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ABSTRACT

Direct Preference Optimization (DPO) has become the de facto standard for offline
preference alignment of large language models, but its reliance on a reference
policy introduces a critical tension. DPO weighs each update relative to a reference,
which stabilizes the training by regularizing the updates within a trusted region.
This reliance becomes problematic for pessimistic pairs, where the reference model
prefers the rejected response. For these pairs, DPO prematurely attenuates the
gradient as soon as the policy margin (∆θ) merely beats the reference margin (∆ref )
even if the policy is still wrong (∆θ < 0). We name this failure premature satisfac-
tion, which is a concrete form of the training–inference mismatch. Reference-free
objectives remove this mismatch by optimizing the absolute margin, but at the
cost of discarding the stabilizing signal of the reference. We mitigates this tension
with Hybrid-DPO (HyPO), a drop-in modification to DPO that applies reference
conditionally: HyPO behaves exactly like DPO when the reference is optimistic
or neutral, and it treats the reference as neutral when it is pessimistic by replacing
∆θ − ∆ref with ∆θ − max{0,∆ref}. This one-line change strictly strengthens
per-example learning signals on pessimistic pairs while preserving DPO’s objective
form and computational cost. By conditionally debiasing the pessimistic refer-
ence signal, HyPO mitigates premature satisfaction; empirically, across preference
alignment, HyPO improves inference-aligned metrics and achieves higher pairwise
win rates. Our results provide evidence that direct preference alignment could be
enhanced by conditionally debiasing the reference signal, rather than discarding it.

1 INTRODUCTION

Aligning Large Language Models (LLMs) with human preferences and values is paramount for
developing safe, helpful, and reliable AI systems (Askell et al., 2021). The pioneering Reinforcement
Learning from Human Feedback (RLHF) paradigm (Christiano et al., 2017) achieved this by first
training a reward model on human preference pairs (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022; Bradley & Terry, 1952; Schulman et al., 2017; Bradley & Terry, 1952), and then using
reinforcement learning (Schulman et al., 2017) to optimize the LLM for reward maximization, usually
with a KL-divergence penalty to regularize deviation from a reference policy (Ouyang et al., 2022).
Despite the widespread success, RLHF’s multi-stage process suffers from complexity, instability,
and high computational cost (Sharma et al., 2024; Gao et al., 2023). Addressing these challenges,
Direct Preference Optimization (DPO) (Rafailov et al., 2023) emerged as a compelling alternative,
offering a significant simplification by analytically deriving a direct policy loss. This loss allows for
direct optimization on pairwise preference data (x, yw, yl), bypassing explicit reward modeling. Its
mechanism implicitly enforces KL regularization by comparing the policy to a reference model (πref),
making the loss dependent on the log-likelihood margin ∆θ −∆ref. DPO has gained widespread
adoption due to its stability, efficiency, and strong empirical performance (Rafailov et al., 2023;
D’Oosterlinck et al., 2024; Zhao et al., 2023; Yuan et al., 2023; Rashidinejad & Tian, 2025).

While DPO is simple and effective, its reliance on a reference model introduces a tension that has
led to two seemingly opposing lines of work. One argues that the reference should be removed
due to a training–inference mismatch (Chen et al., 2024; Meng et al., 2024): DPO optimizes a
reference-relative margin (e.g., ∆θ −∆ref ), whereas inference depends on absolute log-likelihoods
with no reference. Empirically, after DPO alignment, the agreement between the implicit-reward
ordering and the likelihood ordering is only ∼50%, motivating reference-free objectives that directly

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) DPO (b) Reference-free Method (c) HyPO (Ours)

Figure 1: Per-example gradient weight heatmaps. The weight, plotted over the policy margin ∆θ

(x-axis) and the reference margin ∆ref (y-axis), indicates training signal strength. DPO’s reliance on
the relative margin leads to premature satisfaction: on pessimistic examples (blue dot, ∆ref < 0), the
signal is heavily attenuated even though the policy is still wrong in absolute terms. Reference-free
methods provide a strong signal but discard the reference entirely. HyPO mitigates this by mirroring
the reference-free behavior on pessimistic examples to ensure a strong signal, while reverting to DPO
on optimistic examples (red dot) to maintain proximity to the reference policy.

optimize the inference metric and often outperform DPO (Meng et al., 2024). The other line takes the
opposite view: the reference can be beneficial when strengthened or made adaptive. Updating πref
alongside the policy helps mitigate over-optimization (Gorbatovski et al., 2025), and employing a
stronger or better-matched reference improves stability and final performance, sometimes surpassing
reference-free methods (Liu et al., 2024b; Azar et al., 2024; Pan et al., 2025). This leaves a practical
dilemma: removing πref eliminates metric mismatch and can enhance performance, whereas retaining
πref improves training stability and can also enhance performance.

To mitigates the tension between reference-based and reference-free direct alignment, we propose a
unifying principle: the proximal stability offered by the reference model should be applied condition-
ally. We argue that the reference provides a constructive signal for stable learning only when it aligns
with the preference data. When it is pessimistic (∆ref < 0), its stabilizing pull becomes a misleading
bias, making the learning objective unnecessarily difficult and causing the gradient to attenuate even
when the absolute ordering (∆θ) is still incorrect. We term this effect premature satisfaction. Prior
approaches either accept this bias (standard DPO; Rafailov et al., 2023) or discard potentially useful
reference signal altogether (reference-free methods; Yuan et al., 2023; Meng et al., 2024).

To realize this principle, we introduce Hybrid-DPO (HyPO), a minimalist and efficient modification
to the DPO objective. HyPO behaves identically to DPO when the reference is helpful (optimistic or
neutral) but treats a pessimistic reference as neutral (∆ref = 0). This is achieved with a minor change
to the DPO loss: the log-likelihood margin ∆θ −∆ref becomes ∆θ −max{0,∆ref}. As illustrated
in Figure 1, standard DPO (a) prematurely attenuates the learning signal on pessimistic examples;
typical reference-free method (b) discard the reference signal entirely; our proposed HyPO (c) uses
the stabilizing reference where it helps and nullifies it where it is detrimental, thereby continuing to
push the policy toward the correct absolute ordering.

We conduct a comprehensive empirical evaluation on preference datasets, aligning both base and
instruction-tuned variants of two widely-used LLM family (Jiang et al., 2023; AI@Meta, 2024).
Our proposed method, HyPO, demonstrates superior performance on general instruction-following
benchmarks like AlpacaEval 2.0 (Li et al., 2023) and Arena-Hard-v0.1 (Tianle Li, 2024). Notably,
these results translate to a 41.2% average relative improvement over the original DPO. Further
analyses and ablations corroborate the robustness of our approach, showing that HyPO maintains its
advantage when scaling to larger models and transferring to different datasets, all while preserving
performance on a wide array of downstream tasks. These findings empirically validate our central
thesis: conditionally debiasing the pessimistic reference signal, rather than discarding it entirely,
provides a more robust and effective path toward stable, high-performing direct preference alignment.

Our main contributions can be summarized as follows:
1. We identify and formalize premature satisfaction: for pessimistic pairs (∆ref < 0), the DPO

weight attenuates once the relative margin turns positive even when the absolute margin remains
wrong (∆θ < 0), revealing a tension between correctness and stability.
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2. We propose Hybrid-DPO (HyPO), a minimalist modification to the DPO objective that clips the
reference margin in the DPO loss, thereby preserving the DPO-style logistic loss and, on pessimistic
pairs (∆ref < 0), reducing to an absolute margin update, with no additional computational cost.

3. Across large-scale preference alignment, HyPO improves inference-aligned metrics and raises
pairwise win rates on general instruction-following benchmarks (e.g., AlpacaEval, Arena-Hard).

2 RELATED WORK

We situate HyPO within the off-policy branch of RLHF: methods trained on fixed human preference
pairs without on-policy rollouts. Accordingly, we do not compare to on-policy RLHF (Christiano
et al., 2017; Shao et al., 2024), and instead focus on recent direct preference alignment (DPO-style)
objectives and extensions, underscoring HyPO’s distinct features.

Manipulating the Reference Signal. DPO’s reliance on πref has inspired a spectrum of solutions. One
direction focuses on refining the reference: performance is sensitive to reference choice and strength
(Liu et al., 2024b; Azar et al., 2024), leading to Trust-Region DPO (TR-DPO) (Gorbatovski et al.,
2025), which dynamically updates πref during training to keep it aligned with the policy. RainbowPO
(Zhao et al., 2025) mixes the standard reference with an idealized constant-margin policy. Pre-DPO
(Pan et al., 2025) further refines the reference model’s role as an implicit sample reweighter. At the
other extreme, reference-free methods like RRHF (Yuan et al., 2023), SLiC-HF (Zhao et al., 2023),
CPO (Xu et al., 2024), ORPO (Hong et al., 2024), and SimPO (Meng et al., 2024) eliminate the
reference to directly optimize absolute log-likelihoods, addressing the training–inference mismatch
at the cost of removing a stabilizing prior. The core problem of reference mismatch has also been
identified in other modalities; for example, MaPO (She et al., 2024) removes the reference to improve
multimodal alignment. HyPO offers a principled middle ground: it keeps the DPO-style logistic
loss, but clips the reference margin, replacing ∆ref with max{0,∆ref}. This removes pessimistic
anchoring while preserving proximality when the reference is non-pessimistic.

Explicit Reweighting and Robust Optimization. A parallel line of work makes the reference-induced
sample weighting explicit to improve training dynamics and robustness. Several distributionally
robust DPO variants (e.g., rDPO (Chowdhury et al., 2024), Dr.DPO (Wu et al., 2024a), WDPO (Xu
et al., 2025)) reweight examples to minimize the impact of label noise or worst-case distributional
shifts. Others use data-driven signals; for instance, β-DPO (Wu et al., 2024b) dynamically adjusts the
temperature β based on data quality, while WPO (Zhou et al., 2024) reweights pairs to better simulate
on-policy optimization from off-policy data. Some methods operate at a finer granularity, such as
TDPO (Zeng et al., 2024) and TIS-DPO (Liu et al., 2024a), which apply importance sampling at
the token level. While these methods all leverage reweighting, their criteria are typically noise, data
quality, or on-policy correction. In contrast, HyPO gates the reference contribution by the reference
model’s own pessimism: when ∆ref ≥ 0 it behaves exactly like DPO, and when ∆ref < 0 it reduces
to an absolute margin update on those pairs.

Alternative Objective Formulations. Beyond manipulating the reference or loss weights, several
methods alter the structure of the DPO objective. f -DPO generalizes DPO beyond reverse-KL to
broader f -divergences (Wang et al., 2024a). R-DPO diagnoses and mitigates length biases within the
DPO objective (Park et al., 2024), and AlphaDPO adaptively sets a data-dependent reward margin
(Wu et al., 2025). Techniques such as DPO-Shift (Yang et al., 2025) and BDPO (Cho et al., 2025)
modify the loss function to bound or rebalance the influence of the rejected response, while FocalPO
(Liu et al., 2025) adds a modulating factor to focus on correctly ranked ones. Anchored methods
like APO (D’Oosterlinck et al., 2024) retain the DPO form but add explicit constraints to control
the absolute likelihood drift of chosen or rejected responses. HyPO differs in where it acts: it
preserves DPO’s gradient form (same logistic weighting and β) but modifies the argument of the loss
to ∆θ − ∆̃ref with ∆̃ref = max{0,∆ref}, thereby reallocating gradient mass on pessimistic pairs
without introducing an extra multiplicative weight.

3 MITIGATING MISMATCH IN DIRECT PREFERENCE ALIGNMENT

To fully appreciate the design trade-offs in modern alignment methods, we briefly recall the KL-
regularized RLHF principle (Christiano et al., 2017; Ziegler et al., 2019) that underpins them. We
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begin by considering a distribution of prompts Dp from which prompts x are sampled, and let πθ be
the trainable policy initialized from a supervised policy πSFT. In KL-regularized policy optimization
(e.g., PPO; Schulman et al., 2017), a canonical KL-regularized objective used in practice is:

max
πθ

Ex∼Dp, y∼πθ(·|x)
[
rϕ(x, y)

]
− τ Ex∼Dp

[
DKL

(
πθ(· | x) ∥ πref(· | x)

)]
, (1)

where rϕ is a reward model trained from human preferences, πref is a fixed reference (typically
πSFT), and τ > 0 controls the regularization strength. For each x, π⋆

θ denotes the optimal policy, the
per-context optimum of equation 1 has the Gibbs form (Peters et al., 2010; Azar et al., 2024):

π⋆
θ(y | x) =

πref(y | x) exp
(
rϕ(x, y)/τ

)∑
y′ πref(y′ | x) exp

(
rϕ(x, y′)/τ

) , (2)

which exposes the role of the KL term: it anchors πθ near πref, making updates stable and discouraging
distributional drift that could exploit reward misspecification (Schulman et al., 2015; 2017).

Direct Preference Optimization (DPO; Rafailov et al., 2023) circumvents explicit reward modeling
and reinforcement learning by reformulating the objective for an offline setting, directly optimizing
pairwise preferences (x, y+, y−) where y+ ≻ y− under a Bradley–Terry likelihood (Bradley & Terry,
1952). We define the policy and reference margins as:

∆θ(x, y
+, y−) = log πθ(y

+ | x)− log πθ(y
− | x),

∆ref(x, y
+, y−) = log πref(y

+ | x)− log πref(y
− | x).

(3)

DPO minimizes the logistic loss:

LDPO = E(x,y+,y−)

[
− log σ

(
β
(
∆θ −∆ref

))]
= E(x,y+,y−)

[
log

(
1 + exp

(
− β(∆θ −∆ref)

))]
,

(4)
where β = 1/τ . Under the Bradley–Terry model, the first-order optimality condition shares the Gibbs
structure of KL-regularized policy optimization (Rafailov et al., 2023) and satisfies:

log πθ(y | x)− log πref(y | x) = β r⋆(x, y)− logZ(x). (5)

This follows by taking logarithms of the KL-regularized optimum in Eq. 2:

π⋆(y | x) ∝ πref(y | x) exp
(
r⋆(x, y)/β

)
, (6)

where r⋆ is a preference-consistent reward and Z(x) the partition function. This makes explicit how
DPO preserves proximity to πref without explicit RL. Differentiating Eq. 4 with respect to the policy
margin ∆θ yields the per-example gradient-weight form:

∇θℓDPO = −β σ
(
− β(∆θ −∆ref)

)︸ ︷︷ ︸
wDPO∈(0,1)

∇θ∆θ.
(7)

Although the introduction of the reference policy anchors the policy πθ near πref via the relative
margin (∆θ −∆ref) serving as the gradient weight (Pan et al., 2025) in Eq. 7, thereby providing
stability and suppressing distributional drift, it simultaneously introduces a training–inference metric
mismatch (Chen et al., 2024; Meng et al., 2024). We refer to this side effect as premature satisfaction.

Premature Satisfaction. Let the scaled relative margin be:

z = β
(
∆θ −∆ref

)
, wDPO = σ(−z) =

1

1 + ez
, z ≥ 0 ⇒ wDPO ≤ e−z. (8)

Hence, from Eq. 7 we obtain:
∥∥∇θℓDPO

∥∥ = β σ(−z)
∥∥∇θ∆θ

∥∥ ≤ β e−z
∥∥∇θ∆θ

∥∥.
When the reference is pessimistic on a pair (∆ref < 0), even if the current policy is still wrong in
absolute terms (∆θ < 0), as soon as the relative margin becomes positive (∆θ − ∆ref > 0), the
gradient shrinks exponentially, even though the policy remains wrong in absolute terms (∆θ < 0).

For example, take β = 1, ∆ref = −3, and ∆θ = −1. Then ∆θ − ∆ref = 2, we have wDPO =
σ(−2) ≈ 0.119,

∥∥∇θℓDPO

∥∥ ≈ 0.119
∥∥∇θ∆θ

∥∥. As illustrated by the lower-left region of the heatmap
in Figure 1(a) (i.e., ∆θ − ∆ref > 0), the weight wDPO decays rapidly; when ∆ref < 0, this low-
weight band still covers many points with ∆θ < 0. Premature satisfaction reveals the tension between
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stability (proximality) and mismatch: while DPO suppresses drift, it may also systematically attenuate
the training signal of examples that disagree with πref yet remain substantially wrong.

Reference-free Alignment. A natural reaction is to remove the reference to obtain an unbiased signal
based on the absolute correctness of ∆θ, aligned with inference-time likelihoods. Reference-free
objectives (e.g., SimPO; Meng et al., 2024) optimize the absolute margin:

Labs = E(x,y+,y−)

[
ℓabs(∆θ)

]
, ℓabs(∆θ) = log

(
1 + exp(−β∆θ)

)
, (9)

with gradient:
∂ℓabs

∂∆θ
= −β σ(−β∆θ), ∇θℓabs = −β σ(−β∆θ)∇θ∆θ. (10)

Compared to Eq. 7, attenuation now depends only on the policy’s own performance: pairs with
∆θ < 0 inevitably receive large gradients until ∆θ crosses zero, directly aligning the training
signal with the inference-time objective (increasing log πθ(y

+ | x) and decreasing log πθ(y
− | x)).

However, Eq. 9 discards the very mechanism that implemented proximality in Eq. 4 and Eq. 5.
Although recent work suggests that RLHF (Chu et al., 2025; Mukherjee et al., 2025) does not
typically induce substantial parameter drift, removing this proximality nonetheless markedly reduces
the robustness (Pan et al., 2025; Liu et al., 2024b) of reference-free alignment.

Direct Preference Optimization with Better Reference. Another approach argues that we should
improve reference model to enhance DPO framework. This idea motivates using a stronger reference
policy within the DPO framework (Liu et al., 2024b; Azar et al., 2024; Pan et al., 2025). The premise
is that a more accurate reference margin, ∆ref , makes the relative margin (∆θ − ∆ref) a better
learning signal, which should improve optimization.

Base SFT SimPO

Mean -26.80 -22.65 14.15

p50 -7.02 -4.25 11.83

Pairwise Win Rate (%): Columns vs. Rows

Figure 2: Distribution of the ref-
erence margin (∆ref ) across dif-
ferent reference models. The ta-
ble reports the mean and median
(p50) of ∆ref for each model.

While often effective, these methods only modify the reference
policy πref and leave the core DPO loss unchanged. Consequently,
the phenomenon we term premature satisfaction persists when-
ever the reference is pessimistic on a pair (i.e., ∆ref < 0). To
quantify this, we compute the sequence-level likelihood margin
in Eq. equation 3 under three Llama-3-8B–based references (Base,
SFT, and a SimPO-aligned model) on the UltraFeedback train-
ing split (Cui et al., 2023), and report (i) the density of ∆ref and
(ii) summary statistics (full settings and results in Appendix A).
Stronger references are indeed pessimistic less often and shift the
distribution of ∆ref to the right; yet a substantial fraction, approx-
imately 45%, of pairs remains in the pessimistic region even for
the SimPO-aligned reference, which is designed to mitigate such
mismatch. This imposes a practical ceiling on the “better refer-
ence” strategy: it improves stability and overall performance, but
the training–inference mismatch persists wherever ∆ref < 0.

3.1 HYBRID-DPO

In this section, we introduce Hybrid-DPO (HyPO), an approach designed to mitigate the premature
satisfaction problem while preserving the stability of original DPO (Rafailov et al., 2023). The
stability benefit of DPO, inherited from KL-regularized RLHF (Eq. 6), relies on the assumption that
the reference policy πref provides a constructive learning signal. We argue that this KL-induced
proximality should be conditional: When the reference is optimistic or neutral (∆ref ≥ 0), it provides
a valid anchor for stable, relative improvement, as the DPO objective effectively preserves proximity
to the reference (Eq. 5). However, when the reference is pessimistic (∆ref < 0), it acts as a misleading
prior that causes premature satisfaction; as analyzed in our discussion of the DPO gradient, the
weight wDPO in Eq. 7 attenuates even when the absolute margin ∆θ remains negative. HyPO realizes
this principle by clipping the reference margin: it preserves DPO’s relative objective (relative margin,
(∆θ −∆ref)) for reliable pairs but nullifies the reference’s influence for pessimistic ones, compelling
the model to optimize the absolute objective (absolute margin, ∆θ) instead.

Objective. Formally, for a given threshold γ ≥ 0 (with γ = 0 by default), we modify the DPO
objective by replacing the reference margin ∆ref with its clipped, non-negative counterpart:

∆̃ref = max{∆ref , γ}, and LHyPO = E
[
log

(
1 + exp

(
− β(∆θ − ∆̃ref)

))]
. (11)
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The gradient of the per-example loss retains the DPO structure, weighted by the modified margin:

∇θLHyPO = −β · σ
(
− β(∆θ − ∆̃ref)

)︸ ︷︷ ︸
wHyPO

·∇θ∆θ. (12)

By construction, HyPO coincides with DPO on non-pessimistic samples (∆ref ≥ γ), i.e., its per-
example weight in Eq. 12 equals that of DPO in Eq. 7 (wHyPO=wDPO), thereby preserving proximal
stability where the reference is reliable. On pessimistic samples (∆ref < γ), clipping nullifies
the misleading anchor and restores an absolute–margin–driven update, pointwise dominating the
reference-free weight wabs := σ(−β∆θ) induced by Eq. 10 (wHyPO ≥ wabs), thus preventing
premature attenuation. An intuitive visualization is shown in Figure 1(c).

For a globally smooth objective, we can replace the hard maximum with a softplus function (Dugas
et al., 2000). The smoothed reference margin is defined as:

∆̃ref = γ +
1

α
log

(
1 + exp(α(∆ref − γ))

)
, α > 0, (13)

where α controls the smoothness (α → ∞ recovers Eq. 11). This simple, smoothed formulation
allows HyPO to be implemented as a plug-in modification to the standard DPO loss.

(a) Agreement Rate (b) Absolute Margin

Win Rate (%) SFT DPO HyPO (Ours)

SFT - 15.7 12.9

DPO 84.3 - 44.1

HyPO (Ours) 87.1 55.9 -

Pairwise Win Rate (%): Columns vs. Rows

(c) Win-Rate Matrix
Figure 3: HyPO improves inference-aligned evaluation metrics and pairwise win rates. (a) Absolute
agreement rate over training (higher is better). (b) Absolute margin on the pessimistic subset
(∆ref < 0). (c) Pairwise win-rate. Each cell is the win rate (%) of the row model against the
column model on AlpacaEval 2.0 (Li et al., 2023). All results use the same SFT checkpoint of
Llama-3-8B-Base (AI@Meta, 2024) trained on UltraFeedback (Cui et al., 2023) with either DPO or
our HyPO; the training/evaluation pipeline and optimization hyperparameters are identical and set to
the DPO configuration from Zephyr (Tunstall et al., 2023). See Section 4.1 for more settings.

Effectiveness of HyPO. To quantify how effectively the HyPO objective mitigates the train-
ing–inference mismatch compared to DPO (Rafailov et al., 2023), we track two key metrics on the
evaluation set that are closely aligned with inference-time performance. The first, the Absolute Agree-
ment Rate, serves as a global measure of overall performance. Defined as Agree@t := Pr[∆

(t)
θ > 0]

(with ∆θ the absolute policy margin as in Eq. 3), it measures the fraction of evaluation pairs whose
absolute likelihood ordering matches the desired preference, directly mirroring the inference-time
decision rule. Further, we use a more targeted Absolute Margin on the Pessimistic Subset, which
tracks the average absolute margin, E[∆θ | ∆ref < 0], on the subset where the (fixed) reference
policy is pessimistic. This metric isolates the challenging cases that trigger premature satisfaction
in DPO and precisely measures HyPO’s ability to improve learning on them. Further details on
metric definitions are provided in Appendix E. To directly compare final model outputs, we report a
pairwise win rate matrix using AlpacaEval 2.0 (Li et al., 2023). For models i (row) and j (column),
the entry Wi,j := 100 × Pr[model i ≻ model j] is the percentage of prompts on which the row
model’s response is preferred to the column model’s, under the same judge and prompts; diagonals
are undefined. Configuration and evaluation protocol are detailed in Section 4.1.

As demonstrated in Figure 3(a) and (b), HyPO achieves a significantly faster and higher increase
in both the global agreement rate and the pessimistic subset margin, confirming its effectiveness
in mitigating the training–inference mismatch. In this run, the final agreement rate increases from
55.9% for DPO to 60.4% for HyPO. As shown in Figure 3(c), HyPO outperforms DPO head-to-head
(WHyPO,DPO = 55.9% vs. WDPO,HyPO = 44.1%). Moreover, against the common baseline SFT, both
alignment methods win, with HyPO achieving the larger advantage.

A key advantage of HyPO is that it keeps a DPO-like form and is therefore compatible with enhance-
ments for the DPO. In our practical implementation, we leverage this compatibility in two ways. First,
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we adopt a better reference (Liu et al., 2024b; Pan et al., 2025) by using a pre-aligned, same-family
model instead of the SFT default. Second, we apply a uniform home advantage margin h to impose
stronger learning pressure, leading to the final objective: ∆θ − max{∆ref , γ} − h. We do not use
length normalization (Park et al., 2024) due to its hyperparameter sensitivity.

4 EXPERIMENTS

We conduct a series of experiments to validate the efficacy of HyPO. We first establish its outperfor-
mance against a set of offline preference alignment baselines on standard benchmarks. Subsequently,
we perform targeted analyses and ablations to probe the robustness and scalability of HyPO.

4.1 EXPERIMENTAL SETUP AND RESULTS

To ensure comprehensive and fair comparison of our proposed HyPO against various direct pref-
erence alignment baselines, we closely follow the established experimental settings from existing
works (Meng et al., 2024; Rashidinejad & Tian, 2025; Gorbatovski et al., 2025). More detailed
experimental settings can be found in Appendix A.

Models and datasets settings. Our main experiments evaluate two open-source model families,
Mistral-7B (Jiang et al., 2023) and Llama3-8B (AI@Meta, 2024), using the UltraFeedback dataset
(≈ 61k training samples; Cui et al., 2023 for preference alignment. We conduct these experiments
in two distinct settings. In the Base setting, we first perform supervised fine-tuning (SFT) on the
raw pretrained models (e.g., Mistral-7B-v0.1, Meta-Llama-3-8B) using the UltraChat-200k dataset
(≈ 200k training samples; Ding et al., 2023). The resulting SFT policy then serves as the initial
policy for preference alignment on UltraFeedback. In the Instruct setting, we bypass the SFT step
and directly apply our preference alignment methods to the official instruction-tuned models (e.g.,
Mistral-7B-Instruct-v0.2, Meta-Llama-3-8B-Instruct), again using the UltraFeedback dataset.

Training settings. Our training methodology is grounded in established practices from recent
alignment literature to ensure robustness and fair comparison (Tunstall et al., 2023; Tunstall et al.).
For the initial SFT stage, we use a peak learning rate of 2 × 10−5. For each reproduced direct
preference alignment method, we conduct a small grid search over hyperparameters: the peak
learning rate is selected from {5× 10−7, 1× 10−6}, while the DPO temperature β is chosen from
{0.01, 0.1} for standard objectives or from {2, 10} for methods employing length normalization. For
our proposed HyPO, we use a checkpoint of the same architecture pre-aligned with SimPO. The
home advantage margin was set to h = 10, while the threshold was kept at its default of γ = 0.
Detailed settings are listed in Appendix A. All models are trained for a single epoch using the
AdamW optimizer (Loshchilov & Hutter, 2017), and we employ a cosine learning rate schedule with
a warm-up phase over the first 10% of training steps and a global batch size of 128.

Evaluation benchmarks. We primarily assess model performance on two popular instruction-
following benchmarks: AlpacaEval 2.0 (Li et al., 2023; Dubois et al., 2024) and Arena-Hard-v0.1 (Li
et al., 2024; Tianle Li, 2024). Consistent with prior work (Rashidinejad & Tian, 2025; Gorbatovski
et al., 2025), we use GPT-4-Preview-1106 as the automated judge to compute the primary metric:
the win rate, which is the percentage of times a model’s response is preferred over a baseline’s. The
specific baseline model varies by benchmark: AlpacaEval reports win rates against GPT-4-Preview-
1106 itself, whereas Arena-Hard uses GPT-4-0314. Our evaluation protocols follow established
practices from Tunstall et al. (2023); Meng et al. (2024); Tunstall et al., with the minor modification
of using a more recent vLLM release (Kwon et al., 2023) for generation.

Direct preference alignment baselines. We compare our method against a suite of direct preference
alignment baselines. Our comparison starts with two classic off-policy methods: SLiC-HF (Zhao
et al., 2023) and DPO (Rafailov et al., 2023), the latter of which serves as our primary baseline.
CPO (Xu et al., 2024) and KTO (Ethayarajh et al., 2024) are DPO variants that reshape the loss
from, respectively, a contrastive perspective and an asymmetric utility. SimPO (Meng et al., 2024)
is a high-performing reference-free representative that operates on the absolute likelihood margin.
FocalPO (Liu et al., 2025), TR-DPO (Gorbatovski et al., 2025), and RainbowPO (Zhao et al., 2025)
are recent DPO improvements: focal reweighting, trust-region constraints on the relative margin for
stability, and a unified practical recipe combining length normalization and policy mixing.
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Table 1: Main results reported from AlpacaEval 2.0 (Li et al., 2023; Dubois et al., 2024) and Arena-
Hard-v0.1 (Li et al., 2024; Tianle Li, 2024). LC and WR denote length-controlled win rate and raw
win rate, respectively. The best results are highlighted in bold, and the second-best are underlined.

Method
Mistral-Base (7B) Mistral-Instruct (7B)

AlpacaEval Arena-Hard AlpacaEval Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

SLiC-HF (Zhao et al., 2023) 11.6 9.1 5.4 32.4 31.2 16.9
DPO (Rafailov et al., 2023) 22.6 18.5 7.9 35.1 31.4 15.4
CPO (Xu et al., 2024) 13.1 11.6 6.4 34.9 39.9 21.0
KTO (Ethayarajh et al., 2024) 12.9 9.3 6.6 35.0 31.3 17.5
SimPO (Meng et al., 2024) 27.3 25.4 11.2 38.4 40.0 20.5
FocalPO (Liu et al., 2025) 25.8 19.7 8.2 35.9 35.0 18.7
TR-DPO (Gorbatovski et al., 2025) 24.9 21.4 9.5 36.5 33.7 18.2
RainbowPO (Zhao et al., 2025) 28.4 26.7 9.2 35.7 33.9 18.2

HyPO (Ours) 32.8 29.6 13.9 38.9 47.9 25.2

Method
Llama-3-Base (8B) Llama-3-Instruct (8B)

AlpacaEval Arena-Hard AlpacaEval Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

SLiC-HF (Zhao et al., 2023) 19.8 15.9 14.3 36.7 36.8 25.1
DPO (Rafailov et al., 2023) 24.3 21.9 23.0 40.9 41.3 31.5
CPO (Xu et al., 2024) 22.3 24.6 12.2 38.1 40.4 30.0
KTO (Ethayarajh et al., 2024) 23.6 20.3 18.4 40.5 39.0 30.5
SimPO (Meng et al., 2024) 30.7 26.2 30.1 46.0 43.1 32.1
FocalPO (Liu et al., 2025) 27.2 25.4 27.9 45.1 43.6 30.2
TR-DPO (Gorbatovski et al., 2025) 31.8 30.2 31.0 46.7 42.7 32.5
RainbowPO (Zhao et al., 2025) 30.3 27.1 28.6 46.7 43.5 31.3

HyPO (Ours) 34.7 33.6 33.5 49.5 46.2 35.2

Main Results on Benchmarks. We present the main results of our comparative analysis in Table 1.
Across all four experimental settings, including two model families (Mistral-7B and Llama-3-8B)
and two initial states (Base and Instruct), our proposed method, HyPO, consistently and significantly
outperforms all baselines on both AlpacaEval and Arena-Hard benchmarks. The results show that
HyPO achieves an average relative improvement of 41.2% over the original DPO. Furthermore,
when compared to SimPO, a strong reference-free competitor, HyPO delivers an average relative
improvement of 15.1%. Taken together, these results highlight the practical value of our methodology.
By mitigating the reference mismatch while preserving the core DPO framework, our method
translates a targeted theoretical improvement into superior performance on benchmarks.

4.2 FURTHER ANALYSIS AND ABLATIONS

To further validate the effectiveness and robustness of HyPO, we evaluate downstream transfer, run
ablations (including sensitivity to γ), measure training runtime, and study scaling. For comparability,
we benchmark against one reference-based baseline (DPO; Rafailov et al., 2023) and one reference-
free baseline (SimPO; Meng et al., 2024) under largely the same settings as Section 4.1.

Downstream tasks. One of the challenges in alignment is that aligning a model can reduce a model’s
general capabilities. This degradation is often attributed to the over-optimization (Gao et al., 2023;
Rafailov et al., 2024) of the alignment objective. To assess whether our approach preserves broad
utility, we evaluated the aligned models on a comprehensive suite of downstream tasks, using LM
Evaluation Harness (Biderman et al., 2024). Our evaluation covers four key domains. We test
knowledge and language understanding using MMLU (Hendrycks et al., 2020) and ARC-Challenge
(Clark et al., 2018). For commonsense reasoning, we employ HellaSwag (Zellers et al., 2019) and
Winogrande (Sakaguchi et al., 2021). Factuality is assessed with TruthfulQA (Lin et al., 2021), and
mathematical reasoning is measured by GSM8K (Cobbe et al., 2021). The results, presented in
Table 5 (see Appendix D for full details), demonstrate that HyPO maintains or improves performance
across all evaluated tasks relative to the corresponding baselines. This indicates that our method
avoids additional performance degradation on downstream tasks that can be induced by alignment.
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Table 2: Ablation study of HyPO’s components.

Llama-3-Models Base Instruct

LC(%) WR(%) LC(%) WR(%) Avg. ∆(%)

HyPO (Ours) 34.7 33.6 49.5 46.2 -
- Home Advantage 33.2 32.5 47.4 45.1 - 1.5
- Better Reference 29.3 27.1 45.3 45.9 - 4.1
- BR and HA 28.8 28.5 45.2 44.9 - 4.2

Standard DPO 24.3 21.9 40.9 41.3 - 8.9

Figure 4: Sensitivity to the threshold γ, us-
ing Meta-Llama-3-8B-Instruct.

Table 3: Further results reported from AlpacaEval 2.0 (Li et al., 2023; Dubois et al., 2024) and
Arena-Hard-v0.1 (Li et al., 2024; Tianle Li, 2024). LC and WR denote length-controlled win rate
and raw win rate, respectively. The best results are highlighted in bold.

Method
Helpsteer2 Mistral-Nemo-Instruct (12B) Qwen-2.5-7B

AlpacaEval Arena-Hard AlpacaEval Arena-Hard AlpacaEval Arena-Hard

LC (%) WR (%) WR (%) LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

DPO (Rafailov et al., 2023) 16.2 14.3 4.5 50.4 49.2 35.5 27.9 22.4 28.8
SimPO (Meng et al., 2024) 18.6 16.0 7.0 52.1 46.4 33.9 33.7 22.2 33.8

HyPO (Ours) 22.3 19.5 9.3 55.7 54.9 38.9 38.0 30.7 36.2

Ablations and threshold γ sensitivity. We ablate two enhancements in our HyPO implementation:
the use of a better reference model and a home advantage margin. The results in Table 2 show that
both components are beneficial. Notably, the ablated HyPO variants still significantly outperform
the standard DPO baseline, a finding consistent with our head-to-head comparisons in Figure 3,
confirming the effectiveness of our core mechanism. Furthermore, we analyze the model’s sensitivity
to the threshold γ from Eq. 11. As shown in Figure 4, performance remains stable across a range of γ
values around 0. Given this low sensitivity, we adopt the most principled and interpretable setting,
γ = 0. These validate the contributions of our proposed method and the stability of our configuration.

Running time. As a drop-in replacement for standard DPO, HyPO introduces negligible additional
computation. In the experiment shown in Figure 3, conducted with identical hardware and settings,
the wall clock training time for HyPO differed from that of DPO by ≈ 1% (7.1 hours vs. 7.2 hours).

Example Responses. To offer a qualitative view, Appendix C compares sample model outputs. The
responses suggest that HyPO can generate more considered answers that acknowledge subtleties in
the prompt, distinguishing it from the more direct outputs of baseline methods.

Scalability. To further validate the scalability of our proposed method, we conduct extended
experiments on models of varying scales and across different preference datasets. We evaluate
HyPO along two axes: (i) a dataset shift from UltraFeedback (Cui et al., 2023) to HelpSteer2 (Wang
et al., 2024b), using Mistral-7B-v0.1 SFT on OpenAssistant2 (Köpf et al., 2023); and (ii) a model-
size shift to Mistral-Nemo-Instruct-12B (Mistral AI, 2024), aligned on UltraFeedback. We follow
the evaluation protocol and most hyperparameters from Section 4.1 (details in Appendix A). As
summarized in Table 3, HyPO consistently improves over baselines on AlpacaEval and Arena-Hard
under both shifts, indicating robustness to distribution change and parameter scaling.

5 CONCLUSION

In this paper, we introduced Hybrid-DPO (HyPO) to address premature satisfaction, a critical failure
in Direct Preference Optimization (DPO) where a pessimistic reference model down-weights learning
signals. HyPO’s simple conditional mechanism, clipping the reference margin at zero, corrects
this bias while retaining DPO’s inherent stability. Empirically, HyPO consistently and significantly
outperforms both various DPO and strong reference-free baselines across a range of models and
benchmarks, proving robust and scalable without an additional “alignment tax”. Our work provides
evidence that direct preference alignment could be enhanced by conditionally debiasing the reference
signal, rather than discarding it, thereby achieving a more effective and stable compromise.
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6 LIMITATIONS AND FUTURE WORK

Our approach aims to mitigate rather than fully resolve the training-inference mismatch. By design,
HyPO retains the reference-based behavior on optimistic pairs to preserve training stability and
leverage better reference models, meaning the training–inference mismatch persists for this subset.
Furthermore, our method assumes general label reliability; in cases of severe label noise where the
reference model correctly disagrees with a wrong label, HyPO enforces a strong learning signal and
may arguably amplify noise compared to DPO. Finally, while we prioritized a minimalist, parameter-
free clipping mechanism, more sophisticated functional forms, such as adaptive clipping thresholds
or learned gating mechanisms, remain promising directions for future research.

ETHICS STATEMENT

Our research aims to improve the alignment of large language models with human preferences, a
goal intended to enhance their safety, helpfulness, and reliability. We primarily use publicly available
datasets, such as UltraFeedback (Cui et al., 2023) and HelpSteer2 (Wang et al., 2024b), which are
aggregated from existing sources. While we did not collect new human data, we acknowledge that
these datasets may contain inherent biases or sensitive information reflective of their origins. Our
work does not aim to create new models from scratch but to refine existing ones (Mistral and Llama-3;
Jiang et al., 2023; AI@Meta, 2024). We recognize that any advancement in AI capabilities carries
a dual-use risk. However, the explicit goal of our method, HyPO, is to make models’ behavior
more predictable and aligned with positive human values, thereby mitigating risks associated with
misaligned AI. We believe that research into robust alignment techniques is a crucial step toward the
responsible development and deployment of AI systems.

REPRODUCIBILITY STATEMENT

Our method, Hybrid-DPO (HyPO), is designed as a minimalist, plug-in modification to the standard
Direct Preference Optimization (DPO) objective. This design ensures that our work can be easily
reproduced by integrating our logic into popular alignment libraries and codebases that already support
DPO, such as Alignment-handbook (Tunstall et al.). All models and datasets used in our experiments
are open-source and publicly accessible through the Hugging Face, ensuring full transparency. The
base models include Mistral-7B (Jiang et al., 2023), Meta-Llama-3-8B (AI@Meta, 2024), and Mistral-
Nemo-12B (Mistral AI, 2024). The datasets for supervised fine-tuning and preference alignment
include UltraChat-200k (Ding et al., 2023), UltraFeedback (Cui et al., 2023), HelpSteer2 (Wang et al.,
2024b), and OpenAssistant2 (Köpf et al., 2023). For evaluation on benchmarks like AlpacaEval
2.0 (Li et al., 2023; Dubois et al., 2024), Arena-Hard-v0.1 (Li et al., 2024; Tianle Li, 2024), and
LM Evaluation Harness (Biderman et al., 2024), we followed established protocols that utilize the
GPT-4-Preview-1106 API as an automated judge. While access to this commercial API is managed
by a third party, our evaluation methodology is public and can be adapted for use with other capable
judge models. We will release our code to facilitate further research.

All computations were conducted on a cluster of compute nodes, each equipped with four NVIDIA
H100 96GB GPUs. We note that our experiments can be reproduced on a smaller scale, using as few
as two H100 GPUs, or a single H100 GPU with CPU offloading. A typical preference alignment
run for a 7B or 8B model completes in approximately 4–8 hours using 2 GPUs on one such node.
To ensure efficiency, our training pipeline leverages DeepSpeed (Rasley et al., 2020) for distributed
training and memory optimization, Flash Attention 2 (Dao, 2023) for faster attention computation,
and bfloat16 mixed-precision for accelerated throughput.

THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, the authors utilized large language models (LLMs) in
several capacities. As writing and coding assistants, they were used to improve grammar, spelling, and
sentence structure for clarity and to generate code for training and visualization. The subject of this
research is the alignment of large language models themselves, by using LLMs such as Mistral and
Llama-3 (Jiang et al., 2023; AI@Meta, 2024). Furthermore, as part of the evaluation methodology,
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the authors employed a closed-source LLM’s API (GPT-4-Preview-1106) to act as an automated
judge for assessing the quality of the trained LLMs.

The authors maintained full intellectual control of this paper. LLMs were used as tools to augment
the research process, and the final manuscript reflects the authors’ own work and insights.
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A EXPERIMENTAL DETAILS

This section provides a comprehensive overview of the experimental settings used to validate our
proposed method, Hybrid-DPO (HyPO). Our experimental design is grounded in established practices
from recent alignment literature to ensure fair, robust, and reproducible comparisons (Tunstall et al.,
2023; Meng et al., 2024; Tunstall et al.). We detail the models and datasets, the multi-stage training
pipeline, hyperparameter tuning, and the evaluation protocols for all experiments.

A.1 MODELS AND DATASETS

Our experiments leverage a suite of publicly available models and datasets to ensure full transparency
and facilitate replication. We conduct experiments on two popular open-source model families:
Mistral-7B (Jiang et al., 2023) and Meta-Llama-3-8B (AI@Meta, 2024). We test each model in two
settings: a Base setting, starting from the raw pretrained weights, and an Instruct setting, starting
from the official instruction-tuned checkpoints. For our scalability study, we also use Mistral-Nemo-
Instruct-12B (Mistral AI, 2024).

Supervised Fine-Tuning (SFT) Datasets. For experiments in the Base setting, we first conduct
supervised fine-tuning to obtain a capable initial policy. We use UltraChat-200k (Ding et al., 2023)
for the main experiments and OpenAssistant2 (Köpf et al., 2023) for the dataset transfer experiment.

Preference Datasets. For the core preference alignment stage, our main experiments use the
UltraFeedback dataset (Cui et al., 2023), from which we use the official training split for optimization
and hold out a fixed validation set. For the dataset transfer scalability experiment, we use the
HelpSteer2 dataset (Wang et al., 2024b). In Instruct setting, we use UltraFeedback dataset released
by Meng et al. (2024).

A.2 PIPELINE AND HYPERPARAMETERS

Our training process consists of two main stages for the Base setting (SFT followed by preference
alignment) and one stage for the Instruct setting (preference alignment only).

Supervised Fine-Tuning (SFT) Stage.

For the Base models, we first create an SFT version by training on the relevant dataset for one epoch.
We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a global batch size of 128, a peak
learning rate of 2 × 10−5, and a cosine learning rate schedule with a 10% warm-up phase. The
maximum sequence length is set to 2048. This SFT model serves as both the initial policy and the
default reference model (πref) for preference alignment.

Preference Alignment Stage.

We conduct a small targeted hyperparameter search for each method.

General Hyperparameters. To ensure consistent optimization dynamics, across all preference align-
ment experiments, we train for a single epoch with a global batch size of 128, a maximum sequence
length of 2048, and a maximum prompt length of 1800 tokens. We use the AdamW optimizer
(Loshchilov & Hutter, 2017) with β1 = 0.9 and β2 = 0.999, and a cosine learning rate schedule
with a 10% warm-up phase. To maintain the fixed global batch size of 128 despite varying memory
requirements across stages (e.g., the additional reference model overhead in DPO) and hardware
configurations (ranging from 1 to 4 GPUs), we adjusted the per-device micro-batch size and gradient
accumulation steps based on the available GPU memory and model scale. For any specific set of
comparative experiments, we ensured that these effective batch size settings were strictly identical
across all baselines to guarantee a fair comparison.

Method-Specific Hyperparameters. We identified the peak learning rate and the DPO temperature β
as the most sensitive hyperparameters. For each method we reproduced, we performed a small grid
search and selected the best configuration based on the lowest validation loss on our held-out set. In
our experiments, we used some of the checkpoints released by Meng et al. (2024).
- Peak Learning Rate: Searched over {5× 10−7, 1× 10−6}.
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- Temperature β: For standard objectives (DPO, CPO, KTO, FocalPO, TR-DPO, and HyPO.),
we searched over {0.01, 0.1}. For methods employing length normalization (e.g., RainbowPO,
SimPO), we followed Meng et al. (2024) recommendations and searched over {2, 10}.

Evaluation Stage.

Instruction-Following Benchmarks. We use GPT-4-Preview-1106 as the automated judge. The
primary metric is the win rate (%). For AlpacaEval 2.0 (Li et al., 2023; Dubois et al., 2024), we
report both the raw win rate (WR) and the length-controlled win rate (LC WR) against the GPT-4-
Preview-1106 baseline model. Following Meng et al. (2024); Tunstall et al. (2023), we employed
a sampling-based decoding approach. The temperature was set to 0.7 for the Mistral-Base (Jiang
et al., 2023) setting, 0.5 for the Mistral-Instruct models (7B; Jiang et al., 2023/12B; Mistral AI, 2024),
and 0.9 across both Llama-3-8B (AI@Meta, 2024). For Arena-Hard-v0.1 (Li et al., 2024; Tianle Li,
2024), we report the win rate against the GPT-4-0314 baseline model, and we use greedy decoding.

Downstream Task Evaluation. To assess whether alignment methods introduce an alignment tax
by degrading general capabilities, we use the LM Evaluation Harness (Biderman et al., 2024). We
evaluate performance on MMLU (5-shot) (Hendrycks et al., 2020), ARC-Challenge (25-shot) (Clark
et al., 2018), HellaSwag (10-shot) (Zellers et al., 2019), Winogrande (5-shot) (Sakaguchi et al., 2021),
TruthfulQA (0-shot) (Lin et al., 2021), and GSM8K (5-shot) (Cobbe et al., 2021).

A.3 IMPLEMENTATION AND INFRASTRUCTURE DETAILS

Our implementation builds on the open-source Alignment-handbook codebase (Tunstall et al.), which
itself is built around Hugging Face Transformers and the trl library. HyPO is realized as a thin
modification of trl’s DPOTrainer (see Appendix G); all remaining components (data loading, logging,
checkpointing, evaluation scripts) are reused from the Alignment-handbook stack with minimal
changes. See Appendix A.3 for low-level implementation details.

We train all models with DeepSpeed (Rasley et al., 2020) ZeRO and bfloat16 mixed precision. For the
main runs, we use ZeRO stage-1 with CPU offloading of optimizer states, which substantially reduces
GPU memory usage while keeping the implementation simple. On a subset of configurations, we
also ran ZeRO stage-3 without CPU offloading and observed that all reported metrics (loss, win-rate)
match well. Based on this observation, we adopted the stage-1 + CPU-offload configuration for all
large-scale sweeps reported in the paper. All main results are obtained on compute nodes equipped
with four NVIDIA H100 96GB GPUs. We have verified that the same configuration can be run on
two H100 GPUs, or on a single H100 with CPU offloading, at the cost of longer wall-clock time
but essentially identical performance Gradient checkpointing is enabled for all models to further
reduce memory consumption. Unless otherwise stated, we use Flash Attention 2 (Dao, 2023) for
faster attention computation, bfloat16 mixed-precision for accelerated throughput, and realized via
data parallelism and gradient accumulation.

A.4 ANALYSIS OF REFERENCE MODEL PESSIMISM (FIGURE 2)

To motivate our work, the analysis in Figure 2 quantifies the prevalence of pessimistic reference
margins (∆ref < 0). This experiment was conducted on the full training split of the UltraFeedback
dataset (Cui et al., 2023). We computed the sequence-level log-likelihood margins for three distinct
reference models derived from the Meta-Llama-3-8B family: (i) the raw base model, (ii) our SFT
checkpoint trained on UltraChat-200k (use Zephyr settings; Tunstall et al., 2023), and (iii) a model
further aligned from the SFT checkpoint using SimPO (use SimPO settings; Meng et al., 2024). For
each pair in the dataset, we calculated ∆ref without length normalization. We provide summary
statistics for each distribution, including the mean and median (p50). The results confirmed that even
for a strong, pre-aligned reference model, a substantial fraction of pairs (≈ 45%) remained in the
pessimistic region, underscoring the persistence of the training-inference mismatch.

A.5 DIRECT DPO VS. HYPO COMPARISON (FIGURE 3)

Figure 3 presents a controlled comparison between standard DPO and our proposed HyPO. The goal
of this experiment was to isolate the impact of our conditional reference mechanism. Both methods
started from the exact same SFT checkpoint of Llama-3-8B-Base and were trained on UltraFeedback
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(Cui et al., 2023). Critically, all hyperparameters were held identical and were based on the DPO
configuration from Zephyr (Tunstall et al., 2023), including a learning rate of 5× 10−7 and β = 0.01.
For this specific comparison, HyPO was used in its most basic form: it used the SFT model as its
reference (not a better reference) and was configured with γ = 0 and no home advantage margin
(h = 0). This setup ensures a fair, one-to-one comparison against the DPO baseline. The metrics in
Figure 3(a) and 3(b) were computed periodically on our held-out validation set throughout the single
training epoch. The win-rate matrix in Figure 3(c) was generated by evaluating the final SFT, DPO,
and HyPO checkpoints against each other on AlpacaEval (Li et al., 2023).

B ANALYSIS OF DPO WITH SFT LOSS

In this section, we explore a natural baseline: adding a supervised fine-tuning (SFT) loss on the chosen
response to the standard DPO objective. This acts as a regularizer to ensure the model maintains high
likelihood for preferred responses. The DPO + SFT-on-chosen objective is defined as:

LDPO + SFT-on-chosen = LDPO + λLSFT(yw), (14)

where LSFT(yw) = − log πθ(yw | x).

B.1 HYPERPARAMETER SEARCH

To ensure a fair comparison, we conducted a hyperparameter sweep for the coefficient λ over the
range {0.01, 0.03, 0.1, 0.3, 0.5}. We established λ = 0.5 as the upper bound for our sweep because
we observed that, at this value, the magnitude of the SFT loss term was approximately equal to the
DPO loss term at the beginning of training. We posit that the auxiliary SFT loss should act as a
regularizer rather than the dominant training signal; therefore, λ should not exceed the point where
SFT dominates the preference optimization. Empirically, we found that the optimal performance
on AlpacaEval 2.0 was achieved at λ = 0.03. We use this best-performing configuration for the
definitive comparison below.

B.2 COMPARISON AND ANALYSIS

We compared the optimized DPO + SFT-on-chosen (λ = 0.03) against the standard DPO and our
HyPO method. In addition to win rates, we measured the Agreement Rate (defined in Appendix E) to
assess how well the model’s likelihood ordering aligns with the ground truth preferences.

Table 4: Comparison of DPO, DPO + SFT-on-chosen (λ = 0.03), and HyPO. All models are Llama-
3-Base-8B initialized from the same SFT checkpoint.

Method AlpacaEval LC (%) AlpacaEval WR (%) Agreement Rate (%)
DPO (Baseline) 24.3 21.9 55.9
DPO + SFT-on-chosen 26.1 21.9 56.3
HyPO (Ours) 28.8 28.5 60.4

As shown in Table 4, DPO + SFT-on-chosen (λ = 0.03) yields only a marginal improvement in win
rate (+1.8% LC) and Agreement Rate (+0.4%). HyPO significantly outperforms this baseline (+4.5%
LC over baseline).
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C EXAMPLES RESPONSES

The following is an example question along with responses from various models from the Alpaca
Eval 2.0 helpful subset base pipeline. HyPO response shows analytical thinking, a deeper reasoning
process, and consideration of implicit factors.

1. gpt4-1106-preview: Most comprehensive and beginner-safe; actionable progressions.

2. HyPO (ours): Well-structured with reps/warmup/cooldown; a few choices (Russian twists, Pallof
press) may be advanced or equipment-dependent.

3. SimPO: Solid variety and set guidance; minor glitch (stray char) and several advanced core picks
for true beginners.

4. DPO: Long single list with multiple advanced moves (hanging leg raises); fewer regressions and
weaker structure.

Responses from Different Models

Question

What are the best exercises for beginners?

GPT-4-Preview-1106 (Baseline): For beginners, the best exercises are those that are easy to
learn, safe, and effective at building strength, endurance, and flexibility. Here is a list of exercises
that are generally well-suited for beginners, covering different aspects of fitness:

1. Cardiovascular Exercises:
• Walking: Start with a brisk walk and gradually increase your pace and distance.
• Cycling: Begin with a flat route before tackling hills.
• Swimming: Try a few laps with rest in between, gradually increasing your en-

durance.
• Jumping Jacks: A simple full-body exercise to get your heart rate up.

2. Strength Training Exercises:
• Bodyweight Squats: Focus on form and depth before adding weight.
• Push-ups: Start with wall or knee push-ups if a full push-up is too difficult.
• Planks: Begin by holding the position for short periods and gradually increase the

time.
• Lunges: Practice stationary lunges to master the form before attempting walking

lunges.
• Dumbbell Exercises: Use light weights to perform exercises like bicep curls,

shoulder presses, and tricep extensions.
3. Flexibility and Balance Exercises:

• Stretching: Incorporate basic stretches for all major muscle groups, holding each
stretch for 15-30 seconds.

• Yoga: Basic poses like Child’s Pose, Downward-Facing Dog, and Warrior can
improve flexibility and balance.

• Tai Chi: This gentle martial art is great for balance and stress reduction.
4. Core Strengthening Exercises:

• Bird-Dog: This exercise improves core stability and coordination.
• Dead Bug: Another great move for core strength that’s easy on the back.
• Seated Russian Twists: Begin without weight and focus on the twisting motion.

5. Functional Exercises:
• Step-ups: Use a low step at first and focus on form.
• Farmer’s Walk: Carry a light weight in each hand and walk for a set distance,

maintaining good posture.
• Glute Bridges: These help strengthen the glutes and stabilize the core.

It’s essential for beginners to focus on proper form to prevent injuries and to start with a level
of intensity that matches their current fitness level. It’s also advisable to consult with a fitness
professional or a physician before starting any new exercise program, especially if you have
pre-existing health conditions or concerns.
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Responses from Different Models

Question

What are the best exercises for beginners?

DPO: As a beginner, it’s essential to start with exercises that are safe, effective, and enjoyable
to help you build a strong foundation and momentum in your fitness journey. Here are some of
the best exercises for beginners:

1. Squats: Works your legs, glutes, and core. Stand with feet shoulder-width apart, then
bend knees and lower your body down, keeping back straight.

2. Push-ups: Targets chest, shoulders, and triceps. Start in a plank position with hands
shoulder-width apart, lower your body until your chest almost touches the ground, then
push back up.

3. Lunges: Works legs, glutes, and lower body. Stand with feet together, take a large step
forward with one foot, and lower your body down, keeping back knee almost touching
the ground. Alternate legs.

4. Planks: Strengthens core and improves posture. Hold a plank position for 30-60
seconds, engaging your abs and keeping your body straight from head to heels.

5. Chest Press (using dumbbells or resistance bands): Works chest, shoulders, and
triceps. Lie on a flat surface or sit with knees bent, holding weights or resistance bands,
and press them upwards towards the ceiling.

6. Rows (using dumbbells or resistance bands): Targets back and biceps. Hold weights
or resistance bands and pull them towards your chest, keeping your elbows close to
your body.

7. Bicycle Crunches: Engages core and improves obliques. Lie on your back with
hands behind your head, alternate bringing each elbow towards the opposite knee, as if
pedaling a bicycle.

8. Leg Raises (hanging leg raises or leg lifts): Works abs and lower back. Hang from a
pull-up bar or lie on your back with arms extended, lifting your legs straight up towards
the ceiling.

9. Wall Sit: Strengthens legs and glutes. Stand with back against a wall, slide down into
a seated position with knees bent at a 90-degree angle, and hold for 30 seconds to 1
minute.

10. Brisk Walking or Jogging: Improves cardiovascular fitness and burns calories. Start
with short sessions and gradually increase duration and intensity.

Remember to:
• Start slow and focus on proper form and technique.
• Begin with lighter weights and gradually increase the load as you build strength.
• Warm up before exercising with 5-10 minutes of light cardio and stretching.
• Listen to your body and rest when needed.
• Consult with a healthcare professional or fitness expert if you have any concerns or

injuries.
As you progress, you can incorporate more exercises and intensity to challenge yourself further.
Happy exercising!
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Responses from Different Models

Question

What are the best exercises for beginners?

SimPO: As a beginner, it’s essential to start with exercises that are safe, effective, and manage-
able to build a strong foundation for your fitness journey. Here are some of the best exercises for
beginners:

1. Bodyweight exercises:
• Push-ups: Works chest, shoulders, and triceps.
• Squats: Targets legs, glutes, and core.
• Lunges: Works legs, glutes, and improves balance.
• Planks: Engages core muscles for stability and endurance.
• Pull-ups (or assisted pull-ups): Targets back, shoulders, and arms.

2. Resistance band exercises:
• Banded squats, lunges, and chest presses: Add variety to bodyweight exercises

with resistance bands.
3. Cardio exercises:

• Brisk walking: Easy to start and improves cardiovascular fitness.
• Jogging or running (begin with short intervals): Increases endurance and burns

calories.
• Swimming or cycling: Low-impact alternatives for those with joint concerns.

4. Upper body exercises with light weights or dumbbells:
• Dumbbell chest press: Targets chest and shoulders.
• Bicep curls: Works biceps.
• Tricep dips (using a chair or bench): Targets triceps.

5. Core exercises:
• Russian twists: Engages obliques.
• Leg raises: Targets lower abs.
• Bicycle crunches: Works entire core.

Remember to:
1. Start slowly and gradually increase intensity and duration as you become more com-

fortable.
2. Focus on proper form and technique to avoid injuries.
3. Begin with 2-3 sets of 8-12 repetitions for each exercise.
4. Listen to your body and rest when needed.
5. Consult with a healthcare professional or fitness expert to create a personalized workout

plan.
These exercises will help you build a solid foundation in strength, flexibility, and cardiovascular
endurance. As you progress, you can always add more variety and intensity to your routine.
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Responses from Different Models

Question

What are the best exercises for beginners?

HyPO (ours): As a beginner, it’s essential to start with exercises that are gentle, easy to learn,
and progressive in intensity to build a strong foundation and prevent injury. Here are some of
the best exercises for beginners:

1. Bodyweight exercises:
• Push-ups
• Squats
• Lunges
• Planks
• Bicycle crunches (modified or regular)
• Wall sit

2. Resistance band exercises:
• Banded squats and lunges
• Banded chest press (using a resistance band or light dumbbells)
• Banded rows (using a resistance band)

3. Low-impact cardio:
• Brisk walking
• Jogging in place
• Swimming (if accessible)
• Cycling (stationary or outdoor)

4. Upper body strength exercises with light weights:
• Dumbbell rows
• Shoulder presses (using light weights or resistance bands)
• Bicep curls
• Tricep dips (using a chair or bench)

5. Core exercises:
• Leg raises (lying or hanging)
• Russian twists (using a medicine ball or weight plate)
• Pallof press (using a cable machine or resistance band)

Remember to:
1. Start slow and gentle, with 2-3 sets of 8-12 repetitions for each exercise.
2. Focus on proper form and technique over the number of repetitions or weight used.
3. Listen to your body and rest when needed.
4. Gradually increase intensity and volume as you become more comfortable with the

exercises.
5. Incorporate exercises that work multiple muscle groups at once (e.g., squats engage

legs, glutes, and core).
Additionally, consider the following general tips:

• Consult with a healthcare professional or fitness expert to create a personalized workout
plan.

• Warm up before exercising with 5-10 minutes of light cardio and dynamic stretching.
• Cool down afterwards with static stretches to help prevent soreness and improve

flexibility.
By starting with these beginner-friendly exercises, you’ll set yourself up for a strong foundation
in fitness and enjoy a positive exercise experience.
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D DOWNSTREAM TASKS

One of the primary challenges in preference alignment is the potential for a model’s general capabili-
ties to degrade, a phenomenon often attributed to over-optimization on the alignment objective (Gao
et al., 2023; Rafailov et al., 2024). To rigorously assess whether our approach introduces any addi-
tional “alignment tax” and preserves broad utility, we evaluated aligned models on a comprehensive
suite of downstream tasks. For comparability, we benchmark against one reference-based baseline
(DPO; Rafailov et al., 2023) and one reference-free baseline (SimPO; Meng et al., 2024). All three
methods are evaluated starting from the same SFT checkpoint, with identical prompt formatting and
decoding hyperparameters.

The evaluation was conducted using the standard LM Evaluation Harness framework (Biderman et al.,
2024), with inference performed via the Hugging Face Transformers library. We follow the default
task implementations in LM Evaluation Harness and report accuracy (or exact-match for GSM8K) as
provided by the framework. We measured performance across four key domains, using the following
few-shot settings for each task:

• Knowledge Language Understanding: MMLU (Hendrycks et al., 2020) (5-shot) and ARC-
Challenge (Clark et al., 2018) (25-shot).

• Commonsense Reasoning: HellaSwag (Zellers et al., 2019) (10-shot) and Winogrande (Sakaguchi
et al., 2021) (5-shot).

• Factuality: TruthfulQA (Lin et al., 2021) (0-shot).
• Mathematical Reasoning: GSM8K (Cobbe et al., 2021) (5-shot).

The results, presented in Table 5, demonstrate that HyPO consistently performs on par with or better
than the initial model and other alignment methods. Notably, HyPO achieves the highest average
score in three out of the four experimental settings. This indicates that our method successfully aligns
with human preferences without incurring a significant penalty on the model’s core capabilities.

Table 5: Downstream task evaluation results, using LM Evaluation Harness (Biderman et al., 2024).
The best results are highlighted in bold, and the second-best are underlined.

MMLU ARC HellaSwag TruthfulQA Winogrande GSM8K Average

Mistral-Base (7B)
Initial Model 59.0 54.2 60.8 28.0 77.7 34.6 52.4

DPO (Rafailov et al., 2023) 57.6 58.7 64.4 40.3 77.4 31.5 55.0
SimPO (Meng et al., 2024) 58.4 58.6 63.6 33.1 78.1 35.0 54.5

HyPO (Ours) 58.5 60.2 63.5 39.1 78.9 31.8 55.3
Mistral-Instruct (7B)

Initial Model 59.2 58.7 66.1 52.6 78.1 44.1 59.8

DPO (Rafailov et al., 2023) 58.8 60.9 67.6 51.2 78.3 41.6 59.7
SimPO (Meng et al., 2024) 58.1 62.5 67.5 55.0 77.4 39.8 60.1

HyPO (Ours) 59.6 66.8 67.4 54.0 77.6 40.6 61.0
Llama-3-Base (8B)

Initial Model 63.7 56.9 61.4 31.5 77.4 50.3 56.9

DPO (Rafailov et al., 2023) 63.3 61.6 64.7 37.9 78.0 54.7 60.0
SimPO (Meng et al., 2024) 62.1 63.4 64.5 38.0 77.2 50.4 59.3

HyPO (Ours) 63.6 65.4 64.3 42.8 78.9 49.7 60.8
Llama-3-Instruct (8B)

Initial Model 65.8 56.4 59.0 36.1 77.3 74.8 61.6

DPO (Rafailov et al., 2023) 65.6 61.3 60.6 42.4 76.4 73.5 63.3
SimPO (Meng et al., 2024) 64.7 59.8 56.0 43.8 72.5 71.3 61.4

HyPO (Ours) 65.0 64.4 58.7 45.3 73.3 70.3 62.8
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E EVALUATION METRIC DEFINITIONS

To provide a fine-grained analysis of model performance during training, as shown in Figure 3, we
track two key inference-aligned metrics on a held-out evaluation set of preference pairs (x, yw, yl),
where yw ≻ yl. These metrics are designed to directly quantify how effectively our proposed method,
HyPO, mitigates the training-inference mismatch inherent in DPO. Both metrics are computed using
the policy and reference log-likelihood margins, ∆θ and ∆ref , as formally defined in the main text in
Equation 3. We denote the policy margin at a given training checkpoint t as ∆(t)

θ .

Absolute Agreement Rate. The Absolute Agreement Rate provides a global measure of how well
the policy’s log-likelihoods align with the ground-truth preferences. It is defined as the probability
that the policy assigns a higher log-likelihood to the winning response yw than the losing response yl:

Agree@t := Pr
(x,yw,yl)

[
∆

(t)
θ (x, yw, yl) > 0

]
.

At inference time, a model’s performance depends on its absolute log-likelihoods, as the reference
model is not used. This metric therefore directly reflects the desired inference-time behavior. A
higher agreement rate signifies that the policy is more accurately ranking responses in absolute terms,
indicating a successful reduction of the training-inference mismatch.

Absolute Margin on the Pessimistic Subset. This metric is a targeted diagnostic designed to measure
performance on the specific subset of data where DPO is most prone to failure. We first define the
pessimistic subset as all evaluation pairs where the reference model incorrectly prefers the losing
response:

Dpessimistic := {(x, yw, yl) | ∆ref(x, yw, yl) < 0}.
The metric is then the average policy margin, ∆θ, computed exclusively over this subset:

Marginpessimistic@t := E(x,yw,yl)∈Dpessimistic

[
∆

(t)
θ (x, yw, yl)

]
.

This metric directly probes the phenomenon of premature satisfaction. For pairs in Dpessimistic, DPO’s
learning signal weakens as soon as the policy margin ∆θ surpasses the negative reference margin ∆ref ,
even if ∆θ itself is still negative. A strong and increasing positive value for this metric demonstrates
that the policy is successfully applying corrective pressure and overcoming the misleading signal
from the pessimistic reference, a core goal of HyPO.

F ANALYSIS OF THE SMOOTHNESS PARAMETER α

In Eq. 13 we introduced a smooth variant of the clipped reference margin using a softplus transforma-
tion, with smoothness parameter α:

∆̃ref = γ +
1

α
log

(
1 + exp(α(∆ref − γ))

)
, α > 0,

where smaller values of α yield a smoother transition, while α → ∞ recovers the hard max{∆ref , γ}.

To assess the sensitivity of HyPO to this smoothness parameter, we ran a small sweep over α ∈
{1, 10, 100} using Meta-Llama-3-8B-Instruct aligned on UltraFeedback, evaluated on AlpacaEval
2.0. All other settings are identical to those in our main experiments.

Table 6: Sensitivity of HyPO to the smoothness parameter α in Eq. 13 on Meta-Llama-3-8B-Instruct.

Method α AlpacaEval LC (%) AlpacaEval WR (%)

HyPO 1 48.3 45.5
HyPO (default) 10 49.5 46.2
HyPO 100 49.6 46.2

The results in Table 6 show that HyPO is robust to the choice of α in a reasonable range: α = 10 and
α = 100 yield nearly identical performance, while a much smoother transition (α = 1) causes only a
modest degradation. This supports our default choice of α = 10 as a simple and effective setting, and
suggests that the benefits of HyPO do not rely on fine-tuning this parameter.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G MINIMAL CODE CHANGE FROM DPO TO HYPO

We implement HyPO by modifying only the computation of the DPO logits inside the original
DPOTrainer.dpo_loss in trl. Let

∆θ = log πθ(yc | x)− log πθ(yr | x), ∆ref = log πref(yc | x)− log πref(yr | x),

be the policy and reference log-ratios. Standard DPO uses ∆θ −∆ref as the logit input to the sigmoid
loss. HyPO simply replaces ∆ref with a clipped (or smoothed) reference margin ∆̃ref:

∆̃ref = max(∆ref, γ) or ∆̃ref = γ + τ softplus

(
∆ref − γ

τ

)
,

where τ = 1/α, and uses ∆θ − ∆̃ref in the DPO loss.

The concrete code change in DPOTrainer.dpo_loss is:

# Original DPO (simplified):
pi_logratios = policy_chosen_logps - policy_rejected_logps
if self.reference_free:

ref_logratios = torch.zeros_like(pi_logratios)
else:

ref_logratios = reference_chosen_logps - reference_rejected_logps

logits = pi_logratios - ref_logratios

is replaced by the following HyPO version:

# HyPO: Conditional Reference Clipping
pi_logratios = policy_chosen_logps - policy_rejected_logps
if self.reference_free:

ref_logratios = torch.zeros_like(pi_logratios)
else:

ref_logratios = reference_chosen_logps - reference_rejected_logps

# ---------------- HyPO Modification Start ----------------
gamma = torch.tensor(self.args.hypo_gamma, device=ref_logratios.device)

if getattr(self.args, "hypo_tau", 0.0) > 0.0:
# Smooth HyPO: Eq. 13 (using tau for temperature)
tau = self.args.hypo_tau
ref_logratios = gamma + tau * F.softplus((ref_logratios - gamma) / tau

)
else:

# Hard HyPO: Eq. 11 (standard max)
ref_logratios = torch.maximum(ref_logratios, gamma)

# ----------------- HyPO Modification End -----------------

logits = pi_logratios - ref_logratios

In our experiments, we introduce hypo_gamma (scalar threshold γ, default 0) and optionally hypo_tau
(smoothing factor τ = 1/α) as hyperparameters.
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