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Abstract

Recent advances in unsupervised learning have highlighted the possibility of learning to
reconstruct signals from noisy and incomplete linear measurements alone. These methods
play a key role in medical and scientific imaging and sensing, where ground truth data is
often scarce or difficult to obtain. However, in practice measurements are not only noisy
and incomplete but also quantized. Here we explore the extreme case of learning from
binary observations and provide necessary and sufficient conditions on the number of mea-
surements required for identifying a set of signals from incomplete binary data. Our results
are complementary to existing bounds on signal recovery from binary measurements. Fur-
thermore, we introduce a novel self-supervised learning approach, which we name SSBM,
that only requires binary data for training. We demonstrate in a series of experiments with
real datasets that SSBM performs on par with supervised learning and outperforms sparse
reconstruction methods with a fixed wavelet basis by a large margin.

1 Introduction

Continuous signals have to be quantized in order to be represented digitally with a limited number of
bits in a computer. In many real-world applications, such as radar (Alberti et al., 1991), wireless sensor
networks (Chen & Wu, 2015), and recommender systems (Davenport et al., 2014), the measured data is
quantized with just a few bits per observation. The extreme case of quantization corresponds to observing a
single bit per measurement. For example, single-photon detectors record the presence or absence of photons
at each measurement cycle (Kirmani et al., 2014), and recommendation systems often observe a binary
measurement of users’ preferences only (e.g., via thumbs up or down).

The binary sensing problem is formalized as follows: we observe binary measurements y ∈ {−1, 1}m of a
signal x ∈ X ⊂ Sn−1 with unit norm1 via the following forward model

y = sign (Ax) (1)

where A ∈ Rm×n is a linear forward operator. Recovering the signal from the measurements is an ill-posed
inverse problem since there are many signals x ∈ Sn−1 that are consistent with a given measurement vector y.
Moreover, often the measurement matrix is incomplete m < n, e.g., as in one-bit compressed sensing (Jacques
et al., 2013), which makes the signal recovery problem even more challenging.

It is possible to obtain a good estimation of x despite the binary quantization, if the set of plausible signals
X is low-dimensional (Bourrier et al., 2014), i.e., if it occupies a small portion of the ambient space Sn−1.
A popular approach is to assume that X is a single linear subspace or a union of subspaces (Jacques et al.,
2013), imposing sparsity over a known dictionary. For example, the well-known total variation regularization
assumes that the gradients of the signal are sparse (Rudin et al., 1992). However, in real-world settings,
the set of signals X is generally unknown, and sparsity assumptions on an arbitrary dictionary yield a
loose description of the true set X , negatively impacting the quality of reconstructions obtained under this

1Note that the sensing model in (1) provides no information about the norm of x, so it is commonly assumed that signals
verify ∥x∥ = 1.
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Figure 1: We propose a method for learning to reconstruct binary measurement observations, using only
the binary observations themselves for training. The learned reconstruction function can discover unseen
patterns in the data (in this case the clothes of fashionMNIST - see the experiments in Section 5), which
cannot be recognized in the standard linear reconstructions (no learning). We also provide theoretical bounds
which characterize how well we can expect to learn the set of signals from binary measurement data alone.

assumption. This limitation can be overcome by learning the reconstruction mapping y 7→ x (e.g., with
a deep neural network) directly from N pairs of measurements and associated signals—i.e., a supervised
learning scenario with a labeled dataset {(yi, xi)}N

i=1 with N assumed sufficiently large. While this learning-
based approach generally obtains state-of-the-art performance, it is often impractical since it can be very
expensive or even impossible to obtain ground-truth signals xi for training. For example, recommender
systems generally do not have access to high-resolution user ratings on all items for training.

In this paper, we investigate the problems of identifying the signal set and learning reconstruction mapping
using a dataset of binary measurements only {yi}N

i=1. In this setting, if the measurement process is incomplete
m < n, the matrix A has a non-trivial nullspace and there is no information in the measurement data about
the set of signals X in the nullspace (Chen et al., 2021). As a consequence, there is not enough information
for learning the reconstruction function either. For example, the trivial pseudo-inverse reconstruction f(y) =
A⊤(AA⊤)−1y is perfectly consistent with the binary measurements, i.e., sign (Af(y)) = y, but is generally
far from being optimal (Boufounos et al., 2015).

Here we show that it is still possible to (approximately) identify the signal set and learn to reconstruct the
binary measurements, if the measurement operator varies across observations, i.e.,

yi = sign (Agixi) (2)

where each signal xi is observed via one out of G operators gi ∈ {1, . . . , G}, and i = 1, . . . , N . This sensing
assumption holds in various practical applications, where signals are observed through different operators
(e.g., recommendation systems access ratings about a different set of items for each user) or through an
operator which changes through time (e.g., a sensor that changes its calibration). Moreover, this assumption
is also valid for the case where we obtain binary measurements via a single operator A, but the set X is
known to be invariant to a group of invertible transformations {Tg}G

g=1, such as translations or rotations. The
invariance of X provides access to measurements associated with a set of (implicit) operators {Ag = ATg}G

g=1,
as we have that

y = sign
(
ATgT −1

g x
)

= sign (ATgx′) (3)
with x′ = T −1

g x ∈ X for all g = 1, . . . , G. This observation has been exploited to perform fully unsu-
pervised learning on various linear inverse problems, such as magnetic resonance imaging and computed
tomography (Chen et al., 2021; 2022; Tachella et al., 2023).

The problem of recovering a signal from binary measurements under the assumption of a known signal set
has been extensively studied in the literature (Goyal et al., 1998; Jacques et al., 2013; Oymak & Recht, 2015).
These works provide practical bounds which characterize the recovery error as a function of the number of
measurements m for different classes of signal sets. However, they assume that the signal set is known (or
that there is enough ground-truth training data to approximate it), which is not often the case in real-world
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Assumption on X ⊆ Sn−1 None None boxdim < k

Assumption on Ag ∈ Rm×n, g ∈ [G] rank [A⊤
1 , . . . , A⊤

G] < n None Gaussian

Identification error bounds δ > 1 δ ≳ n
mG δ ≲ k+n/G

m log nm
k+n/G

Section Section 3.1 Section 3.1 Section 3.2

Table 1: Summary of the global model identification error δ bounds presented in this paper, as a function
of the size of the signals n, the number of binary measurement operators G with m measurements and the
dimension of the signal set k.

scenarios. Here we investigate the best approximation of the signal set that can be obtained from the binary
observations. This approximation lets us understand how well we can learn the reconstruction function from
binary data. To the best of our knowledge, the model identification problem has not been yet addressed,
and we aim to provide the first answers to this problem here. The main contributions of this paper are:

• We show that for any G sensing matrices A1, . . . , AG ∈ Rm×n and any dataset size N , there exists
a signal set whose identification error (precisely defined in Section 3) from binary measurements
cannot decay faster than O( n

mG ) when m increases.

• We prove that, if each operator Ag, g ∈ {1, . . . , G}, has iid Gaussian entries (a standard construction
in one-bit compressed sensing), it is possible to estimate a k-dimensional2 signal set up to a global
error of O( k+n/G

m log nm
k+n/G ) with high probability.

• We determine the sample complexity of the related unsupervised learning problem, i.e., we find
that the number of distinct binary observations for obtaining the best possible approximation of a
k-dimensional signal set X is N = O

(
G( m

k )k
)
.

• We introduce a Self-Supervised learning loss for training reconstruction networks from Binary Mea-
surement data alone (SSBM), and show experimentally that the learned reconstruction function
outperforms classical binary iterative hard thresholding (Jacques et al., 2013) and performs on par
with fully supervised learning on various real datasets.

A summary of the model identification bounds presented in this paper is shown in Table 1.

Related Work

Unsupervised learning in inverse problems. Despite providing very competitive results, most deep
learning-based solvers require a supervised learning scenario, i.e., they need measurements and signal pairs
{(yi, xi)}, a labeled dataset, in order to learn the reconstruction function y 7→ x. A first step to overcome
this limitation is due to Noise2Noise (Lehtinen et al., 2018), where the authors show that it is possible to
learn from only noisy data if two noisy realizations of the same signal {(xi + ni, xi + n′

i)} are available for
training. This approach has been extended to linear inverse problems with pairs of measurements {(Agixi +
ni, Ag′

i
xi + n′

i)} (Yaman et al., 2020; Liu et al., 2020). The equivariant imaging framework (Chen et al.,
2021; 2022) shows that learning the reconstruction function from unpaired measurement data {Axi +ni} of a
single incomplete linear operator A is possible if the signal model is invariant to a group of transformations.
This approach can also be adapted to the case where the signal model is not invariant, but measurements are
obtained via many different operators {Agixi+ni} (Tachella et al., 2022). Necessary and sufficient conditions
for learning in these settings are presented in Tachella et al. (2023), however under the assumption of linear
observations (no quantization). Here we extend these results to the non-linear binary sensing problem with
an unsupervised dataset with multiple operators {sign (Agi

xi)} and gi ∈ {1, . . . , G}, or with a single operator
and a group-invariant signal set {sign (Axi)}.

2The definition of dimension used in this paper is the upper box-counting dimension defined in Section 2.
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Figure 2: Geometry of the 1-bit signal recovery problem with m = 5 and n = 3. Left: The binary sensing
operator sign (A·) defines a tessellation of the sphere into multiple consistency cells, which are defined as
all vectors x ∈ S2 associated with the same binary code. The consistency cell associated with a given
measurement y is shown in green. Each red line is a great circle defined by all points of S2 perpendicular to
one row of A. Middle: If the signal set consists of all vectors in the sphere, i.e., X = S2, the center of the
cell is the optimal reconstruction f̂(y) (depicted with a blue cross) and the recovery error (denoted by δ) is
given by the radius of the cell. Right: If the signal set (depicted in black) occupies only a small subset of
S2, i.e., it has a small box-counting dimension, the optimal reconstruction corresponds to the center of the
intersection between the signal set and the consistency cell, and the resulting signal recovery error is smaller.

Quantized and one-bit sensing. Reconstructing signals from one-bit compressive measurements is a
well-studied problem (Goyal et al., 1998; Jacques et al., 2013; Oymak & Recht, 2015; Baraniuk et al., 2017),
both in the (over)complete case m ≥ n (Goyal et al., 1998), and in the incomplete setting m < n, either
under the assumption that the signals are sparse (Jacques et al., 2013), or more generally, that the signal set
has small Gaussian width (Oymak & Recht, 2015). Some of these results are summarized in Section 2. The
theoretical bounds presented in this paper complement those of signal recovery bounds from quantized data,
as they characterize the fundamental limitations of model identification from binary measurement data.

One-bit matrix completion and dictionary learning. Matrix completion consists of inferring missing
entries of a data matrix Y = [y1, . . . , yN ], whose columns can be seen as partial observations of signals xi,
i.e., yi = sign (Agi

xi) where the operators Agi
select a random subset of m entries of the signal xi. In order

to recover the missing entries, it is generally assumed that the signals xi (the columns of X = [x1, . . . , xN ])
belong to a k-dimensional subspace with k ≪ n. Davenport et al. (2014) solve this learning problem via
convex programming, and present theoretical bounds for the reconstruction error.

Zayyani et al. (2015) present an algorithm that learns a dictionary (i.e., a union of k-dimensional subspaces)
from binary data alone in the overcomplete regime m > n. Rencker et al. (2019) presents a similar dictionary
learning algorithm with convergence guarantees. In this paper, we characterize the model identification error
for the larger class of low-dimensional signal sets, which includes subspaces and the union of subspaces as
special cases. Moreover, we propose a self-supervised method that learns the reconstruction mapping directly,
avoiding an explicit definition (e.g., a dictionary) of the signal set.

2 Signal Recovery Preliminaries

We begin with some basic definitions related to the one-bit sensing problem. The diameter of a set is
defined as diam(S) = supu,v∈S ∥u − v∥, and the radius is defined as half the diameter. Each row ai ∈ Rn

in the operator A divides the unit sphere Sn−1 into two hemispheres, i.e., {x ∈ Sn−1| a⊤
i x ≥ 0} and

{x ∈ Sn−1| a⊤
i x < 0}. Considering all rows, the operator sign (A·) defines a tesselation of Sn−1 into

consistency cells, where each cell is composed of all the signals that are associated with a binary code y,
i.e. {x ∈ Sn−1| sign (Ax) = y}. The radius and number of consistency cells play an important role in the
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analysis of signal recovery and model identification. Figure 2 illustrates the geometry of the problem for
n = 3 and m = 5.

The problem of recovering a signal from one-bit compressed measurements with a known signal set has been
well studied (Goyal et al., 1998; Jacques et al., 2013; Oymak & Recht, 2015; Baraniuk et al., 2017). These
works characterize the maximum estimation error across all signals obtained by an optimal reconstruction
function f̂ , i.e.,

δ = max
x∈X

∥x − f̂(sign (Ax))∥ (4)

as a function of the number of measurements and complexity of the signal model. From a geometric viewpoint
(see Figure 2), the optimal reconstruction function with respect to the norm ∥ · ∥ is given by the centroid
(with respect to the same norm ∥ · ∥) of the intersection between the consistency cell associated with the
measurement y = y(x) = sign (Ax), i.e., Sy := {u ∈ Sn−1 : y = sign (Au)}, and the signal set X , i.e.,

f̂(y) = centroid(Sy ∩ X ). (5)

while the maximum reconstruction error is given by the intersection with maximal radius, that is

δ = max
x∈X

radius(Sy(x) ∩ X ). (6)

In the overcomplete case m > n, assuming that all unit vectors are plausible signals, i.e., X = Sn−1,
the mean reconstruction error δ is given by the consistency cell with maximal radius, which scales as n

m
(see Proposition 4). The optimal rate is achieved by measurement consistent reconstruction functions, i.e.,
those verifying y = sign (Af(y)) (Goyal et al., 1998).

In the incomplete case m < n, non-trivial signal recovery is only possible if the set of signals occupies a
low-dimensional subset of the unit sphere Sn−1 (Oymak & Recht, 2015). For example, a common assumption
is that X is the set of k-sparse vectors (Jacques et al., 2013). In this paper, we characterize the class of
low-dimensional sets using a single intuitive descriptor, the box-counting dimension. The upper box-counting
dimension (Falconer, 2004, Chapter 2) is defined for a compact subset S ⊂ Rn as

boxdim (S) = lim sup
ϵ→0+

logN(S, ϵ)
log 1/ϵ

(7)

where N(S, ϵ) is the minimum number of closed balls of radius ϵ with respect to the norm ∥ · ∥ that are
required to cover S. This descriptor has been widely adopted in the inverse problems literature (Puy et al.,
2017; Tachella et al., 2023), and it captures the complexity of various popular models, such as smooth
manifolds (Baraniuk & Wakin, 2009) and union of subspaces (Blumensath & Davies, 2009; Baraniuk et al.,
2017). For example, the set of (k + 1)-sparse vectors with unit norm has a box-counting dimension equal
to k. The upper box-counting dimension is particularly useful to obtain an upper bound on the covering
number of a set: if boxdim (X ) < k, there exists a set-dependent constant ϵ0 ∈ (0, 1

2 ) for which

N(X , ϵ) ≤ ϵ−k (8)

holds for all ϵ ≤ ϵ0 (Puy et al., 2017). The following theorem exploits this fact to provide a bound on the
number of measurements needed for recovering a signal with an error smaller than δ from generic binary
observations:
Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and assume
that boxdim (X ) < k, such that N(X , ϵ) ≤ ϵ−k for all ϵ < ϵ0 with ϵ0 ∈ (0, 1

2 ). If the number of measurements
verifies

m ≥ 2
δ

(
2k log 4

√
n

δ + log 1
ξ

)
(9)

then for all x, s ∈ X and δ ≤ min{4
√

nϵ0, 1
2 }, we have that

sign (Ax) ̸= sign (As) =⇒ ∥x − s∥ < δ (10)

with probability greater than 1 − ξ.
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Figure 3: Illustration of the model identification problem from binary measurements with n = 3, m = 4, and
G = 3. A signal set with box-counting dimension 1 is depicted in black. The red lines define the frontiers
of the consistency cells associated with operators A1, . . . , A3. From left to right: The signal set, the
estimation of the signal set associated with A1, . . . , A3 and the overall estimate X̂ .

This result extends Theorem 2 in Jacques et al. (2013), which holds for k-sparse sets only, to general low-
dimensional sets and is included in Appendix B. For example, if X is the intersection of L (s+1)-dimensional
subspaces with the unit sphere, Theorem 1 holds with constant ϵ0 = (3sL)− 1

k−s and k > s (Vershynin, 2018,
Chapter 4.2). This theorem tells us that we can recover sparse signals from binary measurements up to an
error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor (Jacques et al., 2013). Oymak and Recht (Oymak & Recht, 2015)
present a similar result, stated in terms of the Gaussian width3 of the signal set instead of the box-counting
dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data associated
with G different measurement operators A1, . . . , AG ∈ Rm×n. We focus on the problem of identifying the
set X from the binary sets {sign (AgX )}G

g=1. In practice, we observe a subset of each binary set sign (AgX ),
however, in Section 3.4 we show that the number of elements in each of these sets is controlled by the
box-counting dimension of X , which is typically low in real-world settings (Hein & Audibert, 2005).

We start by analyzing how the different operators provide us with information about X . Each forward
operator Ag constrains the signal space by the following set

X̂g = {v ∈ Sn−1| ∃xg ∈ X , sign (Agv) = sign (Agxg)}. (11)

Each set X̂g is thus composed of all unit vectors v that are consistent with at least one point xg of X according
to the binary mapping sign (Ag·). We thus conclude that X̂g is essentially a dilation of X —and we clearly
have X ⊂ X̂g—whose extension is locally determined by specific cells of sign (Ag·). A three-dimensional
example with m = 4 measurements and G = 3 operators is presented in Figure 3. Note that, for a given
binary mapping sign (Ag·), each cell is characterized by one binary vector in the range of this mapping, so
that, as shown in this figure, all cells provide a different tesselation of Sn−1 whose size and dimension will
play an important role in our analysis.

Since each X̂g is a dilation of X , we can infer the signal set from the following intersection

X̂ :=
G⋂

g=1
X̂g, (12)

which can be expressed concisely as

X̂ =
{

v ∈ Sn−1| ∃x1, . . . , xG ∈ X , sign (Agv) = sign (Agxg) , ∀g = 1, . . . , G
}

. (13)
3The Gaussian width of a set S is defined as Es{supx∈S x⊤s} where s is distributed as a standard Gaussian vector.
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Figure 4: Illustration of the oracle argument in the example of Figure 3. Left: The signal set X ⊂ S2

is depicted in black. Middle: Cells intersected by the oracle system are indicated in green. Right: The
identified set X̂ is indicated in green, and is larger than the oracle counterpart.

Due to the binary quantization, the inferred set will be larger than the true set, i.e., X ⊂ X̂ . However, we
will show that it is possible to learn a slightly larger signal set, defined in terms of a global identification
error δ > 0, i.e., the open δ-tube

Xδ = {v ∈ Sn−1| ∥x − v∥ < δ, x ∈ X } (14)

such that the inferred set is contained in it, i.e., X̂ ⊂ Xδ. For our developments to be valid, we will further
assume that X is not too dense over Sn−1 so that two tubes of X with two distinct radii are distinct.
Assumption 1. The set X is closed and there exists a maximal radius 0 < δ0 < 2 for which Xδ ⊊ Xδ0 for
any 0 < δ < δ0.

This assumption amounts to saying that there exists at least one open ball in Sn−1 that does not belong to
X ⊂ Sn−1. For instance, X = Sn−1 does not verify this assumption, and X = Sn−1 ∩ {x ∈ Rn : x1 ≥ 0}
verifies it for δ0 ≤

√
2 since Xδ = Sn−1 for any δ ≥

√
2. The next subsections provide lower and upper

bounds for δ.

3.1 A Lower Bound on the Identification Error

We first aim to find a lower bound on the best δ achievable via the following oracle argument: if we had
oracle access to G measurements of each point x in X through each of the G different operators, we could
stack them together to obtain a larger measurement operator, defined asy1

...
yG

 = sign
(
Āx

)
with Ā =

A1
...

AG

 ∈ RmG×n. (15)

This oracle measurement operator provides a refined approximation of the signal set, specified as

X̂oracle = {v ∈ Sn−1| ∃x ∈ X , sign
(
Āv

)
= sign

(
Āx

)
}, (16)

which is again a dilation of X .

Figure 4 shows an example with the oracle set X̂oracle, which provides a better (or equal) approximation
of the signal set than (13), due to the fact that X ⊂ X̂oracle ⊆ X̂ by the construction of these sets. As
the oracle estimate is composed of the cells associated with sign

(
Ā·

)
which are intersected by the signal

set, the oracle approximation error depends on the diameter of the intersected cells. Given a certain oracle
tesselation of Sn−1, the worst estimate of X is obtained when it intersects the largest cells in the tessellation.
The following proposition formalizes the intuition that the maximum consistency cell diameter—i.e., the
greatest distance separating two binary consistent vectors of X according to Ā—serves as a lower bound on
the model identification error δ.
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Proposition 2. Given Ā ∈ RmG×n, for any set X ⊂ Sn−1 respecting Assumption 1 with 0 < δ0 < 2, there
exists a rotation matrix R ∈ SO(n) such that the rotated set

X ′ = {v ∈ Sn−1|v = Rx, x ∈ X } = RX (17)

verifies X̂ ′
oracle ̸⊂ X ′

δ for any δ < min{d, δ0} where 0 < d < 2 is the largest cell diameter of the tesselation
induced by sign

(
Ā·

)
.

Proof. Given δ < δ0, the proof consists in choosing an appropriate rotation matrix, such that we can find a
point v which belongs to the oracle estimate X̂ ′

oracle of the rotated set X ′, but doesn’t belong to the δ-tube
X ′

δ of this set. From Assumption 1 and since the δ-tube Xδ is open, there exists x ∈ X and v ̸∈ Xδ such
that ∥x − v∥ = δ Let S denote the largest cell in the tesselation of Sn−1 induced by sign

(
Ā·

)
, such that

d = diam(S). If δ < d, we can always pick a rotation R ∈ SO(n) such that both x′ = Rx and v′ = Rv
belong to S. As x′ ∈ S, X ′ intersects S and we have that S ⊆ X̂ ′

oracle, and thus that v′ ∈ X̂ ′
oracle.

In the rest of this subsection, we focus on bounding the maximum cell diameter, as it is directly related to
the model identification error through Proposition 2. We start with the following proposition which shows
that, if the stacked matrix is rank-deficient, there exist cells having the maximum possible diameter.
Proposition 3. Consider the tessellation defined by sign

(
Ā·

)
with Ā ∈ RmG×n. If

rank(Ā) < n (18)

there are cells in the tessellation with a diameter equal to 2.

Proof. If Ā has a rank smaller than n, it has a non-trivial nullspace. Let v ∈ Sn−1 be a generator of
the nullspace with unit norm. Consider a cell associated with the code sign

(
Āx

)
for some x ∈ Rn inside

the range of Ā⊤. The points x+v
∥x+v∥ , x−v

∥x−v∥ ∈ Sn−1 belong to this cell since they share the same code. As
∥x ± v∥ =

√
∥v∥2 + ∥x∥2 due to orthogonality, the distance between these two points is

2∥v∥√
∥v∥2 + ∥x∥2

= 2√
1 + ∥x∥2

(19)

which tends to 2 as ∥x∥ goes to zero, without modifying the cell code sign
(
Āx

)
.

This proposition tells us that n/G measurements are necessary in order to obtain non-trivial cell diameters,
and thus to obtain a non-trivial estimation of X . It provides a practical necessary condition for model
identification, i.e., that we have at least

m >
n

G

measurements per operator. Moreover, in practice, it is possible to compute the rank of the stacked matrix Ā
via numerical approximations. The following theorem provides a more refined characterization of the oracle
error for m ≥ n/G:
Proposition 4. Consider the tessellation defined by sign

(
Ā·

)
with Ā ∈ RmG×n. The largest cell in the

tessellation has a diameter of size at least 2
3

n
mG .

Proof. According to Thao & Vetterli (1996, Theorem A.7), the maximum number of cells CĀ induced by a
tessellation defined by sign

(
Ā·

)
with Ā ∈ RmG×n can be upper bounded as

CĀ ≤
(

mG

n

)
2n.

As
(

mG
n

)
≤ ( emG

n )n, we have that CĀ ≤ ( 2emG
n )n. We can inscribe all cells into spherical caps Si

4 of radius
δ/2, where δ is the maximum cell diameter. As shown in (Ball et al., 1997, Lemma 2.3), a spherical cap

4A spherical cap of radius r around a point v ∈ Sn−1 is defined as {x ∈ Sn−1| ∥x − v∥ < r}.
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of radius δ/2 has measure bounded by σ(Si) ≤ ( δ
4 )n−1σn−1 where σn−1 is the measure of Sn−1. Since the

tessellation covers the unit sphere Sn−1, we have that Sn−1 ⊆ ∪CĀ
i=1Si and thus∑CĀ

i=1 σ(Si) ≥ σn−1 ⇒ ( 2emG
n )n( δ

4 )nσn−1 ≥ σn−1 ⇒ δ ≥ 2
3

n
mG .

As stated in the following corollary, Proposition 4 shows that the model identification error cannot decrease
faster with the number of measurements and operators than O( n

mG ), since the largest cell in any oracle
tesselation has a diameter of at least 2

3
n

mG .
Corollary 5. Given the G operators A1, . . . , AG ∈ Rm×n, and any set X ⊂ Sn−1 respecting Assumption 1
with 0 < δ0 < 2, for any 0 < δ < min(δ0, 2

3
n

mG ), there exists a rotation R such that the inferred signal set
X̂ ′ of X ′ = RX is not included in X ′

δ, i.e., X̂ ′ ̸⊂ X ′
δ.

Proof. If X ⊂ Sn−1 respects Assumption 1 with 0 < δ0 < 2, and X̂oracle and X̂ are the oracle set associated
with Ā and the inferred set of X ′, respectively, then, as derived previously, we know that X ⊂ X̂oracle ⊂ X̂ .
According to Proposition 2 and Proposition 4, there exists a rotation R such that X̂ ′

oracle = RX̂oracle ̸⊂
X ′

δ = RXδ for 0 < δ < min(δ0, 2
3

n
mG ). Therefore, from the inclusion above, we thus see that there exists

X̂ ′ = RX̂ ̸⊂ X ′
δ.

3.2 A Sufficient Condition for Model Identification

We now seek a sufficient condition on the number of measurements per operator that guarantees the iden-
tification of X up to a global error of δ. As with the sufficient conditions ensuring signal recovery (see
Section 2), we assume that X is low-dimensional to provide a bound that holds with high probability if the
entries of the operators are sampled from a Gaussian distribution.
Theorem 6. Given the operators A1, . . . , AG ∈ Rm×n with entries i.i.d. as a standard Gaussian distribution,
a low-dimensional signal set X , with boxdim (X ) < k, such that N(X , ϵ) ≤ ϵ−k for all ϵ < ϵ0 with ϵ0 ∈ (0, 1

2 ),
and some failure probability 0 < ξ < 1, if the number of measurements per operator verifies

m ≥ 4
δ

[
(k + n

G ) log 5
√

n
δ + 1

G log 1
ξ + n

G log 3
]

(20)

for 0 < δ ≤ min{4
√

nϵ0, 1
2 }, then with probability at least 1 − ξ, we have that X̂ ⊆ Xδ.

The proof is included in Appendix C. Theorem 6 provides a bound on δ, i.e., how precisely we can characterise
the signal set X , which we can compare with the lower bound in Proposition 4. From (20) we have that (see
Appendix C for a detailed derivation),

δ = O( k+n/G
m log nm

k+n/G ) (21)

The bound in (21) is consistent with existing model identification bounds in the linear setting (Tachella
et al., 2023), which require m > k + n/G measurements per operator for uniquely identifying the signal set.

3.3 Learning to Reconstruct

The best reconstruction function f̂ that can be learned from binary measurements alone can be defined as
a function of the identified set X̂ , as defined in (5)

f̂(y) = centroid(Sy ∩ X̂ ) (22)

for a binary input y with associated consistency cell Sy = {v ∈ Sn−1| sign (Av) = y} and the error is given
by the radius of Sy ∩ X̂ . Unfortunately, Theorems 1 and 6 do not automatically translate into a bound on
the optimal reconstruction error of the reconstruction function defined in (22). Theorem 6 implies that the
optimal unsupervised reconstruction f̂(sign (Ax)) is at most O( k+n/G

m log nm
k+n/G ) away from the signal set

X , but does not guarantee that it is close to x. Nonetheless, we conjecture that this rate holds with high
probability if the operators follow a Gaussian distribution:

9
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Conjecture 7. Given binary measurements from the operators A1, . . . , AG ∈ Rm×n with entries i.i.d. from
a standard Gaussian distribution, the optimal reconstruction function defined in (22) has a maximal recon-
struction error that is upper bounded as O( k+n/G

m log nm
k+n/G ) with high probability.

Conjecture 7 hypothesizes that the optimal unsupervised reconstruction function should obtain a similar
performance than the supervised one, i.e., O( k

m log nm
k ) shown in Theorem 1, if the number of operators is

sufficiently large, i.e., G > n/k. In the experiments in Section 5, we provide empirical evidence that supports
this hypothesis.

3.4 Sample complexity

We end our theoretical analysis of the unsupervised learning problem by bounding its sample complexity,
i.e., we bound the number N of distinct binary measurement vectors {yi}N

i=1 that must be acquired for
obtaining the best approximation of the signal set X from binary data.

Since we observe binary vectors y ∈ {±1}m, there is a limited number of different binary observations. We
could naively expect to observe up to 2m different vectors per measurement operator (i.e., all possible binary
codes with m bits), requiring at most N ≤ G2m samples to fully characterize the best approximation of
the signal set X̂ defined in (13). Fortunately, as already exploited in the proof of Proposition 4, this upper
bound can be significantly reduced if the signal set has a low box-counting dimension, as not all cells in the
tessellation will be intersected by the signal set (see fig. 3). We can thus obtain a better upper bound by
counting the number of intersected cells, denoted as | sign (AX ) |.

If X is the intersection of a single k-dimensional subspace with the unit sphere, (Thao & Vetterli, 1996,
Theorem A.7) tells us that, for any matrix A ∈ Rm×n, there are | sign (AX ) | ≤ 2k

(
m
k

)
intersected cells.

More generally, if X is a union of L subspaces, we have | sign (AX ) | ≤ L2k
(

m
k

)
. Thus, using the fact that(

m
k

)
≤

( 3m
k

)k, from the G measurement operators, we can observe up to

N ≤ GL( 6m
k )k (23)

different measurement vectors. However, this result only holds for a union of subspaces having each dimension
k. The following theorem extends this result to more general low-dimensional sets with small upper box-
counting dimension.
Theorem 8. Let the entries of A ∈ Rm×n be sampled from a standard Gaussian distribution, and let X ⊆ Rn

with boxdim (X ) < k such that N(X , ϵ) ≤ ϵ−k for all ϵ < min( 32
3

k
m

√
n

log( 3m
√

n
32k ), ϵ0). The cardinality of the

measurement set is bounded as
| sign (AX ) | ≤

(
m

√
n

k

)8k

with probability at least 1 − 1024
9m2n .

The proof is included in Appendix D. This result depends on the ambient dimension n due to the application
of the technical Lemma 9 and can be suboptimal for some signal sets. For example, the bound in (23) avoid
this dependency for the case where X is a union-of-subspaces. Moreover, the squared dependency of the
probability in m can be increased by loosening the bound on N (see the proof for more details).

Using this result, if we arbitrarily set m0 such that 1024
9m2

0n
= 0.01, we thus obtain the following upper bound

on the number of different binary measurement vectors:

N ≤ G

(
m

√
n

k

)8k

.

which holds with probability exceeding 0.99 for any m ≥ m0. Similarly to (23), this bound scales exponen-
tially only in the model dimension k but not in the number of measurements m or operators G. In the setting
of a single operator and a k-dimensional invariant signal set, we have the upper bound N ≤

(
m

√
n

k

)8k

.

10
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4 Learning Algorithms

In this section, we present a novel algorithm for learning the reconstruction function f : (y, A) 7→ x from N
binary measurement vectors {(yi, Agi)}N

i=1, which is motivated by the analysis in Section 3. We parameterize
the reconstruction function using a deep neural network with parameters θ ∈ Rp. The learned function can
take into account the knowledge about the forward operator by simply applying a linear inverse at the first
layer, i.e., fθ(y, A) = f̃θ(A⊤y), or using more complex unrolled optimization architectures (Monga et al.,
2021).

In the case where we observe measurements associated with G different forward operators, we propose the
SSBM loss

arg min
θ∈Rp

N∑
i=1

[
LMC (yi, Agi x̂θ,i) + α

∑
s ̸=gi

∥x̂θ,i − fθ(sign (Asx̂θ,i) , As)∥2
2

]
, (24)

where x̂θ,i = fθ(yi, Agi
), the cost LMC (yi, Agi

x̂θ,i) ≥ 0 enforces measurement consistency (MC), i.e., require
that yi = sign (Agi

x̂θ,i), and α ∈ R+ is a hyperparameter controlling the trade-off between the two terms
involved. In the setting where we have a single operator, we aim to learn a reconstruction function fθ : y 7→ x
(we remove the dependence of fθ on A to simplify the notation) via the following self-supervised loss:

arg min
θ∈Rp

N∑
i=1

[
LMC (yi, Ax̂θ,i) + α

G∑
g=1

∥Tgx̂θ,i − fθ(sign (ATgx̂θ,i))∥2
2

]
, (25)

where x̂θ,i = fθ(yi) and α ∈ R+. In practice, we minimize (24) by mini-batching approaches (e.g., stochastic
gradient descent) by using sampling one out of the G operators at random per batch. In both cases, we
choose the measurement consistency term to be the logistic loss, i.e.,

LMC (y, ŷ) = log (1 + exp(−y ◦ ŷ)) (26)

which enforces sign-consistent predictions which are far from zero, as the logistic function tends asymptot-
ically towards zero as |ŷ| → ∞. An empirical analysis in Section 5 shows that the logistic loss obtains the
best performance across various popular consistency losses.

Analysis of the proposed loss We focus on the multi-operator loss in (24), although a similar analysis
also holds for the equivariant setting. As the first term of the loss enforces measurement consistency, i.e.,
requires yi = sign (Agi

fθ(yi, Agi
)) for every yi in the dataset. However, in the incomplete setting m < n, the

simple pseudo-inverse solution
f(y, Ag) = A†

gy (27)

with A†
g = A⊤

g (AgA⊤
g )−1, is measurement consistent for any number of operators G and training data N .

Therefore, the first loss does not prevent learning a function fθ(y, Ag) which acts independently for each
operator (as if there were G independent learning problems). The second loss bootstraps the current estimates
x̂i,θ = fθ(yi, Agi

) as new ground truth references, mimicking the supervised loss

N∑
i=1

G∑
s=1

∥x̂i,θ − fθ(sign (Asx̂i,θ) , As)∥2, (28)

in order to enforce consistency across operators. Importantly, this additional loss avoids the trivial pseudo-
inverse solution in (27), as

A†
gy − A†

s sign
(
AsA†

gy
)

̸= 0 (29)

for g ̸= s if the nullspaces of Ag and As are different, e.g., if the necessary condition in Proposition 3 is
verified.

11
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Figure 5: Evaluated training losses for enforcing sign measurement consistency sign (Ax̂) = y of reconstruc-
tions fθ(y) = x̂. Left: The loss functions are shown for the case y = 1. Right: Average test PSNR of
different measurement consistency losses on the MNIST dataset with G = 10 operators.

5 Experiments

For all experiments, we use measurement operators with entries sampled from a standard Gaussian distri-
bution and evaluate the performance of the algorithms using by computing the average peak-to-signal ratio
(PSNR) on a test set with N ′ ground-truth signals, that is:

1
N ′

∑N ′

i=1 PSNR
(

x′
i, fθ(sign (Agi

x′
i) , Agi

)
)

, (30)

where the PSNR is computed after normalizing the reconstructed image such that it has the same norm as
the reference image, i.e.,

PSNR(x, x̂) = −20 log ∥x − x̂
∥x∥
∥x̂∥

∥. (31)

We choose fθ(y, A) = f̃θ(A⊤y) where f̃θ is the U-Net network introduced in (Chen et al., 2021) with weights
θ, and train for 400 epochs with the Adam optimizer with learning rate 10−4 and standard hyperparameters
β1 = 0.9 and β2 = 0.99.

5.1 MNIST experiments

We evaluate the theoretical bounds using the MNIST dataset, which consists of greyscale images with n = 784
pixels and whose box-counting dimension is approximately k ≈ 12 (Hein & Audibert, 2005). We use 6 × 104

images for training and 103 for testing.

Multiple operators setting. We start by comparing the logistic consistency loss in (26) with the following
alternatives:

• Standard ℓp-loss, LMC (y, ŷ) = ∥y−ŷ∥p
p. As this loss is zero only if ŷ = y, it promotes sign consistency,

sign (ŷ) = y and unit outputs |ŷ| = 1.

• One-sided ℓp-loss, LMC (y, ŷ) = ∥ max(−y ◦ ŷ, 0)∥p
p where ◦ denotes element-wise multiplication and

the max operation is performed element-wise. This loss is zero as long as sign (ŷ) = y regardless of
the value of |ŷ|.

For each loss we chose the best performance across trade-off parameter α ∈ {0.1, 1, 10}. Figure 5 shows the
different losses and the test performance for different values of measurements using G = 10 operators. The
logistic loss obtains the best performance across all sampling regimes, whereas the one-sided ℓ2 loss obtains
the worst results.

Secondly, we compare the logistic loss with the following learning schemes:

• Linear inverse (no learning), defined as x̂i = A⊤
gi

yi. This reconstruction can fail to be measurement
consistent (Goyal et al., 1998).

12
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Figure 6: Left: Average test PSNR of different supervised and unsupervised algorithms on the MNIST
dataset with G = 10 operators. Right: The performance of the SSBM method follows closely the bounds
in Conjecture 7.

• Standard supervised learning loss, defined as
∑N

i=1 ∥xi − fθ(yi, Agi)∥2. We also evaluate this loss
together with the cross-operator consistency term in (24) which we denote as supervised+.

• Measurement consistency loss, defined as
∑N

i=1 LMC (yi, Agi
fθ(yi, Agi

)) using the logistic loss.

• The binary iterative hard-thresholding (BIHT) reconstruction algorithm (Jacques et al., 2013) with
a Daubechies4 orthonormal wavelet basis. The step size and sparsity level of the algorithm were
chosen via grid search. It is worth noting that the best-performing sparsity level increases as the
number of measurements m is increased.

• Proposed SSBM loss in (24) using the logistic loss for measurement consistency.

Test PSNR values obtained for the case of G = 10 operators are shown in the left subfigure of Figure 6,
where the PSNR in dB is plotted against m/n in log-scale representation. The measurement consistency
approach obtains performance similar to simply applying a linear inverse for the incomplete m/n < 1 setting,
whereas it obtains a significant improvement over the linear inverse in the overcomplete case m/n ≥ 1. This
gap can be attributed to the lack of measurement consistency of the linear reconstruction algorithm (Goyal
et al., 1998). The proposed loss obtains a performance that is several dBs above the linear inverse and
BIHT for all sampling regimes. BIHT relies on the wavelet sparsity prior, which does not capture well
enough the MNIST digits. SSBM performs similarly to supervised learning as the sampling ratio tends to
1, and perhaps surprisingly, it obtains slightly better performance than supervised learning for m/n = 1.28.
However, adding the cross-operator consistency loss to the supervised method (i.e., the method supervised+
in Section 5.1) performs better for all sampling regimes than SSBM.

The right plot in Figure 6 compares the performance of the SSBM with the bounds in Conjecture 7. These
bounds behave almost linearly in this log-log plot of both the error—through the PSNR—and the log-scale
representation of m/n. We thus observe a good agreement between the predictions in Conjecture 7 and the
performance in practice.

Figure 7 shows the average test PSNR and reconstructed images obtained by the proposed self-supervised
method for different values of G and m. The method fails to obtain good reconstructions when G = 1, as
the necessary condition in Proposition 3 is not fulfilled.

Equivariant setting using shifts. We evaluate the setting of learning with a single operator by using
the unsupervised equivariant objective in (25) with 2D shifts as the group of transformations (as the MNIST
dataset is approximately shift-invariant). Figure 8 shows the average test PSNR and reconstructed images as
a function of the measurements m for various algorithms. The proposed unsupervised method significantly
outperforms the linear inverse, BIHT, and the measurement consistent network in all sampling regimes, and
performs closely to supervised learning for m/n > 0.4.

13
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Figure 7: (a) Average test PSNR and (b) reconstructed test images of the proposed unsupervised method
for different numbers of operators G and measurements m.

(a)
(b)

Figure 8: (a) Average test PSNR and (b) reconstructed test images by the compared algorithms with a
single operator A as a function of the undersampling ratio m/n.

5.2 Other Datasets

In order to demonstrate the robustness of the proposed method across datasets, we evaluate the proposed
unsupervised approach on the FashionMNIST (Xiao et al., 2017), CelebA (Liu et al., 2015) and Flowers (Nils-
back & Zisserman, 2008) datasets. The FashionMNIST dataset consists of 6 105 greyscale images with 28×28
pixels which are divided across G = 10 different forward operators. As with MNIST, we use N = 6 104

per operator for training and 104 per operator for testing. For the CelebA dataset, we use G = 10 forward
operators and choose a subset of 104 images for each operator for training and another subset of the same
amount for testing. The Flowers dataset consists of 6149 color images for training and 1020 images for
testing, all associated with the same forward operator. For both CelebA and Flowers datasets, a center crop
of 128 × 128 pixels of each color image was used for training and testing. Section 5.2 shows the average test
PSNR of the proposed unsupervised method, standard supervised learning, BIHT, and the linear inverse.
For BIHT, we use the Daubechies4 orthonormal wavelet basis and optimize the step size and sparsity level
via grid search.

The self-supervised method obtains an average test PSNR which is only 1 to 2 dB below the supervised
approach. Figures 9 and 10 show reconstructed test images by the evaluated approaches for each forward
operator. The proposed unsupervised method is able to provide good estimates of the images, while only
having access to highly incomplete binary information. The supervised method obtains sharper images,
however at the cost of hallucinating details, whereas the proposed method obtains blurrier estimates with
less hallucinated details.
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Dataset n m G Linear Inverse BIHT Supervised SSBM(ours)
FashionMNIST 784 300 10 6.38 ± 0.23 10.68 ± 0.31 17.63 ± 0.33 16.47 ± 0.22

CelebA 49152 9830 10 4.81 ± 0.32 16.26 ± 0.40 21.59 ± 0.31 19.53 ± 0.3
Flowers 49152 9830 shifts 5.31 ± 0.72 14.62 ± 0.92 18.26 ± 0.75 16.45 ± 0.71

Table 2: Average test PSNR in dB obtained by the compared methods for the FashionMNIST, CelebA and
Flowers datasets.

linear
inverse

proposed

BIHT

supervised

ground
truth

Figure 9: Reconstructed test images using the FashionMNIST dataset. Each column corresponds to a
different forward operator.

6 Conclusions and Future Work

The theoretical analysis in this work characterizes the best approximation of a low-dimensional set that can
be obtained from binary measurements. The model identification bounds presented here apply to a large class
of signal models, as they only rely on the box-counting dimension, and complement those existing for signal
recovery from binary measurements (Goyal et al., 1998; Jacques et al., 2013). Moreover, the proposed self-
supervised loss provides a practical algorithm for learning to reconstruct signals from binary measurements
alone, which performs closely to fully supervised learning. This work paves the way for deploying machine
learning algorithms in scientific and medical imaging applications with quantized observations, where no
ground-truth references are available for training.

We leave the proof of Conjecture 7, and a study of the effect of noise in the observations and related dithering
techniques for future work. Another avenue of future research is the extension of Theorem 6 for the case of
operators related through the action of a group.
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A Technical Lemmas

We begin by introducing some technical results that play an important role in the main theorems of the
paper. We start with a result from (Jacques et al., 2013).
Lemma 9 (Lemma 9 in (Jacques et al., 2013)). Given 0 ≤ ϵ < 1 and two unit vectors x̃, ṽ ∈ Sn−1 ⊂ Rn

and a ∈ Rn with ai ∼i.i.d. N (0, 1), we have

p0 = P
[
∀x ∈ Bϵ(x̃), ∀v ∈ Bϵ(ṽ) | sign

(
a⊤v

)
= sign

(
a⊤x

)]
≥ 1 − d(x̃, ṽ) −

√
n

π

2 ϵ (32)

p1 = P
[
∀x ∈ Bϵ(x̃), ∀v ∈ Bϵ(ṽ) | sign

(
a⊤v

)
̸= sign

(
a⊤x

)]
≥ d(x̃, ṽ) −

√
n

π

2 ϵ. (33)

where d(·, ·) denotes the angular distance.

Let C0(S) denote the set of continuous functions on the set S. This lemma has the following corollary:
Corollary 10. Given x̃ ∈ Sn−1, 0 < ϵ < 1/2, a ∈ Rn with a ∼i.i.d. N (0, 1), we have

P
[

sign
(
a⊤·

)
/∈ C0(

Bϵ(x̃) ∩ Sn−1)]
≤ η(ϵ) :=

√
n ϵ.

Proof. The proof can be derived from the complement of the event associated with p0 in (32) when x̃ = ṽ.
Here is, however, a simplified proof for completeness. We first observe that sign

(
a⊤·

)
is discontinuous over

Bϵ(x̃)∩Sn−1 iff | a⊤x̃
∥a∥ | ≤ ϵ. Therefore, by the rotational invariance of the Gaussian distribution we can choose

x̃ = [1, 0, . . . , 0]⊤ and the probability above amounts to computing

p := P[| a1
∥a∥ | ≤ ϵ] = P[a2

1 ≤ ϵ2∥a∥2] = P[a2
1 ≤ ϵ2

(1−ϵ2) (a2
2 + . . . + a2

n)] = EξP[a2
1 ≤ ϵ2

(1−ϵ2) ξ],

where ξ ∼ χ2(n − 1). Since P[a2
1 ≤ ϵ2

(1−ϵ2) ξ] ≤
√

2√
π

ϵ√
1−ϵ2

√
ξ, and Eξ

√
ξ ≤

√
Eξξ ≤

√
n − 1 ≤

√
n by Jensen,

we finally get p ≤
√

2√
π

ϵ√
1−ϵ2

√
n ≤ 2

√
2√

π
√

3 ϵ
√

n < ϵ
√

n.

B Signal Recovery Proof

Proof of Theorem 1. As boxdim (X ) < k, there exist a constant ϵ0 ∈ (0, 1
2 ) such that N(X , ϵ) ≤ ϵ−k for all

ϵ ≤ ϵ0. Thus, there is a set Qϵ of ϵ−k points, such that for every x ∈ X , there exist a point q ∈ Qϵ which
verifies ∥x − q∥ < ϵ. Applying Lemma 9, we have for any two distinct points q̃1, q̃2 ∈ Qϵ and ai ∈ Rn drawn
from a standard Gaussian distribution such that

P
[
∀q1 ∈ Bϵ(q̃1), ∀q2 ∈ Bϵ(q̃2) : sign

(
a⊤

i q1
)

̸= sign
(
a⊤

i q2
)]

≥ 1
π

∥q̃1 − q̃2∥ −
√

n
π

2 ϵ (34)

Since ∥q̃1 − q̃2∥ ≥ ∥q1 − q2∥ − 2ϵ, for any δ > 0, we can write

P
[
∀q1 ∈ Bϵ(q̃1), ∀q2 ∈ Bϵ(q̃2) : sign

(
a⊤

i q1
)

̸= sign
(
a⊤

i q2
)

| ∥q1 − q2∥ > δ
]

≥ δ

π
− ( 2

π
+

√
n

π

2 )ϵ

By setting ϵ = πδ
4+π

√
2πn

and reversing the inequality we obtain

P
[
∃q1 ∈ Bϵ(q̃1), ∃q2 ∈ Bϵ(q̃2) : sign

(
a⊤

i q1
)

= sign
(
a⊤

i q2
)

| ∥q1 − q2∥ > δ
]

≤ 1 − δ/2 (35)
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Extending these bound to all the rows of A ∈ Rm×n drawn from a standard Gaussian distribution, we have

P [∃q1 ∈ Bϵ(q̃1), ∃q2 ∈ Bϵ(q̃2) : sign (Aq1) = sign (Aq2) | ∥q1 − q2∥ > δ] ≤ (1 − δ/2)m (36)

Applying a union bound to all points q ∈ Qϵ. Since there are
(|Qϵ|

2
)

≤ |Qϵ|2 ≤ ϵ−2k pairs of points, we obtain

P [∃x1, x2 ∈ X : sign (Ax1) = sign (Ax2) | ∥x1 − x2∥ > δ] ≤ (4 + π
√

2πn

πδ
)2k(1 − δ/2)m (37)

≤ exp
(

2k log(4 + π
√

2πn

πδ
) + m log(1 − δ/2)

)
(38)

Upper bounding this probability by ξ and using the fact that 1 − δ/2 ≤ exp(δ/2) and 4+π
√

2πn
π ≤

√
n( 4

π +√
2π) ≤ 4

√
n, we obtain

2k log 4
√

n

δ
+ m

δ

2 ≥ log ξ (39)

m ≥ 2
δ

(
2k log 4

√
n

δ
+ log 1

ξ

)
(40)

for all δ ≤ 4ϵ0
√

n.

C Model Identification Proof

Proof of Theorem 6. We want to prove that X̂ ⊆ Xδ holds with high probability w.r.t. a random draw of
the operators A1, . . . , AG. Equivalently, we need to show that

sign (Agxg) = sign (Agv) ∀g = 1, . . . , G (41)

holds for some v ∈ Sn−1 \ Xδ and some x1, . . . , xG ∈ X with probability at most ξ with respect to a random
draw of the Gaussian matrices A1, . . . , AG. This proof adapts some of the procedures given in (Jacques et al.,
2013) to our specific setting. We start by bounding this probability for ϵ-balls around vectors ṽ ∈ Sn−1 \ X ,
x̃1, . . . , x̃G ∈ X , that is

p0 = P[∃x1 ∈ Bϵ(x̃1), . . . , ∃xG ∈ Bϵ(x̃G), ∃v ∈ Bϵ(ṽ) | ∀g = 1, . . . , G, sign (Agv) = sign (Agxg)] (42)

As every row of each operator Ag is independent, we have

p0 =
G∏

g=1
P

[
∃xg ∈ Bϵ(x̃g), v ∈ Bϵ(ṽ) | sign

(
a⊤

g,iv
)

= sign
(
a⊤

g,ixg

)]m (43)

=
G∏

g=1
(1 − P

[
∀xg ∈ Bϵ(x̃g), v ∈ Bϵ(ṽ) | sign

(
a⊤

g,iv
)

̸= sign
(
a⊤

g,ixg

)]
)m (44)

Applying Lemma 9, we have that

P
[
∀xg ∈ Bϵ(x̃g), ∀v ∈ Bϵ(ṽ) | sign

(
a⊤

g,iv
)

̸= sign
(
a⊤

g,ixg

)]
≥ d(x̃g, ṽ) −

√
n

π

2 ϵ (45)

where the angular distance can be bounded by the Euclidean distance

πd(x̃g, ṽ) ≥ 2 sin(π

2 d(x̃g, ṽ)) = ∥x̃g − ṽ∥ ≥ δ (46)

for all xg ∈ Bϵ(x̃g) and all v ∈ Bϵ(ṽ). Plugging this into (44), we have

p0 ≤ (1 − δ

π
+

√
n

π

2 ϵ)mG. (47)
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We can extend this result to all vectors v ∈ Sn−1 \ Xδ and x1, . . . , xG ∈ X by applying a union bound over
a covering of the product set X G × (Sn−1 \ Xδ). Since we can cover X with ϵ−k balls with ϵ ≤ ϵ0 due to the
assumption that boxdim (X ) < k, and also cover Sn−1 \ Xδ with (3/ϵ)n balls, we have

P[∃x1, x2, . . . , xG ∈ X , ∃v ∈ (Sn−1 \ Xδ) | ∀g = 1, . . . , G, sign (Agv) = sign (Agxg)]
≤ ϵ−kG(ϵ/3)−np0 (48)

Bounding this probability by ξ, we obtain the following inequality

ϵ−kG(ϵ/3)−n(1 − δ

π
+

√
n

π

2 ϵ)mG ≤ ξ (49)

ϵ−kG+n3n(1 − δ

π
+

√
n

π

2 ϵ)mG ≤ ξ (50)

Solving for m and choosing ϵ =
√

2(4−π)2

π3n δ ≈ 0.23
√

1
n δ we get

m ≥ 1
log(1 − δ

4 )

{
(k + n

G
) log 5

√
n

δ
+ 1

G
log 1

ξ
+ n

G
log 3

}
(51)

for δ < 4
√

nϵ0. Finally, using the fact that log(1 − δ
4 ) ≥ δ/4, we obtain the desired bound,

m ≥ 4
δ

{
(k + n

G
) log 5

√
n

δ
+ 1

G
log 1

ξ
+ n

G
log 3

}
. (52)

Derivation of δ. The bound in Theorem 6, that is

m ≥ 4
δ

{
(k + n

G
) log 5

√
n

δ
+ 1

G
log 1

ξ
+ n

G
log 3

}
(53)

can be rewritten as a function of δ as
log δ + δa ≥ b (54)

where

a = m

4(k + n
G ) (55)

b = log 5
√

n + 1
(Gk + n) log 1

ξ
+ n

(Gk + n) log 3 (56)

Using this notation, the inequality in (54) can be further simplified as

log δ + δa ≥ b (57)
δeaδ ≥ eb (58)

aδ exp aδ ≥ aeb (59)
aδ ≥ W (aeb) (60)

δ ≥ 1
a

W (aeb) (61)

where the line before the last uses the fact that the inverse of xex is the Lambert W function denoted as
W (·). Since W (x) ≥ log x − log log x for all x ≥ e, we can write

δ ≥ 1
a

log(aeb) − 1
a

(log log a + log b) (62)

δ ≥ 1
a

(log a + b) (63)
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Finally, observing that a ≈ m
k+ n

G
and b ≈ log n for large m, n and G, we get

δ = O
(

k + n
G

m
log mn

k + n
G

)
(64)

which, for n/G ≪ k is

δ = O
(

k

m
log mn

k

)
. (65)

D Sample Complexity Proof

Proof of Theorem 8. We aim to bound the number of different cells associated with the binary mapping
sign (A·) which contain at least one element from the signal set X , i.e., | sign (AX ) |. Our strategy consists
in obtaining a global bound on the number of discontinuities of the binary mapping over the image of a
covering of X , which can then be related to the number of different cells that contain at least one element
of X .

For ϵ < ϵ0, let Qϵ ⊂ X be an optimal ϵ covering of X , i.e., X ⊂ Xϵ + ϵBn. If boxdim (X ) < k, then there
exists an ϵ0 ∈ (0, 1

2 ) such that |Qϵ| ≤ ϵ−k for all ϵ < ϵ0. Let us define the binary mapping Φ(·) := sign (A ·)
and the number Z(S) of its discontinuous components over a set S ⊂ Sn−1, i.e.,

Z(S) :=
∣∣{i : Φi /∈ C0(S)}

∣∣.
Combining Corollary 10 with a union bound argument and setting t = η(ϵ), we get that with probability
exceeding

1 − |Qϵ| exp(− 3
2

mt2

3η(ϵ)+t ) ≥ 1 − exp(k log( 1
ϵ ) − 3

8 mη(ϵ)),

we have, for Vϵ(q) := Bϵ(q) ∩ Sn−1

Z
(
Vϵ(q)

)
≤ 2mη(ϵ),

for all q ∈ Xϵ. Therefore, provided η(ϵ)m = ϵm
√

π
2 n ≥ 16

3 k log( 1
ϵ ), the above probability exceeds 1 −

exp(− 3
16 mη(ϵ)).

Given s > 1, with s = O(1), let us set ϵ as

ϵ = 16
3 s k

m
√

n
log( 3m

√
n

16sk ),

or η(ϵ)m = 16
3 sk log( 3m

√
n

16sk ), under the assumption that ϵ0 > 16
3 s k

m
√

n
log( 3m

√
n

16sk ). Assuming m
√

n
sk > e, this

means that log(1/ϵ) ≤ log( 3m
√

n
16sk ), so that the previous requirement on η(ϵ)m holds if

sk log( 3m
√

n
16sk ) ≥ k log( 3m

√
n

16sk ),

which is reached as soon as s > 1.

Therefore, with probability exceeding 1 − exp(− 3
16 mη(ϵ)) = 1 − exp(−sk log( 3m

√
n

16sk )) = 1 − ( 3m
√

n
16sk )−sk ≥

1 − ( 3m
√

n
16s )−s, we thus know that for any q ∈ Qϵ,

|Φ(Vϵ(q))| ≤ 22sk log( 3m
√

n
16sk ).

Since ϵ−k = 2k log2(1/ϵ) ≤ 2(log 2)−1k log( 3m
√

n
16sk ) for some c > 0,

| sign (AX ) | ≤
∑

q∈Xϵ
|Φ(Vϵ(q))| ≤ ϵ−k2sk log( 3m

√
n

16sk ) ≤ 2((log 2)−1+1)sk log( 3m
√

n
16sk ) ≤

(
2m

√
n

sk

)4sk

.

We conclude by choosing s = 2 to obtain the bound | sign (AX ) | ≤
(

m
√

n
k

)8k

with probability exceeding

1 − 1024
9m2n which holds as long as ϵ0 > 32

3
k

m
√

n
log( 3m

√
n

32k ).
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