
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE DESIGN OF ONE-STEP DIFFUSION VIA
SHORTCUTTING FLOW PATHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in few-step diffusion models have demonstrated their efficiency
and effectiveness by shortcutting the probabilistic paths of diffusion models, espe-
cially in training one-step diffusion models from scratch (a.k.a. shortcut models).
However, their theoretical derivation and practical implementation are often closely
coupled, which obscures the design space. To address this, we propose a common
design framework for representative shortcut models. This framework provides
theoretical justification for their validity and disentangles concrete component-level
choices, thereby enabling systematic identification of improvements. With our pro-
posed improvements, the resulting one-step model achieves a new state-of-the-art
FID50k of 2.85 on ImageNet-256×256 under the classifier-free guidance setting.
Remarkably, the model requires no pre-training, distillation, or curriculum learning.
We believe our work lowers the barrier to component-level innovation in shortcut
models and facilitates principled exploration of their design space.

1 INTRODUCTION

Diffusion-based models have become the dominant paradigm in deep generative modeling (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), progressively transforming samples
from a prior distribution toward the data distribution. However, dozens or even hundreds of neural
function evaluations (NFEs) are typically required, resulting in slow inference and limited real-time
use (Song & Ermon, 2020; Salimans & Ho, 2022; Lu et al., 2025; Zheng et al., 2023). Consistency
models (Song et al., 2023; Song & Dhariwal, 2023) are pioneering works that attempt to achieve one-
step generation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024a;c; Salimans et al., 2024; Geng
et al., 2023; 2025b), but a costly two-stage training process is required, i.e., first training a reliable
diffusion model and then distilling velocity or score from it. Despite the costly two-stage training,
they offer fast generation, which motivates further research into improving training efficiency.

Recently, one-step diffusion models trained from scratch have emerged, such as Consistency Train-
ing (CT) (Song et al., 2023) as the training-from-scratch variant of consistency models, Inductive
Moment Matching (IMM) (Zhou et al., 2025), and Shortcut Diffusion (SCD) (Frans et al., 2025).
These models aim to learn direct shortcut mappings between intermediate states along the probability
flow trajectories of the probability flow, thus enabling one-step generation; we refer to such models
as shortcut models. Building on this principle, continuous-time shortcut models such as sCT (Lu &
Song, 2025) and MeanFlow (Geng et al., 2025a) have been introduced, achieving state-of-the-art
performance in one-step generation for image synthesis. Their efficiency and effectiveness in both
training and generation have stimulated further exploration in improving their sampling fidelity.

Although these models share the same objective, the barrier to understanding the working mechanisms
remains non-trivial. Specifically, the literature on them is dense on theory, derivations of method
formulations and the corresponding learning objectives, as well as technical details like time samplers
and curriculum, and training tricks, etc., leading to a less intuitive design paradigm. As a result, it
may inadvertently obscure the underlying design space, making each carefully crafted module appear
indispensable, so that altering a single component seems to threaten the integrity of the entire system.

Therefore, we first contribute to proposing a common design framework for these shortcut models
from a practical standpoint. We summarize that both discrete- and continuous-time variants share the
principle of approximating two-step flow map targets with one-step parameterized predictions. We
also provide a general theoretical justification for the validity of this design paradigm. This framework

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

allows us to disentangle the concrete modules within these models, offering clearer insights into how
the components interact and what flexibility remains in shaping the overall method design.

Secondly, our contribution lies in elucidating the design space of shortcut models. We decompose
each model into distinct modules aligned with their learning objectives, and then conduct an in-depth
empirical investigation and theoretical analysis of different module combinations. In summary, we
demonstrate the advantages of linear paths in settings of shortcut model trained from scratch, discuss
the scenarios where continuous-time variants exhibit superior sampling fidelity over discrete-time
ones, and figure out the impacts of time samplers on training convergence.

Further, the third set of contributions centers on improvements to the training of continuous-time
shortcut models. Building on the previous analysis, we introduce three technical refinements for
enhancing training stability: (i) the use of plug-in velocity and its correction under classifier-free-
guidance training, (ii) a gradual time sampler, and (iii) several established training techniques such as
variational adaptive loss weighting. Our experiments demonstrate that these techniques consistently
improve performance. Finally, we conduct a scaling-up evaluation on ImageNet-256×256. By
incorporating the proposed improvements into our modeling framework, we achieve an FID50k of
2.85 under one-step generation, setting a new state of the art among shortcut models trained from
scratch. We believe that our work facilitates component-level innovation and thereby enables more
systematic and targeted exploration of the design space of shortcut models.

2 EXPRESSING ONE-STEP DIFFUSION THROUGH SHORTCUT MODELS

2.1 SHORTCUTTING FLOWS WITH FLOW MAP SOLVERS

Diffusion models. Let pdata(x) be the data distribution, and pprior = N (0, σ2I) be a Gaussian
distribution with zero mean and variance σ2. In the following, we write σ = 1 by default for
notational simplicity. According to stochastic interpolants (Albergo et al., 2023), diffusion models
establish a probabilistic path between p0 = pdata and p1 = pprior such that xt = αtx0 + σtε, where
x0 ∼ p0, ε ∼ p1, and αt, σt ≥ 0; with boundary conditions α0 = σ1 = 1 and α1 = σ0 = 0. Both the
forward noising and inverse denoising processes are governed by the probability flow ODE (PF-ODE)
as ẋt = vt(xt), where vt(x) is the marginal velocity vt(x) = α̇tE(x0|xt = x) + σ̇tE(ε|xt = x).

Flow paths. Probabilistic paths satisfying the above are defined as flow paths. For example, with
the reformulation by Lu & Song (2025), the EDM preconditioner path (Karras et al., 2022) can be
reformulated as a cosine path (Ma et al., 2024) with σ = σdata, αt = cos(π2 t), and σt = sin(π2 t); in
Rectified Flow (Liu et al., 2022), σ = 1, αt = 1− t and σt = t, leading to the linear path (Lipman
et al., 2023; Tong et al., 2024). Since vt(x) is inaccessible, the conditional path is established for
tractable training, where the corresponding conditional velocity is vt|0 = vt(xt|x0) = α̇tx0 + σ̇tε

that neural networks F θ(xt, t) are trained to approximate. In sampling, one can first sample x1 =
ε ∼ pprior, and then simulate a trajectory of the flow through the PF-ODE as ẋt = F θ(xt, t).

Flow maps. In order to shortcut established flow paths from time t to r (0 ≤ r ≤ t ≤ 1),
we introduce the flow map notation (Boffi et al., 2025; Liu, 2025) to express the design frame
for simplicity. A flow map Xt,r is defined as the unique map such that Xt,r(xt) = xr, for all
(t, r) ∈ [0, 1]2, where xr is the solution of PF-ODE, which corresponds to position in physics.
According to the PF-ODE, one can easily derive the flow map solution through

xr = Xt,r(xt) = xt +

∫ r

t

vτ (xτ)dτ, (1)

where
∫ r
t
vτ (xτ)dτ corresponds to displacement in physics.

Flow map solvers. With the definition of average velocity over time (Geng et al., 2025a) as ut,r,
we can rewrite Eq. 1 to express the flow map solution xr = Xt,r(xt) through

Xt,r(xt) = xt + (r − t) · ut,r(xt)

where ut,r(xt) =
1

r − t

∫ r

t

vτ (xτ) dτ,
(2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝒙𝑡
𝒙𝑟

𝒖𝑡,𝑟
tgt

𝑟 − 𝑡 𝑑𝒖𝑡,𝑟/𝑑𝑡

𝒗𝑡

𝑡 𝑠 𝑟1 0

𝒙𝑡

𝒙𝑠

𝒙𝑟

ideal target

ideal prediction

𝒙𝑡

ෝ𝒙𝑠

ෝ𝒙𝑟

practical target

practical prediction

(b) ideal learning of DTSC

(c) ideal learning of CTSC

(d) practical learning of DTSC

(e) practical learning of CTSC(a) marginal velocity field

𝒙𝑡
𝒙𝑟

𝒗𝑡|0

𝒖𝑡,𝑟
tgt

𝑟 − 𝑡 𝑑𝒖𝑡,𝑟
𝜃 /𝑑𝑡

ideal direction

𝒖𝑡,𝑟
tgt

∥ (𝒙𝑟 − 𝒙𝑡) 𝒖𝑡,𝑟
tgt

∦ (𝒙𝑟 − 𝒙𝑡)

𝒖𝑡,𝑟
tgt

𝒖𝑡,𝑟
tgt

=
𝒙𝑟 − 𝒙𝑡
𝑟 − 𝑡

𝒖𝑡,𝑟
tgt

𝒖𝑡,𝑟
tgt

≠
𝒙𝑟 − 𝒙𝑡
𝑟 − 𝑡𝒙𝑟

𝒖𝑡,𝑟
𝜃

𝒖𝑡,𝑟
𝜃

𝒖𝑡,𝑟
𝜃

𝒖𝑡,𝑟
𝜃

Figure 1: The physical picture of ideal and practical learning of discrete- and continuous-time shortcut
models (DTSC&CTSC) where utgt

t,r denotes the target obtained by the two-step flow maps, and uθt,r
is the models’ prediction for one-step flow maps. (a) shows the marginal velocity field from N (0, 1)
to a Gaussian Mixture. (b) and (c) illustrate the ideal learning of DTSC and CTSC, where xr is
sampled from the same trajectory of PF-ODE, and thus utgt

t,r serves as the correct supervisory signal
for training. (d) and (e) depict the practical learning of DTSC and CTSC, where the targets deviate
from the trajectory, thus leading to models’ prediction drifts away correspondingly.

or to infer Xt,r(xt) with the instantaneous velocity vt, through DDIM-solver (Song et al., 2021) as
first-order approximation of DPM-solver (Lu et al., 2022), which reads

Xt,r(xt) ≈ DDIM(xt,vt, t, r) = ᾱt,rxt + β̄t,rvt, (3)

where ᾱt,r = cos(π2 (r−t)) and β̄t,r = 2
π sin(π2 (r−t)) in cosine paths; and ᾱt,r = 1 and β̄t,r = r−t

in linear paths. The general formulation and detailed derivation are given in Appendix A.2.

With the solvers, if a model learns the solution to the flow maps from any t to r, it can bypass the
costly iterative procedure and achieve one-step generation by predicting Xθ

1,0(x1).

2.2 LEARNING TO SHORTCUT FLOW PATHS

Overall design frame. We claim that the previous methods shortcut the flow paths of a diffusion
model by regularizing a one-step flow map prediction against the two-step flow map target. In
practice, they first sample time points r, s, t ∼ p(τ) with r ≤ s ≤ t, and then use the consistency
property (Liu, 2025; Boffi et al., 2025) as detailed in Appendix A.1 to design a shortcut model trained
from scratch, which reads

Xs,r(Xt,s(xt)) = Xt,r(xt). (4)
Specifically, these methods aim to construct a two-step flow map target from t to s, then to r, i.e.,
Xs,r ◦Xt,s(xt), and then make the parameterized flow map Xθ

t,r(xt) to approximate this target in a
single step. It allows the model to achieve one-step generation by predicting xθ0 = Xθ

1,0(x1) with
x1 = ε ∼ p1. As a result, their learning objectives L can be expressed as

argmin
θ

Er,s,t∼p(τ),xt∼pt
[
w(r, s, t) · d(

one-step prediction︷ ︸︸ ︷
Xθ
t,r(xt) ,

two-step target︷ ︸︸ ︷
sg(X̂s,r ◦ X̂t,s(xt)))︸ ︷︷ ︸

l(xt,r,s,t;θ)

]
, (5)

where w is the weight term, X̂ and Xθ are flow maps obtained with the conditional velocity or the
neural network F θ, d(·, ·) is a loss metric function, such as the squared l2-distance, and sg(·) is the
stop gradient operator in backpropagation. We call X̂s,r ◦ X̂t,s(xt) two-step flow map targets and
Xθ
t,r(xt) one-step flow map predictions, and write the inner loss term of expectation as l(xt, r, s, t; θ).

Time sampler. To construct the training objective, time points {r, s, t} are sampled with r ≤ s ≤ t.
We refer to this as the discrete-time shortcut model (DTSC) when {r, s, t} are discrete time points. For

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Specific design choices employed by different shortcut models. ‘sg EMA decay’ means that
the parameters θ in the stop-gradient targets are updated in a delayed manner with EMA.

CT SCD IMM sCT(note: △) MeanFlow

Diffusion basis†
Flow path Cosine Linear Linear Cosine Linear

Network
F θ

Architecture U-Net DiT DiT U-Net DiT

Output vθ uθ vθ vθ uθ

Flow map construction

Time sampler

(note: ∗)

t = π
2
arctan([σ

1/ρ
max +

τ
K
(σ

1/ρ
min − σ

1/ρ
max)]

ρ)

s = π
2
arctan([σ

1/ρ
max +

τ+1
K

(σ
1/ρ
min − σ

1/ρ
max)]

ρ)
r = 0, where
τ ∼ U{0, . . . ,K − 1}

t = τ
s = τ − h
r = τ − 2h
and with pteq,
r = s = t,
where τ, h ∼
Uniform log2(τ, h)

(note: ⋆)
t ∼ U [0, 1]
ns = 1

1−t
− 1

2γ

s = ns
ns+1

r ∼ U [0, t]

t = 2
π
arctan(exp(τ))

s = t− dt
r = 0, where
τ ∼ N (Pmean, P

2
std)

(note: ‡)

r, t = {sigmoid(τ1),
sigmoid(τ2)}

s.t. r ≤ t,
s = t− dt, and with
pteq, r = s = t, where
τ1, τ2 ∼ N (Pmean, P

2
std)

(note: ‡)

Two-step
target

1st-step (x̂s) DDIM(xt,vt|0, t, s) xt − huθ
t,s(xt) DDIM(xt,vt|0, t, s) DDIM(xt,vt|0, t, s) DDIM(xt,vt|0, t, s)

2nd-step (x̂r) DDIM(x̂s,v
θ
s , s, r) x̂s − huθ

s,r(x̂s) DDIM(x̂s,v
θ
s , s, r) DDIM(x̂s,v

θ
s , s, r) x̂s + (r − s)uθ

s,r(xs)

One-step prediction (xθr) DDIM(xt,v
θ
t , t, r) xt − 2huθ

t,r(xt) DDIM(xt,v
θ
t , t, r) DDIM(xt,v

θ
t , t, r) xt + (r − t)uθ

t,r(xt)

Training

Loss metric d LPIPS Squared l2-distance Grouped kernel Squared l2-distance Squared l2-distance

sg EMA decay ✓ ✗ ✗ ✗ ✗

†Demonstration of the configuration on ImageNet. *In CT, ρ, σmax, σmin are adopted from EDM, usually set as 7, 0.001 and 80. K gradually
increases from Kmin (usually set as 2) to Kmax (usually about 200); In CT’s original paper, network output’s are the score function and the
reformulation is given in Appendix A.3. ⋆γ is usually set as 12. ‡In sCT and MeanFlow, since s = t− dt, which involves differentiation w.r.t.
t, terms in loss metrics are normalized by dt. The expression is an intuitive analogy, while the derivation is given in Appendix B. △ Although
sCT is originally initialized from a teacher diffusion model, we suppose that it can attain comparable performance when trained from scratch,
similar to the behavior observed in CT and MeanFlow.

example, in CTs, r is fixed at 0, and t and s are sampled from a non-uniform discretization curriculum
that gradually changes from sparse to dense such that t is always chosen to be one time step ahead of
s; SCD divides the time interval into equal segments based on different powers of 2, and samples
uniformly between adjacent grid points with spacing h, as denoted by (t, h) ∼ Uniform log2(t, h) ;
IMM samples time with r and t uniformly from [0, 1], and {s, t} separated by a fixed gap. As the
gap between two time points becomes infinitesimal, the discrete-time shortcut model converges to a
continuous-time form (CTSC). For example, sCTs and MeanFlows recover this by setting s→ t.

Network parameterization and flow map solution. We denote by F θ the neural network with
parameters θ, whose architecture is instantiated as U-Net (Song et al., 2020) in the image space, or as
DiT (Peebles & Xie, 2022) / SiT (Ma et al., 2024) in the latent space. To obtain the flow map, Eq. 1,
Eq. 2, and Eq. 3 can all serve as solutions. Since the integral term

∫ r
t
vτ (xτ)dτ in Eq. 1 is intractable

in general, the DDIM solver with instantaneous velocity is adopted practically when estimating the
flow map with vθt parameterized by F θ or the conditional velocity vt|0 through Eq. 3. Alternatively,
if F θ parameterizes average velocity uθt,r, the flow map can be obtained directly through Eq. 2.

2.3 EXAMPLES: DISCRETE- AND CONTINUOUS-TIME SHORTCUT MODELS

Discrete-time shortcut models. CTs, SCDs and IMMs are representative DTSCs. If parameterizing
velocity with neural networks as F θ(xt, t) = vθt (xt), we can then adopt the DDIM as flow map
solvers. Specifically, we first use the parameterized velocity vθt (xt) to solve the flow map xθr =
Xθ
t,r(xt), which serves as the one-step prediction. For the two-step target, we alternate between the

conditional velocity vt|0 to obtain x̂s = X̂t,s(xt), and the parameterized velocity vθs(x̂s) to obtain
x̂r = X̂s,r(x̂s). In this way, we can derive l(xt, r, s, t; θ) in Eq. 5 as

lct(xt, r, s, t; θ) = LPIPS
(
DDIM(xt,v

θ
t (xt), t, r), sg

(
DDIM(x̂s,v

θ
s(x̂s), s, r)

))
, (6)

where the loss metric is LPIPS (Zhang et al., 2018) applied directly in pixel space with w = 1,
and lct(xt, r, s, t; θ) coincides with its formulation in CTs with details shown in Appendix B.1.
Alternatively, if we parameterize the average velocity as uθt,r(xt) = F θ(xt, t, r), and estimate both
the one-step prediction and the two steps in the target with neural networks F θ, we thus obtain the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

l(xt, r, s, t; θ) in SCD through Eq. 2. Due to equi-spacing time points as t− s = s− r = h, it reads

lscd(xt, r, s, t; θ) =

∥∥∥∥uθt,r(xt)− 1

2
sg
(
uθt,s(xt) + uθs,r(x̂s)

)∥∥∥∥2
2

, (7)

where the loss metric is set as squared l2-distance, w = 1
4h2 , and x̂s = xt + (s− t)uθs,t(xt), with

details shown in Appendix B.2. Moreover, for IMMs, conditional samples {x(i)
0 , ε(i)}Bi=1 within a

mini-batch of size B are first partitioned into different groups, and {r, s, t} are drawn for each group.
With similar flow map construction to CTs, the loss metric is implemented with a grouped kernel
function as MMD (Gretton et al., 2012), applied to measure both inter- and intra-sample similarities
between {x̂r,xθr} within the group, as further detailed in Appendix B.3.

Continuous-time shortcut models. When the difference between two time points is infinitesi-
mal, the resulting shortcut models are referred to CTSCs, by setting s = t − dt and normalizing
l(xt, r, s, t; θ) by dt. For instance, MeanFlows are continuous-time shortcut models in which
s = t − dt. They leverage linear paths with squared l2-distance as the loss metric and parame-
terizes the average velocity ut,r(xt) with neural networks F θ. By writing l(xt, r, t − dt, t; θ) =

w ·
∥∥∥ ddt (Xθ

t,r(xt)− X̂t−dt,r ◦ X̂t,t−dt(xt)
)∥∥∥2 and d

dtu
θ
t,r(xt) = ∂tu

θ
t,r(xt) + (∇xu

θ
t,r)(xt) · vt,

and applying Eq. 1 and 2 with approximation shown in Appendix B.4, we correspondingly obtain

lmf(xt, r, t− dt, t; θ) = w ·

∥∥∥∥∥uθt,r(xt)− sg

(
vt|0 + (r − t)

duθt,r(xt)

dt

)∥∥∥∥∥
2

2

, (8)

under squared l2-distance with adaptive weighting w, as detailed in Appendix B.4. Note that there is
a predefined probability pteq such that r = t, which results in lmf = w∥uθt,t − vt∥2 during training.
This training technique of instantaneous conditional velocity supervision is also employed in SCDs.

sCTs, as the continuous-time variants of CTs, use squared l2-distance instead of LPIPS. Under
s = t− dt, Appendix B.5 shows that the gradient of lct(xt, r, s, t; θ) w.r.t. θ can be approximated as
∇θl(xt, r, s, t; θ) ≈ ∇θ∥vθt (xt)− sg(vθt (xt) + w(t) ddtX

θ
t,r(xt))∥22. By setting w(t) = cos(π2 t),

lsct(xt, r, t− dt, t; θ) =

∥∥∥∥vθt (xt)− sg

(
vθt (xt) + w(t)

dDDIM(xt,v
θ
t (xt), t, r)

dt

)∥∥∥∥2
2

, (9)

Remark 2.1. sCT with linear paths is of the same form as MeanFlow, as proved in Appendix C.1.

Putting it together. Table 1 summarizes the deterministic variants reproduced from the discussed
representative methods, including DTSCs and CTSCs, within our framework. The goal of this
reframing is to disentangle the independent components that are often intertwined in prior work.
Within our framework, these components can be explicitly separated, such that any reasonable
combination of components will yield a functioning model. In practice, the relative effectiveness of
different choices and combinations is the focus of our investigation in Sec. 3.

2.4 DISCUSSION: SHORTCUTTING FLOW PATHS UNDER MARGINAL VELOCITY FIELDS

- Q.1: Why share a common design frame?
We inherently aim to simulate the PF-ODE with the marginal velocity field, written as vt(x).
Consequently, shortcut models essentially operate along the sampling trajectories of the flow governed
by vt(x), as shown in Fig. 1(a). Intuitively, the ideal construction of the learning target is to sample
two distinct states xt and xr along the same curved trajectory from the flow paths, so that the neural
network can directly map xt to xr such that F θ(xt, t, r) ≈ xr, as illustrated in Fig. 1(b) and (c).

However, such pairs {xt,xr} cannot be obtained via simulation-based sampling: once xt is sam-
pled, xr remains inaccessible because both vt(x) and its integral from t to r are intractable. To
overcome this, a common design paradigm is employed, which is to let the network’s outputs, or the
conditional velocity alternatively, estimate xr in two steps: first producing an intermediate x̂s, and
then constructing an estimated target x̂r, as shown in Eq. 5 in Sec. 2.2. This makes training feasible.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Although one may also construct multi-step (i.e., more than two) flow map targets for simulating the
{xt,xr} pairs (Kim et al., 2023), the paradigms of two-step target construction approximated by
one-step prediction are sufficiently general according to the following theoretical justification with
detailed proof in Appendix C.2. Note that we classify the aforementioned methods’ training objective
into DTSC and CTSC. For example, lmf and lsct are instances of lctsc.

Theorem 2.2 (Error bound of DTSC&CTSC (brief)). Under the mild assumptions with details given
in Theorem C.1 of (i) one-sided Lipschitz condition of marginal velocity and (ii) twice continuous
differentiability with bounded second derivatives of Xθ

τ1,τ2 for any τ1, τ2 ∈ [0, 1]. Let p0 the density
of x0, and pθ0 the density of xθ0 = Xθ

1,0(x1), under the squared l2-distance:

W 2
2 (p0, p

θ
0) ≤ C1Ldtsc(θ) + C2(t− s); W 2

2 (p0, p
θ
0) ≤ C3Lctsc(θ),

where we write the training objective in Eq. 5 as L•(θ) = Er,s,t∼p(τ),xt∼pt [l•(xt, r, s, t; θ)] with
• ∈ {dtsc, ctsc}, W2(·, ·) is the Wasserstein-2 distance, {C1, C2} are given in Theorem C.3, and
C3 is given in Theorem C.4 and C.5 in Appendix C.2.

- Q.2: What challenges in constructing flow map targets?
From this perspective, ideal learning for DTSC and CTSC shares a similar physical picture as shown
from Fig. 1(b) and (c). However, the practical construction of the two-step flow map target inevitably
causes the obtained x̂s and x̂r to deviate from xs and xr on the sampling trajectory governed by
marginal velocity fields as shown in Fig. 1(d) and (e), leading to bias and variance in estimating
xr with x̂r. Introducing this deviation into the supervision of model training greatly affects the
performance differences across various shortcut model designs as justified in Prop. 3.1.

- Q.3: Why distillation from pretrained velocity fields performs better?
From another perspective, this explains why distilling from a pretrained diffusion model is often
more effective than training from scratch (Song et al., 2023; Lu & Song, 2025). Unlike (s)CT, which
are trained from scratch, (s)CM benefits from distillation by learning from a pretrained velocity field
vϕt (x). In practical training, the conditional velocity vt|0 and network output vθt in sg(·) in Eq. 6
and 9 are replaced with vϕt , which closely approximates vt(xt). This substantially reduces errors in
estimating the two-step flow targets, providing more accurate supervision for network training.

3 ELUCIDATING THE DESIGN SPACE OF SHORTCUT MODELS

According to our design framework, we analyze existing shortcut models from several key perspec-
tives, including the choice of flow path and design of time sampler, which primarily determine how
the flow map is constructed. In the following, we aim to address several corresponding questions to
empirically and theoretically elucidate the design space of one-step shortcut models.

Empirically, we evaluate the proposed formulation using a unified codebase implementation with
the same training iterations and batch sizes. For unconditional generation on CIFAR-10, we employ
U-Nets (Song et al., 2020) (∼55M param.) as the network architecture operating directly in the pixel
space. For conditional generation in ImageNet-256×256, with and without classifier-free guidance,
we use a SiT-B/2 (Ma et al., 2024) architecture (∼131M param.), operating in the latent space via
a pretrained VQVAE (Rombach et al., 2021). While sCT is originally initialized from the teacher
diffusion model as stated in Lu & Song (2025), we train all the discussed models from scratch, for
a fair comparison. Fig. 2 summarizes the results of one-step generation on the two datasets, with
additional setting of classifier-guidance-free learning, as discussed in Geng et al. (2025a). Further
details on settings are provided in Appendix D.1.

- Q.1: Following linear or cosine paths?
Linear paths are generally regarded as more analytically tractable and easier to employ for training and
sampling tricks (e.g., classifier-free guidance), owing to their simple formulation. By contrast, in pixel-
space generative modeling, cosine paths are often considered more stable for training convergence,
because they induce a stochastic process with fixed variance. Exploration of these two flow paths in
the context of shortcut models remains underexplored. Here we extend cosine-path-based models
(CT and sCT) to their linear-path counterparts. Fig. 2 shows that shortcut models with linear paths
are more competitive. We attribute this to the fact that linear paths are straight paths between points

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

50100 200 400 800
iterations (k)

2

4
5

10

20

100

300

1-
NF

E
FI

D

18.12

14.82
12.92

4.41
3.15

7.14

4.46

CT
CT-linear
SCD
IMM
MeanFlow
sCT
sCT-linear

(a) Uncond. CIFAR

40 80 160 320 600
iterations (k)

30

50

80

140

200

300

4 × 101

6 × 101

1-
NF

E
FI

D

41.03
47.76

33.05

44.94

34.56

IMM
SCD
MeanFlow
sCT
sCT-linear

(b) Cond. ImageNet

40 80 160 320 600
iterations (k)

5
7

10

20

100

200

1-
NF

E
FI

D

29.34

6.09
6.19

SCD
MeanFlow
sCT-linear

(c) CFG. ImageNet

Figure 2: Comparison of FID50k during training among different shortcut models described in
Table 1. (a) is the unconditional (Uncond.) generation on CIFAR-10; (b) is class-conditional (Cond.)
generation; and (c) is classifier-free-guidance (CFG.) training on ImageNet-256×256.

in Euclidean space, with lower convex transport cost (Liu et al., 2022), implying lower curvature of
the velocity-field-governed trajectories. Consequently, the simulated two-step flow map targets are
less likely to deviate from the ideal. Furthermore, we justify theoretically in Appendix C.3 that linear
paths in the setting of shortcut models are optimal under Fisher information metrics, while cosine
paths are optimal in the setting of diffusion and flow matching (Santos & Lin, 2023). Based on this,
our subsequent analysis will mainly focus on the linear path.

- Q.2: Shortcutting flow paths discretely or continuously?
Under the same training setup and within a unified codebase, continuous-time shortcut models clearly
outperform their discrete-time counterparts. As shown in Fig. 2(a), both sCT and MeanFlow achieve
lower FID50k scores on CIFAR-10 compared to CT and SCD. A similar conclusion can be drawn on
ImageNet-256×256 from Fig. 2(b)&2(c). Below, we analyze the inference error of the discussed
methods with linear paths in Prop. 3.1, and characterize the regimes in which each objective is
preferable. We denote sCT and MeanFlow with linear paths by subscripts ctsc, thanks to their same
formulations according to Remark 2.1, and discrete-time models by dtsc as well. In addition, we
write the parameterized vθt in sCT as uθt,0 under the linear path according to Appendix C.1.

Proposition 3.1 (Inference error analysis). Under mild regularity conditions shown in Appendix C.4.1,
the Wasserstein-2 distance of shortcut models with one-step generation is bounded as:

W 2
2 (p0, p

θ
0) ≤ 2

(
BVctsc + 8Var

[d
dt

uθ
t,r(xt)

]
+ 8σ2

vt|0

) ∣∣∣
r=0,t=1

, (10)

W 2
2 (p0, p

θ
0) ≤ 2

(
BVdtsc + 8δ22 Var

[
uθ

s,r(xt)
]
+ 8(1 + ℓ2δ22)δ

2
1 σ

2
dtsc

)∣∣∣
r=0,t=1

, (11)

where BV• = Bias2•-tgt +Bias2•-loss + 2Var
[
uθ(x1, t, r)

]
with • ∈ {ctsc, dtsc}, and Bias2•-tgt and Bias2•-loss

are defined in Prop.C.8 ; δ1 = t− s, δ2 = s− r; ℓ is the local Lipschitz constant of uθ; σ2
vt|0 is the variance

of the conditional velocity, defined by σ2
vt|0

:= Var(vt(xt|x0)); σ2
dtsc = σ2

vt|0 when using CT’s two-step flow

map targets, or σ2
dtsc = Var

[
uθ

t,s(xt)
]

when using SCD’s flow map targets.

From Theorem 2.2, for CT and CTSC, we conclude that if δ22Var
[
uθt,r(xt)

]
and Var

[
d
dtu

θ
t,r(xt)

]
are

of the same order, the right-hand side of Eq. 11 contains an additional term ℓ2δ22δ
2
1σ

2
dtsc compared

with Eq. 10, which is likely to result in higher inference error and instability in training, as the proof
in Appendix C.8 shows the inference error already subsumes the training error bound. Further, when
s → t, and σ2

vt|0
dominates both δ22Var

[
uθt,r(xt)

]
and Var

[
d
dtu

θ
t,r(xt)

]
, the training convergence

and sampling fidelity of CTSC and CT are both closely tied to the variance of the conditional velocity
used for supervision. Therefore, being able to provide a low-variance velocity supervision during
training, such as one obtained from a pretrained neural network, helps to improve shortcut models.

- Q.3: Fixing the terminal time or not?
Since sCT-linear is a special case of MeanFlows where the terminal time r is fixed at 0, the empirical
results on CIFAR-10 in Fig. 2(a) and on ImageNet-256×256 in Fig. 2(b)&2(c) demonstrate that, in
general, random sampling of r is beneficial in capturing the overall shortcut patterns. However, in the
early stage of training (approximately before 20–40k epochs), sCT-linear exhibits faster convergence

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Evaluation of training improvements
under one-step generation with SiT-B/2 as F θ.

Training configuration FID50k

MeanFlow under CFG. (Baseline) 6.09
+A1 Plug-in velocity (pplug-in = 1.0) 6.01
+A2 Plug-in velocity (pplug-in = 0.5) 5.98

+B1 Plug-in velocity (pplug-in = 1.0)
& class-consistent batching 6.08

+B2 Plug-in velocity (pplug-in = 0.5)
& class-consistent batching 5.96

+C Gradual time sampler 5.99
+D sCM training techniques 5.95

ESC (Baseline + B2 + C + D) 5.77

Algorithm 1 Calculation of Plug-in Velocity.
x: training batch (B,D)
t: sampled time
e = randn_like(x)
xt = (1- t) * x + t * e
x_ex, xt_ex = x[:,None,:], xt[None,:,:]
eps = (xt_ex - (1- t) * x_ex) / t

logp_fn = Normal(0, 1).log_prob
logp = sum(logp_fn(eps), dim=2)
weight = softmax(logp, dim=0)

v_cnd = eps - x_ex
v_plugin = matmul(weight.T, v_cnd)

in terms of FID50k for one-step generation. We conjecture that in the early stages, continually
adding supervision of x0, akin to a denoising task, provides a simpler learning task that accelerates
convergence toward favorable local optima. Yet, without intermediate flow path targets xr where
r > 0, the model may remain stuck in these sub-optima during the later training stage.

4 IMPROVEMENTS TO TRAINING

Building on the above analysis, all subsequent techniques and developments will be carried out
under the continuous-time shortcut model with linear paths, so we choose MeanFlow with SiT-B/2
architecture as our baseline implementation with its default hyperparameters shown in Appendix D.2.
Table 2 presents an ablation study that shows the effectiveness of our improvement techniques, where
ESC as explicit&easier shortcut model is the CTSC with all the proposed techniques as follows.

Plug-in velocity instead of conditional one. Since the marginal velocity is intractable, training
relies on the conditional velocity, obtained by sampling x0 from the finite training set {y(i)}Ni=1.
Based on it, we derive v∗

t (xt|{y(i)}Ni=1) as the marginal velocity under the empirical data distribution,
which we refer to as the ideal velocity in the following:

Proposition 4.1 (Marginal velocity of empirical distribution and bias-variance comparison). Assume
the data distribution is the empirical distribution, as p0(y) = 1

N

∑N
i=1 1yi(y), the marginal velocity reads

v∗
t (xt|{y(i)}Ni=1) =

N∑
i

N (xt;αty
(i), σ2

t I)∑N
j N (xt;αty(j), σ2

t I)
(α̇ty

(i) +
σ̇t

σt
(xt − αty

(i))), (12)

where xt = αtx0+σtε. Specifically, under mild assumptions in Prop. C.13 in Appendix C.5.2, substituting vt

in Lctsc with v∗
t significantly decreases Eq. 10’s last term σvt|0 = E∥vt|0 − vt∥2, which reduces the variance

by O(1− 1/N) while increasing the bias by O(1/N).

Replacing the conditional velocity vt|0 in Eq. 10 with the ideal velocity obtained from the full training
set the variance of the velocity term to O(1/N). As a result, since N is usually a large number, ac-
cording to Prop. 2.2, employing the ideal velocity field can therefore provide more stable supervision
during training and lower error in inference. However, its computation requires summing over the en-
tire data set, which is infeasible for large-scale data such as ImageNet (N = 1, 281, 167). To address
this limitation, we adopt the plug-in velocity during training instead, which reads v∗

t (xt|{y(i)}Bi=1).
The above computation is restricted to a mini-batch {y(i)}Bi=1 with pseudocode implementation pro-
vided in Algorithm 1. This can be viewed as a mixture of conditional velocities from the mini-batch
samples, reducing the level of variance σvt|0 in Eq. 10 to O(1/B), at the minor cost of increased
bias. Theoretically, we give further details on the validity of the training objective employing plug-in
velocity in Prop. C.15 in Appendix C.6. In addition, Appendix E.1 shows that introducing the plug-in
velocity stabilizes the training loss during the training process empirically.

Plug-in velocity under guidance training. From the comparison between Fig. 2(b) and Fig. 2(c), it
is evident that classifier-free guidance (CFG) is crucial for high-quality image generation (Geng et al.,
2025a). With CFG, the class-conditional velocity vt(xt|x0, c) leverages instance-level supervision

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

from the label c. In contrast, v∗
t (xt|{(y(i), c(i))}Bi=1), is computed by averaging over randomly

drawn mini-batches, which is likely to dilute or erase the class-specific signal. To this end, we employ
a plug-in probability pplug-in that substitutes the conditional velocity with the plug-in velocity, as a
trade-off between lowering variance during training and retaining class guidance. The other trick is
class-consistent mini-batching: When applying CFG during training, we ensure that each mini-batch
is sampled within the same class. In multi-GPU training, the class labels of mini-batches across
different processes are independent of each other.

Gradual time sampler from sCT to MeanFlow. As discussed in Q.3 from Sec. 3, we design a
time-sampling schedule that gradually evolves with training iterations. During the firstKfix0 iterations,
the sampler selects r = 0 with probability pfix0, and with probability 1− pfix0 follows the MeanFlow
sampler shown in Table 1. The value of pfix0 decays from 1.0 to 0 under a cosine schedule at the
beginning of the training, so that after Kfix0 iterations the sampler fully adopts the MeanFlow’s
strategy, where Kfix0 is usually set to 20k in practice.

Adoption of training techniques. Moreover, since sCT can be regarded as a variant of CTSC,
several training strategies have already been explored in its original work, such as variational adaptive
loss weighting (Karras et al., 2024) and tangent warmup (Lu & Song, 2025). These techniques are
also applicable to CTSC and bring performance improvements in the cases given in Appendix D.3.

5 SCALING-UP EVALUATION

Setting. In this part, we evaluate the proposed ESC as an improved variant of CTSCs to illustrate
its effectiveness at scale. We conduct a scaling-up experiment on ImageNet-256×256 in latent space,
and employ SiT-XL/2 (∼676M param.) as the backbone model. We follow the training setting of
MeanFlow with CFG, where the model is trained from scratch with 240 epochs (∼1.2M iterations). In
addition, for CIFAR-10 (Krizhevsky, 2009), all the shortcut models use the same U-Net (Ronneberger
et al., 2015) architecture from Song et al. (2020) (∼55M param.). The code repository is provided
for reproducibility1. For further details on setting, please refer to Appendix D.3.

Table 3: Evaluation of ESC and other benchmarks under one/few-
step generation on ImageNet-256×256.

Family Method Param. NFE FID50k

G
A

N

BigGAN (Brock et al., 2019) 112M 1 6.95
GigaGAN (Kang et al., 2023) 569M 1 3.45
StyleGAN-XL (Karras et al., 2019) 166M 1 2.30

Sh
or

tc
ut

iCT (Song & Dhariwal, 2023) 675M 1 34.24
SCD (Frans et al., 2025) 675M 1 10.60
IMM (Zhou et al., 2025) 675M 1×2 7.77

MeanFlow (Geng et al., 2025a) 676M 1 3.43
2 2.93

ESC (w/o-class-consist.) 676M 1 2.92
ESC (w/-class-consist.) 676M 1 2.85

600 800 1000 1200
iterations (k)

2.5

3

3.5

4

1-
NF

E
FI

D

2.85
2.92

ESC(w/-class-consist.)-1NFE
ESC(w/o-class-consist.)-1NFE

Figure 3: Convergence of FID50k.

Table 4: Uncond. CIFAR-10.
method NFE FID

iCT 1 2.83
ECT 1 3.60
sCT 1 2.97
IMM 1 3.20
MeanFlow 1 2.92
ESC 1 2.83

Benchmark comparison. In Table 3, we compare our results
with previous methods by benchmarking the FID50k under one-step
generation (1-NFE). In the context of single-step generation, the
proposed techniques bring more improvements with the large-scale
network architecture (SiT-XL/2) than with the basic one (SiT-B/2),
as ESC achieves state-of-the-art performance of an FID50k of 2.85.
This represents an improvement of 16.9% compared to the prior
one-step result of 3.43 obtained by MeanFlow, and even better than
the two-step generative fidelity of MeanFlow (FID50k 2.93). For
visualization of images generated by ESC with different network architectures, please refer to
Appendix D.4. Moreover, Table 4 gives unconditional generation results on CIFAR-10, showing that
our improved models achieve competitive performance with prior approaches. For a full comparison
including other families of methods, please refer to Appendix D.6. Notably, we find that the
performance gains from ESC with SiT-XL/2 over MeanFlow baseline are much more significant than
it with SiT-B/2, which we discuss in Appendix E.2.

1https://anonymous.4open.science/r/ExplicitShortCut-00EE/

9

https://anonymous.4open.science/r/ExplicitShortCut-00EE/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

The time cost of plug-in velocity is minimal. Computing plug-in velocity involves an O(B2)
weighted operation within each mini-batch, but with DDP training, per-device batch size is small
(B = 16 in our experiments). As a result, the extra overhead is negligible because profiling over 1M
iterations shows 554 ms/iter vs. 558 ms/iter for conditional vs. plug-in velocity (≈ 0.7% increase).
Despite a small batch size introducing larger estimation variance and bias relative to the ideal velocity,
compared to the conditional velocity, it stabilizes training by theoretically reducing variance by
O(1− 1/B) at almost no additional computational cost and a minor increase in estimation bias.

Class-consistent mini-batching brings faster convergence. While the final reported results show
comparable performance with and without class-consistent mini-batching, we observe from Fig. 3
that the convergence of FID50k during training is substantially faster with the technique, where
Appendix D.7 gives full details. This suggests that the training technique is advantageous in scenarios
requiring finetuning with limited training iterations. Exploring its broader applications will be a
direction for future work.

6 CONCLUSION

We focus on one-step shortcut models trained from scratch and propose a general design framework
with theoretical justification of its validity. Building on this, we elucidate the design space of shortcut
models through theoretical analysis and empirical evidence, and further propose improvements for
continuous-time shortcut model training. Our improved model achieves state-of-the-art performance
in image synthesis. More broadly, our work lowers the barrier to innovation in one-step diffusion and
enables more systematic exploration of their design, with limitations discussed in Appendix F.

ETHICS STATEMENT

This work investigates one-step diffusion for generative modeling at the methodological level. The
datasets used in this study are publicly available benchmark datasets and do not contain sensitive or
personally identifiable information (e.g., ImageNet, CIFAR-10).

Potential risks include the possibility of misuse, such as generating misleading or harmful content,
or propagating societal biases present in the training data. Our method itself does not explicitly
address these issues, but we highlight that appropriate safeguards should be adopted in downstream
applications, including content filtering, bias auditing, and domain-specific restrictions.

Overall, we believe the contributions of this work pose minimal ethical risks and can positively
impact the community by advancing the efficiency and effectiveness of one-step generative modeling.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All datasets used in this work
are publicly available (e.g., ImageNet, CIFAR-10). The preprocessing steps, model architectures,
training hyperparameters, and evaluation protocols are described in detail in Sections 3 and 5.

To further facilitate reproducibility, we release our source code through https://anonymous.4open.
science/r/ExplicitShortCut-00EE/, and will release trained model checkpoints and experiment
scripts upon publication. This will allow researchers to reproduce all reported results and extend our
approach in future work.

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for flows and diffusions. ArXiv, abs/2303.08797, 2023. URL https://api.
semanticscholar.org/CorpusID:257532329.

Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
with stochastic interpolants: A mathematical framework for consistency models. Transactions on
Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?
id=cqDH0e6ak2.

10

https://anonymous.4open.science/r/ExplicitShortCut-00EE/
https://anonymous.4open.science/r/ExplicitShortCut-00EE/
https://api.semanticscholar.org/CorpusID:257532329
https://api.semanticscholar.org/CorpusID:257532329
https://openreview.net/forum?id=cqDH0e6ak2
https://openreview.net/forum?id=cqDH0e6ak2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis, 2019. URL https://arxiv.org/abs/1809.11096.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer, 2022. URL https://arxiv.org/abs/2202.04200.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis, 2021. URL https://arxiv.org/abs/2012.09841.

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the
empirical measure. Probability theory and related fields, 162(3):707–738, 2015.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=OlzB6LnXcS.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
equilibrium models. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=b6XvK2de99.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling, 2025a. URL https://arxiv.org/abs/2505.13447.

Zhengyang Geng, Ashwini Pokle, Weijian Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. In The Thirteenth International Conference on Learning Representations, 2025b. URL
https://openreview.net/forum?id=xQVxo9dSID.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012. URL
http://jmlr.org/papers/v13/gretton12a.html.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-end diffusion for
high resolution images, 2023. URL https://arxiv.org/abs/2301.11093.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis, 2023. URL https://arxiv.org/abs/2303.
05511.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Rafal Karczewski, Markus Heinonen, Alison Pouplin, Søren Hauberg, and Vikas Garg. Spacetime
geometry of denoising in diffusion models. ArXiv, abs/2505.17517, 2025. URL https://api.
semanticscholar.org/CorpusID:278886447.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks, 2019. URL https://arxiv.org/abs/1812.04948.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022. URL https://arxiv.org/abs/2206.00364.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models, 2024. URL https://arxiv.org/abs/
2312.02696.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

11

https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/2202.04200
https://arxiv.org/abs/2012.09841
https://openreview.net/forum?id=OlzB6LnXcS
https://openreview.net/forum?id=b6XvK2de99
https://arxiv.org/abs/2505.13447
https://openreview.net/forum?id=xQVxo9dSID
http://jmlr.org/papers/v13/gretton12a.html
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2301.11093
https://arxiv.org/abs/2303.05511
https://arxiv.org/abs/2303.05511
https://arxiv.org/abs/2001.08361
https://api.semanticscholar.org/CorpusID:278886447
https://api.semanticscholar.org/CorpusID:278886447
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2312.02696
https://arxiv.org/abs/2312.02696
https://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benoît R. Kloeckner. Empirical measures: regularity is a counter-curse to dimensionality.
ESAIM: Probability and Statistics, 2018. URL https://api.semanticscholar.org/CorpusID:
55397278.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//www.cs.toronto.edu/~kriz/cifar.html.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization, 2024. URL https://arxiv.org/abs/2406.11838.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Qiang Liu. Icml tutorial on the blessing of flow: A clear and systematic tour. In International
Conference on Machine Learning, 2025.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022. URL https://arxiv.org/abs/2209.03003.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=LyJi5ugyJx.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: a fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY,
USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. Machine Intelligence Research,
22(4):730–751, June 2025. ISSN 2731-5398. doi: 10.1007/s11633-025-1562-4. URL http:
//dx.doi.org/10.1007/s11633-025-1562-4.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. ArXiv, abs/2310.04378, 2023.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models, 2024.
URL https://arxiv.org/abs/2305.18455.

Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. 2024.

William S. Peebles and Saining Xie. Scalable diffusion models with transformers. 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4172–4182, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
diffusion models via moment matching, 2024. URL https://arxiv.org/abs/2406.04103.

Javier E. Santos and Yen Ting Lin. Using ornstein-uhlenbeck process to understand denoising
diffusion probabilistic model and its noise schedules, 2023. URL https://arxiv.org/abs/2311.
17673.

12

https://api.semanticscholar.org/CorpusID:55397278
https://api.semanticscholar.org/CorpusID:55397278
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/2406.11838
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.03003
https://openreview.net/forum?id=LyJi5ugyJx
https://openreview.net/forum?id=LyJi5ugyJx
http://dx.doi.org/10.1007/s11633-025-1562-4
http://dx.doi.org/10.1007/s11633-025-1562-4
https://arxiv.org/abs/2305.18455
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2406.04103
https://arxiv.org/abs/2311.17673
https://arxiv.org/abs/2311.17673

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/abs/1503.
03585.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=St1giarCHLP.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. ArXiv,
abs/2310.14189, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
2020. URL https://arxiv.org/abs/1907.05600.

Yang Song, Jascha Narain Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations. ArXiv,
abs/2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, 2023.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction, 2024. URL https://arxiv.org/abs/2404.
02905.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=CD9Snc73AW. Expert Certification.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-gan:
Training gans with diffusion, 2023. URL https://arxiv.org/abs/2206.02262.

Ge Wu, Shen Zhang, Ruijing Shi, Shanghua Gao, Zhenyuan Chen, Lei Wang, Zhaowei Chen,
Hongcheng Gao, Yao Tang, Jian Yang, Ming-Ming Cheng, and Xiang Li. Representation entan-
glement for generation:training diffusion transformers is much easier than you think, 2025. URL
https://arxiv.org/abs/2507.01467.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T. Freeman. Improved distribution matching distillation for fast image synthesis. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a. URL
https://openreview.net/forum?id=tQukGCDaNT.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T. Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation, 2024b. URL
https://arxiv.org/abs/2311.18828.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T. Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation, 2024c. URL
https://arxiv.org/abs/2311.18828.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. In International Conference on Learning Representations, 2025.

Leo Zhang. The cosine schedule is fisher-rao-optimal for masked discrete diffusion models. arXiv
preprint arXiv:2508.04884, 2025.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. DPM-solver-v3: Improved diffusion ODE
solver with empirical model statistics. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=9fWKExmKa0.

13

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2404.02905
https://openreview.net/forum?id=CD9Snc73AW
https://arxiv.org/abs/2206.02262
https://arxiv.org/abs/2507.01467
https://openreview.net/forum?id=tQukGCDaNT
https://arxiv.org/abs/2311.18828
https://arxiv.org/abs/2311.18828
https://openreview.net/forum?id=9fWKExmKa0

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Kaiwen Zheng, Huayu Chen, Haotian Ye, Haoxiang Wang, Qinsheng Zhang, Kai Jiang, Hang Su,
Stefano Ermon, Jun Zhu, and Ming-Yu Liu. Diffusionnft: Online diffusion reinforcement with
forward process, 2025. URL https://arxiv.org/abs/2509.16117.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/forum?
id=pwNSUo7yUb.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation,
2024. URL https://arxiv.org/abs/2404.04057.

14

https://arxiv.org/abs/2509.16117
https://openreview.net/forum?id=pwNSUo7yUb
https://openreview.net/forum?id=pwNSUo7yUb
https://arxiv.org/abs/2404.04057

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Background of Diffusion Models 16

A.1 Stochastic Interpolants and Flow Map . 16
A.2 Flow Map Solver . 17
A.3 Derived Flow Path from preconditioner of EDM 18

B Derivation of Flow Map Construction and Loss 19
B.1 Consistency Training . 19
B.2 Shortcut Diffusion . 20
B.3 Inductive Moment Matching . 21
B.4 MeanFlow . 22
B.5 s-Consistency Training . 22

C Proof of Theorems and Propositions 23
C.1 Proof of Equivariance of MeanFlow and sCT-linear (Remark. 2.1) 23
C.2 Proof of Error Bound (Theorem 2.2) . 23
C.3 Optimal Path of Shortcut Model (Q.1. in Sec. 3) 28
C.4 Proof of Inference Error Analysis (Prop. 3.1) 30
C.5 Proof of Ideal Velocity and its Bias-Variance Analysis (Prop. 4.1) 35
C.6 The Convergence of CTSC Loss Employing Plug-in Velocity (Sec. 4) 37

D Experimental Details 39
D.1 Details for Empirical Analysis of Fig. 2 . 39
D.2 Details for Empirical Analysis of Table 2 . 41
D.3 Details for Scaling-up Evaluation in Sec. 5 . 41
D.4 Visualization Examples for ESC . 41
D.5 Algorithm for Plug-in Velocity Calculation. 42
D.6 Full Comparison of ESC vs. other SOTA benchmarks 43
D.7 Details of ESC-XL/2 convergence with and without class-consistent mini-batching 44
D.8 More training iterations enable high-fidelity few-step generation 44

E Further Analysis 45
E.1 Plug-in Velocity Stabilizes the Training . 45
E.2 Large Models Gain More Performance from Low Variance Training 45

F Limitations and Future Works 46

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Images generated by ESC with SiT-B/2 trained on ImageNet-256×256, with FID50k 5.77.

Figure 5: Images generated by ESC with SiT-XL/2 trained on ImageNet-256×256, with FID50k
2.85.

A BACKGROUND OF DIFFUSION MODELS

A.1 STOCHASTIC INTERPOLANTS AND FLOW MAP

Here we give a more formal definition of stochastic interplants and flow map:
Definition A.1 (Stochastic Interpolants (Albergo et al., 2023)). The stochastic interpolant It between
probability densities q and p1 = N (0, I) is the stochastic process given by

xt = αtx0 + σtz, (13)

where αt, σt ∈ C1([0, 1]) satisfy α0 = σ1 = 1 and α1 = σ0 = 0. We denote the distribution of xt
as pt.
Proposition A.2 (Probability Flow). For all t ∈ [0, 1], the probability density of xt is the same as
the probability density of the solution to

ẋt = vt(xt), x0 ∼ p0(x), (14)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where v : [0, 1]× Rd → Rd is the time-dependent velocity field (or drift) given by

vt(x) = Ex0∼p0,z∼N (0,I)[ẋt | xt = x]. (15)

More specifically,
vt(x) = α̇t E(x0 | xt = x) + σ̇t E(z | xt = x) (16)

Definition A.3 (Flow Map (Boffi et al., 2025; Liu, 2025)). The flow map Xs,t : Rd → Rd for Eq. 14
is the unique map such that

Xs,t(xs) = xt, for all (s, t) ∈ [0, 1]2, (17)

where (xt)t∈[0,1] is any solution to the ODE Eq. 14.

Proposition A.4 (Consistency Property (Boffi et al., 2025)). The flow map Xs,t(x) satisfies the
Consistency Property

Xs,r(Xt,s(x)) = Xt,r(x) (18)

for all (t, s, r,x) ∈ [0, 1]3 × Rd. In particular, Xs,t(Xt,s(x)) = x for all (s, t,x) ∈ [0, 1]2 × Rd.

A.2 FLOW MAP SOLVER

A.2.1 EULER SOLVER

With a probability velocity field vt(x) which can be derived from a pre-defined probability path or
approximated by vθt (x) with a neural network, an Euler Solver can predict the Flow Map from t to r
with

xr = Xt,r(xt) = xt +

∫ r

t

vτ (x)dτ. (19)

Besides, if the integral of vτ (x) is given as ut,r = 1
r−t

∫ r
t
vτdτ or parameterized with uθt,r, the flow

map can be easily obtained with

xr = Xt,r(xt) = xt + (r − t)u(t, r). (20)

A.2.2 DDIM SOLVER

Let the forward process be defined by

xr = α(r)x0 + σ(r)ε, ε ∼ N (0, I), (21)

so that at any t we have

xt = α(t)x0 + σ(t)ε, vt = α̇(t)x0 + σ̇(t)ε. (22)

Conditional formulation. Conditioned on xt, the posterior distribution of (x0, ε) is Gaussian, and
hence both xr and vt can be written as linear functions of x0, ε. Taking conditional expectations
yields

E
[
xt
vt

]
=

[
αt σt
α̇t σ̇t

]
E
[
x0

ε

]
, (23)

and by inversion, we obtain

E
[
x0

ε

]
=

1

αtσ̇t − σtα̇t

[
σ̇t −σt
−α̇t αt

]
E
[
xt
vt

]
. (24)

DDIM update. Substituting back into the expression for xr gives

E[xr | xt] = αr E[x0 | xt] + σr E[ε | xt] (25)

= ᾱ(t, r)xt + β̄(t, r)vt, (26)

where the coefficients are

ᾱ(t, r) =
αrσ̇t − σrα̇t
αtσ̇t − σtα̇t

, β̄(t, r) =
−αrσt + σrαt
αtσ̇t − σtα̇t

. (27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Cosine Path. In the cosine path, the schedule of αt = α(t) and σt = σ(t) reads

α(t) = cos
(π
2
t
)
, σ(t) = sin

(π
2
t
)

α̇(t) = −π
2
sin
(π
2
t
)
, σ̇(t) =

π

2
cos
(π
2
t
)

Then:

ᾱ(t, r) = cos
(π
2
(r − t)

)
, β̄(t, r) =

2

π
sin
(π
2
(r − t)

)
(28)

Linear Schedule. In the linear path, the schedule of αt = α(t) and σt = σ(t) reads

α(t) = 1− t, σ(t) = t⇒ α̇(t) = −1, σ̇(t) = 1

Then:

ᾱ(t, r) =
(1− r)(1)− r(−1)

(1− t)(1)− t(−1)
= 1

β̄(t, r) =
−(1− r)t+ r(1− t)

1
= r − t

Therefore,
ᾱ(t, r) = 1, β̄(t, r) = r − t

A.3 DERIVED FLOW PATH FROM PRECONDITIONER OF EDM

The original establishment of EDM is based on the score-based diffusion model, while in this part,
we aim to demonstrate that although in EDM, αt and σt do not satisfy

α0 = 1, α1 = 0;σ0 = 0, σ1 = 1,

the preconditioner of EDM is equivalent to the cosine path in our paper, or namely TrigFlow in sCT,
by using the change-of-variable. This part is mostly based on Appendix B of TrigFlow proposed by
Lu & Song (2025), while we use a more unified view from stochastic interpolants (Albergo et al.,
2023) and SiT (Ma et al., 2024).

A.3.1 SCORE-BASED VIEW OF EDM.

EDM forward diffusion. We draw x0 ∼ pdata and ε ∼ N (0, I) and define
xt = αt x0 + σt ε, (29)

where αt > 0 and σt > 0 are schedule functions determined by a noise scale σ(t):

αt =
σdata√

σ2
data + σ(t)2

, σt =
σ(t)√

σ2
data + σ(t)2

. (30)

Here σdata denotes the data standard deviation, and the EDM noise schedule is

σ(t) =
(
σ1/ρ
max + t

(
σ
1/ρ
min − σ1/ρ

max

))ρ
, t ∈ [0, 1], (31)

with typical choices σmin ≈ 2× 10−3, σmax ≈ 80.0, and ρ = 7.

Score parameterization. We may interpret EDM as a score-based model. Specifically, define the
score

st(xt) := ∇xt log pt(xt), (32)
and approximate it by a neural network

φθ(xt, t) ≈ st(xt). (33)
Since the Gaussian corruption satisfies ε = −σ(t)st(xt), the EDM predictor is written as

Dθ(xt, t) = cskip(t)xt + cout(t)φ
θ
(
cin(t)xt, cnoise(t)

)
, (34)

with scaling coefficients ensuring unit-normalized training targets:

cin(t) =
1

σdata
, cskip(t) = αt, cout(t) = −σdata σt. (35)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3.2 FROM EDM PRECONDITIONER TO COSINE PATH.

To further simplify, introduce a normalized representation

γt =
αt√

α2
t + σ2

t

, βt =
σt√

α2
t + σ2

t

, x̂t =
xt√

α2
t + σ2

t

= γtx0 + βtε, (36)

so that γ2t + β2
t = 1. In this normalized form, the coefficients become

cin(t) =
1

σdata
, cskip(t) = γt, cout(t) = −σdata βt, (37)

and the denoiser reduces to

Dθ(xt, t) = γt x̂t − βt σdata φ
θ
(
x̂t/σdata, cnoise(t)

)
. (38)

Cosine reparameterization. Since γ2t +β
2
t = 1, we can introduce a cosine time variable t′ ∈ [0, 1]

such that

γt = cos
(
π
2 t

′
)
, βt = sin

(
π
2 t

′
)
, t′ = 2

π arctan
(
βt
γt

)
= 2

π arctan
(
σ(t)
σdata

)
. (39)

On this cosine path, we may equivalently define

α(t′) = cos
(
π
2 t

′
)
, σ(t′) = sin

(
π
2 t

′
)
, (40)

which again satisfies α(t′)2 + σ(t′)2 = 1. Moreover, since in EDM one typically samples t ∼
logN (Pmean, P

2
std), under the change of variables t′ = 2

π arctan(t), the resulting sampling matches
the time parameterization used in CT and sCT (Table 1).

A.3.3 FROM SCORE PARAMETERIZATION TO VELOCITY

In general, we can denote t′ ∈ [0, 1] as t, with Eq. 40, which leads the denoising predictor of Eq. 38
to

Dθ(xt, t) = cos(
π

2
t)xt − sin(

π

2
t)σdata φ

θ
(
xt/σdata, c

′
noise(t)

)
, (41)

Since Dθ(xt, t) aims to approximate

F θ(xt, t) =
π

2
σdata φ

θ
(
xt/σdata, c

′
noise(t)

)
, vθt (xt) = F θ(xt, t).

the coefficient cos(π2 t) and 2
π sin(−π

2 t) coincides to ᾱ(t, 0) and β̄(t, 0) in Eq. 28, the parameteriza-
tion of vθt (xt) = F θ(xt, t) is equivalent to denoise the path of preconditioner in EDM schedule. The
same evidence is also provided with Eq. 4 in Lu & Song (2025).

B DERIVATION OF FLOW MAP CONSTRUCTION AND LOSS

B.1 CONSISTENCY TRAINING

In CTs and CMs (Song et al., 2023), the original paper uses the EDM preconditioner as the components
of the basic diffusion model. By using a neural network φθ to approximate the score function st(x),
its target is to map any noised samples in t to 0 which in the flow map notation, reads

X̂θ
t,0(xt) = fθ(xt) = cskip(t)xt + coutσdataφ

θ(xt),

such that

lcm = d(fθ(xt), sg(f
θ(x̂s))), (42)

where
t = [σ1/ρ

max +
τ

K
(σ

1/ρ
min − σ1/ρ

max)]
ρ

s = [σ1/ρ
max +

τ + 1

K
(σ

1/ρ
min − σ1/ρ

max)]
ρ

τ ∼ U [0, 1, . . . ,K],

(43)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and x̂s is on the same conditional flow path that generates xt. By adopting the equivalence of EDM
preconditioner to Cosine path, as shown in Appendix A.3, we can write F θ as the approximator of vt
under the change-of-variable, which reads

x0 ∼ p0, ε ∼ N (0, 1)

xt = cos(
π

2
t)x0 + sin(

π

2
t)ε

vt|0 = −π
2
sin(

π

2
t)x0 +

π

2
cos(

π

2
t)ε

x̂s = cos(
π

2
s)x0 + sin(

π

2
s)ε,

(44)

Then, following the derivation of Eq. 28, by substituting the coefficients ᾱt,s and β̄t,s, we can
equivalently express

X̂t,s(xt) = x̂s = DDIM(xt,vt|0, t, s)

X̂s,r(x̂s) = x̂r = DDIM(x̂s, F
θ(x̂s), s, r)

Xθ
t,r(xt) = xθr = DDIM(xt, F

θ(xt), t, r)

(45)

Finally, by replacing d in Eq. 42, it reads

lct(xt, r, s, t; θ) = LPIPS(fθ(xt), sg(f
θ(x̂s))),

= LPIPS(Xθ
t,r(xt), sg(X̂s,r(x̂s)))

= LPIPS
(
DDIM(xt,v

θ
t (xt), t, r), sg

(
DDIM(x̂s,v

θ
s(x̂s), s, r)

))
,

(46)

where x̂s = DDIM(xt,vt|0, t, s), which coincides the description of CTs in Sec. 2.3. Further, under
the change-of-variable, the time sampler Eq. 43 will be of the form as described by Table 1.

B.2 SHORTCUT DIFFUSION

In the original paper of SCD (Frans et al., 2025), it parameterizes the velocity with the neural network
as

F θ(xt, t, r) = vθ(xt, t, r),

while we claim that the vθ(xt, t, r) is not the instantaneous one, because it requires the entries of
both t as the start point, and r as the end point. Instead, we regard it as the average velocity, leading
to our parameterization of

F θ(xt, t, r) = uθt,r(xt).

In this way, xt is first sampled from a linear path, as
x0 ∼ p0, ε ∼ N (0, 1)

xt = (1− t)x0 + tε

vt|0 = −x0 + ε,

(47)

Then, the flow map is constructed via

X̂t,s(xt) = x̂s = xt − huθt,s(xt)

X̂s,r(xs) = x̂r = xs − huθs,r(x̂s)

Xθ
t,r(xt) = x̂θt = xt − 2huθt,r(xt)

(48)

Finally, according to the consistency property of flow map shown in Prop. A.4, and by setting w = h2

the loss term for the regularization of velocity can be rewritten as

lscd(xt, r, s, t; θ) =
1

4h2
·
∥∥xt − 2huθt,r(xt)− sg

(
xt − huθt,s(xt)− huθs,r(xt − huθt,s(xt)

)∥∥2
2

=
1

4h2
·
∥∥xt − 2huθt,r(xt)− sg

(
xt − huθt,s(xt)− huθs,r(x̂s)

)∥∥2
2

=

∥∥∥∥uθt,r(xt)− 1

2
sg
(
uθt,s(xt) + uθs,r(x̂s)

)∥∥∥∥2
2

,

(49)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where r, s, t are equi-spaced, such that t − s = s − r = h, which coincides Eq. 7 in Sec. 2.3.
Specifically, in the time sampler, it defines the total step K with T = ⌊log2K⌋. For each sample, it
draws 2h ∈ {2−0, 2−1, . . . , 2−(T−1)} and e ∼ U(0, 1), then computes

t = 1
K

⌊
2hK + e · (K − 2hK + 1)

⌋
, r = t− 2h, s = t− h, (50)

as the time sampler for {r, s, t}. We denote the time sampler as (t, h) ∼ Uniform log2(t, h), and
s = t− h, r = t− 2h.

B.3 INDUCTIVE MOMENT MATCHING

Given a mini-batch of size B, IMM first draws {(x(i)
0 , ε(i))}Bi=1, and partition them into groups of

size M . Within each group, a triplet (r, s, t) is sampled, where (r, t) are drawn uniformly from [0, 1]
with s separated by a fixed difference, as

t ∼ U [0, 1]

ns =
1

1− t
− 1

2γ

s =
ns

ns + 1

r ∼ U [0, t],

(51)

where γ is usually set as 12 according to its code implementation. Each group thus defines M
correlated particle samples that share the same flow interpolation times. For each group of M
particles, IMM constructs an M ×M kernel matrix based on a positive definite kernel function as
metrics d(·, ·) (e.g., RBF). The objective is

Limm(θ) = Ext,x′
t,xr,x

′
r,r,s,t

[
w(r, t)

(
ker(zt,r, z

′
t,r)+ker(zs,r, z

′
s,r)−ker(zt,r, z

′
s,r)−ker(z′

t,r, zs,r)
)]
,

(52)
where

zt,r = DDIM(xt,v
θ
t (xt), t, r),

z′
t,r = sg(DDIM(xt,v

θ
t (xt), t, r)),

and w(r, t) is a prior weighting. Intuitively, samples are repelled by intra-group pairs (e.g. zt,r vs.
z′
t,r) while attracted towards inter-group matches (zt,r vs. z′

s,r). This ensures both intra-sample
diversity and inter-sample alignment.

In practice, a batch of size B is divided into B/M groups, and the IMM loss is computed as an
average over these groups. For kernels, RBF and negative pseudo-Huber kernels are common choices
for ker(·, ·), which guarantee moment matching up to all orders.

Further, we bridge the IMM loss with the common flow map learning objective in the following. In
Eq. 52, it gives the group kernel function, according to Appendix. C.3 in Zhou et al. (2025), we can
write the loss here as

Limm(θ)

=Ext,x′
t,xr,x

′
r,r,s,t

[
w(r, t)

(
ker(zt,r, z

′
t,r) + ker(zs,r, z

′
s,r)− ker(zt,r, z

′
s,r)− ker(z′

t,r, zs,r)
)]
,

=Er,s,t
[
w(r, t)(Ext,x′

t,xr,x
′
r

[
⟨ker(zt,r, ·), ker(z′

t,r, ·)⟩+ ⟨ker(zs,r, ·), ker(z′
s,r, ·)⟩

− ⟨ker(zt,r, ·), ker(z′
s,r, ·)⟩ − ⟨ker(z′

t,r, ·), ker(zs,r, ·)⟩
]
)
]

=Er,s,t

[
w(r, t)

〈
Ext

[
ker(Xθ

t,r(xt), ·)− ker(sg(Xθ
s,r(x̂s)), ·)

]
,

Ex′
t

[
ker(Xθ

t,r(x
′
t), ·)− ker(sg(Xθ

s,r(x̂
′
s)), ·)

]〉]

=Er,s,t

[
w(r, t)

∥∥∥Ext

[
ker(Xθ

t,r(xt), ·)− ker(sg(Xθ
s,r(x̂s)), ·)

]∥∥∥2
H

]
(53)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where x̂s = DDIM(xt,vt|0, t, s) is estimated with conditional velocity, and
∥∥∥Ex

[
ker(Xθ

t,r(xt), ·)−

ker(sg(Xθ
s,r(x̂s)), ·)

]∥∥∥2
H

is the Maximum Mean Discrepancy commonly defined on Reproducing
Kernel Hilbert Space (RKHS) H with a positive definite kernel in IMM. Then, according to Jensen’s
inequality,

Er,s,t

[
w(r, t)

∥∥∥Ext

[
ker(Xθ

t,r(xt), ·)− ker(sg(Xθ
s,r(x̂s)), ·)

]∥∥∥2
H

]

≤Er,s,t,xt

[
w(r, t)

∥∥ker(Xθ
t,r(xt), ·)− ker(sg(Xθ

s,r(x̂s)), ·)
∥∥2
H

] (54)

In this way, we define d(x,y) as RKHS discrepancy
∥∥ker(x, ·)− ker(y, ·)

∥∥2
H, it reads

Limm(θ) ≤ Er,s,t∼p(τ),xt∼pt
[
w(r, t) · d(Xθ

t,r(xt), sg(X̂s,r ◦ X̂t,s(xt)))
]

(55)

Therefore, minimizing Eq. 5 is equivalent to upper-bounding the IMM loss.

B.4 MEANFLOW

As MeanFlow takes the Linear flow path, we can easily obtain

DDIM(xt,vt, t, s) = xt + (s− t)vt, (56)

which means the DDIM solver and Euler solver are the same. With the flow map construction, we
can write the corresponding terms into ∥ · ∥2 of d(·, ·) as follows:(

xt + (r − t)uθt,r(xt)
)
−
(
xt + (s− t)vt + (r − s)uθs,r (xs)

)
=(r − t)uθt,r(xt)− (s− t)vt − (r − s)uθs,r (xs) .

(57)

By substituting s = t− dt and normalized by dt, we get

((r − t)uθt,r(xt) + dt · vt − (r − t+ dt)uθt−dt,r (xt−dt))/dt

=dt ·

(
vt +

d
[
(r − t)uθt,r(xt)

]
dt

)
/dt

=vt − uθt,r(xt)− (t− r)
d

dt
uθt,r(xt).

(58)

However, the marginal velocity vt is inaccessible in training, so it can be replaced by the conditional
velocity vt|0. From Eq. 6 in Geng et al. (2025a), by adding the adaptive loss term w, this loss
coincides with the training objective of MeanFlow in Eq. 8, as

l(xt, r, t− dt, t; θ) = w ·

∥∥∥∥∥uθt,r(xt)− sg

(
vt|0 + (r − t)

duθt,r(xt)

dt

)∥∥∥∥∥
2

(59)

Further, MeanFlow adopts an adaptively weighted squared L2 loss. Given the regression error

∆ = uθ − utgt, where utgt = sg

(
vt|0 + (r − t)

duθt,r(xt)

dt

)
, the squared L2 loss is ∥∆∥22. To stabilize

training, MeanFlow reweights ∥∆∥22 with

w =
1

(∥∆∥22 + c)p
, (60)

where c > 0 avoids division by zero and p controls the weighting (p = 0.5 recovers a Pseudo-Huber
style loss). The final loss is defined as sg(w) · L, where sg(·) denotes the stop-gradient operator.

B.5 S-CONSISTENCY TRAINING

We here simplify the derivation with σdata = 1. According to the Eq. 46, we can write the correspond-
ing terms with squared l2-distance with s = t − ∆t and l(xt, r, s, t; θ) normalized by ∆t, as the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

following:

w(t) lim
s=t−∆t
∆t→0

1

∆t
∥DDIM(xt,v

θ
t , t, r)− sg(DDIM

(
DDIM(xt,vt, t, s),v

θ
s , s, r

)
)∥2

=w(t) lim
s=t−∆t
∆t→0

1

∆t
∥DDIM(xt,v

θ
t , t, r)− sg(DDIM(x̂s,v

θ
s , s, r))∥2

=w(t) lim
s=t−∆t
∆t→0

(
DDIM

(
xt,v

θ
t , t, r

)
− sg(DDIM(x̂s,v

θ
s , s, r))

)T ·

DDIM
(
xt,v

θ
t , t, r

)
− sg(DDIM(x̂s,v

θ
s , s, r))

∆t

≈w(t)(DDIM
(
xt,v

θ
t , t, r

)
− sg(DDIM(x̂s,v

θ
s , s, r)))

Tsg

(
dDDIM

(
xt,v

θ
t , t, r

)
dt

)
(61)

By fixing r = 0, from Eq. 28, it can be obtain that the gradient of Eq. 61 w.r.t. θ is

w(t)∇θ

[
(DDIM

(
xt,v

θ
t , t, r

)
− sg(DDIM(x̂s,v

θ
s , s, r)))

Tsg

(
dDDIM

(
xt,v

θ
t , t, r

)
dt

)]

=w(t)∇θ

[
DDIM

(
xt,v

θ
t , t, r

)T
sg

(
dDDIM

(
xt,v

θ
t , t, r

)
dt

)]

=w(t)∇θ

[(
cos(

π

2
t)xt − sin(

π

2
t)vθt

)T
sg

(
dDDIM

(
xt,v

θ
t , t, r

)
dt

)]

=∇θ

(
vθt
)T

sg

(
− sin(

π

2
t)w(t)

dDDIM
(
xt,v

θ
t , t, r

)
dt

)

=∇θ∥vθt − sg

(
vθt + w′(t)

dDDIM
(
xt,v

θ
t , t, r

)
dt

)
∥2

(62)
where w(t) = 1

tan(π2 t)
, and w′(t) = − sin(π2 t)w(t) = − cos (π2 t), we prove that this flow map

construction corresponds to the original loss with the specific time sampler, and the derived loss is in
the same form as Eq. 9 where we rewrite w′ by w.

C PROOF OF THEOREMS AND PROPOSITIONS

C.1 PROOF OF EQUIVARIANCE OF MEANFLOW AND SCT-LINEAR (REMARK. 2.1)

Sketch of proof. First note that under linear paths, X̂θ
t,0(xt) = DDIM(xt,v

θ
t (xt), t, 0) = xt −

tvθt (xt). As for the training objective, with w(t) = 1 and linear path, Eq. 9 can be easily written as
l(xt, r, t− dt, t; θ)

∣∣∣
r=0

= ∥vθt (xt)− sg(vt + (r− t) ddtv
θ
t (xt))∥22

∣∣∣
r=0

. Since in sCT, r is fixed to 0,

parameterization of the neural network can be invariant to r, leading to vθt (xt) = F θ(xt, t, 0). Thus,
in sampling, by replacing ut,0 and vt with F θ in Eq. 2 and 3, respectively, the sampling processes
are the same when following linear paths.

C.2 PROOF OF ERROR BOUND (THEOREM 2.2)

In this section, we aim to prove the error bound of DTSC&CTSC. Specifically, the theorem is stated
as follows.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Theorem C.1 (Error bound of DTSC&CTSC). Assume the marginal velocity of the flow path
satisfies the one-sided Lipschitz condition, where

∃Ct ∈ L1[0, 1] :
(
vt(x)−vt(y)

)
·(x−y) ≥ −Ct∥x−y∥2, for all (t,x,y) ∈ [0, 1]×Rd×Rd.

Assume Xθ
t,s are twice continuously differentiable with bounded second derivatives, the weighting

function w(r, s, t) is non-negative and bounded. For DTSC, also assume p(r = 0) > 0, 1st-step
satisfies X̂t,t(xt) = xt, and ∃t1 ≤ · · · ≤ tN s.t p(0, tn, tn+1) > 0, w(0, tn, tn+1) > 0.
Under d(x,y) = ∥x − y∥22, given x1 ∼ p1, let p0 the density of x0, and pθ0 the density of
xθ0 = Xθ

1,0(x1) that is estimated by neural network with parameter θ, then

W 2
2 (p0, p

θ
0) ≤ C1

1Ldtsc(θ) + C1
2 (t− s),

W 2
2 (p0, p

θ
0) ≤ C2

1Lctsc(θ),

where we write the training objective in Eq. 5 as L•(θ) = Er,s,t∼p(τ),xt∼pt [l•(xt, r, s, t; θ)], with
• ∈ {ctsc, dtsc}, and W2(·, ·) is the Wasserstein-2 distance.

We note that MeanFlow loss and sCT loss are all Lctsc(θ), and CT loss and SCD loss are all Ldtsc(θ).
IMM’s loss is calculated across different conditional paths, as finally bounded by the Ldtsc(θ) as
shown in Appendix B.3. The mentioned previous methods all satisfy the assumptions about w(r, s, t),
p(r, s, t), and X̂t,t(xt) = xt. As for the assumption of d(x,y) = ∥x − y∥22, it holds for all the
mentioned methods except CT, which takes LPIPS as the metric function. The convergence of Lct
has already been proved by Song et al. (2023).

We prove the theorem in three steps: (i) establish the error bound for DTSC; (ii) derive the start point
differential CTSC bound; and (iii) further derive the end point differential CTSC bound.

C.2.1 ERROR BOUND OF DTSC

Lemma C.2. Assume d and Xθ
t,s are both twice continuously differentiable with bounded second

derivatives, the weighting function w(r, s, t) is non-negative and bounded, and 1st-step satisfies
X̂t,t(xt) = xt. We define a loss L1 as follows:

L1(θ) := E
[
w(r, s, t) d

(
Xθ
t,r(xt), sg(X

θ
s,r(xs))

)]
. (63)

Then,

Ldtsc(θ) = L1(θ) +O(t− s),

where Ldtsc is the discrete-time shortcut models’ loss.

Proof. As

xt = xs + (t− s)vs +O(t− s),

and here we define the θ− as the parameters in the model which stop-grad operates, for notational
simplicity. By using Taylor expansion, we can get that

L1(θ) = E
[
w(r, s, t) d

(
Xθ
t,r(xt), X

θ−

s,r (xs)
)]

= E
[
w(r, s, t) d

(
Xθ
s,r(xs) + ∂sX

θ
s,r(xs)(t− s) + ∂xX

θ
s,r(xs)(t− s)vs + o(t− s)

, Xθ−

s,r (xs)
)]

= E
[
w(r, s, t) d

(
Xθ
s,r(xs) + ∂sX

θ
s,r(xs)(t− s) +O(t− s), Xθ−

s,r (xs)
)]

= E
[
w(r, s, t)

(
d
(
Xθ
s,r(xs), X

θ−

s,r (xs)
)
+ ∂1d

(
Xθ
s,r(xs), X

θ−

s,r (xs)
)
∂sX

θ−

s,r (xs)(t− s)
)]

+O(t− s).

As for X̂t,s(xt), there are three ways to calculate it as stated in Sec. 2. Ways in Eq. 1 and Eq. 3 are
numerical solvers, so we have X̂t,s(xs) = xs +O(t− s). Eq. 2 also satisfies this equation since we

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

have the assumption that X̂t,t(xt) = xt and Xt,s is twice continuously differentiable with bounded
second derivative.

With a similar derivation, we also have

Ldtsc(θ) = E
[
w(r, s, t) d

(
Xθ−

s,r (X̂t,s(xt)), X
θ
t,r(xt)

)]
= E

[
w(r, s, t) d

(
Xθ−

s,r (xs), X
θ
s,r(xs) + ∂sX

θ
s,r(xs)(t− s) +O(t− s)

)]
= E

[
w(r, s, t)

(
d
(
Xθ−

s,r (xs), X
θ
s,r(xs)

)
+ ∂1d

(
Xθ−

s,r (xs), X
θ
s,r(xs)

)
∂sX

θ−

s,r (xs)(t− s)
)]

+O(t− s).

By subtracting the two equations, we obtain

Ldtsc(θ) = L1(θ) +O(t− s).

Theorem C.3. Assume Xθ
t,s is twice continuously differentiable with bounded second derivatives,

the weighting function w(r, s, t) is non-negative and bounded. Also, assume p(r = 0) > 0, 1st-step
satisfies X̂t,t(xt) = xt, and ∃t1 ≤ · · · ≤ tN s.t p(0, tn, tn+1) > 0, w(0, tn, tn+1) > 0. Under
d(x,y) = ∥x− y∥22,

W 2
2 (p1, p

θ
1) ≤ C1Ldtsc(θ) + C2(t− s), (64)

where C1 =
∑N−1
n=1

1
p(0,tn,tn+1)w(0,tn,tn+1)

, and W2(·, ·) is the Wasserstein-2 distance.

Proof. Since we have proved that the difference between Ldtsc and L1 is O(s− t), we only need to
prove

W 2
2 (p1, p

θ
1) ≤ CL1(θ).

Because for r = 0, s0, t0 s.t p(0, s0, t0) > 0, w(0, s0, t0) > 0,

L1(θ) = E
[
w(r, s, t)d

(
Xθ−

s,r (xs), X
θ
t,r(xt)

)]
≥ p(0, s0, t0)w(0, s0, t0)d

(
Xθ−

s0,0(xs0), X
θ
t0,0(xt0)

)
,

we have

E
[
d
(
Xθ−

s0,0(xs0), X
θ
t0,0(xt0)

)]
≤ 1

p(0, s0, t0)w(0, s0, t0)
L1(θ). (65)

We define

et,0 := Xt,0(xt)−Xθ
t,0(xt).

Then,

etn,0 = Xtn,0(xtn)−Xθ
tn,0(xtn)

= Xtn+1,0(xtn+1
)−Xθ

tn+1,0(xtn+1
) +Xθ

tn+1,0(xtn+1
)−Xθ

tn,0(xtn)

= etn+1,0 +
(
Xθ
tn+1,0(xtn+1

)−Xθ
tn,0(xtn)

)

Consequently,

e1,0 = e0,0 +

N−1∑
n=1

(
Xθ
tn+1,0(xtn+1

)−Xθ
tn,0(xtn)

)
,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where e0,0 = 0. Using Eq. 65, we can get

W 2
2 (p0, p

θ
0) ≤ E∥en,0∥22

≤
N−1∑
n=1

E∥Xθ
tn+1,0(xtn+1

)−Xθ
tn,0(xtn)∥

2
2

=

N−1∑
n=1

E
[
d
(
Xθ
tn+1,0(xtn+1

), Xθ
tn,0(xtn)

)]
≤
N−1∑
n=1

L1(θ)

p(0, tn, tn+1)w(0, tn, tn+1)

=

(
N−1∑
n=1

1

p(0, tn, tn+1)w(0, tn, tn+1)

)
L1(θ).

With Eq. 63, we finally have the Theorem

C.2.2 ERROR BOUND OF START POINT DIFFERENTIAL CTSC

Next, we prove the error bound of the start point differential CTSC. The derivation is adopted from
Boffi et al. (2025).
Theorem C.4. When s→ t, the CTSC loss can be written as

Lctsc-s-to-t = E∥∂tXθ
t,r(xt) + vt∇Xθ

t,r(xt)∥22
Under d(x,y) = ∥x− y∥22, then

W 2
2 (p0, p

θ
0) ≤ C3Lctsc-s-to-t(θ),

where C3 = e, and W2(·, ·) is the Wasserstein-2 distance.

Proof. Firstly, from the chain rule,
d

dt
Xθ
t,r(xt) = ∂tX

θ
t,r(xt) + vt · ∇Xθ

t,r(xt),

we can simply use uθt,r as the model output, and write the term into the expectation of Lctsc-s-to-t as

∥∂tXθ
t,r(xt) + vt · ∇Xθ

t,r(xt)∥22

=∥ d
dt
Xθ
t,r(xt)∥22

=∥vt +
d

dt
(r − t)uθt,r(xt)∥22

=∥ut,r(xt)− vt − (r − t)
dut,r(xt)

dt
∥22

which coincides to the MeanFlow loss lmf in Eq. 8. While in Remark. 2.1, sCT loss is equivalent to
MeanFlow loss in linear paths, the CTSC loss when s→ r is also of the same form as claimed. The
cosine path version of sCT loss is a variant, so we did not include it in this stage, and will consider it
as our future work. Then, we first define that

Et,r := E∥Xt,r(xt)−Xθ
t,r(xt)∥22.

After differentiation, we can get

−dEt,r
dt

= −E

[
2
(
Xt,r(xt)−Xθ

t,r(xt)
)(dXt,r(xt)

dt
−
dXθ

t,r(xt)

dt

)]

= E

[
2
(
Xt,r(xt)−Xθ

t,r(xt)
)(dXθ

t,r(xt)

dt

)]
= E

[
2
(
Xt,r(xt)−Xθ

t,r(xt)
) (
∂tX

θ
t,r(xt) + vt · ∇Xθ

t,r(xt)
)]

≤ Et,r + E∥∂tXθ
t,r(xt) + vt · ∇Xθ

t,r(xt)∥22,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

So,

−et∂tEt,r − etEt,r ≤ etE∥∂tXθ
t,r(xt) + vt · ∇Xθ

t,r(xt)∥22
−∂tetEt,r ≤ etE∥∂tXθ

t,r(xt) + vt · ∇Xθ
t,r(xt)∥22

With Er,r = 0, we have

Et,r ≤
∫ t

r

eτ−tE∥∂tXθ
t,r(xt) + vt · ∇Xθ

t,r(xt)∥22dτ

≤ e1
∫ t

r

E∥∂tXθ
t,r(xt) + vt · ∇Xθ

t,r(xt)∥22dτ

≤ eLctsc-s-to-r.

By setting C3 = e, the theorem is proved.

C.2.3 ERROR BOUND OF END POINT DIFFERENTIAL CTSC

Finally, we provide the proof of the error bound of the endpoint differential CTSC.

Theorem C.5. Assume the marginal velocity of the flow path satisfies the one-sided Lipschitz
condition, where

∃Ct ∈ L1[0, 1] :
(
vt(x)−vt(y)

)
·(x−y) ≥ −Ct∥x−y∥2, for all (t,x,y) ∈ [0, 1]×Rd×Rd.

When s→ r, the CTSC loss can be written as

Lctsc-s-to-r(θ) = E∥v(Xθ
t,τ (xt))− ∂τX

θ
t,τ (xt)∥22

Under d(x,y) = ∥x− y∥22, then

W 2
2 (p0, p

θ
0) ≤ C3Lctsc-s-to-r(θ),

where C3 = e1+2
∫ 1
0
|Ct|dt, and W2(·, ·) is the Wasserstein-2 distance.

Proof. Using the one-sided Lipschitz condition, we can get

−(Xt,r(x)−Xt,r(y))(vr(Xt,r(x))− vr(Xt,r(y))) ≤ 2Ct∥Xt,r(x)−Xt,r(y)∥22.

We then define

Et,r := Ex∥Xt,r(xt)−Xθ
t,r(xt)∥22.

With differentiation, we have

−dEt,r
dr

= −2Ex

[(
Xt,r(xt)−Xθ

t,r(xt)
)(dXt,r(xt)

dr
−
dXθ

t,r(xt)

dr

)]
= −2Ex

[(
Xt,r(xt)−Xθ

t,r(xt)
)(
v(Xt,r(xt))− ∂rX

θ
t,r(xt)

)]
= −2Ex

[(
Xt,r(xt)−Xθ

t,r(xt)
)(
v(Xθ

t,r(xt))− ∂rX
θ
t,r(xt)

)]
− 2Ex

[(
Xt,r(xt)−Xθ

t,r(xt)
)(
v(Xt,r(xt))− v(Xθ

t,r(xt))
)]

≤ Ex∥Xt,r(xt)−Xθ
t,r(xt)∥22 + Ex∥v(Xθ

t,r(xt))− ∂rX
θ
t,r(xt)∥22

− 2Ex

[(
Xt,r(xt)−Xθ

t,r(xt)
)(
v(Xt,r(xt))− v(Xθ

t,r(xt))
)]

≤ Et,r + Ex∥v(Xθ
t,r(xt))− ∂rX

θ
t,r(xt)∥22 − 2CtEt,r

= (1− 2Ct)Et,r + Ex∥v(Xθ
t,r(xt))− ∂rX

θ
t,r(xt)∥22.

So,

∂r(−er−2
∫ r
t
CτdτEt,r) ≤ er−2

∫ r
t
CτdτEx∥v(Xθ

t,r(xt))− ∂rX
θ
t,r(xt)∥22.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

With Et,t = 0, we have

Et,r ≤
∫ t

r

e−r+τ+2
∫ r
τ
CγdγEx∥v(Xθ

t,τ (xt))− ∂τX
θ
t,τ (xt)∥22dτ

≤ e−r+1+2
∫ t
r
|Cτ |dτ

∫ t

r

Ex∥v(Xθ
t,τ (xt))− ∂τX

θ
t,τ (xt)∥22dτ.

Therefore, when t = 1, r = 0, we have

E1,0 ≤ e1+2
∫ 1
0
|Ct|dt

∫ 1

0

Ex∥v(Xθ
t,τ (xt))− ∂τX

θ
t,τ (xt)∥22dτ.

Finally, due to

W 2
2 (p0, p

θ
0) ≤ E∥X1,0(x1)−Xθ

1,0(x1)∥22
and

Lctsc-s-to-r(θ) = E∥v(Xθ
t,τ (xt))− ∂τX

θ
t,τ (xt)∥22

=

∫
[0,1]2

w(t, t, r)Ex∥v(Xθ
t,τ (xt))− ∂τX

θ
t,τ (xt)∥22dtdr,

we obtain

W 2
2 (p0, p

θ
0) ≤ E∥X1,0(x1)−Xθ

1,0(x1)∥22
≤ e1+2

∫ 1
0
|Ct|dtLctsc-s-to-r(θ).

By setting C3 = e1+2
∫ 1
0
|Ct|dt, the theorem is proved.

C.3 OPTIMAL PATH OF SHORTCUT MODEL (Q.1. IN SEC. 3)

Previous works have claimed that the cosine path is optimal for diffusion models from the perspective
of Fisher information metric (Santos & Lin, 2023). Here, we provide the analysis of the optimal path
for one-step models under the Fisher information metric.

We first briefly introduce the Fisher information metric. Treating probability distributions p(γ) as
a smooth manifold, the Fisher information metric defines a Riemannian geometry that enables the
computation of distances between them. Specifically, the definition is

I(γ)ij = EX∼pγ

[
∂

∂γi
log pγ(X)

∂

∂γj
log pγ(X)

]
.

When the distribution family is exponential as

p(x|γ) = h(x) exp(η(γ)TT (x)− ψ(γ)),

the Fisher information metric becomes (Karczewski et al., 2025)

Iγ =

(
∂η(γ)

∂γ

)⊤(
∂µ(γ)

∂γ

)
,

where

µ(γ) = E[T (x) | γ] =
∫
T (x)p(x | γ)dx

is the expectation parameter. Then we can naturally define the optimal schedule as the geodesic
between two distributions, which leads to the theorem below.

Theorem C.6. (Zhang, 2025) The optimal schedule under the metric I(γ) ∈ R is generated by φ∗ of
the form

φ∗(γ) = Λ−1(Λγ), where Λ(s) =

∫ s

0

√
I(r)dr.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

With these preparations, we now turn to the one-step diffusion. We point out that, for the one-step
diffusion, since our goal becomes modeling the average velocity, we no longer consider the manifold
of p(xt), but rather that of p(ut). Then, we claim that the linear path is the optimal schedule as
follows.

Theorem C.7. For ∀x0, the linear schedule is the optimal schedule considering {p(ut)}, i.e,

γ = Λ−1(Λγ), where γ = (x0, t).

Proof.

p(ut | x0, t) = p(
xt − x0

t
| x0, t)

= p(
αtx0 − x0 + σtϵ

t
| x0, t)

= N (ut;
αtx0 − x0

t
,
σ2
t

t2
I)

=
t

(2π)d/2σdt
exp

(
− t2

2σ2
t

(∥ut∥2 −
2αt − 2

t
uTt x0 +

(αt − 1

t

)2∥x0∥2)
)

So p(ut |) is exponential, and we have

η(x0, t) = − t2

2σ2
t

(
− 2αt − 2

t
x0, 1

)
=
(t(αt − 1)

σ2
t

x0,−
t2

2σ2
t

)
,

and

T (ut) = (ut, ∥ut∥2).

Then

µ(x0, t) = E[T (ut) | x0, t]

=

∫
T (ut)p(ut | x0, t)dut

=

∫
(ut, ∥ut∥2)N (ut;

αtx0 − x0

t
,
σ2
t

t2
I)dut

=
(αtx0 − x0

t
,
(αtx0 − x0

t

)2
+
σ2
t

t2
)
.

So

∂η(x0, t)

∂(x0, t)
=


t(αt − 1)

σ2
t

(αt − 1 + tαt)σ
2
t − 2t(αt − 1)σ̇tσt
σ4
t

x0

0 −4tσ2
t − 4σ̇tσtt

2

4σ4
t

 ,

∂µ(x0, t)

∂(x0, t)
=

 αt − 1

t

α̇tt− αt + 1

t2
x0(αt − 1

t

)2 · 2x0
α̇tt− αt + 1

t2
· 2αt − 1

t
x0 +

2α̇tαtt
2 − 2tσ2

t

t4


=

 αt − 1

t

α̇tt− αt + 1

t2
x0

2
(αt − 1

t

)2
x0

2(α̇tt− αt + 1)(αt − 1)

t3
x0 +

2α̇tαtt
2 − 2tσ2

t

t4

 .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Substituting the linear schedule αt = 1− t and σt = t, we obtain

∂η(x0, t)

∂(x0, t)
=

 t(−t)t2
−2t · t2 − 2t(1− t)t+ 2t2

t4
x0

0
t3 − t3

t4


=

(
−1

−2t3 − 2t2 + 2t3 + 2t2

t4
x0

0 0

)

=

(
−1 0
0 0

)
and

∂µ(x0, t)

∂(x0, t)
=

1− t− 1

t

−t− 1 + t+ 1

t2
x0

2x0
−t− 1 + t+ 1

t2
· 21− t− 1

t
x0 +

2t3 − 2t3

t4


=

(
−1 0
2x0 0

)
.

Based on these two equations, we get

I(x0, t) =

(
−1 0
0 0

)T (−1 0
2x0 0

)
=

(
1 0
0 0

)
,

which means the metric under the linear path is uniform. So the probability p(ut) travels at a constant
rate, leading to the optimum.

C.4 PROOF OF INFERENCE ERROR ANALYSIS (PROP. 3.1)

We first give a detailed version of Prop. 3.1 as following,

Proposition C.8 (Inference error analysis). Under mild regularity conditions shown in Appendix C.4.1,
the Wasserstein-2 distance of the shortcut model with one-step generation is bounded as:

W 2
2 (p0, p

θ
0) ≤ 2

(
BVctsc + 8Var

[d
dt

uθ
t,r(xt)

]
+ 8σ2

vt|0

) ∣∣∣
r=0,t=1

, (66)

W 2
2 (p0, p

θ
0) ≤ 2

(
BVdtsc + 8δ22 Var

[
uθ

s,r(xt)
]
+ 8(1 + ℓ2δ22)δ

2
1 σ

2
dtsc

)∣∣∣
r=0,t=1

, (67)

where BV• = Bias2•-tgt +Bias2•-loss + 2Var
[
uθ(x1, t, r)

]
with • ∈ {ctsc, dtsc}, and Bias2•-tgt and Bias2•-loss

are defined as
Bias2•-tgt = E[∥ut,r(xt)− Y•∥22]
Bias2•-loss = E[l•(xt, t, r; θ)]

(68)

Y• is the two flow map target when Yctsc in each model, i.e.

Yctsc =
d

dt
uθ(xt, t, r) − vt|0(xt|x0),

Ydtsc = δ1 vt|0(xt|x0) + δ2 u
θ
s,r

(
xt + δ1 vt|0(xt|x0)

)
if use CT loss ,

Ydtsc = δ1 vt|0(xt|x0) + δ2 u
θ(xt + δ1 u

θ
s,r(xt, t, s)

)
if use SCD loss.

l•(xt, r, s, t; θ) is the term in the expectation of different training objectives as given in Sec. 2.3; δ1 = t− s,
δ2 = s− r; ℓ is local Lipschitz constant of uθ; σ2

vt|0 is the variance of the conditional velocity, defined by

σ2
vt|0

:= Var(vt|0(xt|x0)|); σ2
dtsc = σ2

vt|0 when using CT’s flow map targets, or σ2
dtsc = Var

[
uθ

t,s(xt)
]

when
using SCD’s targets.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C.4.1 ASSUMPTIONS FOR PROP. 3.1

We state the regularity conditions required for the theorem.

Assumption C.9 (Velocity variance). The conditional velocity vt|0 approximates the ground-truth
velocity vt, such that we can write

vt|0(xt|x0) = vt(xt) + ηt,

where we assume the discrepancy ηt has variance σ2
vt|0

. Because E[ηt|x0] = 0 (take expectation on
both sides), so Var(vt|0) = σ2

vt|0

Assumption C.10 (Lipschitz continuity). There exist constants ℓ such that for any h,

∥uθ(xt + h, r, s)− uθ(xt, r, s)∥ ≤ ℓ ∥h∥,

with ℓ independent of (xt, t, r, s).

C.4.2 LEMMA USED FOR PROOF

Lemma C.11 (Bias–variance–covariance(BV-CV) decomposition). For random vectors A,B ∈ Rd
with finite second moments,

E∥A−B∥2 = ∥EA− EB∥2 + trCov[A] + trCov[B]− 2 trCov[A,B]. (69)

Proof. Denote A and B’s expectations by µA = EA and µB = EB. We start by expanding

E∥A−B∥2 = E
[
(A−B)⊤(A−B)

]
= E∥A∥2 + E∥B∥2 − 2E[A⊤B].

Each term can be decomposed as follows:

E∥A∥2 = tr(E[AA⊤]) = tr
(
Cov[A] + µAµ

⊤
A

)
= tr Cov[A] + ∥µA∥2,

E∥B∥2 = tr(E[BB⊤]) = tr
(
Cov[B] + µBµ

⊤
B

)
= tr Cov[B] + ∥µB∥2,

E[A⊤B] = tr(E[AB⊤]) = tr
(
Cov[A,B] + µAµ

⊤
B

)
= tr Cov[A,B] + µ⊤

AµB .

Substituting these expressions back, we obtain

E∥A−B∥2 = ∥µA − µB∥2 + tr Cov[A] + tr Cov[B]− 2 tr Cov[A,B].

This establishes the bias–variance–covariance identity.

Lemma C.12 (Variance lower bound under local bi-Lipschitz). Let f(x) := uθ(x, r, s) and assume
local bi-Lipschitz: there exists c > 0 such that for all sufficiently small h,

∥f(x+ h)− f(x)∥ ≥ c ∥h∥.

Fix xt and let W be a random vector. Define

Z = f(xt + δ1W)− f(xt).

Then, conditioning on the σ-field that renders xt deterministic,

tr Cov(Z|xt) ≥ c2 δ21 tr Cov(W |xt).

Consequently,
tr Cov(Z) ≥ c2 δ21 E

[
tr Cov(W |xt)

]
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Proof. Set W̄ := E[W |xt] and write

Z = f(xt + δ1W)− f(xt + δ1W̄)︸ ︷︷ ︸
Z′

+ f(xt + δ1W̄)− f(xt)︸ ︷︷ ︸
constant given xt

.

Adding a constant does not change variance, hence tr Cov(Z|xt) = tr Cov(Z ′|xt). By the bi-
Lipschitz lower bound,

∥Z ′∥ =
∥∥f(xt + δ1(W − W̄)

)
− f(xt)

∥∥ ≥ c δ1 ∥W − W̄∥.

Squaring and taking the conditional expectation,

E
[
∥Z ′∥2|xt

]
≥ c2 δ21 E

[
∥W − W̄∥2|xt

]
= c2 δ21 tr Cov(W |xt).

Since tr Cov(Z ′|xt) ≤ E[∥Z ′∥2|xt], we obtain tr Cov(Z|xt) = tr Cov(Z ′|xt) ≥
c2 δ21 tr Cov(W |xt). Taking expectation in xt and using the law of total variance gives the second
claim.

C.4.3 PROOF FOR THEOREM 3.1

Write δ1 = s− t, δ2 = r − s and note that in inequalities below we only use δ1, δ2.

Step 1. Upper bound for CTSC (MeanFlow and sCT with linear path). Here we consider the
sampling error from t to r, as

Et,r = E[∥Xt,r(xt)−Xθ
t,r(xt)∥22].

It can be written as

E[∥(r − t)ut,r(xt)− (r − t)uθt,r(xt)∥22]
=E[∥(r − t)ut,r(xt)− (r − t)uθt,r(xt)− (r − t)Yctsc + (r − t)Yctsc∥22]
≤2(δ1 + δ2)

2E∥ut,r(xt)− Yctsc∥22 + 2(δ1 + δ2)
2E∥uθt,r(xt)− Yctsc∥22

where Yctsc = (δ1 + δ2)
d
dtu

θ
t,r(xt) − vt|0(xt|x0).

First, consider the first term take

A = ut,r(xt), B = Yctsc = (δ1 + δ2)
d

dt
uθt,r(xt) − vt|0(xt|x0).

Applying Eq. 69,

2(δ1 + δ2)
2E ∥A−B∥22 = 2(δ1 + δ2)

2(∥EA− EB∥2︸ ︷︷ ︸
Bias2ctsc-tgt

+Var[A] + Var[B]− 2Cov(A,B)).

According to −2Cov(A,B) ≤ Var[A] + Var[B], we can get

E [∥A−B∥22] (70)

≤ Bias2ctsc-tgt + 2Var[ut,r] + 2Var[Yctsc] (71)

=Bias2ctsc-tgt + 2Var[Yctsc], (72)

because Var[ut,r] = 0.

Then, by Assumption C.9 (Var[vt|0] = σ2
vt|0

),

Var[Yctsc] = Var
[
(δ1 + δ2)

d

dt
uθt,r − vt|0

]
≤ 2Var

[
(δ1 + δ2)

d

dt
uθt,r

]
+ 2Var[vt|0]

= 2(δ1 + δ2)
2Var

[d
dt

uθt,r
]
+ 2σ2

vt|0
,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Therefore,

E∥ut,r(xt)− Yctsc∥2

≤Bias2ctsc-tgt + 4(δ1 + δ2)
2Var

[d
dt

uθt,r
]
+ 4σ2

vt|0

Secondly, take

A = uθt,r(xt), B = Yctsc = (δ1 + δ2)
d

dt
uθt,r(xt) − vt|0(xt|x0).

and it coincides that E∥uθt,r(xt)− Yctsc∥22 = E[lctsc]. Applying Eq. 69, we have

E [lctsc] = ∥EA− EB∥2︸ ︷︷ ︸
Bias2ctsc-loss

+Var[A] + Var[B]− 2Cov(A,B).

It can also be easily to obtain

E [lctsc] ≤ Bias2ctsc-loss + 2Var
[
uθt,r(xt)

]
+ 4(δ1 + δ2)

2Var
[d
dt

uθt,r(xt)
]
+ 4σ2

vt|0
,

In summary,

Et,r

≤2(δ1 + δ2)
2

(
Bias2ctsc-tgt +Bias2ctsc-loss + 2Var

[
uθt,r(xt)

]
+ 8(δ1 + δ2)

2Var
[d
dt

uθt,r(xt)
]
+ 8σ2

vt|0

)
Specifically, when t = 1, r = 0,

E1,0 ≤ 2

(
Bias2ctsc-tgt +Bias2ctsc-loss + 2Var

[
uθt,r(x1)

]
+ 8Var

[d
dt

uθt,r(xt)
]
+ 8σ2

vt|0

) ∣∣∣
r=0,t=1

Step 2. Upper bound for CT. Then, let’s still consider

Et,r = E[∥Xt,r(xt)−Xθ
t,r(xt)∥22],

by setting Yct = 1
δ1+δ2

(
δ1 vt|0(xt|x0) + δ2 u

θ
s,r

(
xt + δ1 vt|0(xt|x0)

))
, which equals to

E[∥(r − t)ut,r(xt)− (r − t)uθt,r(xt)∥22]
=E[∥(r − t)ut,r(xt)− (r − t)uθt,r(xt)− (r − t)Yct + (r − t)Yct∥22]
≤2(δ1 + δ2)

2E∥ut,r(xt)− Yct∥22 + 2(δ1 + δ2)
2E∥uθt,r(xt)− Yct∥22

Firstly, set

A = ut,r(xt), B = Yct =
1

δ1 + δ2

(
δ1 vt|0(xt|x0) + δ2 u

θ
s,r

(
xt + δ1 vt|0(xt|x0)

))
.

By Cauchy-Schwarz, −2Cov(A,B) is again absorbed into the ≲ notation. So we have

E [∥A−B∥22] (73)

≤ Bias2ct-tgt + 2Var[ut,r] + 2Var[Yct] (74)

=Bias2ct-tgt + 2Var[Yct], (75)

For Var[Yct], expand the second term as

uθs,r
(
xt + δ1 vt|0

)
= uθs,r(xt) +

(
uθs,r(xt + δ1 vt|0)− uθs,r(xt)

)
.

Apply Lemma C.12 with f(x) = uθs,r(x) and W = vt|0(xt|x0). Conditioning on xt and using the
Lipschitz upper constant ℓ > 0, we obtain

Var
(
uθs,r(xt + δ1 vt|0)− uθs,r(xt)

∣∣∣xt) ≤ ℓ2 δ21 Var
(
vt|0(xt|x0)

∣∣xt).
33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Taking expectation in xt yields

Var
[
uθs,r(xt + δ1 vt|0)− uθs,r(xt)

]
≤ ℓ2 δ21 σ

2
vt|0

.

Therefore,

Var[Yct] ≤ 1

(δ1 + δ2)2

(
2δ21 σ

2
vt|0

+ 2δ22 Var
[
uθs,r(xt)

]
+ 2l2 δ21 δ

2
2 σ

2
vt|0

)
.

Hence, we get

E∥ut,r(xt)− Yct∥22 ≤ Bias2ct-tgt +
4

(δ1 + δ2)2

(
δ22 Var

[
uθs,r(xt)

]
+ (1 + ℓ2δ22)δ

2
1 σ

2
vt|0

)
.

Secondly, set

A = uθt,r(xt), B = Yct =
1

δ1 + δ2

(
δ1 vt|0(xt|x0) + δ2 u

θ
s,r

(
xt + δ1 vt|0(xt|x0)

))
.

Then E∥uθt,r(xt)− Yct∥22 = E[lct]. Easily following the above derivation, we can obtain

E[lct-loss] ≤ Bias2ct-loss + 2Var
[
uθt,r(xt)

]
+

4

(δ1 + δ2)2

(
δ22 Var

[
uθs,r(xt)

]
+ (1 + ℓ2δ22)δ

2
1 σ

2
vt|0

)
.

To sum up, we have

Et,r ≤ 2(δ1 + δ2)
2
(
Bias2ct-tgt +Bias2ct-loss + 2Var

[
uθt,r(xt)

]
+

8

(δ1 + δ2)2

(
δ22 Var

[
uθs,r(xt)

]
+ (1 + ℓ2δ22)δ

2
1 σ

2
vt|0

))
.

When t = 0, r = 1, the inequality becomes

E1,0 ≤ 2
(
Bias2ct-tgt +Bias2ct-loss + 2Var

[
uθt,r(xt)

]
+ 8δ22 Var

[
uθs,r(xt)

]
+ 8(1 + ℓ2δ22)δ

2
1 σ

2
vt|0

)∣∣∣
r=0,t=1

.

Step 3. Upper bound for SCD. In this case, consider

Et,r = E[∥Xt,r(xt)−Xθ
t,r(xt)∥22],

by setting Yscd = 1
δ1+δ2

(
δ1 u

θ
t,s(xt) + δ2 u

θ
s,r

(
xt + δ1 u

θ
t,s(xt)

))
, which equals to

E[∥(r − t)ut,r(xt)− (r − t)uθt,r(xt)∥22]
=E[∥(r − t)ut,r(xt)− (r − t)uθt,r(xt)− (r − t)Yscd + (r − t)Yscd∥22]
≤2(δ1 + δ2)

2E∥ut,r(xt)− Yscd∥22 + 2(δ1 + δ2)
2E∥uθt,r(xt)− Yscd∥22

We can find that the only difference between SCD and CT is the second term in Yscd. So we only
need to analyze this term:

uθs,r
(
xt + δ1 u

θ
t,s(xt)

)
= uθs,r(xt) +

(
uθs,r(xt + δ1 u

θ
t,s(xt))− uθs,r(xt)

)
.

By Assumption C.10 (Lipschitz continuity), this term contributes a variance of order
ℓ2 δ21 Var[u

θ
t,s(xt)]. Hence,

Var[Yscd] ≤ δ21 Var
[
uθt,s(xt)

]
+ δ22 Var

[
uθs,r(xt)

]
+ ℓ2 δ21δ

2
2 Var

[
uθt,s(xt)

]
.

Similar to the derivation of CT, we can get

Et,r ≤ 2(δ1 + δ2)
2
(
Bias2scd-tgt +Bias2scd-loss + 2Var

[
uθt,r(xt)

]
+

8

(δ1 + δ2)2

(
δ22 Var

[
uθs,r(xt)

]
+ (1 + ℓ2δ22)δ

2
1Var

[
uθt,s(xt)

]))
.

When t = 0, r = 1, the inequality becomes

E1,0 ≤ 2
(
Bias2scd-tgt +Bias2scd-loss + 2Var

[
uθt,r(xt)

]
+ 8δ22 Var

[
uθs,r(xt)

]
+ 8(1 + ℓ2δ22)δ

2
1Var

[
uθt,s(xt)

])∣∣∣
r=0,t=1

.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Step 4. Conclusion Since

W 2
2 (p0, p

θ
0) ≤ E∥X1,0(x1)−Xθ

1,0(x1)∥22 = E1,0

The proposition is proved.

C.5 PROOF OF IDEAL VELOCITY AND ITS BIAS-VARIANCE ANALYSIS (PROP. 4.1)

C.5.1 THE FORM OF IDEAL VELOCITY

Proof. By definition,

vt =

∫
vt(xt|x0)

pt(xt|x0)

pt(xt)
p0(x0)dx0

We aim to rewrite

vt(xt) =

∫
vt(xt | x0)

pt(xt | x0) p0(x0)

pt(xt)
dx0 = Ep(x0|xt)[vt(xt | x0)] . (76)

The forward (noising) process is linear Gaussian:

xt = αtx0 + σtε, ε ∼ N (0, I), (77)

so that
pt(xt | x0) = N

(
xt; αtx0, σ

2
t I
)
. (78)

Assume the conditional velocity has the form

vt(xt | x0) = α̂tx0 + σ̂tε. (79)

Since ε = (xt − αtx0)/σt, we can eliminate the noise and write

vt(xt | x0) =
σ̂t
σt

xt +
(
α̂t − σ̂tαt

σt

)
x0 (80)

≜ atxt + btx0. (81)

Suppose the prior p0 is empirical:

p0(y) =
1

N

N∑
i=1

1yi(y). (82)

Then the marginal and posterior are finite mixtures:

pt(xt) =
1
N

N∑
i=1

N
(
xt; αtyi, σ

2
t I
)
, (83)

p(x0 = yi | xt) =
wi(xt)∑N
j=1 wj(xt)

, wi(xt) ≜ N
(
xt; αtyi, σ

2
t I
)
. (84)

Taking the expectation of the linear form yields

vt(xt) = atxt + bt E[x0 | xt]. (85)

From Bayes’ rule,

E[x0 | xt] =
N∑
i=1

πi(xt)yi, πi(xt) =
wi(xt)∑N
j=1 wj(xt)

. (86)

In conclusion, under the empirical prior, vt(xt) is obtained as a posterior-weighted average of the
conditional velocities associated with each training sample yi:

v∗
t (xt) =

N∑
i=1

p0(x0 = yi | xt)vt(xt | yi) . (87)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

C.5.2 THE BIAS AND VARIANCE OF PLUG-IN VELOCITY

Under mild assumptions and with the Bias-Variance Decomposition, we can analyze E∥v∗
t − vt∥2,

which consists of the bias term and variance term. The proposition below shows that although there
is an increase in bias of order O(1/N), the variance is significantly reduced by O(1− 1/N).

Proposition C.13 (Bias-Variance Decomposition of Ideal Velocity). Assume there are the empirical
distribution pemp on any {y(i)}Ni=1 and the data distribution p0 has the finite normalization constant

Z(pemp | {y}Ni=1), Z(p0) ≥ z0 > 0.

Suppose ∃M1,M2 > 0, s > d
2 , s.t.∥vt(xt | x0)∥Cs ≤M1, and ∥vt(xt)∥ ≤M2. Then we have

E∥v∗
t − vt∥2 ≤ C

(
M2

1 + 2M2
2

N
+

4Var [vt(xt|x0)]

N

)
.

Proof. According to Eq. 69

E∥A−B∥2 = ∥µA − µB∥2 +Var[A] + Var[B]− 2Cov[A,B],

and the Cauchy-Schwarz inequality

−2Cov(A,B) ≤ Var[A] + Var[B],

we have
E∥vt − v∗

t ∥2 ≤ (Evt − Ev∗
t)

2 + 2Var[v∗t] + 2Var[vt]

So we analyze the bias and variance of v∗
t below.

Bias of plug-in velocity.

|E[v∗]− E[vt]| ≤
1

z0
|E[pemp(x0)p(xt | x0)vt(xt | x0)− p0(x0)p(xt | x0)vt(xt | x0)]|

≤M1E[∥pemp − p0∥Cs1]

where

∥ν∥Cs1 := sup
{∫

f dν : f ∈ Cs(Ω), ∥f∥Cs ≤ 1
}
.

The previous work (Kloeckner, 2018) has proven that

E[∥pemp − p0∥Cs1] ≤
C√
N
,

so we finally get

|E[v∗]− E[vt]|2 ≤ CM2
1

N
.

Variance of plug-in velocity. Let

Z(xt, {y(i)}Ni=1, t) :=

∫
p(xt | x0)pemp(x0)dx =

1

N

N∑
i=1

p(xt | y(i)).

Then, under the empirical distribution, we can write

v∗
t =

1

NZ(xt, {y(i)}Ni=1, t)

N∑
i=1

vt(xt|y(i))p(xt|y(i))

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

which leads to the variance of v∗
t as

Var[v∗
t] ≤

C

N2

N∑
i=1

Var
[
vt(xt|y(i))p(xt|y(i))

]
=

C

N2

N∑
i=1

(
E
[
vt(xt|y(i))2p(xt|y(i))2

]
−
(
E
[
vt(xt|y(i))p(xt|y(i))

])2)

≤ C

N2

N∑
i=1

E
[
vt(xt|y(i))2p(xt|y(i))2

]
≤ C ′

N2

N∑
i=1

E
[
vt(xt|y(i))2

]
≤ C ′

N2

N∑
i=1

(
Var

[
vt(xt|y(i))

]
+
(
E
[
vt(xt|y(i))

])2)

=
C ′

N2

N∑
i=1

(
Var

[
vt(xt|y(i))

]
+ vt(xt)

2
)

=
C ′

N

(
Var [vt(xt|x0)] +M2

2

)
.

C.6 THE CONVERGENCE OF CTSC LOSS EMPLOYING PLUG-IN VELOCITY (SEC. 4)

Lemma C.14. Define the normalization constant as

Z(q) :=

∫
p(xt | y)q(y)dy.

For the weight function

wq(y) :=
q(y)p(xt | y)

Z(q)
,

if there are two distribution q and r with finite normalization constant

Z(q), Z(r) ≥ z0 > 0,

the following inequalities holds

|wq(y)− wr(y)| ≤
(1

(2π)d/2σdt z0
+

L

(2π)d/2σdt z
2
0

)
W1(q, r)

|wq(y)2 − wr(y)
2| ≤

(1

(2π)dσ2
t dz

2
0

+
L

(2π)dσ2
t dz

3
0

)
W1(q, r).

Proof. First, since p(xt | y) = N (xt;y, σ
2
t I) There exist constants L > 0 such that

0 < p(xt | y) ≤
1

(2π)d/2σdt
, |p(xt | y)− p(xt | y′)| ≤ L∥y − y′∥.

Denote p(xt | y) as Kt(y). We decompose

wq(y)− wr(y) = Kt(y)
(q(y)
Z(q)

− r(y)

Z(r)

)
= Kt(y)

(q(y)− r(y)

Z(q)
+ r(y)

Z(r)− Z(q)

Z(q)Z(r)

)
.

Then, by Kantorovich–Rubinstein duality,

|Z(q)− Z(r)| =
∣∣∣ ∫ Kt d(q − r)

∣∣∣ ≤ LW1(q, r).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Also, using Z(q), Z(r) ≥ z0 and Kt(y) ≤ 1
(2π)d/2σdt

, we have

|wq(y)− wr(y)| ≤
1

(2π)d/2σdt z0
|q(y)− r(y)|+ 1

(2π)d/2σdt z
2
0

|Z(q)− Z(r)|

≤
(1

(2π)d/2σdt z0
+

L

(2π)d/2σdt z
2
0

)
W1(q, r).

Next, since 0 ≤ wq(y) ≤ 1√
2πσt

/z0, we bound the squared difference:

|wq(y)2 − wr(y)
2| = |wq(y)− wr(y)|(wq(y) + wr(y))

≤ 1

(2π)d/2σdt z0

(1

(2π)d/2σdt z0
+

L

(2π)d/2σdt z
2
0

)
W1(q, r)

=
(1

(2π)dσ2
t dz

2
0

+
L

(2π)dσ2
t dz

3
0

)
W1(q, r).

Proposition C.15. Denote the empirical distribution as pemp, then the difference between the training
loss employing plug-in velocity and marginal velocity can be bounded by the Wasserstein distance
between pemp and p0 as ∣∣Lplug-in(θ)− Lmarginal(θ)

∣∣ ≤ CW (pemp, p0).

Proof. Substituting the form of plug-in velocity in Eq. 12, we have

Lplug-in(θ) = E
[
∥ut,r(xt)− (r − t)

d

dt
uθt,r(xt)− v∗

t (xt|{y(i)}Ni=1)∥2
]

= E
[
∥ut,r(xt)− (r − t)

d

dt
uθt,r(xt)

−
N∑
i

N (xt;αty
(i), σ2

t I)∑N
j N (xt;αty(j), σ2

t I)
(α̇ty

(i) +
σ̇t
σt

(xt − αty
(i)))∥2

]
= E

[N∑
i

((N (xt;αty
(i), σ2

t I)∑N
j N (xt;αty(j), σ2

t I)

)2
·

∥ut,r(xt)− (r − t)
d

dt
uθt,r(xt)− (α̇ty

(i) +
σ̇t
σt

(xt − αty
(i)))∥2

)]
.

We denote

w(xt,y, {y(i)}Ni=1, t) :=
N (xt;αty, σ

2
t I)∑N

j N (xt;αty(j), σ2
t I)

,

l(xt,y, t, r, θ) := ∥ut,r(xt)− (r − t)
d

dt
uθt,r(xt)− (α̇ty +

σ̇t
σt

(xt − αty))∥2,

then

Lplug-in(θ) = E
[N∑
i=1

(
w2(xt,y

(i), {y(i)}Ni=1, t)l(xt,y
(i), t, r, θ)

)]
.

Recall that pemp(y) =
1
N

∑N
i=1 1yi(y), then we can obtain

w(xt,y, {y(i)}Ni=1, t) = wpemp(xt,y).

And the training loss with marginal velocity is

Lmarginal(θ) = E
[N∑
i=1

(
w2
p0(xt,y)l(xt,y

(i), t, r, θ)
)]
.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Finally, by the boundedness of ℓ and Lemma C.14, we get

∣∣Lplug-in(θ)− Lmarginal(θ)
∣∣ = E

[N∑
i=1

(
w2
q − w2

r

)
ℓ(xt, y

(i), t, r, θ)
]

≤ C sup
y

|w2
q − w2

r |

≤ CW1(pemp, p0).

Remark C.16. We point out that the Wasserstein-1 distance between the empirical distribution and
the true distribution decreases as the number of data samples increases, which has been established
in previous literature (Fournier & Guillin, 2015).

D EXPERIMENTAL DETAILS

D.1 DETAILS FOR EMPIRICAL ANALYSIS OF FIG. 2

We conduct experiments on unconditional generation on CIFAR-10, conditional generation on
ImageNet-256×256 with or without the classifier-free-guidance setting. We here give more details of
each method’s setting of implementation.

Uncond. CIFAR-10. We use a unified setting with batch size as 512 and iteration number as 800k
(∼8000 epochs). For stability, we adopt exponential moving average (EMA) to update the model
parameters, with decay ratio set to either 0.99995 or 0.9999. We find that 0.9999 ema decay usually
performs better under 800k iteration with batchsize 512. We report results using the best-performing
EMA setting. For all the experimental trials, we trained them with Nvidia-A100×8. The detailed
hyperparameter configurations for each model are as follows:

• CT and CT-linear. Both variants adopt LPIPS as the loss metric, where the difference lies
in the choice of time path: the former uses a cosine path while the latter employs a linear
path. We set the learning rate in training to 2e-4. Following the official JAX implementation,
we adopt a progressive time sampler such that the scale Kmin is initialized at 2 and gradually
increased to a maximum of Kmax = 150. This implies that the interval [σmin, σmax] is
partitioned according to {

[σmax +
h
K

(
σ
1/ρ
min − σ1/ρ

max

)
]ρ
}K
h=1

,

with σmin = 0.002, σmax = 80.0. After the change-of-variable, a 2
π arctan() is operated to

scale the time from [0.002, 80] to [0,1] in cosine path, while in linear path, the sampled time
is normalized by t

t+1 ∈ [0, 1]. In addition, a curriculum learning strategy is introduced to
regulate the evolution of K with respect to the training iterations. When updating the model
inside sg(·) via EMA, a decay rate rema is employed to further stabilize training. In detail, at
training step j ∈ {1, . . . , J} with total steps J = 800k, the progressive scale K(j) and the
corresponding EMA decay rate rema(j) are computed as

K(j) =

⌈√
j

J

(
(Kmax + 1)2 −K2

min

)
+K2

min − 1

⌉
+ 1,

rema(j) = exp

(
−− log(rema-min)Kmin

K(J)

)
.

Here K(j) is lower bounded by 1, and rema(j) smoothly interpolates between rema-min = 0.9
and 1 as training progresses.

• SCD. For SCD, since the official release does not include the configuration for training
on CIFAR, we use the same hyperparameter settings as those used for ImageNet in the

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

official release. K defined as the total number of steps that we divide the time interval into
is set as 128, and the pteq = 0.25 as the probability of training the average velocity with
instantaneous conditional velocity supervision as described in Sec. 2.3. We set the learning
rate in training as 1e-4.

• IMM. Unlike the summary in Table 1, IMM here employs a cosine path with an EDM
preconditioner. M as the group size is set as 4 and γ = 12 for calculating the difference be-
tween s and t, as its default configuration. For the grouped kernel function, it is implemented
by the RBF kernel. We set the learning rate in training to 1e-4.

• sCT and sCT-linear. In time sampler, Pmean = −1 and Pstd = 1.4. Tangent warmup
iteration for gradient ratio is set as 10000. We set the learning rate in training to 1e-
4. Besides, the variational adaptive weighting techniques are not employed for better
understanding the modularized contribution of each models, while the tangent normalization
is employed in the sCT for stabler training, but not implemented in sCT-linear.

• MeanFlow. In time sampler, Pmean = −2.0 and Pstd = 2.0. The pteq = 0.25 as the proba-
bility of training the average velocity with instantaneous conditional velocity supervision.
We set the learning rate in training to 6e-4. The power for adaptive weighting is 0.75.

Moreover, for CIFAR-10, to enable a fairer comparison, we keep the models identical except for the
time sampler. Specifically, we disable adaptive loss in MeanFlow, variational adaptive weighting
in sCT, and tangent warmup, and instead use a squared l2 loss with a learning rate of 2e-4. Under
this setting, with pteq = 0.25, we obtain FID50k of 4.64 for MeanFlow and 4.81 for sCT-linear on
CIFAR-10, which also validates our conclusion in the Sec. 3.

Cond. ImageNet. In this setting, we include the class label as part of the network input for
conditional training. Since CTs require LPIPS as their loss metric, replacing it with a squared l2
loss on latents causes training to diverge. For all the experimental trials, we trained them with
Nvidia-A100×8. Therefore, we do not report CTs results in the latent space. For the other models,
the settings are as follows:

• SCD. The configuration is identical to that used for CIFAR-10.
• IMM. It is implemented with a linear path in latent space. M as the group size is set as 4 and
γ = 12. We observed that IMM fails to converge (FID does not decrease to a reasonable
range) on SiT-B/2 when the B ∈ {512, 1024}. Convergence appears only when we increase
batch size B to 2048, at which point the model begins to generate valid images. This
phenomenon is consistent with IMM’s grouped loss: with group size M = 4, each mini-
batch provides only B/M independent group-level supervision signals for backpropagation.
Consequently, B = 2048 yields 2048/4 = 512 effective signals, which seems to be a
practical threshold for stable training in our setup. Therefore, in Fig. 2(b), we report IMM
with bsz = 2048; the corresponding training epochs are scaled by the grouping factor, i.e.,
4× 240 = 960 epochs, to match the effective number of parameter updates. Others are the
same as the setting for CIFAR-10.

• sCT and sCT-linear. We use the same hyperparameter setting as for CIFAR-10, since
the original paper uses a U-Net in the pixel space, we cannot use the provided official
configuration.

• MeanFlow. In time sampler, Pmean = −0.4 and Pstd = 1.0. The pteq = 0.75. We set the
learning rate in training to 1e-4. The power for adaptive weighting is 1.0.

CFG. ImageNet. For one-step generation, our training setting with CFG follows MeanFlow, as it
introduces a mixing scale κ and defines the velocity under CFG as

vcfg(xt, t | c) = ωvt|0(xt | c) + κucfg
t,t(xt | c) + (1− ω − κ)ucfg

t,t(xt). (88)

This satisfies the original CFG formulation with an effective guidance scale κ. As it is proposed to
bridge the instantaneous velocity and average velocity under classifier-free guidance, applying this
technique directly to sCT, which models the instantaneous velocity, is not entirely straightforward.
However, for sCT-linear, since we have shown its near equivalence to MeanFlow, the CFG training
technique can be directly adopted. In addition, for IMM, applying CFG requires two NFEs during

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

inference to compute vcfg. As our focus is on one-step generation, i.e., 1-NFE, we therefore do not
include IMM in the comparisons.

In addition, we adopt the best hyperparameter configuration recommended in the official MeanFlow
implementation with DiT-B/2 while our network is changed into SiT-B/2, i.e., ω = 1.0, κ = 0.5,
class-dropout= 0.1 and CFG triggered if t in [0, 1], while keeping all other settings identical to those
used for Cond. ImageNet. As an improved variant of SiT over DiT, it leads the FID50k to 6.09, better
than 6.17 as reported to the original paper.

D.2 DETAILS FOR EMPIRICAL ANALYSIS OF TABLE 2

Here, we adopt the exact same parameter setting as MeanFlow with SiT-B/2.

sCM training techniques. In addition, in ESC, we, following sCM (Lu & Song, 2025) and
EDMv2 (Karras et al., 2024), introduce a variational weighting output head, where the output of the
time embedder is passed through a linear layer to a one-dimensional scalar as the adaptive weighting
function, which reads wψadpt(t, r) and is then used to reweight the original loss in Eq. 8. We keep the
the SiT architecture blocks untouched, while architectural improvements are orthogonal and possible.
Moreover, a ratio rgrad = min{ iter

Kgrad
, 1} for tangent warmup is implemented for mitigating some

gradient spikes during training, where Kgrad is set as 10k, the same as sCT training.

lesc(xt, r, t− dt, t; θ) =
ew

ψ
adpt(t,r)

D
· w ·

∥∥∥∥∥uθt,r(xt)− sg

(
vt|0 + rgrad · (r − t)

duθt,r(xt)

dt

)∥∥∥∥∥
2

2

− wψadpt(t, r),

In this way, we gives the full hyper-parameter setting for Table 2, as conclude in left column of
Table 5. For all the experimental trials with network architecture SiT-B/2, we trained them with
Nvidia-A100×8.

D.3 DETAILS FOR SCALING-UP EVALUATION IN SEC. 5

CIFAR-10. We conduct class-unconditional generation experiments on CIFAR-10. Following the
official MeanFlow setting, we adopt the Adam optimizer with a learning rate of 6× 10−4, batch size
1024, and momentum parameters (β1, β2) = (0.9, 0.999). We use a dropout rate of 0.2, no weight
decay, and an EMA decay factor of 0.99995. Training is performed for 800k iterations, including a
10k warm-up phase. For time sampling, we draw (r, t) ∼ LogNorm(−2.0, 2.0), with probability
75% that r ̸= t. The adaptive weighting exponent is set to p = 0.75. Data augmentation follows the
protocol of Karras et al. (2022), except that vertical flipping and rotation are disabled.

Regarding our proposed improvements, we observed that variational adaptive weighting from EDM2
did not yield further gains and was therefore not adopted. Instead, we found that setting the plug-in
probability pplug-in ∈ [0.2, 0.5] improved training stability, although a performance gap remained.
Moreover, we set Kfix0 = 20k and Kgrad = 10k. All CIFAR-10 experiments with U-Net architectures
were conducted on 8 Nvidia A100 GPUs.

ImageNet-256×256. For large-scale evaluation, we adopt SiT-XL/2 as the backbone of our im-
proved CTSC variant, denoted as ESC. The hyperparameters follow the default configuration recom-
mended by MeanFlow under the CFG setting, with details provided in the right column of Table 5.
In practice, we find that the tangent normalization technique does not further brings performance
improvements in the continuous-time shortcut model with linear path in training SiT-XL/2. All
ImageNet experiments with SiT-XL/2 were trained on 16 Nvidia A100 GPUs.

D.4 VISUALIZATION EXAMPLES FOR ESC

We provide visualization results of ESC-generated images on ImageNet-256×256 with different
network architectures: SiT-B/2 (Figure 4) and SiT-XL/2 (Figure 5). All samples are generated in
a single step using the same noise initialization from the latent prior and identical class labels for
classifier guidance. Additional CIFAR-10 examples generated by ESC at different training epochs
are shown in Figure 10.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 5: Configurations on ImageNet 256× 256 for Table 2, (w/-cc) means ‘with-class-consistent’
and (w/o-cc) means ‘without-class-consistent’.

Experiment Sec. 4 Sec. 5

Configs MeanFlow A1 A2 B1 B2 C D ESC ESC(w/-cc) ESC(w/o-cc)

Architecture B/2 XL/2
params (M) 131 676
FLOPs (G) 23.1 119.0
depth 12 28
hidden dim 768 1152
heads 12 16
patch size 2×2 2×2

Training and optimization
epochs 240 240
batch size 512 256
dropout 0.0 0.0
optimizer Adam (Kingma & Ba, 2017) Adam
lr schedule constant constant
lr 0.0001 0.0001
Adam (β1, β2) (0.9, 0.95) (0.9, 0.95)
weight decay 0.0 0.0
ema decay 0.9999 0.9999

Time sampler
pteq 0.75 0.75
(r, t) sampler lognorm(-0.4, 1.0) lognorm(-0.4, 1.0)
power for adaptive weight w 1.0 1.0

CFG settings
ω in Eq. 88 1.0 0.2
κ in Eq. 88 0.5 0.92
cls-cond drop 0.1 0.1
triggered if t is in [0.0,1.0] [0.0,0.75]

ESC improvments
pplug-in 0.0 1.0 0.5 1.0 0.5 0.0 0.0 0.5 0.2 0.2
Kgrad 1 1 1 1 1 1 10k 10k 00k 00k
Kfix0 1 1 1 1 1 20k 1 20k 20k 20k
class-consistent batching No No No Yes Yes No No Yes No Yes
variational adaptive weighting No No No No No No Yes Yes Yes Yes

0 200 400 600
iterations (k)

4

6

10

20

40

80

FI
D

6.09
5.38

MeanFlow-B/2-1NFE
MeanFlow-B/2-2NFE

(a) MeanFlow-B/2

0 200 400 600
iterations (k)

4

6

10

20

40

80

FI
D

5.775.28

ESC-B/2-1NFE
ESC-B/2-2NFE

(b) ESC-B/2

600 800 1000 1200
iterations (k)

2.5

3

3.5

4

FI
D

2.85

3.18

ESC-XL/2-1NFE
ESC-XL/2-2NFE

(c) ESC-XL/2

Figure 6: Comparison of FID50k under 1-NFE and under 2-NFE during training among different
methods.

D.5 ALGORITHM FOR PLUG-IN VELOCITY CALCULATION.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Algorithm 2 Calculation of Plug-in Velocity

Require: Training batch x ∈ RB×D, sampled time t
1: Sample noise e ∼ N (0, I)
2: Compute noised samples: xt = (1− t)x+ te
3: For all sample pairs (i, j) in the batch, compute

εi,j =
xt,j − (1− t)xi

t

4: Evaluate log-probabilities:

log pi,j =

D∑
d=1

logN (εi,j,d; 0, 1)

5: Compute normalized weights along index i:

wi,j =
exp(log pi,j)∑
i′ exp(log pi′,j)

6: Compute conditional velocity:
vcnd,i,j = εi,j − xi

7: Aggregate to obtain plug-in velocity:

vplug-in,j =
∑
i

wi,j vcnd,i,j

Ensure: vplug-in = {vplug-in,j}Bj=1

D.6 FULL COMPARISON OF ESC VS. OTHER SOTA BENCHMARKS

We further include comparisons with the current state-of-the-art diffusion and autoregressive models
for completeness, as shown in Table 6 for ImageNet 256×256, and Table 7 for CIFAR10.

Table 6: Evaluation of ESC and other benchmarks under one/few-step generation on ImageNet-
256×256. Bold means overall the best, while underline means the best in shortcut models.

Family Method Param. NFE FID50k

G
A

N

BigGAN (Brock et al., 2019) 112M 1 6.95
GigaGAN (Kang et al., 2023) 569M 1 3.45
StyleGAN-XL (Karras et al., 2019) 166M 1 2.30

A
R

/M
as

k AR w/ VQGAN (Esser et al., 2021) 227M 1024 26.52
MaskGIT (Chang et al., 2022) 227M 8 6.18
VAR-d30 (Tian et al., 2024) 2B 10×2 1.92
MAR-H (Li et al., 2024) 943M 256×2 1.55

D
iff

/F
lo

w

ADM (Karras et al., 2024) 554M 250×2 10.94
LDM-4-G (Rombach et al., 2021) 400M 250×2 3.60
SimDiff (Hoogeboom et al., 2023) 2B 512×2 2.77
DiT-XL/2 (Peebles & Xie, 2022) 675M 250×2 2.27
SiT-XL/2 (Ma et al., 2024) 675M 250×2 2.06
SiT-XL/2+REPA (Yu et al., 2025) 675M 250×2 1.42

Sh
or

tc
ut

iCT (Song & Dhariwal, 2023) 675M 1 34.24
SCD (Frans et al., 2025) 675M 1 10.60
IMM (Zhou et al., 2025) 675M 1×2 7.77

MeanFlow (Geng et al., 2025a) 676M 1 3.43
2 2.93

ESC (w/o-class-consist.) 676M 1 2.92
ESC (w/-class-consist.) 676M 1 2.85

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Table 7: Full comparison on unconditional generation on. CIFAR-10.

Family method NFE FID

D
is

til
l Diff-Instruct (Luo et al., 2024) 1 4.53

DMD (Yin et al., 2024b) 1 2.66
SID (Zhou et al., 2024) 1 1.92

Sh
or

tc
ut

iCT (Song & Dhariwal, 2023) 1 2.83
ECT (Geng et al., 2025b) 1 3.60
sCT (Lu & Song, 2025) 1 2.97
IMM (Zhou et al., 2025) 1 3.20
MeanFlow (Geng et al., 2025a) 1 2.92
ESC 1 2.83

0 200 400 600 800 1000 1200
iterations (k)

2.5

3

3.5

4

6

1-
NF

E
FI

D

2.85

2.92

ESC(w/-class-consist.)-1NFE
ESC(w/o-class-consist.)-1NFE

Figure 7: Convergence of FID with ESC-XL with or without class-consistent.

D.7 DETAILS OF ESC-XL/2 CONVERGENCE WITH AND WITHOUT CLASS-CONSISTENT
MINI-BATCHING

Here we give the convergence of FID with ESC-XL with or without class-consistent in the complete
training process, as shown in Figure 7.

D.8 MORE TRAINING ITERATIONS ENABLE HIGH-FIDELITY FEW-STEP GENERATION

In our subsequent experiments, we further investigated the first point in Limitation. We found that
models trained with our proposed technique quickly learn effective one-step generation; however,
achieving high-fidelity few-step generation requires additional training iterations to allow the model
to better capture the full probabilistic trajectory. To verify this, we extended the training from 1.2M
to 2.4M and 3.6M iterations. As shown in Table 8, the results demonstrate that longer training
substantially improves few-step generation performance.

Table 8: FID performance of ESC-XL/2 under different training iterations. Longer training leads to
significant improvement in few-step generation fidelity.

Iterations 1-NFE 2-NFE
1.2M 2.85 3.18
2.4M 2.65 2.47
3.6M 2.58 2.34

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

40

30

20

10

0
0 40k 80k 120k 160k 200k

lo
ss

Training iterations

(a) MeanFlow without Plug-in Velocity (MeanFlow)

8

7

6

5

0
0 40k 80k 120k 160k 200k

lo
ss

Training iterations

(b) MeanFlow with Plug-in Velocity (ESC)

Figure 8: Images generated by ESC trained with CIFAR-10 of different epochs

These results confirm that increasing the number of training iterations enables the model to progres-
sively learn the underlying probabilistic path, leading to significantly better generation quality for
few-step sampling.

E FURTHER ANALYSIS

E.1 PLUG-IN VELOCITY STABILIZES THE TRAINING

To figure out whether the plug-in velocity helps to stabilize the training of shortcut models, here we
give the training loss vs. iteration steps for MeanFlow and MeanFlow with Plug-in Velocity. We
show the comparison of the first 200k iteration in Figure 8, where all the training setting are the same
in our paper with batch size set as 512. It further illustrates that incorporating the plug-in velocity
significantly stabilizes the training of MeanFlow.

E.2 LARGE MODELS GAIN MORE PERFORMANCE FROM LOW VARIANCE TRAINING

As shown, performance improvement for SiT-XL/2 over the MeanFlow is 16.9%, while it is 5.3% for
SiT-B/2 architecture. We attribute the performance gap to two key factors:

• Optimization Dynamics. In larger networks (e.g., XL/2), the representational capacity
increases substantially, amplifying the impact of optimization stability. As shown in Figure 8,
MeanFlow exhibits higher variance and less stable loss behavior during training, whereas
ESC maintains stable optimization and is therefore more likely to converge to a better solu-
tion. In smaller models (e.g., B/2), the representational capacity is nearly saturated, leaving
limited room for further improvement. In contrast, for larger models, ESC’s improved
stability enables it to better exploit the additional capacity, resulting in more noticeable
performance gains.

• Statistical Generalization. As the parameter space dimensionality increases, gradient noise
also grows, making variance-reduction mechanisms—such as EMA, momentum, gradient
clipping, or the proposed plug-in velocity—more beneficial. This observation aligns with
the theoretical intuition in Kaplan et al. (2020), where the generalization gap (or overfitting)
is linked to the variance term scaling. Within the scaling law framework, bias dominates in
smaller models, while variance becomes the main factor as the model scales up. To illustrate
this, we compare the FID convergence curves of ESC-B/2 vs. MeanFlow-B/2 (trained for
600k iterations) and ESC-XL/2 vs. MeanFlow-XL/2 (trained for 1.2M iterations), as shown
in Figure 9. Empirically, in the smaller B/2 setting, both methods converge rapidly to similar
FID values. However, in the larger XL/2 model, MeanFlow’s FID curve plateaus in the later
training stages, while ESC continues to improve and reaches 2.85. This suggests that in
large-scale models, variance dominates generalization behavior, and the variance reduction
introduced by plug-in velocity significantly enhances final performance.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
iterations (k)

4

6

10

20

40

80
FI

D

6.09

5.77

MeanFlow-B/2-1NFE
ESC-B/2-1NFE

(a) MeanFlow vs. ESC with SiT-B/2

0 200 400 600 800 1000 1200
iterations (k)

4

6

10

20

40

FI
D

3.40
2.85

MeanFlow-XL/2-1NFE
ESC-XL/2-1NFE

(b) MeanFlow vs. ESC with SiT-XL/2

Figure 9: Convergence of FID with different model architectures.

F LIMITATIONS AND FUTURE WORKS

• Slow convergence in few-step generation. An interesting phenomenon we observed
is that, under the proposed improvements of ESC, employing two-step generation, i.e.,
x0 = Xθ

0.5,0 ◦Xθ
1,0.5(x1), led to slower FID convergence compared to one-step generation.

This effect is particularly evident under the SiT-XL/2 architecture, whereas for B/2, the
two-step scheme still achieves better performance, as shown in Fig. 6. Although MeanFlow
also exhibits relatively slow convergence with two-step generation, it still outperforms
one-step (2.93 vs. 3.43). One possible explanation is that, in variational adaptive weighting,
predictions from 0 to 1 are inherently more difficult. With the stronger expressivity of
the XL/2 architecture, the training naturally allocates higher weights to uθ0,1, while the
simpler sub-task uθ0.5,0 receives less weight. In contrast, for the more capacity-limited B/2
architecture, fitting the easier task like uθ0.5,0 proves beneficial for the overall convergence.
We leave a deeper investigation of this phenomenon as future work.

• Inflexibility in training with CFG. We observe that introducing CFG leads to a relative
improvement of (33.05 − 6.09)/33.05 = 81.5%, indicating that training with CFG is
essential. However, the current approach follows Eq. 88, which inevitably introduces two
additional hyperparameters, ω and κ. As shown in Table 5 and in Table 4 of the original work,
the optimal values of these parameters, as well as the triggered intervals, vary significantly
across architectures. This greatly complicates hyperparameter tuning, and for large models
such as XL/2, results in substantial computational overhead. Therefore, we argue that
alternative approaches, such as representation alignment (Yu et al., 2025), representation
entanglement (Wu et al., 2025), or RL-guided generation (Zheng et al., 2025), may offer
promising replacements by injecting class-related semantic information into training or
enabling CFG-free diffusion generation. We leave the exploration of these directions for
future work.

• Approximation for fast JVP. Since computing JVP is required, techniques such as FlashAt-
tention cannot be directly applied in architectures like SiT. Although this does not incur
a significant time overhead, it leads to substantial memory consumption. Moreover, the
computation of JVP itself is relatively expensive and introduces additional memory usage.
In future work, we plan to explore numerical approximations of JVP to reduce reliance on
explicit differential operators.

• Generalization to downstream tasks and more models. Our current work focuses purely
on generative modeling. An important future direction is to extend the proposed framework
to downstream tasks where generation is conditioned on additional modalities, such as text-
to-image synthesis, image editing, or molecule design. Incorporating cross-modal alignment

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

mechanisms and scalable conditioning strategies would allow the model to generalize beyond
unconditional settings, making it applicable to a wider range of real-world scenarios. In
particular, extending the framework to text-to-image generation represents a natural and
promising step, enabling richer semantic control and practical applications. Furthermore,
the proposed techniques like plug-in velocity, should be regarded as a general training
technique. Since our paper includes extensive modular decomposition and performance
comparisons across a wide range of methods, it is difficult to perform with/without plug-in
velocity evaluations for all models under limited computational resources. We will consider
extending the proposed techniques for evaluation to a broader set of models as part of our
future work.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

(a) 4000 epochs, FID50k=3.39 (b) 8000 epochs, FID50k=2.98

(c) 12000 epochs, FID50k=3.93 (d) 16000 epochs, FID50k=2.95

Figure 10: Images generated by ESC trained with CIFAR-10 of different epochs

48

	Introduction
	Expressing One-step Diffusion through Shortcut Models
	Shortcutting flows with flow map solvers
	Learning to shortcut flow paths
	Examples: discrete- and continuous-time shortcut models
	Discussion: shortcutting flow paths under marginal velocity fields

	Elucidating the design space of shortcut models
	Improvements to training
	Scaling-up Evaluation
	Conclusion
	 Appendix
	Background of Diffusion Models
	Stochastic Interpolants and Flow Map
	Flow Map Solver
	Euler Solver
	DDIM Solver

	Derived Flow Path from preconditioner of EDM
	Score-based view of EDM.
	From EDM preconditioner to cosine path.
	From Score parameterization to Velocity

	Derivation of Flow Map Construction and Loss
	Consistency Training
	Shortcut Diffusion
	Inductive Moment Matching
	MeanFlow
	s-Consistency Training

	Proof of Theorems and Propositions
	Proof of Equivariance of MeanFlow and sCT-linear (Remark. 2.1)
	Proof of Error Bound (Theorem 2.2)
	Error Bound of DTSC
	Error Bound of Start Point Differential CTSC
	Error Bound of End Point Differential CTSC

	Optimal Path of Shortcut Model (Q.1. in Sec. 3)
	Proof of Inference Error Analysis (Prop. 3.1)
	Assumptions for Prop. 3.1
	Lemma Used for proof
	Proof for Theorem 3.1

	Proof of Ideal Velocity and its Bias-Variance Analysis (Prop. 4.1)
	The Form of Ideal Velocity
	The Bias and Variance of Plug-in Velocity

	The Convergence of CTSC Loss Employing Plug-in Velocity (Sec. 4)

	Experimental Details
	Details for Empirical Analysis of Fig. 2
	Details for Empirical Analysis of Table 2
	Details for Scaling-up Evaluation in Sec. 5
	Visualization Examples for ESC
	Algorithm for Plug-in Velocity Calculation.
	Full Comparison of ESC vs. other SOTA benchmarks
	Details of ESC-XL/2 convergence with and without class-consistent mini-batching
	More training iterations enable high-fidelity few-step generation

	Further Analysis
	Plug-in Velocity Stabilizes the Training
	Large Models Gain More Performance from Low Variance Training

	Limitations and Future Works

