
PACER: Preference-conditioned All-terrain Costmap
genERation

Luisa Mao
The University of Texas at Austin

luisa.mao@utexas.edu

Garrett Warnell
Army Research Laboratory

The University of Texas at Austin
garrett.a.warnell.civ@army.mil

Peter Stone
The University of Texas at Austin

Sony AI
pstone@cs.utexas.edu

Joydeep Biswas
The University of Texas at Austin

NVIDIA
joydeepb@cs.utexas.edu

Abstract: In autonomous robot navigation, terrain cost assignment is typically
performed using a semantics-based paradigm in which terrain is first labeled using
a pre-trained semantic classifier and costs are then assigned according to a user-
defined mapping between label and cost. While this approach is rapidly adaptable
to changing user preferences, only preferences over the types of terrain that are al-
ready known by the semantic classifier can be expressed. In this paper, we hypoth-
esize that a machine-learning-based alternative to the semantics-based paradigm
above will allow for rapid cost assignment adaptation to preferences expressed
over new terrains at deployment time without the need for additional training. To
investigate this hypothesis, we introduce and study PACER, a novel approach to
costmap generation that accepts as input a single birds-eye view (BEV) image of
the surrounding area along with a user-specified preference context and generates
a corresponding BEV costmap that aligns with the preference context. Using both
real and synthetic data along with a combination of proposed training tasks, we
find that PACER is able to adapt quickly to new user preferences while also ex-
hibiting better generalization to novel terrains compared to both semantics-based
and representation-learning approaches.
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1 Introduction and Related Works

Robust and aligned autonomous ground vehicle navigation in a wide variety of environments is
a long-standing goal in the robotics community. While there has been progress on the classical
problem of collision-free waypoint navigation in static, simple environments [1][2], there are still
significant challenges in constructing autonomous systems that can navigate in environments that
are dynamic, more complex, or both [3]. Further, successful operation in such environments typi-
cally relies on robots understanding and aligning their behaviors to specified human preferences for
navigation that go beyond simple waypoint achievement, e.g., preferring to cross a busy street at a
crosswalk even if doing so results in a longer path to a waypoint [4][5].

In this paper, we consider the specific question of how robots should assign costs to terrain such that
those costs align with human preferences for terrain traversal. Having robots adhere to preferences
of this type is useful both for helping enable robust navigation in complex environments and also
for ensuring that robots adhere to other constraints such as social norms [6] [7]. While seeking to
assign appropriate costs to terrain is not the only way to ensure aligned navigation behavior (e.g.,
one may instead seek navigation control policies that are aligned to human preferences [8][9][10]),
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we choose to focus on assigning terrain costs here due to its prevalence in the existing literature, as
many existing and well-understood autonomous planning frameworks leverage costmaps to produce
cost-optimal behaviors [11] [12] [13].

Figure 1: Given a BEV im-
age I , the generated costmap
C is conditioned on the pref-
erence context Ĥ . The pref-
erence context represents an
ordering over terrains con-
veyed through a set of three
pairs of terrain patches, where
the left patch is more pre-
ferred than the right patch.
Changing the preference con-
text leads to changed terrain
costs, which results in a dif-
ferent plan aligned to the new
operator preference.

We are particularly interested here in terrain cost assignment ap-
proaches that can rapidly adapt to newly-expressed terrain prefer-
ences. Popular approaches such as inverse reinforcement learning
(IRL) and preference-based IRL (PbIRL) based on terrain patch
clusters do not admit this type of rapid adaptation due to the amount
of additional data required to express or query for the new prefer-
ence [14] [15] [16]. Another class of methods represent terrains
as vectors in a continuous embedding space, so preference are no
longer limited to terrains with predefined labels, but now require a
cost function to be trained using the embedding space to map terrain
representations to scalar cost [14] [17] [18]. Instead, to the best of
our knowledge, the most commonly-employed systems with this ca-
pability follow a semantics-based paradigm in which the surround-
ing terrain is first labeled using a pre-trained semantic classifier and
human preferences are conveyed via a manually specified label-to-
cost mapping [5] [19]. Such systems exhibit rapid adaptation to new
preferences by design: the new costmaps can be generated as soon
as the user provides a new label-to-cost mapping, which is typically
accomplished in seconds to minutes. However, these systems are
also inherently limited in that the user can only specify preferences
with respect to the terrain types known to the classifier.

Towards overcoming the limitations of the semantics-based
paradigm to terrain cost assignment, we propose and study PACER, a
novel approach to costmap generation that accepts as input a single
birds-eye view (BEV) image of the surrounding terrain along with
a user-specified preference context and generates a corresponding
BEV cost map that aligns with that preference context (see Fig. 1).
By preference context, we mean a small set of terrain patches and pairwise preferences over those
patches that are supplied at deployment time. We design PACER to exhibit three design desiderata:
(1) it is capable of representing a prior over terrain preferences; (2) it is capable of adapting to a
wide variety of preference contexts; and (3) it is able to assign aligned costs to terrains that appear
in both the preference context and the BEV image, even for novel terrain types.

Using real and synthetic terrain data, we implement a training pipeline to realize these three prop-
erties and evaluate the resulting preference-conditioned costmap functions over a wide variety of
BEV images. Additionally, we study the impact of the resulting costmaps on cost-optimal naviga-
tion behavior with respect to adherence to human preferences. We find that our method overcomes
limitations in prior works by being easily adaptable to new operator preferences and producing fine-
grained costmaps that illicit desirable navigation behaviors even in previously unseen environments.

2 The Terrain-Aware Preference-Aligned Planning Problem

Figure 2: Relationships between spaces
of Terrains, Image Observations, and
Costmaps. PACER approximates the
“true” human costing function function
from visual observations of terrains.

We now develop the terrain-aware preference-aligned
planning problem. We will first formulate the path plan-
ning problem, and then we will discuss the problem of
learning preference-aligned terrain costs.

2.1 Path Planning

In this paper, we are concerned with the general problem
of planning a path in a robot state space X (SE(2) for
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ground vehicles) from a start and goal pose x1, G ∈ X as the problem of finding the finite trajectory
ΓS = [x1, ..., xS ] consisting of S states x ∈ X which minimizes a total objective function

ΓS = argΓ min ||xS −G||+ λJ (Γ), (1)

where ||xS − G|| is the distance between the final state xS and G, and J (Γ) is the cost function
scaled by the relative weight λ.

A cost function J (Γ) may include various terms such as the geometric cost of obstacles, social
navigation cost, or terrain cost,

J (Γ) = Jgeometric(Γ) + αJsocial(Γ) + βJterrain(Γ) (2)

where α, β are relative weights. This paper is concerned with the terrain cost term Jterrain(Γ) of the
general function.

2.2 Preference-Aligned Terrain Costs

To better understand preference-aligned terrain costs, we first introduce a fixed terrain function to
represent the spatial distribution of the terrains in the world. Let a terrain map T : X → T be
a function that maps a robot pose x ∈ X to the terrain τ ∈ T that the robot interacts with when
in pose x, where a terrain τ captures all the properties of the ground relevant to robot navigation.
Additionally, we assume the human has an unknown true cost function H : T → R0+ mapping
terrains to scalar real-valued costs based on their preferences. This cost function is influenced by
various factors, including the personal preferences of human operator, the environment, and the task
at hand. Let H denote the continuous space of such cost functions, such that H ∈ H.

For terrain-aware navigation, the robot relies on its visual observations to infer terrain-specific costs.
We assume that these observations arrive in the form of images generated according to a black-box
observation function O : X ×T → I, i.e., I = O(x, T ), where x is the observing pose of the robot,
T is a terrain map, T is the space of terrain maps, and I is the space of images. In practice, most
methods operate on synthetic birds-eye-views generated from the original camera images. BEV
images can be generated via static ground-plane homography [15][14], or a BEV accumulation
algorithm [20]. Henceforth, we define input images to be BEV images. We assume that the the
visual appearance of the terrain provides sufficient information for the robot to perform terrain-
aware navigation. The observation function is thus fixed, but unknown to the robot.

During planning, the terrain cost of a pose is found using a costmap C : X → R0+ that maps from
robot poses to costs. We introduce a costmap generation function R : I × H → C as the function
mapping from the space of images I to the space of costmaps C, conditioned on an unknown human
cost function that belongs to H.

Since the robot has no direct access to the terrain map T and there is no clear representation of H , the
terrain-aware preference-aligned planning problem is thus to learn the function R such that, given
an image observation of terrain, the optimal trajectory planned with respect to R is also optimal with
respect H . The conditions in the next section will be introduced as our analyses of how we address
this problem.

3 Necessary Conditions for Preference-Aligned Navigation

Seeking training tasks that will help us compute valid preference-conditioned costmap functions
R(·|H), we now state a set of conditions that are necessary for these tasks to produce costmaps that
are consistent with human preferences for terrain.

In particular, we will state conditions for equivalence and partial ordering and we will show that Rs
that produce costmaps that yield optimal trajectories consistent with a human preference must obey
these conditions.
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Let R(·|H) denote a costmap generated according to an H ∈ H, and C|x denote that costmap
C ∈ C is evaluated at pose x. For a generated costmap R(·|H) to be consistent with H , we specify
it must exhibit both equivalence and partial ordering. By equivalence, we mean that the terrains at
two poses are given the same cost by H if and only if the costmap generated by R from an image
observation and evaluated at those two poses have equal cost, i.e.,

Hi(T (x1)) = Hi(T (x2)) ⇐⇒ R(O(·, T ) | Hi)
∣∣∣
x1

= R(O(·, T ) | Hi)
∣∣∣
x2

∀x1, x2, Hi .

(NC1)

By partial ordering, we mean that H assigns a preference order over the terrains at two poses if and
only if the costmap generated by R from an image observation assigns those two poses the same
preference order, i.e.,

Hi(T (x1)) < Hi(T (x2)) ⇐⇒ R(O(·, T ) | Hi)
∣∣∣
x1

< R(O(·, T ) | Hi)
∣∣∣
x2

∀x1, x2, Hi .

(NC2)

We let O(·, T ) denote an image observation captured from any observing pose from which x1, x2

are visible.

We now provide a theorem that NC1 NC2 are necessary for aligning the preferences of Hi with
R (proof in Appendix). Specifically, if the most optimal path with respect to R(· | Hi) has the
same optimal cost when evaluated with Hi, then the conditions (NC1) and (NC2) must hold. For a
trajectory Γ composed of discrete poses, let the cumulative cost function for the human’s evaluation
be denoted by H|Γ ≡

∑
xi∈Γ H(T (xi)). Similarly, let the cumulative cost function based on the

generated costmap be denoted as R|Γ ≡
∑

xi∈Γ R(O(·, T ) | H)|xi
. Given this setup, the following

theorem establishes the necessity of the conditions (NC1) and (NC2) such that H|Γ∗ = R|Γ.

Theorem 1. Let Γ∗ = argΓ minH|Γ, Γ = argΓ minR|Γ denote the optimal trajectories with
respect to H and R respectively. If the optimal trajectory with respect to R has equal cost to the
optimal path with respect to H when both are evaluated on H such that H|Γ∗ = R|Γ, then conditions
(NC1) and (NC2) hold.

In the next section, we use conditions (NC1) and (NC2) to define training tasks for learning the
optimal R from data, which drives our proposed approach to the online generation of costmaps
which result in preference-aligned navigation.

4 Preference-Aligned All-Terrain Costmap Generation

We now present our proposed approach for computing aligned terrain costmaps, which we refer to
as Preference-aligned, All-terrain Costmap genERation (PACER). PACER introduces the notion of a
preference context and comprises several components, including a neural network architecture, and
a data curation and training methodology based on the three design desiderata.

4.1 Preference Context

The preference-aligned terrain costs discussed in Section 2 depend on a human’s cost function H :
T → R0+. Unfortunately, we do not have access to H directly since it is known only to the human
operator. Therefore, we propose to obtain and utilize an approximate representation of H that we
call a preference context.

We define a preference context Ĥ as a set of n image patch pairs Ĩ ≻ Ĩ
′

constructed from human
input such that the human prefers the terrain observed in image Ĩ over the terrain observed in Ĩ

′
,

where an Ĩ ∈ I is an observation of terrain as a small image patch. The small patch may be a part of
a larger bird’s-eye-view image of the ground. More specifically, Ĥ consists of n preferences derived
from H and is defined as Ĥ ≡ {(Ĩ1 ≻ Ĩ

′
1), ...(Ĩn ≻ Ĩ

′
n)}. Fig 3 shows some example preference

contexts with n = 3 patch pairs and their corresponding costmaps.
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Figure 3: Overview of the dataset structure. Each training example contains a preference context,
image, and target costmap. We vary the preferences and images, resulting in a large combinatorial
dataset despite the relatively small amount of real recorded data. In a later training phase, we also
augment with synthetic data by artificially finding and replacing certain terrains types with synthetic
terrain textures. The real-valued costs assigned to terrains types based on an input total ordering are
shown in the Generate Examples procedure, where black represents low cost and white is high cost.

In our implementation, the n pairwise preferences are expressed using image patches of size w× h.
Ĥ is then represented by vertically concatenating the patches within a pair with the more-preferred
terrain patch on top and forming a single n × c × w × 2h tensor, where c is the number of color
channels.

4.2 Model Architecture

To generate costmaps, we propose to approximate functions R : I × H → C, which require H as
input, with functions R̂ : I × Ĥ → C, where Ĥ is the space of all preference contexts as defined
above. We model R̂ as a neural network with a two encoders and a single decoder. The input image
is passed through a BEV image encoder FBEV to form an image embedding, and, similarly, the
input preference context is passed through a preference context encoder Fpref to form a preference
embedding. The output costmap is then generated by concatenating these embeddings and then
passing them through a decoder D. A visual depiction of this architecture is provided in Figure 1.
Hyperparameters are provided in Table 3.

4.3 Loss Function

PACER is trained using supervised machine learning, i.e., given a dataset D = {(Ĥ, I, CT )i}Ni=1 of
preference context, image, and target costmap tuples, we seek the parameters ϕ of R̂ that minimize
a loss between the real and predicted costmaps. More specifically, we seek ϕ∗ such that

ϕ∗ = argmin
ϕ

E(I,Ĥ,CT )∼D

[
ℓ
(
R̂ϕ(I, Ĥ), CT

)]
, (3)

where we use the binary cross entropy loss averaged over each pixel as the loss function ℓ.

5 Dataset Curation and Training PACER

We now describe the dataset curation and training process for PACER. PACER is trained using three
distinct phases of supervised machine learning, each corresponding to a unique training dataset that
corresponds to one of the desiderata desecribed in Section 1. In what follows, we will first describe
how we generate training examples, then describe each of the three training phases and the training
procedure.

5.1 Training Example Generation

The datasets D we use to train the PACER model consist of tuples of preference contexts, images,
and target costmaps (Ĥ, I, CT ). To construct these datasets, we bootstrap off of semantic terrain
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classification and use a pretrained terrain patch classifier that assigns one of L predefined semantic
labels to a given terrain image patch.

The inputs to the training example generation process are a single image I along with a total ordering
over terrain types τ1 ≻ τ2 ≻ . . . ≻ τL, where each terrain type τl corresponds to a bank of image
patches. PACER assumes that the cost value associated with τl is given by H(τl) =

l−1
L−1 . The patch

bank that corresponds to τl consists of patches of that type that have been extracted from images
collected during robot deployment.

We use these inputs to generate Ĥ and CT . To generate Ĥ , we first choose n ordered pairs from
the total ordering over the L terrain types without replacement. For each of the resulting ordered
pairs, we sample uniformly at random patches from the corresponding patch banks, and use these
2n patches to construct Ĥ according to the process detailed in Section 4.1 above. To generate CT ,
we first perform semantic segmentation on I and then transform the segmented image into CT by
setting the cost for a pixel labelled l to be H(τl).

Constructing training examples in this way encourages R̂ϕ∗ to follow our necessary conditions.
First, because CT assigns the same cost value to image locations that received the same semantic
label, R̂ϕ∗ is encouraged to identify regions of visually-similar terrain and assign equivalent costs
within the region, as per condition (NC1). Second, because both Ĥ and CT are, by construction,
consistent with H , R̂ϕ∗ is encouraged to predict costmaps given Ĥ which preserve the partial or-
dering of H , as per condition (NC2). Interestingly, assuming sequential segmented images are
temporally consistent, we observe that R̂ϕ∗ is encouraged to be viewpoint-invariant.

During inference time, there are no semantic labels and only the visual appearances of terrains are
considered.

5.2 Training Phases

Each of the three system desiderata stated in Section 1 is manifested in a distinct training phase,
each of which utilizes a unique training dataset generated using the procedure described above.
More specifically, these phases generate datasets Dreal, Dshuffled, and Dsynthetic, which promote
adherence to prior preferences in seen terrains, robustness to new preferences, and robustness to
new terrains, respectively. A visualization of each of these phases is given in Figure 3, and we
describe each phase in more detail below.

Training Phase 1: Pretraining with Real Data and Realistic Preferences. To promote a prior
towards an overall “realistic” ordering (as per our first desired property), PACER’s first training
phase constructs and utilizes a dataset Dreal generated using real-world data collected from robot
deployments around a university campus and realistic preferences over terrain classes. An example
of a realistic preference ordering is as follows: concrete ≻ pebble ≻ mulch ≻ grass ≻ marble

≻ bush. The “realistic preferences” were defined by the first author according to considerations for
robot safety (e.g. preferring grass over loose marble rock for a wheeled robot) and societal norms
(e.g. preferring concrete over grass to avoid trampling lawns, even though both terrains are relatively
safe).

Training Phase 2: Augmentation with Changed Preferences. During deployment in terrains
not seen during training, the robot should adhere to preferences given by the operator (as per our
second desired property). Even when operator preferences contradict “realistic preferences”, the
robot should follow operator preferences over learned priors. To encourage this adherence to the
ordering in the preference context, we train using the same real data but with changed preferences
on a smaller corpus of data. More specifically, in this phase, we generate data using a randomly-
permuted total ordering over terrain labels.

Training Phase 3: Augmentation with Synthetic Terrains. To promote the model’s ability to
generalize to terrains unseen during training (as per our third desired property), we further train
with synthetically augmented data. We pick a random subset of terrains to replace and randomly
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permute the preference order. An image containing at least one such terrain is selected, and those
terrains are artificially replaced with terrain textures from an open-source database [21] using dense
segmentation. The training example is formed with a preference context (where terrains have been
replaced), the image, and a costmap with costs reassigned according to the new preference order.

Training iterations are split equally among the three datasets Dreal, Dshuffled, and Dsynthetic. Before
training on Dreal, weights are initialized randomly. After completing a training phase, we switch to
the next dataset starting from the previous trained weights.

6 Experiments

To evaluate PACER, we seek to answer the following questions empirically:

1 How effectively is the robot able to navigate in terrains seen during training when the
preference context contains (a) only seen terrains or (b) only previously unseen terrains?

2 How effectively is the robot able to navigate in unseen terrains when the preference context
contains (a) only those unseen terrains or (b) only seen terrains?

By dividing deployment scenarios into the four situations above, we will be able to understand the
performance of PACER under the four ways to combine seen and unseen terrains in the preference
context and environment. In 1b and 2b, note that the preference context does not provide information
about the terrains appearing in the environment, so the robot must rely on learned priors about
realistic cost assignment.

Evaluations are performed using simulated experiments on an aerial map. In the Appendix, we also
provide an ablation study and results from real robot deployments. We compare against STERLING
[14] (a representation learning approach) and a classifier (a semantics-based approach) as baselines.
The same model for our approach is utilized across all environments. No retraining or fine-tuning
is done. Additionally, a single context is used for the duration of a simulated deployment in an
environment (i.e. the context is not switched out midway through the path-planning).

To quantify the navigation performance in our experiments, we posit that factors such as the distance
traversed or closeness to a human-defined trajectory do not matter as much as traveling on only
the preferred terrains. We therefore assign terrain types a low, medium, and high cost, and report
the proportion of the planned path which traverses each of these terrain types. Note that we have
purposely chosen this metric to be different from the commonly-used Hausdorff distance between
the planned trajectory and one defined by a human operator, which can vary greatly when there are
multiple valid paths to reach the goal.

6.1 Aerial Map Experiments

In our simulated experiments, we build aerial maps from drone footage of three locations around
our campus, which we consider seen environments. We also use open-source aerial maps [22] from
around the world, covering a wide variety of both urban and natural terrain types and which we
consider unseen. For each of the seen and unseen environments, we provide a start and goal location
and test varying operator preferences. We test realistic preferences, and “inverted” preferences, in
which each of the pairwise orderings in the realistic preference are reversed. Given the robot’s pose
on the aerial map, the robot’s projected bird’s eye view can be found, and used as input to generate
the local costmap. Planning is done using the A* algorithm [23] on the costmap.

Table 1 displays the results for seen environments. Towards answering question 1a, PACER has
similar results to the STERLING baseline, as both approaches were trained on the same in-distribution
data. When no useful context has been provided for PACER (i.e. the context contains only unseen
terrains which do not match the environment as per 1b), the results are on par with the classifier
baseline. PACER’s success despite the lack of an informative preference context shows that the
model has captured a prior over realistic cost-assignment for in-distribution terrains.
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Method Low (%) Medium (%) High (%)
PACER 73.83% 19.70% 6.47%
PACER (uninformative context) 67.97% 15.89% 16.15%
STERLING 74.72% 18.65% 6.63%
Classifier 65.86% 21.46% 12.69%
Upper Bound 82.82% 13.69% 3.49%

Table 1: Proportion of planned paths that tra-
verse low, medium, and high-cost terrains in
seen environments, relating to 1a,1b.

Method Low (%) Medium (%) High (%)
PACER 81.85% 8.00% 10.15%
PACER (uninformative context) 53.83% 2.20% 43.97%
STERLING 61.39% 10.12% 26.86%
Upper Bound 91.85% 6.02% 2.13%

Table 2: Proportion of planned paths that tra-
verse low, medium, and high-cost terrains in
unseen environments, relating to 2a,2b.

Table 2 displays the results for unseen environments. Towards answering question 2a, when given
an informative context, PACER outperforms the STERLING baseline. Though representation-learning
approaches like STERLING should theoretically generalize due to their continuous representation
space, this is contingent on similar terrains forming clusters in this space, which may not be the case
for unseen terrains. Note that here, for unseen environments, the classifier baseline has been omitted,
as it allows no way for a user to provide terrain preferences for classes that are not predefined.
PACER overcomes the limitations of previous paradigms, as it both allows preferences in unseen
environments to be expressed and generalizes well to these unseen environments. Additionally,
when no useful context has been provided for the unseen terrains (per 2b), PACER is not able to
adapt.

7 Limitations and Future Work

The real robot experiments reported in the Appendix were conducted on a single campus with a sin-
gle robot. An important direction for future work is to extend the experimental study to more varied
terrains and multiple robots with a variety of sensors. In future work, we are interested in conducting
human user studies to evaluate the ease with which users can express their preferences through our
method and to explore alternative approaches for expressing user preferences to condition costmap
generation. Another direction for improvement could be to incorporate depth data into the costmap
generation. As we currently rely on a homography transform to a birds-eye-view, we assume the
ground is always flat and focus only on the visual appearance of terrain textures. This assumption
leads to undesirable behavior such as crashing into concrete curbs, which have preferable terrain but
cannot be driven over.

8 Conclusion

In this paper we presented PACER, a novel architecture and training approach to quickly produce
costmaps according to arbitrary user preferences and new terrains with no fine-tuning. Our approach
was evaluated against semanics-based and representation-learning baselines in both simulated and
real robot experiments and was shown to fulfill our three design desiderata. The adherence of PACER
to realistic preference when not given an informative preference context fulfills the first key prop-
erty of being able to make inferences when there is no context by capturing a prior over realistic
preferences (1b). As per the second key property, PACER has been shown to align costs to preferred
terrains even as preferences are varied (1a). The performance of PACER in both seen and unseen
environments when given an informative preference context shows that PACER exhibits the third
key property (1a, 2a). We have shown this approach to be highly adaptable to new preferences and
terrains, as well as able to infer the traversability of some terrains according to realistic preferences.
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Hyperparameter Value
Learning Rate (lr) 1e-5
Batch Size 64
Number of Epochs (Phase 1) 100
Number of Epochs (Phase 2) 5
Number of Epochs (Phase 3) 100
Optimizer Adam
Activation Function Sigmoid
Kernel 3
Stride 1

Table 3: Model-training hyperparameters.

Terrain Type Number of Patches
Bush 612
Concrete 846
Marble rock 748
Mulch 838
Pebble pavement 879
Grass 878

Table 4: Number of patches for each terrain
type

A Proof of Theorem 1

Theorem 2. Let Γ∗ = argΓ minH|Γ, Γ = argΓ minR|Γ denote the optimal trajectories with
respect to H and R respectively. If the optimal trajectory with respect to R has equal cost to the
optimal path with respect to H when both are evaluated on H such that H|Γ∗ = R|Γ, then conditions
(NC1) and (NC2) hold.

Proof. Since H|Γ∗ = R|Γ, we must have that:

(a) H|Γ1 < H|Γ2 ⇒ R|Γ1 < R|Γ2 for all paths Γ1,Γ2.

Otherwise, there exist paths Γ1,Γ2 such that H|Γ1
< H|Γ2

and R|Γ1
≥ R|Γ2

. Then, Γ2

may be selected as Γ, but has greater cost than H|Γ∗ when evaluated on H , which is a
contradiction.

(b) R|Γ1
< R|Γ2

⇒ H|Γ1
< H|Γ2

for all paths Γ1,Γ2.

Otherwise, there exist paths Γ1,Γ2 such that R|Γ1
< R|Γ2

and H|Γ1
> H|Γ2

(by contra-
position on (a), we eliminate the case where R|Γ1

< R|Γ2
and H|Γ1

= H|Γ2
). Then, Γ1

may be selected as Γ, but may have greater cost than H|Γ∗ when evaluated on H , which is
a contradiction.

By (a) and (b), we have that H|Γ1
< H|Γ2

⇐⇒ R|Γ1
< R|Γ2

. By contraposition, we also have
H|Γ1

= H|Γ2
⇐⇒ R|Γ1

= R|Γ2
. Finally, since a path Γ can consist of a single state, conditions

(NC1) and (NC2) must also then hold.

B Dataset Details

In this section, we provide the size and statistics of our dataset. We train with four “realistic” pref-
erences, each with a plausible reason for the ordering. Legged robots may encounter resistance on
bush, but would trip on marble rock so fitting operator preferences are: (1) pebble ≻ concrete ≻
mulch ≻ grass ≻ bush ≻ marble or (2) concrete ≻ pebble ≻ grass ≻ mulch ≻ bush ≻
marble. On the other hand, wheeled robots will slip a bit on marble rock, but cannot drive through
bush so a realistic preference is: (3) concrete ≻ pebble ≻ mulch ≻ grass ≻ marble ≻ bush.
As an example of a preference motivated by social norms, we have: (4) concrete ≻ pebble ≻
marble ≻ grass ≻ bush ≻ mulch since it is undesirable for robots to trample grass lawns, but
doing so to marble rock is alright.

To construct a large training dataset from a relatively small amount of recorded data, we employ
synthetic augmentation using 14 additional terrain textures, including sand, asphalt, leaves,
river pebbles, cracked mud, and snow. Examples of synthetically augmented data are shown
in Fig 4. Model training hyperparameters and statistics for the patch bank are shown in Tab. 3 and
Tab. 4.
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Low (%) Medium (%) High (%)
Realistic Preference
Dreal 95.97% 1.70% 2.32%
Dshuffled 70.50% 18.94% 10.55%
Dsynthetic 76.66% 18.43% 4.91%
Inverted Preference
Dreal 18.55% 20.97% 60.48%
Dshuffled 69.21% 22.56% 8.23%
Dsynthetic 70.22% 21.32% 8.46%
Uninformative Context
Dreal 66.22% 14.48% 19.30%
Dshuffled 81.82% 7.67% 10.51%
Dsynthetic 67.97% 15.89% 16.15%

Table 5: Proportion of planned paths that tra-
verse low, medium, and high-cost terrains in
seen environments for each training phase.

Method Low (%) Medium (%) High (%)
Realistic Preference
Dreal 60.78% 7.05% 32.18%
Dshuffled 65.16% 6.44% 28.40%
Dsynthetic 88.09% 2.57% 9.34%
Inverted Preference
Dreal 22.59% 15.31% 62.10%
Dshuffled 39.86% 13.96% 46.17%
Dsynthetic 65.65% 22.10% 12.25%
No Context
Dreal 73.44% 6.53% 20.03%
Dshuffled 66.22% 14.48% 19.30%
Dsynthetic 86.52% 4.20% 9.28%

Table 6: Proportion of planned paths that tra-
verse low, medium, and high-cost terrains in
unseen environments for each training phase.

B.1 Dataset Size Analysis

Figure 4: Synthetic data examples consisting of
Preference Context, Synthetic BEV, and Target
Costmap, generated by segmenting and replacing
terrains from the Original BEV.

The size of the space from which we sample
data is very large. From a total ordering of L la-
bels, there are m =

(
L
2

)
different ordered pairs

of terrains and
(
m
n

)
different sets of n pairs. For

each set of n pairs, there n! ways to shuffle the
pairs to construct the preference context, yield-
ing

(
m
n

)
·n! possible preference contexts. More-

over, for each label in the preference context,
we sample a patch from the patch bank. Our
dataset contains a bank of around 800 patches
for each terrain label (Table 4), and about 950
full images. Therefore, for each total ordering,
we have

((L2)
n

)
n! arrangements of labels into

preference contexts, where we sample a patch
from a bank of 800 patches for each label. For
L labels, n = L logL pairs are needed to fully
describe a total ordering, though we evaluate on
a smaller n = 3 due to size considerations for
the model and dataset.

C Ablation Study

To understand the effects of each phase in the training process, we perform an ablation study using
the same environments as in the aerial simulator experiments.

In the Dreal phase, the model is trained only on real data and realistic preferences. In the Dshuffled

phase, the model is pretrained on real data with realistic preferences, and then trained on a smaller
amount of changed preferences. In Dsynthetic phase, the model is trained according to all three
phases.

Results are shown in Tab. 5, 6. In seen environments, the model trained on Dreal performs the best
of the three with realistic preferences, but is unable to adapt when the preferences are inverted. Even
without a useful context provided, the majority of planned trajectories are on low-cost terrain. In
unseen environments, this method performs the worst regardless of preference context. The model
trained on Dshuffled is able to adapt to changing preference orderings in seen environments, though
is unable to recognize and match new terrains in the preference context to the new environment. The
model trained on Dsynthetic is shown to both respect changing preference order and recognize new
terrains.
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Figure 5: Example of a costmap, planned path, and preference context of a simulated robot deploy-
ment in one of the natural unseen environments of the Aerial Map Experiments using our method.
The costmap displays the timeseries progression of the local BEV costmaps generated with our
method.

Figure 6: Examples of several paths planned using our method in an urban unseen environment
and their corresponding preference contexts. Here, we visualize the large scale of these simulated
deployments, and the diversity of visual terrain appearances.

D Aerial Map Simulator

In Fig 5 and 6, we show examples of paths planned using PACER in our aerial map simulator. These
experiments are an evaluation purely over planning based on terrain preference, with no kinody-
namic constraints, no errors due to localization, and no costs associated with elevation.

Given a robot state (x, y, θ) relative to the map, the robot’s view from this pose is found by overlay-
ing the warped field-of-view shape onto the aerial map at that state. We employ A* on an eight-
connected grid for path planning on the local costmap. If the node-expansion operation in A*
explores a neighbor node which does not have an associated cost (meaning its state has not been
captured in any previous view), the BEV from the current node is used to construct a local costmap
which includes the previously-unobserved neighbor state, and the planning continues. Thus, the
robot does not actually move its position in this path planning simulation. This is an optimization
such that we can avoid transforming the full aerial map (which may be very large) into a costmap.
Fig 5 shows the progression of the local costmaps as the robot discovers more of the environment
and the resulting planned path.
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E Real Robot Experiments

We now seek to demonstrate that PACER performs well during execution in the real world. We deploy
our method, STERLING, and the classifier approach on a mobile robot at four different locations on
the UT campus which are not included in the simulated environments. These four locations cover
red brick, concrete sidewalk, grass, mulch, and pebble pavement. Since all methods are
trained to be view-point invariant and platform-agnostic, we trained them all with the same data
collected from a Boston Dynamics Spot, and deployed zero-shot on a Clearpath Jackal which has
significant differences in viewpoint and mobility than the Spot. We evaluate the performance of each
method with a realistic preference on a variety of terrain types. In these experiments, we measure the
robot’s ability to execute the plan, which includes robustness to a different viewpoint and platform.
We integrate each method with a sampling-based local planner [24] and maintain the same planner
parameters to ensure fairness.

Figure 7: The four environments where real-robot trials were performed. Blue arrows and yellow
stars show start and goal locations respectively. The red dashed line marks the intended path based
on operator preference.

Environment Env 1 Env 2 Env 3 Env 4
Classifier 5/5 4/5 1/5 2/5
STERLING 0/5 2/5 0/5 4/5
Ours 5/5 5/5 5/5 4/5

Table 7: Number of successes per 5 trials of different approaches across various environments.
A trial is a success if the robot reaches the goal without traversing across undesirable terrain and
without operator intervention.

Our approach had the most successful trials across all environments. While the classifier performed
well in environments 1 and 2, we hypothesize that difficult lightning conditions and variations in
terrain appearance caused the failures in environments 3 and 4. Though STERLING performed as the
best baseline in the simulated experiments (which involved only planning), it seemed to be unable to
execute these plans in real-robot experiments. Many of the failure cases involved the robot driving
slightly off-path and just grazing the undesirable terrains. In patch-based representations, a single
patch may contain multiple different terrains (e.g. half sidewalk and half grass), so the cost assigned
to the patch would be some combination of the different terrain costs, resulting in a coarser degree
of control on the physical robot. Our approach overcomes this limitation since it directly outputs a
fine-grained costmap in a single forward pass.

F Real Robot Experiments Setup

We run our real-robot experiments on a Clearpath Jackal Unmanned Ground Vehicle. A Microsoft
Azure Kinect RGB-D camera supplies visual information at ∼ 30Hz. We run all algorithms on a
Nvidia GeForce GTX 1050TI GPU. Taking advantage of batched cost computation on the GPU,
we find that the STERLING and classifier baselines publish motion commands at ∼ 20Hz. Our
approach publishes motion commands at ∼11Hz on the same GPU.

Though each method was collected using data from a Boston Dynamics Spot, they were all deployed
zero-shot on the Clearpath Jackal with only visual input.
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Figure 8: Example of homography-transformed BEV image of live robot deployment and corre-
sponding local costmap. The best local plan is chosen from a set of path options based on a weighted
combination of the terrain cost and distance to goal.

While most experimental results reported in STERLING were obtained using a joint representation
space with both visual and inertial-propriceptive-tactile features deployed on the legged Spot, the
approach claims to be broadly adaptable to robots of different morphology with vision-only navi-
gation. We follow the precedent set in STERLING of transferring visual features learned from the
Spot to the Jackal.

F.1 Sampling-based Preference-aligned Local Planning Formulation

We formalize the local path planning problem as a search for the optimal motion arc Γ∗ from a set
of arc options {Γ1,Γ2, . . . ,Γn}, each of which adheres to the kinodynamic constraints of Acker-
mann Steering (Fig 8). Each arc Γi represents a feasible trajectory that the robot can follow, and is
discretized into states/actions at finite future timestamps in a receding horizon planner. Each arc can
be expressed as Γi = {s0, s1, . . . , sm}, where s0 is the current state and sm is the state at the end of
the planning horizon.

Γ∗ = argmin
Γ

J (Γ, G)

where

Ji = α · Jgeometric(Γi, G) + (1− α) · Jterrain(Γi)

α is the parameter representing the tradeoff between the geometric and terrain costs in the arc selec-
tion. Jgeometric(Γi, G) measures the geometric distance between the goal G and the closest state in
Γi. Jterrain(Γi, G) is the terrain-cost of Γi ∈ {Γ1,Γ2, . . . ,Γn}, formulated as follows:

Jterrain(Γi) =
∑
sj∈Γi

γj · C(sj)

The term γj represents a decay factor applied to the cost of each state sj along the arc Γi such that
the planner prioritizes short-term navigational feasibility. In our experiments, we use γ = 0.9.

C(sj), the cost at state sj , is calcuated either by indexing into the full BEV costmap (as with
PACER) or via terrain patch to scalar cost (as with the STERLING and classifier baselines).

Having determined Γ∗, a finite action control sequence is obtained by applying 1D Time Optimal
Control along Γ∗, resulting in a series of control inputs that drive the robot along the optimal path.

G Preference Context Embeddings

We include a t-SNE visualization of the embedding space of the context encoder. We display only
the realistic preference contexts (red) and inverted preference contexts (blue), as the differences
in other variations of preference context are much more subtle. The separation between realistic

15



Figure 9: Visualization of t-SNE plot showing embedding vectors of realistic preference contexts
(red) and inverted preference contexts (blue).

preference contexts (red) and inverted preference contexts (blue) indicate the encoder has learned
useful features on which condition the output costmap.
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