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Abstract

Multimodal Intention Recognition (MIR) plays a critical role in applications such
as intelligent assistants, service robots, and autonomous systems. However, in real-
world scenarios, different modalities often vary significantly in informativeness,
reliability, and noise levels. This leads to modality imbalance, where models tend
to over-rely on dominant modalities, thereby limiting generalization and robustness.
Although existing methods address this issue at either the sample or model level,
they generally fail to account for its multi-level nature. To address this, we propose
Adaptive Re-calibration Learning (ARL), a novel dual-path framework that models
modality importance from both sample-wise and structural perspectives. ARL in-
corporates two key mechanisms: Contribution-Inverse Sample Calibration (CISC),
which dynamically masks overly dominant modalities at the sample level to en-
courage attention to underutilized ones; and Weighted Encoder Calibration (WEC),
which adjusts encoder weights based on global modality contributions to prevent
overfitting. Experimental results on multiple MIR benchmarks demonstrate that
ARL significantly outperforms existing methods in both accuracy and robustness,
particularly under noisy or modality-degraded conditions.

1 Introduction

Understanding human intentions is paramount for creating truly intelligent and user-centric systems [[1-
6]. From predicting user needs in smart homes to enabling natural interactions with robots, the ability
to accurately decipher what a person wants to achieve is crucial. Multimodal Intention Recognition
(MIR) [7, 18] directly addresses this challenge by integrating information from diverse modalities,
including visual cues, linguistic expressions, and auditory signals, to infer users’ underlying goals.
This capability is not just theoretical; it’s the bedrock for advancing a wide range of real-world
applications, including more intuitive intelligent assistants, sophisticated robotics, and safer, more
responsive autonomous systems [9, |10].

However, achieving reliable intention recognition in multimodal settings is far from trivial [[L1}[12].
Real-world multimodal data is inherently heterogeneous: different modalities contribute unequally,
suffer from varying levels of noise, and may be missing or degraded under certain conditions [[13415]].
These challenges make effective integration of modalities both crucial and non-trivial, and they
highlight the importance of addressing modality imbalance, which is a core factor that significantly
affects MIR model robustness and generalization.
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Despite recent advances in MIR, modality imbalance remains a key challenge that limits model
performance and generalization [[16]. In realistic settings, different modalities vary significantly
in terms of informativeness, reliability, and noise levels. This heterogeneity often causes models
to over-rely on dominant modalities while underutilizing weaker but potentially critical signals.
To address this, researchers have proposed various strategies. Early approaches such as gradient
modulation [17] aim to balance modality contributions by globally adjusting learning rates during
optimization. However, these methods typically lack fine-grained sensitivity to the varying importance
of modalities at the sample level. More recently, Shapley value-based methods [[14] have been
introduced to more precisely estimate the marginal contributions of different modality combinations.
While theoretically appealing, these methods suffer from exponential computational complexity with
respect to the number of modalities, severely limiting their scalability in real-world MIR tasks. This
limitation triggers a critical question: How can we enable fine-grained, dynamic modeling of modality
importance without incurring prohibitive computational cost?

Moreover, most existing methods focus solely on either sample-level weighting or model-level
parameter adjustment [18-20], overlooking the multi-level nature of modality imbalance. In reality,
imbalance occurs not only in how individual samples leverage modalities, but also in how the model
itself encodes and integrates them structurally. Thus, methods that optimize only one level often
fall short in handling the complexity of real-world multimodal scenarios. This observation leads to
another fundamental question: How can we jointly address modality imbalance at both the input and
architectural levels to build more robust and generalizable MIR models?

To this end, we propose Adaptive Re-calibration Learning (ARL), a novel framework that tackles
modality imbalance through a dual-path calibration mechanism. ARL introduces two complementary
strategies that work in tandem to address imbalance from both the input and model perspectives.
The first strategy dynamically masks dominant modalities during training based on per-sample
contribution estimates, encouraging the model to pay more attention to underrepresented modalities, a
component referred to as Contribution-Inverse Sample Calibration (CISC). Concurrently, the second
strategy adjusts the weights of modality-specific encoders according to their overall importance,
which helps prevent overfitting to strong modalities and promotes balanced representation learning
at the architectural level, known as Weighted Encoder Calibration (WEC). By integrating these two
mechanisms, ARL achieves a more holistic and adaptive approach to modality balancing in MIR.
Extensive experiments on multiple MIR benchmarks demonstrate that ARL outperforms state-of-the-
art methods in both accuracy and robustness. Particularly in noisy or modality-deprived settings, ARL
shows superior generalization and resilience, highlighting its practical value in real-world deployment.
Our contributions are threefold:

* We propose Adaptive Re-calibration Learning (ARL), a unified framework that addresses
modality imbalance in Multimodal Intention Recognition by jointly calibrating modality
importance at both the input and architectural levels.

* We design two complementary components within ARL: Contribution-Inverse Sample
Calibration (CISC), which dynamically down-weights dominant modalities at the sample
level, and Weighted Encoder Calibration (WEC), which adjusts encoder weights based on
modality importance, enabling balanced and adaptive multimodal representation learning.

* We conduct extensive experiments on multiple MIR benchmarks, demonstrating that ARL
consistently outperforms state-of-the-art methods in both accuracy and robustness, especially
under noisy or modality-degraded conditions.

2 Related Work

2.1 Multimodal Intention Understanding

Multimodal intention recognition (MIR) seeks to infer user intent by integrating diverse signals from
multiple modalities, such as text, audio, and visual information [21H24]. Early unimodal methods,
including text-based intent classification [25]] and acoustic emotion recognition [26], often simplify the
inherent complexity of human intention by relying on a single source of data. In contrast, multimodal
learning approaches provide a more comprehensive understanding by leveraging the complementary
nature of different modalities. Representative methods include MulT [27]], which models inter-modal
interactions through pairwise attention mechanisms, and MISA [28]], which captures both shared and
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Figure 1: The architecture of Adaptive Re-calibration Learning (ARL). ARL integrates three compo-
nents: (b) Leave-One-Out (LOO) Modality Contribution, (c) Contribution-Inverse Sample Calibration
(CISC), and (d) Weighted Encoder Calibration (WEC). LOO assesses modality importance by mask-
ing inputs and measuring similarity. CISC refines features using a contribution threshold. WEC
adjusts encoders with consistency gap from training and validation sets. The process concludes with
Fusion Net for intent prediction.

modality-specific representations to enhance generalization. MAG-BERT [29] further extends this
line of research by integrating nonverbal modalities into the BERT architecture using a multimodal
adaptation gate, thereby enabling the model to incorporate contextual signals beyond text.

More recently, researchers have explored advanced strategies to further improve multimodal learn-
ing in MIR. Contrastive learning methods [30] have been proposed to better align and distinguish
representations across modalities by promoting consistency while preserving unique modality charac-
teristics. In addition, modality-aware prompting techniques [11] have been introduced to dynamically
guide model behavior based on the specific combination of available modalities. Despite these
advancements, one of the major challenges that remains is the issue of sample-specific modality
imbalance. In many real-world scenarios, certain modalities may be noisy, incomplete, or less
informative for particular samples, which can negatively impact model performance. Addressing this
challenge is essential for developing robust and adaptable multimodal intention recognition systems.

2.2 Imbalanced multimodal learning

Imbalanced multimodal learning arises from inherent variations in informativeness and reliability
across modalities, often leading models to overemphasize dominant signals while neglecting weaker,
yet potentially crucial, complementary cues [31H33l]. Traditional techniques, such as loss re-weighting
and modality-specific augmentation, attempt to balance modality influence but often lack adaptability
to sample-specific variations [34-37]. Gradient modulation [17] represents a more dynamic approach,
adjusting training updates to mitigate the dominance of stronger modalities. However, these methods
typically operate at a dataset level and lack the instance-level adaptivity essential, where modality
importance is context-dependent.

Modality dropout [38-40] and contribution-aware learning [41, 42] are prominent strategies for
managing modality imbalance. Modality dropout enhances robustness by randomly masking features
from dominant modalities during training, encouraging reliance on weaker signals. However, its
heuristic nature can inadvertently suppress critical information. Contribution-aware learning offers a
more principled approach, employing techniques like Shapley values [[14] to estimate and balance
modality contributions. While theoretically sound, the computational complexity of Shapley value
calculation hinders its practicality in real-time MIR applications. Thus, achieving an optimal balance
between adaptivity, computational efficiency, and predictive accuracy remains a significant challenge
in imbalanced multimodal learning.

3 Methodology

The Adaptive Re-calibration Learning (ARL) framework, shown in Fig.|l} addresses the modality
imbalance problem in Multimodal Intention Recognition (MIR) by integrating three key components:



Leave-One-Out (LOO) modality contribution estimation, Contribution-Inverse Sample Calibra-
tion (CISC), and Weighted Encoder Calibration (WEC). As noted in Sec. [I| modality imbalance,
where certain modalities dominate due to differences in informativeness and reliability, poses a
significant challenge for MIR. ARL mitigates this through an efficient and adaptive strategy. It starts
with unimodal encoders extracting features from language, visual, and acoustic inputs via pre-trained
models. The LOO module then evaluates each modality’s contribution to the fused representation.
Based on these estimates, CISC calibrates features at the sample level by masking dominant modali-
ties to encourage the use of weaker ones. In parallel, WEC refines the modality-specific encoders by
considering both their contribution and stability during training, promoting more balanced learning.
A complete list of variables and their definitions can be found in Appendix[A.T]

3.1 Problem Formulation

To provide a clear foundation for ARL, we first present a general framework for multimodal intention
recognition. Given a source input m = {L,V, A}, where L, V, and A represent the language, visual,
and acoustic modalities, respectively, the goal is to fuse these modalities into a unified representation
for intention recognition. Each modality is encoded into its respective feature representations:

my = TextEmbed(L) € R** % M
m, = AudioEmbed(A) € Rla*da @)
m, = VideoEmbed(V) € Rl»*dv )

where my, m, and m,, are the extracted feature representations of each modality. Here, [, Ja/v denotes
sequence lengths (text tokens/audio frames/video frames), and d; , /,, represents feature dimensions
for respective modalities. After obtaining the shallow features for each modality, a critical step is to
temporally align these heterogeneous sequences to enable cross-modal interaction. This alignment
process maps the features of each modality into a shared space while synchronizing their temporal
dynamics. Formally, given the modality-specific features m¢, m,, m,, the alignment operation can
be expressed as:

ht, ha, hy = SeqAligned(my, mg, m,) € R4, 4

where h;, h, and h, are the aligned feature representations of each modality. Here, [ indicates
the unified sequence length after alignment, and d is the projected feature dimension. Once the
high-level, aligned features are obtained, they are fused through multimodal fusion to obtain the final
representation for intent prediction:

hm = F(hg, hay hy) € RY, o)

where F () denotes the multimodal fusion function. The final intent prediction is made by applying a
softmax function to the fused representation:

logits = Softmax(W7 hy, + b), (6)

with W € R4¥¢ and b € R being trainable parameters, where C' denotes the number of categories.
The whole framework preserves modality-specific patterns while enabling cross-modal interaction
through shared alignment. To formally quantify the issue of modality imbalance, we introduce the
Modality Imbalance Index (MII), a metric derived from our LOO contributions. A detailed definition
and formulation are provided in Appendix[A.3]

3.2 Leave-One-Out Modality Valuation

Quantifying the contribution of each modality (language, visual, and acoustic) is fundamental to
tackling modality imbalance in multi-modal intent recognition (MIR) systems. The Leave-One-Out
(LOO) method offers a practical and efficient solution for this, contrasting with the computationally
demanding Shapley value approach, which scales exponentially with the number of modalities.

For a given sample i, we start with features from the language (m?), acoustic (m?), and visual
(m?)) modalities. These are combined to produce a fused representation that encapsulates the joint
information:

F,; = Fuse(SeqAligned(m?, m’, m!)), )



where Fuse(-) denotes the fusion function provided by the base multimodal learning architecture.
Importantly, ARL operates as a lightweight plug-in module and does not modify or participate in the
modality fusion process. To evaluate the importance of a specific modality m € {¢, a, v}, we mask
that modality by replacing its features with a zero vector. This simulates the absence of m and allows
us to compute a modified fused representation:

F(™™) = Fuse(SeqAligned(m!, m?,, '), ®)

where m¢, m’, and m¢ denote the inputs with modality m masked (e.g., if m = a, then 7}, = 0,

while m¢ = m{ and 7}, = mi). F\" ™ represents the fused representation obtained when the
modality m is masked, allowing us to analyze the impact of m on the overall representation.

The contribution of modality m, denoted 5i(m), is determined by comparing the original fused

representation F'; with the modified one Fg_m) using cosine similarity. This metric measures the

angular difference between the two vectors, indicating the impact of modality m on the fused output.
A high cosine similarity (close to 1) means the representations are nearly aligned, suggesting that
masking m has minimal impact and thus m contributes little. A low similarity (closer to O or negative)
indicates a significant shift, implying that m is highly influential. The contribution is formalized as:

sm) _ __exp(—n - Sim(F;, F{~™)) ©)
‘ S, exp(—n - Sim(F;, F™)))’

where Sim(-) is the cosine similarity, and 7 is a sensitivity parameter that adjusts the sharpness of
the contribution scores. A larger 1 amplifies differences in similarity scores, making the distinction
between high- and low-contributing modalities more pronounced.

Unlike Shapley methods requiring 2 combinations (where M is the number of modalities), LOO
needs only M forward passes per sample, reducing complexity from exponential to linear—crucial
for real-time MIR. This process, depicted in Fig. [T|(b), enables sample-specific modality valuation,
allowing the system to adapt dynamically to varying modality importance across different inputs.

3.3 Contribution-Inverse Sample Calibration

Building on the modality contributions derived from LOO, Contribution-Inverse Sample Calibration
(CISC) addresses modality dominance by adjusting features at the sample level. The principle is
to reduce reliance on overly influential modalities, encouraging the model to utilize weaker but
potentially valuable ones, thus promoting a balanced multi-modal representation.

For each sample 7 and modality m, we use the LOO contribution 5i(m) and compare it to a threshold

7. If §,§m) > 7, indicating that modality m dominates the fused representation, we mask its features
by setting them to zero. Otherwise, the features remain intact:

~(m) {xgm), if 6§m) <T,
@X: =

10
: 0 if 6™ > 7, (10

3
where xgm) are the original features, and i’l(-m) are the calibrated features. By removing the influence
of a dominant modality (e.g., audio in a noisy environment), the model must rely on the remaining
modalities, enhancing robustness (see Fig.[T](c)). The threshold 7 governs the masking aggressiveness;
a lower 7 masks more modalities, potentially improving balance but risking information loss, while a
higher 7 is more conservative. The calibrated features are then fused:

F, = Fuse(SeqAligned(z\", 5™ (")), (11)

driving intent prediction. This per-sample adjustment adapts to context-specific modality importance,
making the MIR system versatile across diverse scenarios.

Our use of hard masking (zeroing out features) is a deliberate design choice. The motivation is to
introduce a strong regularization effect, decisively breaking the model’s over-reliance on dominant
modalities. An alternative could be soft masking, where features are only attenuated. We empirically
validate our choice in Sec.[#.2] where we show that hard masking leads to a more robust and balanced
representation.



3.4 Weighted Encoder Calibration

While CISC handles sample-level imbalances, Weighted Encoder Calibration (WEC) ensures long-
term stability and balance by adjusting modality-specific encoders based on their global performance.
We introduce the purity score as a measure of class consistency within clusters. It quantifies the
proportion of the dominant true class in each cluster and is formally defined as:

K
. 1 . )
Purity(y,¢) = > max#{i: i = j, & = k}, (12)
k=1

where y € N" denotes the vector of ground-truth class labels, ¢ € N™ represents the cluster
assignments, K is the number of clusters, ) is the set of all class labels, and #{i : y; = j, ¢; = k}
counts the number of samples from class j in cluster k. This metric reflects how well the clustering
preserves the underlying class structure. Using this metric, we assess the stability of each modality
across training and validation sets based on the consistency gap:

train

P = P = 2, (13)
where pi" and p)2 are purity scores for modality m on training and validation sets. A high P,,

indicates inconsistency, such as overfitting.

Combining this with the average LOO contribution 6(™), WEC computes a dynamic weight:

Wy, = tanh(X - Ppy, + a - 60™), (14)

where )\ and « tune the influence of stability and contribution. The encoder parameters are then
adjusted:
00 = w - o + (1 —wm) - ec(lz'rlf)entv

new init

15)

shifting unstable or underused encoders toward their initial state while preserving learned parameters
for stable ones. Applied every T" epochs (see Fig. [2), WEC prevents long-term bias, enhancing
generalization across training.

3.5 The Synergy of CISC and WEC

CISC and WEC synergistically mitigate modality im-
balance through complementary short-term and long-
term calibration. CISC adjusts features per batch, mask-
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contribution and stability metrics, ensuring balanced ﬁ . |é®é

learning over time. During training, CISC operates at
each batch, followed by WEC every T epochs, creating

Aligned Representation Statistical Variance

an iterative optimization loop. This dual-phase strat-
egy, visualized across Fig.[I] enhances ARL’s ability to
handle dynamic modality importance, delivering supe-
rior accuracy and efficiency, vital for real-world MIR
applications like robotics and smart assistants. To pro-

Figure 2: Overview of WEC. The mod-
ule processes training and validation sets
to compute consistency gap and modal con-
tributions, adjusting encoder to ensure bal-
ance across modalities.

vide a clear, step-by-step overview of the entire training
process, we include a detailed pseudocode of the ARL
training procedure in Appendix[A.4]

4 Experiments

Datasets. We evaluate our ARL framework on two multimodal benchmarks: MIntRec [21] for intent
recognition, and MOSI [43] for sentiment analysis. In addition to multimodal intention recognition,
we posit that multimodal sentiment analysis also suffers from modal imbalance issues. Therefore,
we incorporate MOSI dataset as additional evaluation benchmark. The MIntRec dataset comprises
2,224 samples, split into 1,334 for training, 445 for validation, and 445 for testing. It supports two



Table 1: Performance comparison of various multimodal intention understanding methods on the
MIntRec dataset. Our proposed Adaptive Re-calibration Learning (ARL) framework consistently
improves the performance of baseline methods (MAG_BERT, MulT, and TCL_MAP) across all
metrics for both twenty-class fine-grained classification and binary coarse-grained classification tasks.

Method Twenty-class Binary

ACC F1(WF1) P(WP) R ACC F1(WF1) P(WP) R
MAG_BERT [29] 72.65 68.64 69.08 69.28 89.24 89.1 89.1  89.13
w/ ARL 74.38 71.66 71.55 72.89 90.11 90.01 89.92 90.14
A Improvement +1.73 +3.02 +2.47  +3.61 +0.87 +0.91 +0.82  +1.01
MulT [27] 72.52 69.25 70.25 69.24 89.19 89.07 89.02 89.18
w/ ARL 73.71 70.82 72.06 7045 89.89 89.78 89.70  89.88

A Improvement +1.19 +1.57 +1.81 +1.21 +0.70 +0.71 +0.68  +0.70

TCL_MAP [L1] 73.62 73.31 73.72  70.50 89.66 89.69 89.84 89.84
w/ ARL 75.28 75.16 75.71 7335 90.56 90.57 90.59 90.54
A Improvement +1.66 +1.85 +2.00 +2.85 +0.90 +0.88 +0.75  +0.70

Table 2: Comparative experimental results of the
sentiment analysis models on the public MOSI

dataset. The best results are highlighted in bold. Table 3: Impact of hyperparameter o
Method ACC FI(WF1) POWP) R on the MOSI. Best results per metric
are in bold.

MAG_BERT 4235 3654 37.51 37.36
w/ ARL 43.22 3744 3823 38.53
A Improv. +0.87  +0.90 +0.72 +1.17
MulT 4242 3724 37.00 39.05
w/ ARL 4344 38.50 38.97 40.42
A Improv. +1.02  +1.26 +1.97 +1.37
TCL_MAP 42.13 40.54 42.68 37.17
w/ ARL 43.73 42.60 43.73 38.38
A Improv. +1.60  +2.06 +1.05 +1.21

a ACC Fl P R AVG
0.01 42.42 36.32 36.77 38.23 38.43
0.1 42.56 35.75 37.58 37.35 38.31
0.5 42.78 37.40 38.21 38.07 39.11

43.80 36.69 37.80 37.91 39.05
5 4322 37.44 38.23 38.53 39.35
10 41.62 37.30 38.32 37.98 38.80

levels of intent classification: coarse-grained, with binary labels distinguishing between expressing
emotions and achieving goals, and fine-grained, with twenty labels (11 for expressing emotions and 9
for achieving goals). The MOSI dataset consists of 2,199 samples, divided into 1,284 for training,
229 for validation, and 686 for testing, with sentiment scores ranging from -3 (highly negative) to 3
(highly positive). For MOSI, we discretize the continuous sentiment scores into labels from 0 to 6 for
classification tasks.

Evaluation Metrics. For MIntRec, we report Accuracy (ACC), Fl-score (F1), Precision (P), and
Recall (R) to evaluate fine-grained intention recognition performance. For MOSI, we apply the
same metrics to assess the 7-class sentiment classification task. Additionally, when integrating with
TCL-MAP [11]], which uses weighted F1 (WF1) and weighted Precision (WP), we include these
metrics to ensure compatibility with its evaluation standards.

Implementation Details. Our plug-and-play module is incorporated into three established methods:
MAG-BERT [29], MulT [27], and TCL-MAP [11]]. We adopt hyper-parameters such as learning rate,
batch size, and optimizer settings from the publicly released configurations of these baseline methods.
We tune specific hyper-parameters for ARL, including masking threshold in CISC, weight adjustment
factor in WEC, optimizing them via grid search. For MIntRec, we use pre-extracted features with
dimensions 768 for text, 256 for visual, and 768 for acoustic. For MOSI, feature dimensions are 768
for text, 20 for video, and 5 for audio. All experiments are conducted on 4 NVIDIA 4090 GPUs.



Table 4: Ablation study of the proposed model on MIntRec. The best results are highlighted in bold.

Twenty-cl .
Method CISC WEC wenty-class inary

ACC F1I/WF1 PP/WP R AVG ACC FI/WF1 P/WP R AVG

72.65 68.64 69.08 69.28 69.91 89.24 89.10 89.10 89.13 89.14
v 72.81 68.81 69.79 69.32 70.18 89.55 89.43 89.41 89.55 89.48

MAG_BERT
v 7292 69.58 69.94 70.34 70.69 89.66 89.57 89.46 89.79 89.62
v v 7438 71.66 71.55 72.89 72.62 90.11 90.01 89.92 90.14 90.04
7252  69.25 7025 69.24 70.31 89.19 89.07 89.02 89.18 89.11
MulT v 73.03 69.80 71.04 69.16 70.75 89.44 89.33 89.23 89.48 89.37
v’ 7280 69.74 70.62 70.00 70.79 89.21 89.05 89.14 88.97 89.09
v v 7371 70.82 72.06 70.45 71.76 89.89 89.78 89.70 89.88 89.81
73.62 7331 7372 70.50 72.78 89.66 89.69 89.84 89.84 89.75
TCL_MAP v 7393 7376 7437 71.50 73.39 90.34 90.30 90.38 89.92 90.23

v 7416 7337 7330 71.01 72.96 90.00 90.02 90.11 90.08 90.05
v v 7528 75.16 75.71 73.35 74.87 90.56 90.57 90.59 90.54 90.56

4.1 Comparison with the State-of-the-art

As shown in Tabs. [I|and 2] our experimental analysis on the MIntRec and CMU-MOSI datasets
demonstrates the consistent effectiveness of the ARL framework in enhancing multimodal intention
recognition by addressing modality imbalance. On MIntRec, we evaluated state-of-the-art methods
such as MAG-BERT, MulT, and TCL-MAP, and found that integrating ARL improves performance
in both twenty-class and binary classification tasks. For example, TCL-MAP combined with ARL
achieves a twenty-class accuracy of 75.28 and a binary accuracy of 90.56, with consistent gains across
accuracy, F1 score, precision, and recall. Similarly, on CMU-MOSI, a benchmark for multimodal
sentiment analysis, ARL improves all baseline methods. TCL-MAP, in particular, shows the most
notable recalibration of modality importance, reaching an accuracy of 43.73. These results highlight
that ARL not only improves performance but also adaptively recalibrates modality contributions
to address dataset-specific challenges, making it a versatile framework for advancing multimodal
learning. To further contextualize the performance of ARL, we conducted additional experiments
comparing it directly against representative imbalanced learning methods and evaluating its plug-and-
play capability on other recent state-of-the-art models for multimodal understanding. In all cases,
ARL demonstrated significant improvements, validating its effectiveness and versatility. The detailed
results of these comprehensive comparisons are provided in Appendix [A.5]

4.2 Ablation Studies

Effectiveness of Proposed Components. To assess the contributions of the core components in the
ARL framework, namely CISC and WEC, we conduct ablation studies on the MIntRec dataset for
both twenty-class and binary classification tasks. As shown in Tab. 4} CISC and WEC each improve
baseline performance when applied independently. CISC reduces modality bias by masking dominant
modalities, while WEC refines modality-specific encoders based on purity variation and LOO
contribution. Their combination yields a synergistic effect: in the twenty-class task, MAG_BERT’s
AVG increases from 69.91 to 72.62, and TCL_MAP reaches 74.87. For binary classification, despite
already strong baselines, ARL consistently boosts performance, with TCL_MAP improving to 90.56.
Although WEC alone slightly reduces MulT’s binary AVG, its combination with CISC recovers and
enhances performance. These results highlight ARL’s adaptability and its effectiveness in addressing
modality imbalance through complementary mechanisms.

Sensitivity Analysis of Calibration Weight o and Masking Threshold 7. To evaluate the role of
modality contributions estimated by the LOO method in adjusting calibration weights within WEC,
we conducted a series of experiments on the MOSI dataset. The results, summarized in Tab. |3} focus



Table 5: Sensitivity analysis of the CISC masking Table 6: Comparison of Hard Masking (our ARL)
threshold 7 on the MIntRec (twenty-class) dataset and Soft Masking on MIntRec with MAG-BERT.
using the MulT model. The baseline performance The baseline performance corresponds to not us-
corresponds to 7 = 1.0. Best results are in bold. ing a mask. Best results are in bold.

r ACC FI P R Method ACC  FI P R
1.0 7252 6925 7025 69.24 Baseline 72.65 68.64 69.08 69.28
82 ;?;i ggég 2(8)(7)3 ZZS w/ HardMask  74.38 71.66 71.55 72.89
05 7371 7082 72.06 70.45 A Improv FL73 4302 4247 +3.61
03 7326 6994 7123 69.64 w/ SoftMask 7324 6731 70.14 69.57
0.1 7079 67.16 6827 66.52 A Improv. +0.59 -133 +1.06 +0.71

on the effect of different a values (0.01, 0.1, 0.5, 1, 5, 10) on the performance of the MAG_BERT
model. Here, o controls the influence of LOO-derived contributions on WEC. The results show that
when o = 1, the model achieves the highest accuracy (43.80) and a relatively high recall (37.91),
although the F1 score (36.69) is slightly lower than that at « = 5. At o = 5, the model obtains the
highest F1 score (37.44) and peak recall (38.53), resulting in the best overall performance (AVG
= 39.35). In contrast, setting a too low (e.g., 0.01) or too high (e.g., 10) leads to performance
degradation across all metrics, indicating the importance of selecting an appropriate « value to
balance performance, @ = 1 and o = 5 yield the best results, confirming that incorporating LOO-
based modality contributions into WEC can effectively enhance model performance when properly
calibrated.

To further demonstrate the robustness of our ARL framework, we provide a sensitivity analysis for
the Contribution-Inverse Sample Calibration (CISC) masking threshold, 7. This hyperparameter
governs the aggressiveness of the masking mechanism; a lower 7 means modalities are masked more
frequently. The analysis was conducted using the MulT model on the MIntRec (twenty-class) dataset.

As shown in Tab. [5] the model achieves optimal performance across all metrics when 7 = 0.5. A
value of 1.0 is equivalent to the baseline model without CISC. While performance degrades with
very aggressive masking (e.g., 7 = 0.1) or overly conservative masking, there is a stable range where
the model benefits from the calibration. We observed similar trends across our other experimental
setups. This analysis demonstrates that while the hyperparameter is important, its optimal value can
be reliably identified via standard tuning procedures.

Effectiveness of Hard Masking To validate our choice of hard masking in the CISC module, we
conducted an experiment comparing its performance against a soft masking alternative. In the soft
masking setup, instead of being zeroed out, the features of a dominant modality are attenuated (e.g.,

multiplied by a factor of 1 — 5{™).

The results, presented in Tab. [6] clearly show that our proposed hard masking approach yields
significant and consistent improvements across all evaluation metrics. While soft masking provided
a modest improvement in Accuracy and Precision, it was detrimental to the F1-score and Recall.
We hypothesize that this is because an attenuated signal is insufficient to compel the model to
fundamentally alter its strategy. Hard masking, in contrast, forces the model to actively learn from
underutilized modalities, leading to superior F1 and Recall scores which indicate a more robust and
balanced model.

Generalizability under Missing Modalities. To assess the robustness of the ARL framework, we
conduct ablation studies under missing modality conditions on the CMU-MOSI dataset. We test
three modality pairs: {a, v} (audio-visual), {v, ¢} (visual-text), and {a,t} (audio-text), evaluating
performance improvements for both MAG-BERT and MulT models. As shown in Tab. [7, ARL
consistently enhances accuracy (ACCy, ACC5) and F1 scores (F'17, F'15) across all settings. For
example, in the {a, v} scenario, ARL increases MulT’s AC'C from 22.13 to 23.09 and AC'C from
59.79 to 60.67. The largest gains occur in the {a, t} setting, where MAG-BERT’s AC'C’ rises by 1.57
(to 42.82) and AC'Cs by 1.08 (to 81.98), underscoring ARL’s ability to leverage textual information,
which is vital for sentiment analysis. These results highlight ARL’s adaptability and effectiveness in
mitigating modality imbalance across diverse configurations and architectures.



Table 7: Performance under missing modality scenarios on CMU-MOSI. Best results are in bold.

Method fav} vt} {a,t}

ACC; Fl; ACC, Fl, ACC; Fl; ACC, Fl, ACC; Fl; ACC, Fly

MAG_BERT 17.78 7.50 48.13 4529 40.00 35.06 81.07 80.79 41.25 35.69 80.90 80.56
w/ ARL 19.30 8.24 48.80 46.77 41.02 35.89 81.63 81.43 42.82 35.70 81.98 81.73
A Improvement +1.52 +0.74 +0.67 +1.48 +1.02 +0.83 +0.56 +0.64 +1.57 +0.01 +1.08 +1.17

MulT 22.13 1593 59.79 58.74 4090 36.57 81.24 81.03 41.19 36.55 81.22 80.88
w/ ARL 23.09 16.22 60.67 60.21 41.89 37.03 81.54 81.19 42.27 36.76 81.51 81.30
A Improvement +0.96 +0.29 +0.88 +1.47 +0.99 +0.46 +0.30 +0.16 +1.08 +0.21 +0.29 +0.42

Computational Cost and Scalability of LOO.
To evaluate the practicality of our Leave-One-Out
(LOO) modality valuation method compared to
Shapley-based approaches, we analyze computa-
tional cost with respect to two key factors: fea-
ture dimension and number of modalities. This
addresses scalability concerns raised in Sec. [T}
As shown in Fig. [3] both methods scale linearly
with feature dimension, as expected. However,
they differ significantly in scalability with re-
spect to the number of modalities. Shapley-
based methods suffer from exponential com- o2
plexity (O(n2™)), due to evaluating all possible .

modality subsets. In contrast, LOO demonstrates ’ ’ Number of Modalites °
linear growth (O(n)), requiring only a single for- Figure 3: Computational cost for LOO and Shap-
ward pass per modality. This makes LOO far jey methods.

more scalable and suitable for real-world MIR

applications with multiple modalities.

Computation Time Comparison by Feature Dimension

w
S

—e— Shapley-based 512 dimensions
LOO 768 dimensions

- N
=) =3

o

- N

Computation Time (s, log scale)
o
@

5 Conclusion and Discussion

In conclusion, we have presented Adaptive Re-calibration Learning (ARL), a novel framework
designed to mitigate modality imbalance in Multimodal Intention Recognition and enhance the
robustness of multimodal learning. ARL leverages our proposed Leave-One-Out (LOO) modality
valuation method, a computationally efficient alternative to Shapley values, to power a two-phase
calibration strategy. Through Contribution-Inverse Sample Calibration (CISC) and Weighted Encoder
Calibration (WEC), ARL dynamically refines model learning by addressing both sample-specific and
modality-level imbalances. Our extensive evaluations across MIntRec and MOSI datasets demonstrate
ARL’s effectiveness in boosting performance over strong baselines. Crucially, ARL overcomes the
scalability bottleneck inherent in Shapley-based approaches, offering a practical and efficient solution
for real-world MIR applications.

Limitations of ARL. Although ARL has achieved remarkable results in alleviating the modality
imbalance problem in multimodal intent recognition, it still has some limitations. First, the perfor-
mance of ARL depends on the expressiveness of the underlying model and the design of the fusion
mechanism. If the base model itself has biases in understanding certain modalities or lacks sufficient
feature extraction capabilities, ARL may not be able to fully compensate for these shortcomings.
In addition, the computational overhead increases. Although the LOO (Leave-One-Out) method
has linear complexity compared to Shapley values, in large-scale datasets or multimodal tasks, each
forward pass used to assess modality contributions still introduces extra computational costs. The
dual calibration mechanisms of WEC and CISC improve performance, but they also lead to increased
training time and resource consumption.
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Justification: We introduced our contribution in both abstract and Sec.[T]
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* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation of our dataset and experiments in Sec. [}
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* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.
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that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: The paper has no theoretical analysis.
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* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have provided all the information needed to reproduce the experimental results.
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¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: The code used in this work will be announced soon.
Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We introduced various experimental settings in detail in Sec. ]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please refer to Sec.[dl
Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Please refer to Sec.[dl
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.
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* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:
Justification: Our paper does not include ethical problems.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: Please refer to Sec.[T]and appendix [A.2]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: There is no risk in using the dataset.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We properly credited original assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer:
Justification: No new assets were introduced in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer:
Justification: This article does not use LLM.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Variable summary

See Tab.[8]
Table 8: Variables and Definitions in the ARL
Variable | Definition
m={L,V, A} Input source modalities: Language (L), Visual (V), and Acoustic (A).
my Text modality feature: m; = TextEmbed(L) € Rl ¢,
Mg Audio modality feature: m, = AudioEmbed(A) € Rla*da,
My Video modality feature: m,, = VideoEmbed(V) € Rlvxdv,
e Sequence lengths of respective modalities (e.g., tokens, frames).
e Feature dimensions of each modality.
hey hay By Aligned multimodal features: SeqAligned(m;, m,, m,) € R,
l Unified sequence length after alignment.
d Projected feature dimension.
A Final fused representation: h,,, = F(hs, ha, hy) € R%.
F() Multimodal fusion function.
logits Intent prediction output: Softmax(W7 h,,, + b).
w Weight matrix: W € R4<C,
b Bias vector: b € RC.
C Number of classes.
F, Original fused representation for sample 7: Fuse(SeqAligned(mi, mi, mi)).
FEfm) Modified fused representation with modality m masked: Fuse(SeqAligned (i, mi,mi)).
s5m) Modality m contribution: 6™ = exp(n Sim(Fi.Fy ™)

. —m/
S exp(n-Sim(F; F{™™))

Sim(-) Cosine similarity function.
n Sensitivity parameter to control sharpness of contribution scores.
~Em) Calibrated modality m feature: zero if 61(7”) > 7, else unchanged.
T Threshold to determine whether to mask a modality.
F, Fused representation using calibrated features: Fuse(Squligned(igt), 575“) , jgv))).
Purity(y, ¢) Purity score formula: Purity(y, ¢) = %Zszl maxjey #{i:y; = j, ¢; = k}

Y Ground-truth class label vector.
c Cluster assignment vector.

K Number of clusters.

Yy Set of all class labels.

#{i:y; = j, ¢; = k} | Count of samples in cluster k that belong to class j.

P Modality inconsistency measure: P,,, = |piain — pyal
plain Purity score of modality m on training set.
p,‘,’,’“‘Ll Purity score of modality m on validation set.
Wiy Dynamic weight: w,,, = tanh(\ - P,, + a - 6(™))
A Hyperparameter controlling stability impact.
o Hyperparameter controlling average LOO contribution impact.
gim) Updated encoder parameters: 05 = w,, - 01(;3 )b (1= wy) -0
61(;: ) Initial encoder parameters for modality m.
olm) Current encoder parameters for modality m.

A.2 Broader Impacts of ARL

ARL proposes an innovative multimodal intent recognition framework that has demonstrated significant effec-
tiveness in addressing the issue of modality imbalance, showing great potential for practical applications. Firstly,
it enhances the robustness and generalization capability of multimodal systems, which is crucial for the develop-
ment of more reliable intelligent assistants, service robots, and autonomous driving systems. Moreover, ARL
introduces a dual-path calibration mechanism (CISC + WEC), offering new perspectives and methodological
insights for future research, and contributing to the advancement of multimodal collaborative learning. In partic-
ular, when dealing with modality imbalance, this approach exhibits greater flexibility and efficiency compared to
traditional methods. Furthermore, ARL performs robustly under conditions of modality degradation or absence,
which is especially important in real-world scenarios involving incomplete data or device malfunctions.

However, ARL also presents potential drawbacks. First, the increased model complexity poses challenges to
interpretability. The inclusion of two additional modules (CISC and WEC) may complicate the model’s decision-
making process, reducing transparency, which could raise trust issues in applications requiring strict regulatory
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compliance. In addition, privacy concerns must not be overlooked. Multimodal systems typically involve various
perceptual signals (e.g., speech, images, text), and ARL’s goal of better leveraging the synergy among these
modalities inherently increases the risk of privacy leakage, particularly in tasks involving personal identities or
sensitive information. Finally, there is a risk of misuse. If ARL were to be applied for malicious purposes—such
as generating highly convincing but deceptive intent recognition outputs or manipulative sentiment analysis—it
could be exploited to create misleading content or influence user behavior unethically.

A.3 Formal Definition and Measurement of Modality Imbalance

During the review process, it was suggested that a formal definition and a quantitative metric for modality
imbalance would enhance the paper’s rigor. We address this by introducing the Modality Imbalance Index (MII).

Formal Definition. We formally define modality imbalance as: "The degree of non-uniformity in the contribu-
tions of different modalities to the final prediction for a given multimodal sample."”

Quantitative Metric (Modality Imbalance Index) We leverage our Leave-One-Out (LOO) contribution scores
to create a quantitative metric. For a sample ¢ with M modalities, we have a vector of contribution scores
Ay = {6lm) 60m2) 50y where 30 6™ = 1. An ideal balance implies that all modalities contribute
equally (i.e., 5£m> = 1/M for all m).

To quantify the deviation from this ideal state, we introduce the Modality Imbalance Index (MII), defined as
the variance of these contribution scores:

1 & 1)
MII(i) = Var(Ai) = 72 > (5}’”) - M)
m=1

A higher MII value indicates a greater imbalance for sample ¢, signifying that one or a few modalities are
dominating the prediction.

Connection to ARL Our proposed ARL framework is designed to implicitly minimize this imbalance.

¢ Contribution-Inverse Sample Calibration (CISC) acts as a reactive, sample-level mechanism. It

directly targets samples with high MII by masking dominant modalities whose contribution 61(7")
exceeds a threshold 7, thereby encouraging the use of underutilized modalities.

¢ Weighted Encoder Calibration (WEC) serves as a proactive, architectural-level mechanism. It
adjusts encoder weights based on global contribution statistics (J (m)y and stability, aiming to reduce
the average modality imbalance across the entire dataset over the long term.

A.4 ARL Training Algorithm

To enhance clarity and reproducibility, we provide the detailed pseudocode for the complete ARL training
procedure in Algorithm[T] This algorithm outlines the interplay between LOO valuation, CISC, WEC, and the
base model optimization.

A.5 Extended Comparisons with State-of-the-art Methods

To comprehensively validate the effectiveness and generalizability of our proposed ARL framework, we
conducted two additional sets of experiments. First, we compare ARL directly with several strong baselines
specifically designed for imbalanced learning. Second, we apply ARL as a plug-and-play module to other recent,
high-performing multimodal models to demonstrate its versatility.

As shown in Tab.[Da] ARL significantly outperforms other methods designed to tackle imbalance, such as
gradient modulation (OGM, OPM) and regularization techniques. Furthermore, Tab. [Ob] shows that ARL
consistently enhances the performance of strong, contemporary models like DMD and EMOE. These results
collectively underscore the superiority and broad applicability of our approach.
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Algorithm 1 Adaptive Re-calibration Learning (ARL) Training Procedure

Require: Training set Dy,.4;n, Validation set D,,,;, Base model fy
Require: ARL hyperparameters: CISC threshold 7, WEC update frequency 7', WEC weights A, «
. Initialize base model parameters 6 (encoders 6(m)  fusion net, etc.)

1

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

2
3
4:
5:
6
7
8
9

: for epoch < 1 to max_epochs do

for all m € {¢,a,v} do

end for

end for
if mod(epoch, T") = 0 then
Calculate purity scores po.

Calibrate unimodal features &
Compute final fused representation F; using calibrated features.

Compute prediction loss £ = Loss(Softmax(F}), y;)
Update base model parameters 6 via backpropagation

train

(m)

g

val

» P

for all batch {(m?, m?,m?),y;} in Dirain do
Compute full-modality fused representation F; for each sample .

Compute masked fused representation Fi(fm

Calculate contribution scores 6§m) for each modality.
using 6" and threshold 7.

and stability Py,.
Calculate average LOO contribution § (m) on D_ml
Compute dynamic weights w,,, using P,,, and § (m),

Adjust encoder weights 97(,,733, using Wy, .
end if
end for

> Eq. (7)

> Eq. (8)

> Eq. (9)
> Eq. (10)
>Eq. (11)

> Egs. (12), (13)

> Eq. (14)
> Eq. (15)

(a) Comparison with representative imbalanced learning meth-
ods on the MIntRec (twenty-class) dataset, using MAG-BERT

as

Table 9: Extended performance comparisons on the MIntRec and another benchmark dataset.

the base model.

Method ACC F1(WF1) P(WP) R

MAG_BERT (Baseline) 72.65 68.64 69.08 69.28
w/ ARL (Ours) 7438 71.66 71.55 72.89
w/ Curriculum Dropout [44] 67.15  66.21 67.02 66.85
w/ OGM [32] 7331  69.83 69.91 70.21
w/ OPM [45] 7324 69.22 69.36 70.13
w/ InfoReg [46] 73.55 70.12 70.25 69.58
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(b) Plug-and-play validation of ARL on
other state-of-the-art multimodal emo-
tion and intent recognition models.

Method ACC2 ACC7 F1
CAGC [30] 857 448 85.6
DMD [47] 86.0 45.6 86.0
DMD w/ ARL 86.8 46.3 86.7
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