work, we propose several ways to simultane-
ously enhance the efficiency and accuracy of LLM agents
within this context, and use SWE-bench as a benchmark.

System design decisions play a crucial role in the end-to-end
performance of an LLM software agent, since real-world
software engineering tasks often involve processing a large
code repository and reasoning about relations among mod-
ules. A practical example of the impact of system design
can be found in the coding agents of OpenHands (Wang
et al., 2024a) and SWE-Agent (Yang et al., 2024): the au-
thors allow an agent to perform free-form action sequences
guided by system prompts that outline the available action

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

types. While such free-form flows can be effective, the
large action space often results in many costly iterations and
makes debugging difficult. To mitigate this, Agentless (Xia
et al., 2024) employs a more structured approach, guiding
the LLM through a predetermined sequence of steps. De-
spite these advances, challenges remain to accurately locate
the problem and generate correct repairs.

We present NEMOTRON-CORTEXA (Code Optimization for
Repository Tasks with EXecution Agents), a coding agent
designed to strengthen issue localization and repair genera-
tion. First, we develop a dedicated code embedding model
that optimizes the retrieval of relevant files and a localiza-
tion agent that refines the granularity of issue localization.
Second, we equip the localization agent with programming
tools based on Abstract Syntax Tree (AST) and Language
Server Protocol (LSP) that enable compact code naviga-
tion by taking advantage of multi-step reasoning. Third,
we adopt an ensemble of LLMs approach that improves
localization accuracy and helps identify additional relevant
code elements that can improve the repair process. The
inspiration for ensembling was drawn from our observation
that localization agents instantiated with different LLMs
perform particularly well on different problems, as also
noted in (Zhang et al., 2024a). We can explain this bene-
fit by observing that even when models fail to accurately
identify the exact entity (function or class) causing an is-
sue, they nonetheless often identify closely related entities.
Our optimizations here improve the localization precision
over Agentless, a competitive approach on SWE-bench that
is widely used in model benchmarking (Liu et al., 2024a;
Jaech et al., 2024), by 18.08% and recall by 11.32%, on
average. In addition, we show that the introduction of diver-
sity in the repair stage can further enhance performance. To
induce diversity, we develop a simple and efficient method
that leverages different contextual information and multiple
prompt formats during patch generation. This approach
outperforms standard temperature sampling (Brown et al.,
2024; Xia et al., 2024) and allows NEMOTRON-CORTEXA
to achieve a higher issue resolution rate while minimizing
the number of inference calls for patch generation by 4.4 x
compared to Agentless. NEMOTRON-CORTEXA outper-
forms Agentless by achieving an issue resolution rate of
42.00% on the SWE-bench Lite and 52.60% on SWE-bench
Verified, while costing only $0.51 per instance.

In summary, our main contributions are as follows:

* We develop a code embedding model specialized in re-
trieving relevant code chunks to a given bug, achieving
state-of-the-art file retrieval accuracies on the SWE-bench
benchmark.

* We design a localization agent that integrates advanced
programming tools and leverages an ensemble of LLMs
to deliver more precise and granular issue localization.

* We propose a diverse solution generation method that
leverages different contextual information and varied
prompt formats, significantly enhancing sample effi-
ciency.

* Experimental results demonstrate that NEMOTRON-
CORTEXA outperforms Agentless, OpenAl’s go-to ap-
proach for showcasing their real-world coding perfor-
mance, while being more cost-effective.

2. Related Works
2.1. LLMs for Code Generation

LLM progress in code generation has been driven by re-
search efforts to specialize them through continued pre-
training on code data (Guo et al., 2024; Bai et al., 2023;
Roziere et al., 2023; DeepSeek-Al et al., 2024) sourced from
open repositories (Kocetkov et al., 2022; Lozhkov et al.,
2024) and commit histories (Muennighoff et al., 2023). Fur-
ther enhancements come from reinforcement learning (Le
et al., 2022) and, more commonly, instruction fine-tuning.
Instruction fine-tuning incorporates techniques to solve com-
plex coding challenges (Luo et al., 2024), broadens model
capabilities by leveraging unlabeled open source code (Wei
et al., 2023; Yu et al., 2024; Wu et al., 2024), ensures solu-
tion accuracy with self-generated tests (Chen et al., 2022),
and improves code validation and debugging via interactions
with LLM agents (Lei et al., 2024).

2.2. LLM Agents for Software Engineering

Real-world software engineering tasks are more complex
than solving interview questions as evidenced by the devel-
opment of SWE-bench (Jimenez et al., 2023). Recent rapid
progress in designing LLM agents highlights the importance
of this application. SWE-agent (Yang et al., 2024) enables
an LLM agent to interact with the development environment
for tasks like search and edit. AutoCodeRover (Zhang et al.,
2024b) builds a more sophisticated code search tool based
on the abstract syntax tree. Multi-agent systems perform
a divide-and-conquer strategy by developing specialized
agents for each sub-task (Liu et al., 2024b; Wang et al.,
2024a). Agentless (Xia et al., 2024) takes a different ap-
proach by designing a multi-step pipeline where LLMs com-
plete each step. Iterative approaches and self-reflections,
such as in (Chen et al., 2023; Shinn et al., 2024) improve
coding performance, with SWE-Search (Antoniades et al.,
2024) integrating self-feedback within a Monte-Carlo Tree
Search framework to refine strategies.

2.3. Code Retrieval

Code retrieval is a critical task in domains like code expla-
nation, code summarization, and documentation lookup, as

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

shown by recent benchmarks (Li et al., 2024; Wang et al.,
2024b). Early efforts to create code-specific embedding
models include BERT-based (Devlin, 2018) models such as
CodeBERT (Feng et al., 2020) and UniXcoder (Guo et al.,
2022). While there has been a growing interest in develop-
ing decoder-only LLM-based embedding models for text re-
trieval tasks (Neelakantan et al., 2022; Moreira et al., 2024b;
Meng et al., 2024; Lee et al., 2024), few models target code
retrieval. Notable exceptions include the models developed
by Voyage Al (Voyage Al, 2024) and OpenAl (Neelakan-
tan et al., 2022). More recently, CodeXEmbed (Liu et al.,
2024c) emerged as a family of code embedding models,
excelling in many code retrieval tasks. However, limited
focus has been given to code retrieval for identifying buggy
code based on issue descriptions.

3. NEMOTRON-CORTEXA
3.1. Overview of the Pipeline

Since an entire codebase frequently exceeds the context win-
dow of present LLMs, we are obligated to subsample the
relevant files to provide a context that fits yet is sufficient for
resolving the issue. Consider that issue descriptions are typi-
cally under 1000 tokens, while repository codebases contain
orders of magnitude more tokens. For example, SWE-bench
instances have on average 195 words per issue for 438k lines
of code (Jimenez et al., 2023). Our approach is therefore to
use the issue description to retrieve relevant files that form a
context that fits and is likely to be sufficiently informative to
resolve the issue. This retrieval not only ensures the model
has the right context but also helps filter out irrelevant or
confusing information. Therefore, similar to Agentless (Xia
et al., 2024), the NEMOTRON-CORTEXA pipeline is divided
into two main stages: localization and repair, as shown in
Figure 1. The localization stage involves two steps: first,
identifying the most relevant files (Section 3.2), and then
refining the granularity of the retrieval to focus on specific
functions, classes, or methods (Section 3.3). During the
repair stage, we combine different contexts and prompts to
increase patch diversity (Section 3.4), followed by a filtering
process to select the most promising patch (Section 3.5).

3.2. File Localization with Code Embedding Model

Accurately localizing the issue to the relevant files is es-
sential for the success of the pipeline. If this step fails, the
model cannot produce an effective patch, making the remain-
der of the pipeline irrelevant. To tackle this, Agentless cre-
ates a concise repository representation, similar to the Linux
tree command, and provides it to the LLM to identify the
top N suspicious files. It also experiments with using a gen-
eral embedding model but finds that the embedding-based
approach performs worse than the prompt-based method.
However, the prompt-based approach has its own limita-

tions: the LLM is expected to make decisions based solely
on file names, which can lower its accuracy, or depend on
prior knowledge of these repositories. On the other hand,
processing the entire codebase and passing the full contents
of each file to it would be prohibitively expensive. To tackle
this, we develop a coding embedding model specifically
trained to retrieve the most relevant files based on the is-
sue description. Our model, called NV-EmbedCode!, is
fine-tuned from an existing text-based embedding model
that uses bidirectional attention followed by average pool-
ing (Muennighoff et al., 2024; Lee et al., 2024; Moreira
et al., 2024a).

The retrieval task involves identifying the “oracle” file —
the file requiring edits to resolve the issue — based on the
issue description. Since files can be large, we chunk them
and prefix each chunk with meta-information, such as the
full file path, to help the model maintain context about the
chunk’s location. We curate a dataset specifically for this
purpose, mapping issues to code edits. The relevant pas-
sages for retrieval are the chunks from the oracle files. Once
a chunk is retrieved, the oracle file is located by referencing
its meta-information. The issue descriptions often may have
redundant information, such as package version details, or
insufficient details, like ambiguous buggy code with little
explanation. To mitigate this problem, we prompt an LLM
to generate a concise summary that includes all relevant
information, such as filenames, functions, error messages,
stack traces, and other technical details. We then create a
second dataset containing these summaries, while selecting
the positive passages the same way as before.

To enhance the embedding model’s understanding of
code data, we augment our training set with additional
publicly available datasets for text-to-code (retrieving
code documents based on a textual query), code-to-code
(retrieving code documents based on a code query), and
hybrid code (retrieving a combination of code and text
documents based on a hybrid query) retrieval tasks, as
categorized by (Li et al., 2024). We also extend the
hybrid code category by generating a synthetic dataset
where an LLM creates code in response to a query. To
help the model differentiate between these datasets,
we prefix the queries with dataset-specific instructions
following the approach in prior works (Wang et al.,
2023; Lee et al., 2024) with the template “Instruct:
{dataset_instruction}\n Query: {query}”.
Similar to NV-Embed (Lee et al., 2024), we mask out the
instruction tokens during average pooling.

We train the embedding model with a contrastive learning
objective (Gao et al., 2021) to maximize the similarity be-
tween the query and its relevant (positive) passage, while

Available at https://build.nvidia.com/nvidia/
nv-embedcode-7b-vl

https://build.nvidia.com/nvidia/nv-embedcode-7b-v1
https://build.nvidia.com/nvidia/nv-embedcode-7b-v1

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Pyl

/_init__.py]
from django.utils.version...
VERSION=(3,0,0, alpha',0)

class Media:
def __init__(self, media):
if media is not None:

kchunking s s

def setup(set_prefix=True):

[djangolfo Pyl
def media_property(cls):
def _media(self):
sup_cls=super(cls, sel
try

sgi.p
def get_wsgi_application():

The public interface to

Merging 3 or more media objects.
Description

Consider the following form..
from django import form:

s
class ColorPicker(forms.Widget):

class Media: q’b
result is unintuitive here.

Embedding model

Merging 3 or more media objects..
* Affected files:..

Error message:

Stack trace:..

Relevant code sections:

LLM
summary

2. (a) Patch
Generation

>

ASS_NAME
s [LIST_OF_METHOOS]

[LIST_OF_FUNCTIONS)

def _css(sell

#filter(None,

SEARCH
[original code block]

1. (a) File
Localization

l Order by similarity]

@@ 5.3 5,2 @@ def _str__(self,):

for ob i fier(None, self,_css:

[django/forms/widgets.py] & get_definition(1. (b) Entity
class Media: == django/forms/widgets.py. Localization
def __init__(self, media): clh,l, Media.render_js)
def render_js(self):
def media_property(cls): = | get_definition(
[django/core/wsgi.py] Tool Call § Gjangolcore/wsgi.py.
D def get_msgi_application() get_msgi_application) P
D [T / S — —
Tool Call Results inal S
-~ — o
D [django/forms/widgets.py] . i i
class Media: @) /
def render_js(self): ot get_outgoing_dependency(
format_html(self.path) ,"‘,', django/core/wsgi.py,
[django/core/wsgi.py] > [Joct_msai_application)
gefo=C sl Tool Call
return WSGIHandler()
| Identify tests to Generate a complete test 2. (b) P_atCh
skip after patching to reproduce the issue Selection

O - a
@@ 53 +5,2 @@ def _str_(self,):

Patch Filter } et cstet
: css = defaultdict(list)

with Tests

[new code block]
REP

+

+ css = defaultdict(ist)
for css_listin self_css_ists:

+ forcss_lstin self_css_lists:

djangolforms/widgets.py]

edit_file(filepath:
tart_line:
end_line:
content: str)

Edit format choices

def fun(varl).
def fun2(self):
obj1=super(varl, self)
try.

Figure 1. Overview of NEMOTRON-CORTEXA. From the issue description, NEMOTRON-CORTEXA first retrieves relevant files using
NV-EmbedCode, our specialized code embedding model, then refines issue locations to granular entities with a localization agent. We use
a novel strategy to generate diverse candidate patches and select one based on LLM-generated tests and majority voting.

minimizing the similarity to irrelevant (negative) passages.
We adopt the positive-aware hard-negative mining technique
from N'V-Retriever (Moreira et al., 2024b) to minimize the
likelihood of including false negatives in the data. Since
the base model may not fully understand code data, we
fine-tune it and subsequently mine new hard negatives from
the refined model to improve the quality of the hard nega-
tives. Each batch includes samples from all datasets, but we
avoid using in-batch negatives to prevent conflicts between
positive and negative samples. This problem occurs when
chunking the oracle files to create positive passages, as a
single query may correspond to multiple positive passages.
If these query-positive pairs appear in the same batch, it can
lead to misleading negative and positive samples.

3.3. Entity Localization with Localization Agent

With the code embedding model, we can obtain a short
list of files relevant to the issue. However, the full texts
of these files often still exceed a model’s context window.
We need to narrow down the issue locations further. A
code file consists of high-level entities, such as classes and
functions, so the next step of localization is to identify can-
didate entities from a few top-ranked files. Agentless uses
a direct prompting approach, providing a skeleton format
of each file containing only entity headers and asking an
LLM to select the relevant ones. However, without access
to the code content, the model lacks sufficient context to
respond accurately. Inspired by information foraging theory
in software debugging (Lawrance et al., 2010), we develop a
localization agent that iteratively explores the repository by
performing common actions such as looking up definitions

File: separable.py
def separability_matrix(transform

separable_matrix = _separable(transforn

def _separable(transform
return _coord_matrix
transform
‘left’
transform.n_outputs

def _coord_matrix(model, pos, noutp

(b) Code Graph
Figure 2. Example code and its graph representation.

(a) Code Example

and tracing call stacks. To facilitate structured navigation
of the repository, we start by building its graph representa-
tion. The nodes represent code files and entities — functions,
classes, and class methods — extracted using AST. Each node
stores the corresponding code text and its position metadata.
We establish two types of directed edges: contain and use.
The contain edges establish hierarchical relationships, con-
necting files to their functions and classes, and classes to
their methods, thereby providing agents with a structural
view of the repository. Complementarily, use edges capture
functional dependencies, including function invocations and
class instantiations. For example, in Figure 2, the graph
contains a node for the file separable.py and a node
each for the three functions separability_matrix,
_separable, and _coord_matrix. The file node has
an edge pointing to each function with the contain type.
separability_matrix node has an edge pointing to
_separable with the use type, as does _separable to
_coord_matrix.

We equip the localization agent with three tools to navigate

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

through the graph. They are reminiscent of features in
popular IDEs such as Go To Definition and Call Hierarchy.
We use an LSP server to implement these tools.

 get_definition(file_name, entity_name): returns the code
definition of the specified entity in the requested file.

 get_incoming_dependency(file_name, entity_ name): re-
turns the definition codes of the specified entity’s source
nodes using the list of its incoming edges.

* get_outgoing_dependency(file_name, entity_name): re-
turns the definition codes of the specified entity’s destina-
tion nodes using the list of outgoing edges.

Concurrent to our work, MarsCode Agent (Liu et al., 2024b)
also builds a code knowledge graph from a repository with
AST and LSP. Our version differs by focusing only on high-
level entities and providing additional tools built on top of
standard LSP functions.

The localization agent leverages the file ranking results from
the code embedding model, focusing on the top-ranked
ones. For these files, we create a concise representation
containing only definition signatures of high-level entities.
These signatures, combined with the issue description, are
then fed into an LLM to identify a few entities relevant to
the issue description. This step is similar to Agentless’s
direct prompting approach after identifying suspicious files
(Section 3.1.2 in (Xia et al., 2024)). Next, the localization
agent examines the full code of the chosen entities and
utilizes tools to inquire about related entities. Each tool
call returns a collection of new code snippets that the agent
stores in its context for future queries. The agent iterates
through multiple interactions with the repository to gather
sufficient context. Since excessive tool calls can lead to
context overload, the agent is tasked to filter the context and
keep only the relevant ones in a memory buffer. After a few
iterations, the localization agent is prompted to select a final
set of entities requiring modifications to fix the issue.

3.4. Diverse Patch Generations

After localizing the issue and narrowing it down to specific
suspicious entities, the next step is to generate a patch that
resolves it. In this step, the LLM is prompted to generate
a patch based on the provided code context. Instead of
producing the entire code, the LLM typically is prompted to
generate only the edit, either as a search/replace format (Xia
et al., 2024; Aide, 2024) or a git diff format (Jimenez et al.,
2023; Yang et al., 2024). Our observations indicate that the
choice of context and prompt format significantly impacts
the correctness of the generated patches, leading to varied
sets of resolved instances. Specifically, LLMs are highly
sensitive to the format of the requested edits, often yielding
different solutions when only the patch format is changed,

even with all other factors held constant.

To explore this further, we studied the effect of two spe-
cific edit formats on the resolved instances of SWE-bench.
These formats are illustrated in Figure 1. The first format,
referred to as the search/replace format, consists of
a search component that includes the original code snippet
to be replaced and a replace component that specifies the
replacement content. The second one is an edit_file
API that specifies the file path, the starting and ending line
numbers of the code to be edited, and the content to be in-
serted or modified. Additionally, we evaluated the effect of
two different contexts within the code section of the prompt:
the entities identified in Section 3.3 and the top-retrieved
file from Section 3.2.

2.0%

4.0%

[0 Context: entity - Prompt: search/replace - Temp: 0.0 (pass@1)
Context: entity - Prompt: edit_file - Temp: 0.0 (pass@1)
Context: file - Prompt: edit_file - Temp: 0.0 (pass@1)
Figure 3. Venn diagram showing the distribution of the percent-
age of resolved instances across context and edit format changes
for SWE-bench Lite. Different combinations of context and edit
formats demonstrate varying strengths, here ranging from 19.3%
to 32%, and cover different instances which, can contribute to a
higher overall pass rate of 40.3%.

Figure 3 depicts the Venn diagram of the resolved instances
when we vary these choices of contexts and edit formats.
The numbers in each section indicate the percentage of re-
solved instances in SWE-bench Lite that fall into that subset.
While it is expected that changes in context would result in
different instances being resolved, the diagram also high-
lights that the final fix is highly sensitive to the choice of
the edit format. Different combinations of context and edit
format exhibit varying strengths in resolving the instances
and cover very different instances. Existing approaches
focus on identifying the single most effective choice and
then rely on temperature sampling to generate diverse solu-
tions. In contrast, we propose changing both the context and
the edit format, in addition to temperature sampling. This
method increases solution diversity, which in turn increases
the number of resolved issues while reducing the number of
inference calls needed for patch generation.

3.5. Patch Selection

After generating a diverse set of patches, we apply a series
of filtering steps to identify the most promising patch as the

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

final solution. First, we remove solutions that fail to produce
valid edit instructions or result in syntax errors. Next, we
normalize the edited codes by removing comments, doc-
strings, and empty lines, as well as standardizing variable,
function, and class names. Using these normalized versions,
we record the frequency of the repeated solutions. We then
use regression tests and the generated reproduction tests to
filter out solutions that fail these tests. Our approach closely
follows the methodology outlined in Agentless (Xia et al.,
2024) and directly leverages their released artifacts?. In
this process, Agentless first executes all existing tests in the
repository to identify a subset of passing tests that success-
fully run on the original codebase. The passing tests are then
analyzed by an LLM, which identifies any test that is not
suitable to verify whether the issue has been correctly fixed.
The remaining tests are designated as regression tests. For
reproduction tests, Agentless generates a complete testing
file designed to both reproduce the original issue described
and verify whether the issue has been successfully resolved.
These tests are executed on the original repository to filter
out any tests that fail to detect the issue. We retain all valid
reproduction tests at this stage. In cases where no solutions
remain after filtering, we re-include all solutions available
before applying the test. Finally, we apply majority voting
on the remaining solutions based on the frequency of their
repetition to select the final patch.

4. Experiments
4.1. Experiment Setup

To train the embedding model, we use a Parameter-Efficient
Fine-Tuning (PEFT) technique called Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021). Specifically, we fine-tune
a text embedding model with contrastive loss, applying
LoRA with a rank of 16, alpha of 32, and a dropout rate
of 0.1. Our base model is NV-EmbedQA-Mistral-7B-v2
(NV-EmbedQA-v2 for short) (Moreira et al., 2024a), a com-
mercially available version of NV-Embed-v2 (Lee et al.,
2024). We employ the Adam optimizer (Kingma, 2014)
with 200 warm-up steps, a learning rate of le-6, and linear
decay. The training is conducted using Bfloat16, with a
maximum sequence length of 512 tokens. The model is
fine-tuned with a batch size of 64, where each batch consists
of a query, one positive document, 7 hard negatives, and we
do not use in-batch negatives, as explained in Section 3.2.

The training data is curated from the SWE-bench train-
ing set (Jimenez et al., 2023) and a portion of the ColR
training set (Li et al., 2024), which includes data from
APPS (Hendrycks et al., 2021), CoSQA (Huang et al.,
2021), CodeTransOcean (Yan et al., 2023), StackOver-
flowQA (Overflow, 2021), and SyntheticText2SQL (Meyer

Zhttps://github.com/OpenAutoCoder/Agentless/releases/tag/v1.5.0

Table 1. Overall comparison over SWE-bench Lite and Verified.

Claude refers to the Claude-3.5-Sonnet model.
% Resolved Avg,

Method LLM Lite Verified |$ Cost
125 265
OpenHands -
(Wang et al., 2024a) Claude (41%7%) (53.00%)
26.00%) | ~ IO
122 254
Agentless Claude -
(Xia et al., 2024) (40'9667 %) | (50.80%)
GPT-40 | (3, 409s) - 0.70
Moatless Tools Claud 115 B B
(Team, 2024a) auce | (38.33%)
AutoCodeRover GPT-4 92 192 B
(Zhang et al., 2024b) 01 (30.67%) | (38.40%)
SWE-agent Claud 69 168 B
(Yang et al., 2024) auce | (23.00%) | (33.60%)
. 126 263
NEMOTRON- Mix @2.00%) | (52.60%) 0.51
CORTEXA

et al., 2024). Additionally, we synthetically generate a
dataset of code produced from coding queries in Code-
Feedback (Zheng et al., 2024) by prompting DeepSeek-
v2.5 (DeepSeek-Al, 2024). The LLM summaries mentioned
in Section 3.2 are generated using Llama-3.1 405B (Dubey
et al., 2024). The final dataset contains approximately
534k pairs of query-positive documents, as detailed in Ap-
pendix A.1

We build the code graphs using tree-sitter’ to extract entities
from code files. We implement the three code navigation
tools in Section 3.3 with pylsp*. The localization agent
starts with the top-6 files according to our code embedding
model and performs a maximal of 5 rounds of entity local-
ization with tools. The agent can issue multiple tool calls
at each round. We instantiate the localization agent with
four different LLMs: DeepSeek-v3 (Liu et al., 2024a), GPT-
40 (OpenAl, 2024), Llama-3.3 70B (Dubey et al., 2024),
and Qwen2.5-72B-Instruct (Team, 2024b; Bai et al., 2023).
The final localization result is an ensemble of them. During
localization, we use greedy sampling to generate responses.
The patches are generated using Claude 3.5 Sonnet.

4.2. End-to-end Issue Resolution Results

We validate NEMOTRON-CORTEXA on SWE-
bench (Jimenez et al., 2023) Lite and Verified, which
consist of 300 and 500 instances, respectively. Table 1
summarizes the comparison to five representative open-
source baselines: OpenHands (Wang et al., 2024a),
Moatless Tools (Team, 2024a), AutoCodeRover (Zhang
et al., 2024b), SWE-agent (Yang et al., 2024), and
Agentless (Xia et al., 2024). NEMOTRON-CORTEXA

3https://tree-sitter.github.io/tree-sitter/
*https://github.com/python-Isp/python-lIsp-server

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

achieves the highest resolution rate of 42% (126 / 300) on
Lite and the second highest rate 52.60% (263 / 500) on
Verified. Notably, NEMOTRON-CORTEXA achieves its
performance at an average cost of only $0.51 per issue.
In comparison, OpenHands reports a 26% resolution rate
on SWE-bench Lite at $1.10/issue, and Agentless reports
32% at $0.70/issue.’ Further scaling test-time compute in
NEMOTRON-CORTEXA can yield higher resolution rates
here. Our contributions drive NEMOTRON-CORTEXA’Ss
strong performances at minimal cost: our code embedding
model and localization agent provide more accurate and
informative contexts for LLMs, while our novel diverse
solution generation strategy significantly reduces the
number of candidate generations needed. We will break
down their impacts in the next sections.

4.3. Embedding Model Analysis

We rely on the golden solutions provided in SWE-bench as
the ground truth for identifying the oracle files. While it is
possible to address the issue by editing other parts of the
codebase, this ground truth offers a reliable base for compar-
ing different approaches. We evaluate three approaches for
this localization task: lexical-based (i.e., BM25), prompt-
based, and embedding-based methods, as detailed in Sec-
tion 3.2. The prompt-based results are taken from Agentless
logs. For the embedding-based approach, we chunk the
files to 450 tokens with no overlap. This choice stems from
our experiment with existing embedding models, where we
tested token lengths ranging from 450 to 4096 and overlaps
of 0 or half the context window, and saw that the mod-
els perform better with smaller context windows (see Ap-
pendix A.1). This may be attributed to two factors: first,
these models are often trained on short documents, and sec-
ond, a smaller window allows the model to attend more to
individual code chunks and focus on their semantics rather
than normalizing the vector embedding across the entire file.
Each chunk is further prefixed with the complete file path
as additional metadata.

Table 2 presents a comparison of these methods on SWE-
bench Lite and Verified sets. We evaluate NV-EmbedCode
against state-of-the-art models, including SFR-Embedding-
2 R (Meng et al., 2024), NV-Embed-v2 (Lee et al., 2024),
and NV-EmbedQA-v2 (Moreira et al., 2024a). The evalu-
ation metric is recallQk, where k is the number of oracle
files for a given instance. This metric measures the pro-
portion of the oracle files correctly identified within the
top k results. The results indicate that existing embedding
models struggle to perform well with the LLM summaries

>The costs for more recent, higher-performing submissions
have not been reported. However, they are likely substantially
higher as OpenHands now allows more inference calls per issue
and Agentless uses Claude 3.5 Sonnet, which is priced higher than
GPT-4o.

Table 2. Recall@k in retrieval for SWE-bench Lite and Verified,
where £ is the number of oracle files, using either the original issue
description or its LLM-generated summary as input.

’ Method ‘ Model / Approach ‘ Issue ‘ Lite ‘ Veriﬁed‘

Original | 42.33%| 40.67%
Summary| 38.00%| 41.75%

| Original [63.00%] 65.55% |

Original | 60.33%| 61.00%
Summary| 55.33%| 55.46%
Original | 56.00%| 59.90%
Summary| 57.67%| 59.62%
Original | 61.33%|62.81%
Summary| 55.67%| 59.20%
Original | 67.67%| 68.37%
Summary| 70.33%| 71.95%

Lexical BM25

’ Prompt* ‘ GPT-40

SFR-Embedding-2_R

NV-Embed-v2

Embedding
NV-EmbedQA-v2

NV-EmbedCode

* Refers to Agentless results

and prefer the original descriptions. This is likely due to
differences in linguistic styles and vocabulary of these sum-
maries compared to the natural queries the models were
originally trained on. The decrease in the performance
of BM25 with these summaries for SWE-bench Lite sug-
gests a reduction in exact term matches and the frequency
of keywords. By developing our code-specific embedding
model, NV-EmbedCode achieves significant improvements.
Not only does it outperform existing embedding models
with original issue descriptions, but it also achieves signifi-
cantly better results with LLM-generated summaries. These
summaries enhance the issue descriptions by eliminating
redundancy and removing irrelevant details, which can im-
prove their effectiveness for retrieval. The improvement in
NV-EmbedCode is due to the inclusion of diverse code and
synthetic data in our training set and the use of instruction
templates, which enable the model to recognize and adapt
to different linguistic styles. Although the prompt-based
method can outperform embedding-based ones when paired
with existing embedding models, it falls short compared to
our model.

4.4. Entity Localization Analysis

Accurate entity localization provides focused context, in-
creasing the likelihood of an LLM generating correct
patches. NEMOTRON-CORTEXA employs localization
agents to identify relevant entities. At the end of an agentic
search trajectory, we combine its first iteration and last itera-
tion responses to extract entities that balance the breadth and
depth of localization. We refer to the first iteration results
as Direct Prompting (DP), and the last iteration results as
Localization Agent (LA). We compare our entity localiza-
tion accuracy to Agentless (Xia et al., 2024), using results
extracted from their logs, as their method includes a dedi-
cated entity localization step. We use the golden solutions in

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Table 3. Precision and recall metrics in retrieving oracle entities
for SWE-bench Lite and Verified. DP denotes direct prompting
entities and LA refers to localization agent results.

Method . .the .\.’erlﬁed
Precision Recall | Precision Recall

Agentless [15.90% 59.94%| 17.54% 58.37%)

NEMOTRON- 35.83% 60.56%|34.16% 57.46%

CORTEXA (DP)

NEMOTRON- 3891% 71.17%|39.62% 64.04%

CORTEXA (LA)

NEMOTRON- 35.84% 74.72%| 34.51% 67.62%

CORTEXA (LA+DP)

Table 4. Localization agent’s precision and recall metrics in re-
trieving oracle entities for SWE-bench Lite and Verified set when
instantiated with different models. Ensemble of all four agents
yields substantial gains in the recall.

Lite Verified
Model — —
Precision Recall |Precision Recall

Qwen2.5-72B 34.40% 40.33%|36.58% 41.71%
Llama3.3-70B 33.44% 40.40%|3621% 39.74%
Deepseek-v3 3530% 45.94%|40.39% 46.94%
GPT-40 34.25% 44.61%)| 36.67% 45.20%
Ensemble of Above [35.84% 74.72%|34.51% 67.62%]

SWE-bench to extract ground truth entities (oracle entities).

Table 3 shows mean precision and recall results for Agent-
less and NEMOTRON-CORTEXA, together with its two com-
ponents. Overall, NEMOTRON-CORTEXA achieves higher
precision and recall than Agentless on both SWE-bench Lite
and Verified. Its localization stage also costs less: $0.11
per instance for NEMOTRON-CORTEXA compared to $0.15
per instance for Agentless. The superior LA results demon-
strate the advantage of combining specialized tools with
multi-step reasoning. Adding DP results further boosts the
recall by capturing relevant entities that might be overlooked
during the agent’s later, more focused iterations. Addition-
ally, the dual approach of DP and LA also provides diverse
high-quality contexts for repair generation and enables more
efficient repair generations, which we discuss in the next
section. NEMOTRON-CORTEXA employs an ensemble of
four localization agents, each instantiated with a different
LLM. Table 4 compares the ensemble results with those
of the individual agent. The recall increases by 28.78%
and 20.68% over the best individuals for the Lite and Ver-
ified sets, respectively, thus retrieving significantly more
relevant entities. The precision also increases for the Lite
set because the ensemble benefit from models’ strengths
in solving different problem subsets. This result points to
an alternative axis for inference-time scaling by employing
multiple models.

4.5. Repair Generation

As discussed in Section 3.4, changing the context and edit
format leads to different instances being resolved. One ap-
proach here is to identify the best-performing combination
of context and edit format and then generate multiple solu-
tions using temperature sampling. For example, Agentless
generates 40 patches per instance by sampling 4 edit loca-
tions and creating 10 patches in the search/replace
format for each (1 using greedy sampling and 9 using tem-
perature sampling). They report that the number of resolved
instances increases until 40 patches but plateaus beyond that
point.

Our observations indicate that we can achieve similar or
better performance with fewer patches by increasing the
diversity in how these patches are generated. Figure 4 il-
lustrates the number of passed instances (out of 300 total)
for SWE-bench Lite across different contexts, edit formats,
and temperature settings. We consider three contexts here:
1) File, the top-1 file retrieved by NV-EmbedCode, 2) LA,
and 3) DP. With greedy sampling (temperature 0.0), the
LA context, and the search/replace format, we can
already achieve a high pass rate of 96 instances, highlighting
the effectiveness of our localization step. Adding a patch
generated via temperature sampling increases the number of
correctly resolved instances to 107 (pass@2). Interestingly,
while these two strategies have the highest pass rates indi-
vidually, their combination does not introduce many new
resolved instances compared to other alternatives. For exam-
ple, changing the context to File and the prompt format to
edit_file resultsin 115 resolved instances overall, even
though this new combination individually has the lowest
pass rate. This pattern persists across other contexts and edit
format combinations as well (Section 4.7), indicating that
varying these factors increases solution diversity, ultimately
leading to a higher total number of correct solutions while
reducing the number of required inference calls.

While temperature sampling is less effective than chang-
ing other factors, it remains a useful strategy for gen-
erating new patches. In our final patch generation pro-
cess, we consider 4 contexts (File, LA, DP, and LA+DP,
where LA and DP outputs are merged), two edit formats
(search/replace and edit_file), and two tempera-
ture settings (0.0 for greedy sampling and 0.8 for temper-
ature sampling). We first generate 4 solutions with greedy
sampling by using the File and LA as context, and both
our edit formats. We then generate a single additional
solution by greedy sampling the LA+DP as context and
edit_file prompt. Finally, we generate 4 more solutions
via temperature sampling, covering all four contexts, with
two using the search/replace format and two using
the edit_file format. These 9 solutions can achieve
pass@1 performance (after applying the filtering steps as

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Table 5. Precision and recall metrics in retrieving oracle entities
for SWE-bench Verified. The localization agent starts with the
top-6 files retrieved by different embedding models.

Embedding Model ‘ Precision Recall ‘
NV-EmbedQA-v2 (LA+DP) |27.62% 65.03%
NV-EmbedCode (LA+DP) 34.51% 67.62%

detailed in Appendix A.3) of 126 for the Lite set and 263
for the Verified set, surpassing Agentless results of 122 and
254 with 40 patches. This demonstrates how diversifying
the solutions can lead to a higher number of correct patches.

120 4
— le-t0.0-edit_file 115

—DP-0.0-edit file 10y 108 103 110 uoI

1107 mmm= Fle-t0.0-search/replace

— | A-t0.0-edit_file
100 | DP-t0.0-search/replace
s | A-t0.8-search/replace
LA-t0.0-search/replace

90

80 - 77 2

#Passed instances

70 4

60 4

50 -

Figure 4. #Passed instances of SWE-bench Lite under different
contexts — File, Localization Agent (LA), and Direct Prompting
(DP) — with varying edit format and temperature settings. Two-
segment bars show pass@2 when both input solutions are used.

4.6. Ablation on Localization

In this section, we provide ablation studies on SWE-bench
Verified for our two contributions to localization: 1) our fine-
tuned NEMOTRON-CORTEXA embedding model; 2) the lo-
calization agent for entity localization. First, Table 5 demon-
strates that as NV-EmbedCode achieves higher recall QFk as
shown in Table 2, the localization agent produces more accu-
rate entity localization results. This improvement indicates
that starting with more accurate, relevant files enhances the
agent’s success in identifying oracle entities.

Second, to study the impact of entity localization on final
resolution, we compare using entity results (LA+DP) and
the top-1 retrieved file (File) as context for patch generation.
We generate 9 patches with both edit formats and temper-
ature sampling and apply the filtering steps described in
Section 3.5. As shown in Table 6, using entity localization
results as contexts significantly improves the resolution rate,
highlighting the importance of entity localization.

4.7. Ablation on Solution Diversity

In Section 4.5, we demonstrated that diversifying the solu-
tion generation strategies can increase the resolution rate.
To further investigate it, we conducted an additional ex-
periment in which, instead of the 9 diversified patches as
described in Section 4.5, we generated patches using LA

Table 6. Pass@9 and Pass@1 results across different generation
combinations for SWE-bench Verified with 500 instances. The
primary diversification method is temperature sampling. We fur-
ther evaluate the impact of introducing diversity by varying the
edit format as described in Section 3.4 and using the four contexts
mentioned in Section 4.5.

’ Context ‘ Edit Format ‘ Pass@9 ‘ Pass@1 ‘
File, LA, DP, LA+DP | Both 307 263
LA search/replace|270 237
LA Both 284 245
DP Both 261 220
LA+DP Both 286 239
File Both 257 223

entities as context and the search/replace edit format—
as it has shown to be the best single policy—while applying
temperature sampling for diversity. We then extended this
experiment by employing both edit formats while keeping
the context fixed, and repeated the process across all four
context types discussed in Section 4.5. Table 6 presents
a comparison of the pass@9 and pass@1 (after applying
the filtering steps outlined in Section 3.5) metric for each
combination. These results reinforce our claim that diversi-
fying both the edit format and context increases the number
of correct patches, as each configuration brings distinct
strengths and weaknesses. By combining them, we are able
to leverage their complementary advantages.

5. Conclusion & Future Work

NEMOTRON-CORTEXA demonstrates that improved local-
ization and diverse solutions are effective avenues to en-
hance LLM software agents for real-world tasks. Our com-
prehensive analyses validate three key contributions: 1) our
new code embedding delivers state-of-the-art file retrieval
accuracies here; 2) our localization agent enables precise
issue location identification; 3) our diverse solution genera-
tion method, leveraging different contexts and edit formats,
exhibits superior sample efficiency. NEMOTRON-CORTEXA
outperforms Agentless on SWE-bench at a lower cost, show-
casing its effectiveness.

We recognize that NEMOTRON-CORTEXA’s resolution can
be further improved by refining the selection process and/or
scaling the number of generated patches. Currently, ma-
jority voting in the patch selection process is suboptimal,
especially since we diversify the solutions generated, and
a correct solution may not appear multiple times. In fact,
by using LLM-based voting instead of majority voting, gen-
erating more accurate reproduction tests, and employing
reasoning models during patch generation, NEMOTRON-
CORTEXA'’s resolution on the Verified set can reach 68.4%
while costing $3.28/issue. These optimizations are com-
plementary to our approach, and a detailed analysis of the
impact of each component is left for future work.

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Acknowledgments

The authors would like to acknowledge the constructive
feedback from anonymous reviewers and the work of ICML
2025 program chairs and area chairs.

Impact Statement

Reliable and capable LLM software agents have the po-
tential to automate routine programming tasks, such as de-
bugging, and boost developer efficiency by freeing them
to work on more innovative projects and explore more ef-
ficient solutions. By providing natural language interfaces
to programming tasks, these agents can also enable people
without prior programming experience to use code in their
work. This potential can obviously be misused to do harm
by malicious actors, for example, to generate malware or
automate cyber attacks. Thus it is important to build robust
safety mechanisms in LLM agents to minimize their nega-
tive impacts. By carefully considering these factors, we can
work to maximize the benefits of LLM software agents.

References

Ahn, J., Verma, R., Lou, R., Liu, D., Zhang, R., and Yin, W.
Large language models for mathematical reasoning: Pro-
gresses and challenges. arXiv preprint arXiv:2402.00157,
2024.

Aide, S. K. P. SOTA on swebench-verified: (re)learning
the bitter lesson, 2024. URL https://aide.dev/
blog/sota-bitter-lesson. Accessed: 2025-01-
25.

Antoniades, A., Orwall, A., Zhang, K., Xie, Y., Goyal, A.,
and Wang, W. SWE-Search: Enhancing Software Agents
with Monte Carlo Tree Search and Iterative Refinement.
arXiv preprint arXiv:2410.20285, 2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou,
J.-G., and Chen, W. CodeT: Code Generation with Gener-
ated Tests, 2022. URL https://arxiv.org/abs/
2207.10397.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

10

Chen, X., Lin, M., Schirli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023.

DeepSeek-Al. DeepSeek-V2: A Strong, Economical, and
Efficient Mixture-of-Experts Language Model, 2024.

DeepSeek-Al, Zhu, Q., Guo, D., Shao, Z., Yang, D.,
Wang, P., Xu, R., Wu, Y., Li, Y., Gao, H., Ma, S.,
Zeng, W., Bi, X., Gu, Z., Xu, H., Dai, D., Dong, K.,
Zhang, L., Piao, Y., Gou, Z., Xie, Z., Hao, Z., Wang,
B., Song, J., Chen, D., Xie, X., Guan, K., You, Y.,
Liu, A., Du, Q., Gao, W., Lu, X., Chen, Q., Wang,
Y., Deng, C., Li, J., Zhao, C., Ruan, C., Luo, F., and
Liang, W. DeepSeek-Coder-V2: Breaking the Barrier of
Closed-Source Models in Code Intelligence, 2024. URL
https://arxiv.org/abs/2406.11931.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., et al. Code-
bert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Gao, T., Yao, X., and Chen, D. Simcse: Simple con-
trastive learning of sentence embeddings. arXiv preprint
arXiv:2104.08821, 2021.

Gomez-Rodriguez, C. and Williams, P. A Confederacy
of Models: a Comprehensive Evaluation of LLMs on
Creative Writing. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 14504—
14528. Association for Computational Linguistics, 2023.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and Yin,
J. Unixcoder: Unified cross-modal pre-training for code
representation. arXiv preprint arXiv:2203.03850, 2022.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang,
W., Chen, G., Bi, X., Wu, Y., Li, Y., et al. DeepSeek-
Coder: When the Large Language Model Meets
Programming—The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196, 2024.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and
Steinhardt, J. Measuring Coding Challenge Competence
With APPS. NeurIPS, 2021.

https://aide.dev/blog/sota-bitter-lesson
https://aide.dev/blog/sota-bitter-lesson
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2406.11931

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Hu, E. J, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, J., Tang, D., Shou, L., Gong, M., Xu, K., Jiang, D.,
Zhou, M., and Duan, N. Cosqa: 20,000+ web queries
for code search and question answering. arXiv preprint
arXiv:2105.13239, 2021.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
0., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world GitHub issues? arXiv preprint
arXiv:2310.06770, 2023.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
Bahdanau, D., von Werra, L., and de Vries, H. The Stack:
3 TB of permissively licensed source code, 2022. URL
https://arxiv.org/abs/2211.15533.

Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector,
K., and Fleming, S. D. How programmers debug, revis-
ited: An information foraging theory perspective. I[EEE
Transactions on Software Engineering, 39(2):197-215,
2010.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi, S.
C. H. CodeRL: Mastering Code Generation through Pre-
trained Models and Deep Reinforcement Learning, 2022.
URL https://arxiv.org/abs/2207.01780.

Lee, C., Roy, R., Xu, M., Raiman, J., Shoeybi, M., Catan-
zaro, B., and Ping, W. NV-Embed: Improved Techniques
for Training LLMs as Generalist Embedding Models.
arXiv preprint arXiv:2405.17428, 2024.

Lei, B, Li, Y., and Chen, Q. AutoCoder: Enhancing Code
Large Language Model with AIEV-INSTRUCT, 2024.
URL https://arxiv.org/abs/2405.14906.

Li, R, Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Li, X., Dong, K., Lee, Y. Q., Xia, W,, Yin, Y., Zhang, H.,
Liu, Y., Wang, Y., and Tang, R. Coir: A comprehensive
benchmark for code information retrieval models. arXiv
preprint arXiv:2407.02883, 2024.

11

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024a.

Liu, Y., Gao, P,, Wang, X, Liu, J., Shi, Y., Zhang, Z., and
Peng, C. MarsCode Agent: Al-native Automated Bug
Fixing. arXiv preprint arXiv:2409.00899, 2024b.

Liu, Y., Meng, R., Jot, S., Savarese, S., Xiong, C., Zhou,
Y., and Yavuz, S. CodeXEmbed: A Generalist Embed-
ding Model Family for Multiligual and Multi-task Code
Retrieval. arXiv preprint arXiv:2411.12644, 2024c.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., et al.
StarCoder 2 and The Stack v2: The Next Generation.
arXiv preprint arXiv:2402.19173, 2024.

Luo, Z., Xu, C., Zhao, P.,, Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. WizardCoder: Empowering
Code Large Language Models with Evol-Instruct. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=UnUwSIgK5W.

Meng, R., Liu, Y., Joty, S. R., Xiong, C., Zhou,
Y., and Yavuz, S. SFR-Embedding-2: Advanced
Text Embedding with Multi-stage Training, 2024.
URL https://huggingface.co/Salesforce/
SFR-Embedding-2_R.

Meyer, Y., Emadi, M., Nathawani, D., Ramaswamy, L.,
Boyd, K., Van Segbroeck, M., Grossman, M., Mlocek, P.,
and Newberry, D. Synthetic-Text-To-SQL: A synthetic
dataset for training language models to generate SQL
queries from natural language prompts, 2024.

Moreira, G. d. S. P, Ak, R., Schifferer, B., Xu, M., Os-
mulski, R., and Oldridge, E. Enhancing Q&A Text
Retrieval with Ranking Models: Benchmarking, fine-
tuning and deploying Rerankers for RAG. arXiv preprint
arXiv:2409.07691, 2024a.

Moreira, G. d. S. P,, Osmulski, R., Xu, M., Ak, R., Schif-
ferer, B., and Oldridge, E. NV-Retriever: Improving text
embedding models with effective hard-negative mining.
arXiv preprint arXiv:2407.15831, 2024b.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and
Longpre, S. OctoPack: Instruction Tuning Code Large
Language Models. arXiv preprint arXiv:2308.07124,
2023.

Muennighoff, N., Su, H., Wang, L., Yang, N., Wei, F,, Yu, T.,
Singh, A., and Kiela, D. Generative representational in-
struction tuning. arXiv preprint arXiv:2402.09906, 2024.

https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2405.14906
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M.,
Tworek, J., Yuan, Q., Tezak, N., Kim, J. W., Hallacy,
C., et al. Text and code embeddings by contrastive pre-
training. arXiv preprint arXiv:2201.10005, 2022.

OpenAl. GPT-4o, 2024. URL https://platform.

openai.com/docs/models#gpt—40. Accessed:

2025-01-27.

Overflow, S. Stacksample: 10% of stack overflow
q&a, 2021. URL https://www.kaggle.com/
datasets/stackoverflow/stacksample. Ac-
cessed: 2025-01-26.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, L,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Team, M. T. Moatless tools, November 2024a.
URL https://github.com/aorwall/
moatless—tools.

Team, Q. Qwen2.5: A Party of Foundation Models, Septem-
ber 2024b. URL https://gwenlm.github.io/
blog/gwen2.5/.

Voyage Al. Voyage-code-3: more accurate code retrieval
with lower dimensional, quantized embeddings, Decem-
ber 4 2024. URL https://blog.voyageai.com/
2024/12/04/voyage—code—-3/.

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., and
Wei, F. Improving text embeddings with large language
models. arXiv preprint arXiv:2401.00368, 2023.

Wang, X, Li, B., Song, Y., Xu, F. F,, Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., et al. Openhands: An
open platform for Al software developers as generalist
agents. arXiv preprint arXiv:2407.16741, 2024a.

Wang, Z. Z., Asai, A, Yu, X. V,, Xu, F. F, Xie, Y,
Neubig, G., and Fried, D. CodeRAG-Bench: Can Re-
trieval Augment Code Generation? arXiv preprint
arXiv:2406.14497, 2024b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E.,Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022.

12

Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. Magi-
coder: Source Code Is All You Need. arXiv preprint
arXiv:2312.02120, 2023.

Wu, Y., Huang, D., Shi, W., Wang, W., Gao, L., Liu, S.,
Nan, Z., Yuan, K., Zhang, R., Zhang, X., Du, Z., Guo,
Q.,Pu, Y, Yin, D., Hu, X., and Chen, Y. InverseCoder:
Unleashing the Power of Instruction-Tuned Code LLMs
with Inverse-Instruct, 2024. URL https://arxiv.
org/abs/2407.05700.

Xia, C. S., Deng, Y., Dunn, S., and Zhang, L. Agentless: De-
mystifying llm-based software engineering agents. arXiv
preprint arXiv:2407.01489, 2024.

Xie, C., Li, B., Gao, C., Du, H., Lam, W., Zou, D., and
Chen, K. SWE-Fixer: Training Open-Source LLMs for
Effective and Efficient GitHub Issue Resolution. arXiv
preprint arXiv:2501.05040, 2025.

Yan, W., Tian, Y., Li, Y., Chen, Q., and Wang, W. Code-
transocean: A comprehensive multilingual benchmark
for code translation. arXiv preprint arXiv:2310.04951,
2023.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao,
S., Narasimhan, K., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing. arXiv preprint arXiv:2405.15793, 2024.

Yu, Z., Zhang, X., Shang, N., Huang, Y., Xu, C., Zhao,
Y., Hu, W., and Yin, Q. WaveCoder: Widespread And
Versatile Enhancement For Code Large Language Models
By Instruction Tuning, 2024. URL https://arxiv.
org/abs/2312.14187.

Yuan, A., Coenen, A., Reif, E., and Ippolito, D. Wordcraft:
story writing with large language models. In Proceedings
of the 27th International Conference on Intelligent User
Interfaces, pp. 841-852, 2022.

Zhang, K., Yao, W,, Liu, Z., Feng, Y., Liu, Z., Murthy,
R., Lan, T., Li, L., Lou, R., Xu, J., et al. Diversity
empowers intelligence: Integrating expertise of software
engineering agents. arXiv preprint arXiv:2408.07060,
2024a.

Zhang, Y., Ruan, H., Fan, Z., and Roychoudhury, A. Au-
tocoderover: Autonomous program improvement. In
Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 1592—
1604, 2024b.

Zheng, T., Zhang, G., Shen, T., Liu, X., Lin, B. Y., Fu, J.,
Chen, W., and Yue, X. Opencodeinterpreter: Integrating
code generation with execution and refinement. arXiv
preprint arXiv:2402.14658, 2024.

https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o
https://www.kaggle.com/datasets/stackoverflow/stacksample
https://www.kaggle.com/datasets/stackoverflow/stacksample
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://blog.voyageai.com/2024/12/04/voyage-code-3/
https://blog.voyageai.com/2024/12/04/voyage-code-3/
https://arxiv.org/abs/2407.05700
https://arxiv.org/abs/2407.05700
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2312.14187

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

A. Appendix.
A.1. NV-EmbedCode Training Details

We employ three types of instructions for the various retrieval datasets used in training NV-EmbedCode:

1. Bug-to-File: Applied to the dataset derived from the SWE-bench training set, which maps issue descriptions to their
respective “oracle” files - files requiring edits to resolve the issue. These oracle files are identified based on the pull
request (PR) that resolved the issue successfully.

2. BugSummary-to-File: Also based on the SWE-bench training set, except that here the original issue descriptions are
replaced with summaries generated by an LLM - Llama-3.1 405B.

3. General: Used for all other retrieval datasets, which include a diverse set of tasks, including text-to-code, code-to-text,
code-to-code, and hybrid retrieval.

Table 7 provides an overview of these instruction templates along with the number of samples for each. Each training sample
consists of one query-positive document pair and 7 hard negative documents.

Table 7. Instruction template and number of samples used for each category of NV-EmbedCode’s training dataset.
Dataset Type Instruction Template Number of Samples
Bug-to-File Given a bug description, retrieve codes that need to be edited to resolve it 177k

Given a summary of bug description generated by an LLM, retrieve codes 99k
that need to be edited to resolve it

General Retrieve code or text based on user query 265k

BugSummary-to-File

The SWE-bench training set consists of 19,008 issues extracted from pull requests across 35 non-test repositories. We filter
out instances in which the corresponding golden solution creates a new file or modifies non-Python files, resulting in a curated
subset of 13,922 issues. For each remaining instance, the oracle files are designated as positive documents. As described in
Section 3.2, all documents are segmented into chunks; in this setting, we use a chunk size of 512 tokens. We also include a
portion of the ColR training set (Li et al., 2024), which includes data from APPS (Hendrycks et al., 2021), CoSQA (Huang
etal., 2021), CodeTransOcean (Yan et al., 2023), StackOverflowQA (Overflow, 2021), and SyntheticText2SQL (Meyer et al.,
2024). Additionally, we synthetically generate a dataset of code produced from coding queries in CodeFeedback (Zheng
et al., 2024) by prompting DeepSeek-v2.5 (DeepSeek-Al, 2024). Table 8 summarizes the number of samples for each
dataset.

Table 8. Number of samples for each training dataset of NV-EmbedCode.

Dataset Name Main Retrieval Task Dataset Type Number of Samples
SWE-bench Train Set (Original issue) Issue-to-Oracle-File =~ Bug-to-File 177k
SWE-bench Train Set (LLM summary as issue) Issue-to-Oracle-File BugSummary-to-File 92k
APPS (Hendrycks et al., 2021) Text-to-Code General 5k
CoSQA (Huang et al., 2021) Text-to-Code General 20k
SyntheticText2SQL (Meyer et al., 2024) Text-to-Code General 100k
CodeTransOcean (Yan et al., 2023) Code-to-Code General 1k
StackOverflowQA (Overflow, 2021) Hybrid Code General 14k

CodeFeedback (Zheng et al., 2024) +

DeepSeek-v2.5 (DeepSeek-Al 2024) Hybrid Code General 125k

As described in Section 4.3, we evaluated a range of chunk sizes from 450 to 4096 tokens using the SFR-Embedding-Mistral
model to determine the optimal chunking of code files. Our experiments on the SWE-bench Lite set revealed that a chunk
size of 450 tokens yields the highest retrieval accuracy, as illustrated in Figure 5. Based on these findings, we adopted a
chunk size of 512 tokens for training and 450 tokens for inference with our model. Consistent with the behavior observed in
the SFR-Embedding-Mistral model, NV-EmbedCode also exhibits a decline in retrieval accuracy as chunk size increases, as
shown in Figure 5. This can be attributed to two factors: first, a more localized view of the files enables the model to more
effectively determine if the code snippet is related to the issue; second, larger chunk sizes will be out-of-distribution, as both
our current training set and the training data used for the base model consist primarily of shorter documents.

13

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

—e— SFR-Embedding-Mistral Lite
NV-EmbedCode Lite
—4— NV-EmbedCode Verified

\\\

450 1k 2k 4k
Chunk size (#tokens)

70.00

65.00

% 60.00

Recall@k (%
w [9))
o w
o [=]
o o

45.00
40.00

35.00

Figure 5. Recall @k in file retrieval for SWE-bench when changing the maximum number of tokens per each chunk. k is the number of
oracle files based on the golden solution that resolved the issue.

Table 9. NEMOTRON-CORTEXA file retrieval accuracy compared to free-form agentic retrieval baselines for SWE-bench Verified. As
baselines retrieve an arbitrary number of files, we report recall@oco. For NEMOTRON-CORTEXA, we use recall@ 10, since other methods
retrieved at least 15 files on average.

Method | Recall @0
OpenHands (Wang et al., 2024a) 85.60%
AutoCodeRover-v2 (Zhang et al., 2024b) | 88.20%

MarsCode (Liu et al., 2024b) 87.20%
SWE-agent-v1 (Yang et al., 2024) 76.80%
NEMOTRON-CORTEXA 94.00% (recall@10)

A.2. Additional Results for Localization

Compare with agentic file retrieval methods. We compare file retrieval accuracy of NV-EmbedCode against four
representative free-form agentic approaches: OpenHands (Wang et al., 2024a), AutoCodeRover-v2 (Zhang et al., 2024b),
MarsCode Agent (Liu et al., 2024b), and SWE-agent-v1 (Yang et al., 2024). For each agent, we extract files from their official
trajectory logs in the SWE-bench leaderboard. Since these methods can retrieve an arbitrary number of files, we denote
the accuracy metric with recall@oc. In this comparison, we use recall@ 10 for NEMOTRON-CORTEXA as other baseline
methods retrieved at least 15 files on average. Table 9 shows that our code embedding model, NV-EmbedCode, enables
NEMOTRON-CORTEXA to achieve significantly higher file recall accuracy compared to agentic baselines, demonstrating the
effectiveness of finetuning for the specialized task of file retrieval from issue descriptions.

Entity localization with different ensemble methods. In Section 4.4, we discussed how NEMOTRON-CORTEXA utilizes
an ensemble of four localization agents, each instantiated with a different model. Here, we explore two alternative ensemble
strategies. The first uses temperature sampling with a single model to generate diverse outputs. The second aggregates entity
results across all steps from a single agent. We use DeepSeek-v3 as it is individually the strongest in entity localization.
For the temperature sampling ensemble, we run entity localization four times; once with temperature 0 and three times
with temperature 0.8. When aggregating all steps, we use greedy sampling (temperature 0). Table 10 demonstrates that the
model-based ensemble achieves higher entity recall than both alternatives, while the temperature sampling baseline obtains
a higher precision by retrieving fewer entities. These results highlight that model diversity helps improve the recall accuracy
of entity localization the most among the three ensemble methods.

Entity Localization Accuracy and Resolution Status. To further assess the impact of localization on the final resolution
rate, we divide the instances into two sets, resolved and unresolved, based on whether any of the nine patches successfully
resolve the issue. We then calculate the entity localization accuracy for each set. As shown in Table 11, we observe that
resolved cases exhibit consistently higher precision and recall in localization compared to unresolved ones, indicating a
strong correlation between localization accuracy and successful patch generation.

14

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Table 10. NEMOTRON-CORTEXA’s entity ensemble achieves higher recall accuracy compared to other ensemble baselines.

Method Precision ‘ Recall ‘
Temperature Sampling 49.93% |57.03%
Aggregating Results of All Agent Iterations | 35.47% | 53.47%
Ensemble of Models (LA + DP) 3451% |67.62%

Table 11. Average entity precision and recall accuracy as broken down by resolution results. Resolved instances have higher accuracies.

Lite Verified
Result — —
Precision Recall |Precision Recall
Resolved 44.54% 86.87%| 46.05% 90.91%
Unresolved 27.58% 63.20%| 32.75% 64.06%

A.3. Solution Filtering

After generating 9 patches for each instance as described in Section 4.5, we have the correct patch for 146 instances of
SWE-bench Lite and 307 instances of SWE-bench Verified. However, the PASS_to_PASS and FAIL_to_PASS tests
provided by SWE-bench cannot be used to identify the correct patches. Table 12 summarizes the average number of patches
remaining after each filtering step described in Section 3.5, as well as the number of resolved instances achieved by applying
majority voting at each step (pass@1). The results demonstrate the effectiveness of these filtering steps but also indicate
areas for improvement, which we leave for future work. Specifically, the regression and reproduction tests, generated using
an LLM, may have inaccuracies that could result in removing correct solutions or failing to prune the wrong solutions.
Furthermore, majority voting is not an ideal heuristic here, as certain incorrect solutions may repeat multiple times, whereas
some correct solutions may only be generated once or fewer times than the incorrect ones. Additionally, in cases of ties
between solutions based on their frequency, we choose one of them randomly. A more robust scoring mechanism can help
mitigate these limitations.

Table 12. The impact of filtering techniques on the average number of remaining patches and the number of resolved instances when
majority voting is applied after filtering (pass@1).

Lite Verified
avg. Y% Resolved || avg. % Resolved
Syntax check 7.7 -1l 7.9 -
+ Normalization 5.7 107 (35.67%) || 5.5 225 (45.00%)
+ Regression test 4.6 116 (38.67%) || 4.5 242 (48.40%)
+ Reproduction test || 4.0 126 (42.00%) || 4.0 263 (52.60%)

Filtering

A.4. Cost Analysis

For measuring costs, we use the following prices for the models we employ:
* Claude 3.5 Sonnet APIL: $3/M input tokens and $15/M output tokens.

* GPT-40 APL: $2.5/M input tokens and $10/M output tokens.

* DeepSeek-V3: $0.9/M input tokens and $1.1/M output tokens.

* Llama 3.3-70B: $0.59/M input tokens and $0.73/M output tokens.

e Qwen2.5-72B: $0.4/M input tokens and $0.75/M output tokens.

¢ NV-EmbedCode: As this is a Mistral 7B-based model, we use Mistral pricing of $0.11/M input tokens. We cache the
chunks and query our vector database for repeated ones.

Table 13 summarizes a breakdown of the cost for each step of our pipeline. SWE-bench Lite and Verified have a total of 800
instances, but 93 instances are common between them. We consider the common ones only once in the cost calculation.

15

Enhancing LLM Agents for Software Engineering Tasks via Improved Localization and Solution Diversity

Table 13. Breakdown of the cost for running NEMOTRON-CORTEXA on the 707 unique instances of SWE-bench Lite and Verified,

considering the 93 instances common between them only once.

#Input Tokens #Output Tokens Total Cost Avg. Cost / Instance
Stage Model M M USD (%) USD (%)
File Localization NV-EmbedCode 217.95 - 23.97 (6.69%) 0.03 (6.69%)
Entity Localization || Mix 42.66 1.74 53.68 (15.00%) 0.08 (15.00%)
Generating Tests GPT-40 13.00 5.74 89.90 (25.11%) 0.13 (25.11%)
Patch Generation Claude-3.5-Sonnet 47.63 3.17 190.44 (53.20%) 0.27 (53.20%)
Total Mix 321.24 10.65 358.00 (100%) 0.51 (100%)

16

