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ABSTRACT
In the federated learning (FL) process, since the data held by each
participant is different, it is necessary to figure out which partici-
pant has a higher contribution to the model performance. Effective
contribution assessment can help motivate data owners to partic-
ipate in the FL training. The research work in this field can be
divided into two directions based on whether a validation dataset
is required. Validation-based methods need to use representative
validation data to measure the model accuracy, which is difficult to
obtain in practical FL scenarios. Existing validation-free methods
assess the contribution based on the parameters and gradients of
local models and the global model in a single training round, which
is easily compromised by the stochasticity of DL training. In this
work, we propose CoAst, a practical method to assess the FL partic-
ipants’ contribution without access to any validation data. The core
idea of CoAst involves two aspects: one is to only count the most
important part of model parameters through a weights quantization,
and the other is a cross-round valuation based on the similarity
between the current local parameters and the global parameter
updates in several subsequent communication rounds. Extensive
experiments show that the assessment reliability of CoAst is compa-
rable to existing validation-basedmethods and outperforms existing
validation-free methods. We believe that CoAst will inspire the com-
munity to study a new FL paradigm with an inherent contribution
assessment.

1 INTRODUCTION
With the development of deep learning (DL), the concept that "Data
is the new oil" has gained more and more consensus among peo-
ple [5]. The emerging remarkable capabilities demonstrated by
large language models [18] further bring attention to the enor-
mous value of collaborating on a large amount of data. To train DL
models on data owned by different parties, collaborative learning
techniques, represented by federated learning (FL) [7, 23], have
been extensively studied. However, due to disparities in the data
held by different participants, including variations in data quality
and quantity, each participant’s contribution to the performance
of the FL model differs a lot. How to accurately evaluate the con-
tribution of each participant is crucial for the fair distribution of
rewards. This process benefits the promotion of data quality and
creates incentives for data sharing [17].

There have been a line of research in the community on con-
tribution assessment of participants in FL, which can be mainly
divided into two categories, i.e., validation-based methods [2, 6, 19]
and validation-free methods [10, 14, 21, 22]. The effectiveness of
validation-based methods heavily relies on a representative vali-
dation dataset, which is used to evaluate the model performance.
However, in real-world FL scenarios, obtaining the representative
validation dataset that covers the distribution of all clients’ data
can be challenging. To overcome the limitations imposed by the
validation dataset, validation-free methods are proposed to assess
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Figure 1: Contribution assessment in FL scenarios.

the contribution based on the statistical characteristics of model
parameters. They estimate the parameters’ correlation, information
gain, and mutual information among local models (produced by
clients) and the global model (aggregated by the server) to answer
whose contribution is higher.

However, the existing validation-free efforts, detailed in the next
section, only consider the models’ parameters (or gradient) in a
single training round. We refer to a training round as the process
of the client updating and uploading the local model and getting
the global model from the server after aggregation. Due to the
difficulties, such as the stochastic nature of gradient descent and
the uninterpretable nature of the DL model, the accuracy of these
assessment methods can sometimes be seriously compromised. Per-
forming validation-free assessment faces two challenges: 1) the
training process of DL models does not update parameters in a
linear way, so only comparing the parameters of the local model in
each round with the parameters of the final model will ignore the
clients’ contribution reflected in the iterative process of parameter
updating. 2) due to the parameter redundancy of DL models, not
all parameters in the local model reflect the client’s contribution to
the performance improvement of the global model. Unimportant
local parameters may comprise the assessment’s effectiveness.

In this work, we propose CoAst, a validation-free FL contribution
assessment method, performing client valuation in a cross-round
way. The overview of CoAst is depicted in Figure 1. The core idea of
the cross-round valuation is to evaluate a local model’s contribution
in a certain round (e.g., 𝑡 ) leveraging the parameter updates of global
model in several subsequent rounds (e.g., rounds {𝑡 + 1, . . . , 𝑡 + 𝑘}).
To cope with the interference of unimportant parameters, CoAst
shares a similar idea with the ternary weights quantization [9, 20].
CoAst spotlights the most important parameters by neglecting the
parameters with small updates and keeping only the sign of the pa-
rameters with a large update. It is worth noting that our assessment
goal is to accurately and effectively measure each client’s contribu-
tion to the FL model, rather than improve the FL model performace.
As a result, CoAst neither affects the local training procedure nor
changes the global models. Experimental results show that the as-
sessment accuracy of CoAst is comparable to the validation-based
methods and outperforms the existing validation-free methods. We
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have submitted the source code in supplementary materials and will
open-source the CoAst once the paper is accepted. We summarize
the contribution as follows.

• We design a new validation-free contribution assessment
method, CoAst, which can answer whose contribution is
greater in a practical FL scenario without a validation dataset.

• Wepropose a cross-round assessmentmechanism to consider
the effect of the intermediate local models on the final trained
model, and we utilize the ternary weight quantization to
capture the parameters that contribute the most.

• Experimental results show that CoAst outperforms the SOTA
validation-freemethods in assessment effectiveness and achieves
comparable -performance to validation-based methods.

The rest of the paper is organized as follows. In Section 2, we
review the related works. In Section 3, we formulize the targeted
scenario and problem. Section 4 presents the detailed design of
our proposed CoAst. Then, we describe the experimental settings
in Section 5 and provide the evaluation results in Section 6. The
limitation of this work is discussed in Section 7. Finally, we conclude
this paper in Section 8.

2 RELATEDWORKS
Validation-based methods. The validation-based methods use
a validation dataset to assess a client’s contribution by evaluating
its impact on the performance of the aggregated model. The leave-
one-out is the most natural way to assess the value. It assesses the
data value of one contributor by calculating the model performance
change when the contributor is removed from the set of contribu-
tors. However, the leave-one-out is unfair to multiple similar and
mutually substitutable contributors. Ruoxi et al. [6] use the Shapley
value to assess data value in the FL scenario. They compute the
marginal increase of the average accuracy of the model due to the
addition of one data contributor. Guan et al. [15] extend the appli-
cation scenarios of Shapley value-based solutions to FL scenarios.
Zhenan et al. [2] apply the Shapley value-based solutions to vertical
federated learning and improve the efficiency through approxima-
tion. Zhaoxuan et al. [19] allow for efficient data valuation without
long-term model training. They assess the contribution through
a domain-aware generalization bound, which is derived from the
neural tangent kernel (NTK) theory. There are also research efforts
to improve the system performance [11, 13, 16] and to analyze the
fairness [25]. When the server uses this line of work to assess the
clients’ contribution, it requires a representative dataset which cov-
ers the distribution among all clients’ data. However, in real-world
FL scenarios, obtaining such a representative validation dataset is
infeasible.
Validation-free methods. The validation-free methods use sta-
tistics of training data or the correlation among local and global
parameters to value the clients. These works usually have some
specific assumptions on the distribution of gradients, model param-
eters, or local training data. Therefore, they may face performance
degradation in the real world when their assumptions are not satis-
fied. Xinyi et al. [22] propose a volume measure on the replication
robustness, which assesses the contribution based on the diversity
of training data. However, work [19] shows that this idea not only
suffers from exploding volumes in high-dimensional inputs but also

entirely ignores the useful information in the validation dataset.
Rachael et al. [14] measure the data value based on the information
gains of the model parameters. They hold that the contributors
with the highest value can reduce the uncertainty of the model
parameters. However, when the distribution of data is complex, the
accuracy of the information gains is biased. Xinyi et al. [21] use the
gradient similarity to measure the data value of the contributors’
combination by comparing the data of one combination of the con-
tributors with the gradient similarity of the global FL model trained
by all contributors. However, due to the randomness of the stochas-
tic gradient descent and gradient pruning, the value assessed in
some rounds may not accurately reflect the true value of the data,
or even the value of high-value data is negative. Hongtao et al. [10]
propose a test data-free data value evaluation based on the pairwise
correlation among the models based on the statistical character-
istics of the models. They assume that the parameters trained by
different contributors share the same distribution, which may not
be satisfied when the data is imbalanced and non-independent, and
identically distributed.

3 PROBLEM OVERVIEW
3.1 Targeted Scenario
We assume all participants, including clients and the server, are
honest and follow the agreed-on training protocol of FL. Due to
differences in training data quality and quantity among clients,
each client’s contribution to overall model performance varies. The
server can access the model parameters uploaded by each client, but
it lacks a representative validation dataset. Each client delegates the
server to evaluate the contribution of each client without offering
validation data. Without loss of generality, we assume that each
client is involved in all training rounds. The training data of each
client is prepared before the FL training, and they will not add new
data during the training process.

3.2 Problem Formalization
Consider an FL training procedure with one server and 𝑁 clients.
The training procedure consists of𝑀 training rounds. Recall that, in
one training round, a client uploads its local parameters to the server
once and receives the corresponding aggregated parameters (a.k.a.
global parameters). After 𝑀 training rounds, the contribution of
all clients is determined. We denote the ground-truth contribution
of all clients as 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁 }, where 𝑝𝑖 is the contribution
of client 𝑖 . The ranking of all clients’ contribution is denoted as
𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑁 }, and

𝑟𝑖 = |{ 𝑗 |𝑝 𝑗 ≥ 𝑝𝑖 }|, (1)

where | · | returns the number of elements in a set.
Our goal is to design a function 𝐿, which can measure how much

each client improves the performance of the global model. That is,

𝑃 = 𝐿
(
Θ, {𝜃𝑡𝑖 }𝑖∈[1,𝑁 ],𝑡 ∈[1,𝑀 ]

)
, (2)

where Θ denotes the parameters of the global model 𝜙Θ in the last
round, and 𝜃𝑡

𝑖
denotes the parameters of the local model trained by

client 𝑖 in round 𝑡 . Then the predicted 𝑅 can be calculated based on
the 𝑃 through Equation 1. The objective of function 𝐿 is to minimize



CoAst: Validation-Free Contribution Assessment for Federated Learning based on Cross-Round Valuation Conference’17, July 2017, Washington, DC, USA

global model  
 （round t） 

local models 
（round t）

param. agg. 
parameter
pruning 

pruned models 
（round t） 

cross-round 
valuation 

global & pruned local models
in round t-1,t-2, ..., t-k 

Caching of
models Server 

Figure 2: The CoAst’s workflow. Note that the local training
procedure is unchanged.

the distance of the predicted 𝑅 and 𝑅, i.e.,

min𝑑 (𝑅, 𝑅), (3)

where 𝑑 (·, ·) is the distance measurement function.
Due to the multi-round property of FL algorithm, the contribu-

tion score of each client in round 𝑡 (denoted as 𝑃𝑡 ) can be naturally
represented as:

𝑃𝑡𝑖 = 𝐿
(
Θ𝑡 , {𝜃𝑡𝑖 }

)
, (4)

whereΘ𝑡 is the parameters of the global model aggregated in round
𝑡 . So, we can reformulate the Equation 2 to

𝑃 = {
𝑀∑︁
𝑡=0

𝑃𝑡𝑖 |𝑖 ∈ [1, 𝑁 ]}. (5)

4 COAST DESIGN
4.1 Design Overview
We propose two key techniques to address the challenges intro-
duced in the introduction section. First, we design a cross-round
valuation mechanism. Due to stochastic gradient descent, gradient
pruning, and parameter regularization, the parameter updates in a
certain round (e.g., round 𝑡 ) may not accurately reflect the true value
of the client, and even high-value clients may be assigned negative
contributions. Fortunately, the FL training process minimizes the
optimization objective and improves the model’s accuracy, which
means that the global parameter updates have a positive contribu-
tion in most training rounds. It allows us to value the client 𝑖 in
round 𝑡 with global parameters of subsequent several rounds.

Second, we borrow ideas from efforts on model compression and
quantization to filter out those unimportant parameters. Binary
weight quantization [4] is proposed for the efficiency of computa-
tion and storage and demonstrates that retaining only the sign of
parameters during model updates can still reach acceptable accu-
racy. Then, the ternary weight quantization [9] sets unimportant
parameter updates to zero on top of binary weight quantization and
reaches comparable accuracy to full precision training. It shows that
by setting a threshold, parameter updates that contribute minimally
to the model performance can be effectively filtered out. Thus, we
apply the idea of ternary weight quantization to the global model
aggregation and then value the client’s contribution with the re-
maining important parameters.

We demonstrate the workflow of CoAst in Figure 2. The contri-
bution assessment is transparent to clients, and there is nothing to

Algorithm 1: The parameter pruning algorithm of CoAst.
Data: All clients’ parameters at the 𝑡 epoch: 𝜃𝑡1, 𝜃

𝑡
2, . . . , 𝜃

𝑡
𝑁
;

Pruning Ratio: 𝑟 ∈ (0, 100];
Normalization hyperparameter: 𝛼 ;
Aggregated Parameter at the (𝑡 − 1)-th round: Θ𝑡−1

Result: Pruned Local Parameters : 𝜃𝑡1, 𝜃
𝑡
2, . . . , 𝜃

𝑡
𝑁
.

1 begin
2 𝜃𝑡1, 𝜃

𝑡
2, . . . , 𝜃

𝑡
𝑁

= zero_init(𝜃𝑡1, 𝜃
𝑡
2, . . . , 𝜃

𝑡
𝑁
)

// The zero_init function returns multiple zero tensors

with the same shapes as inputs

3 Δ1,Δ2, . . . ,Δ𝑁 = Θ𝑡−1 − 𝜃𝑡1,Θ
𝑡−1 − 𝜃𝑡2, . . . ,Θ

𝑡−1 − 𝜃𝑡
𝑁

4 for 𝑖 in {1, ..., 𝑁 } do
5 for 𝑗 in {1, ..., 𝑙} do
6 𝐼 = argsort(Δ𝑖 [ 𝑗])

// Δ𝑖 [ 𝑗 ] denotes 𝑗-th layer’s parameter updates

// argsort(·) returns indices by the value in

descending order

7 𝐼Δ = [𝐼1, 𝐼2, ..., 𝐼⌊ |𝐼 | ·𝑟%⌋ ]
// 𝐼𝑚 denotes the 𝑚-th element of the variable 𝐼

8 for ℎ in 𝐼Δ do
9 𝜃𝑡

𝑖
[ 𝑗] [ℎ] = Θ𝑡−1 [ 𝑗] [ℎ] + 𝛼 · sgn(Δ𝑖 [ 𝑗] [ℎ])

// The sgn( ·) is the sign function

// 𝜃𝑡
𝑖
[ 𝑗 ] [ℎ] denotes the ℎ-th element at 𝑗-th

layer of the parameter update Δ𝑖

10 return 𝜃𝑡1, 𝜃
𝑡
2, . . . , 𝜃

𝑡
𝑁

change during the local training procedure. On the server, when
receiving the local parameters trained in round 𝑡 , CoAst first prunes
the parameters by their importance through the ternary weight
quantization, then performs the aggregation on the pruned models.
After aggregation, we use cross-round valuation to measure the
contributions of local models. In the next part, we will detail these
two key designs.

4.2 Parameter Pruning
Without loss of generality, we use the training process of round 𝑡 as
an example to detail the algorithm design.𝑁 clients first locally train
the local models of round 𝑡 based on the global parameters of round
𝑡 − 1, denoted as Θ𝑡−1. Then, all clients upload local parameters of
round 𝑡 to the server, which are denoted as {𝜃𝑡

𝑖
}𝑖∈{1,...,𝑁 } . In the

following procedure, clients do nothing but wait for the aggregated
global parameters of round 𝑡 , denoted as Θ𝑡 , to continue their local
training in the next round.

Once all local parameters {𝜃𝑡
𝑖
}𝑖∈{1,...,𝑁 } are received, CoAst cal-

culates the local updates of round 𝑡 , denoted as {Δ𝑡
𝑖
}𝑖∈{1,...,𝑁 } ,

where
Δ𝑡𝑖 = 𝜃𝑡𝑖 − Θ𝑡−1 . (6)

Then CoAst performs parameter pruning according to their impor-
tance, similar to the idea of model quantization such as binarization
and ternarization. Considering the structural and functional differ-
ences between layers of DL models, CoAst quantifies the parameter
importance in a layer-wise manner. Here we denote the parameter
updates in each layer as Δ𝑖 := [𝛿1, 𝛿2, . . . , 𝛿𝑙 ] where 𝑙 refers to the
number of layers. Take the 𝑗-th layer as an example. CoAst first
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calculates the 𝑟 -th percentile of |𝛿 𝑗 |, denoted as 𝛿𝑟
𝑗
, where 𝑟 is a

hyperparameter controlling the pruning rate. Then, CoAst prunes
the parameters by clipping the parameter updates. For each element
of 𝛿 𝑗 , denoted as 𝑢, it is clipped as:

�̃� =


1 if 𝑢 > 𝛿𝑟

𝑗

−1 if 𝑢 < −𝛿𝑟
𝑗

0 otherwise
. (7)

It means we regard the elements of 𝛿 𝑗 whose absolute values are
greater than 𝛿𝑟

𝑗
as important and only keep their signs, while the

remaining elements are pruned to 0. Given the clipped parameter
updates Δ̃𝑡

𝑖
, the pruned local parameters 𝜃𝑡

𝑖
can be calculated as

𝜃𝑡𝑖 = Θ𝑡−1 + 𝛼 · Δ̃𝑡𝑖 , (8)

where𝛼 is a hyperparameter for normalization.We report thewhole
parameter pruning procedure in Algorithm 1.

4.3 Cross-round Valuation
In each round, the contribution of the model is valued by the global
model aggregated of the next 𝑘 rounds, and it also values the local
models of the last 𝑘 rounds. Recall that the parameters of the global
model are the average of the pruned local parameters (Equation 8),
which are calculated by adding the sign of the parameter update.
Therefore, the global parameters Θ𝑡 is calculated by

Θ𝑡 =
1
𝑁

·
𝑁∑︁
𝑖=1

𝜃𝑡𝑖 = Θ𝑡−1 + 𝛼

𝑁
·
𝑁∑︁
𝑖=1

Δ̃𝑡𝑖 . (9)

Therefore, in round 𝑡 , the parameter update of the global model
denoted as 𝑈 𝑡 := Θ𝑡 − Θ𝑡−1, is proportional to the sum of the
pruned local updates, i.e.,

𝑈 𝑡 ∝
𝑁∑︁
𝑖=1

Δ̃𝑡𝑖 . (10)

Recall that the value of element �̃� ∈ Δ′
𝑖
belongs to {−1, 0, 1}. That

is, the 𝑈 𝑡 (Equation 10) is the normalized voting result, which
indicates, for each element 𝑏 ∈ Θ𝑡−1, how many clients believe that
its value should be increased by 𝛼

𝑁
, and how many clients believe

that it should be decreased by 𝛼
𝑁
.

After 𝑘 rounds following the 𝑡-th round, we obtain the parame-
ters Θ𝑡+𝑘 , which can be calculated by

Θ𝑡+𝑘 = Θ𝑡 +
𝑡+𝑘∑︁
𝑒=𝑡+1

𝑈 𝑒 . (11)

In the following part, we denote
∑𝑡+𝑘
𝑒=𝑡+1𝑈

𝑒 as𝑈 (𝑡,𝑘 ) for simplifica-
tion. Since the global parameters are obtained by averaging all local
parameters, we can regard the parameters of any client as a correc-
tion to the sum of parameters of the other 𝑁 − 1 clients. Without
loss of generality, for any client 𝑖 , we reformulate Equation 11 to

Θ𝑡+𝑘 =
1
𝑁

·
∑︁

𝑗∈{1,...,𝑁 }\{𝑖 } 𝜃
𝑡
𝑗 +

1
𝑁

· 𝜃𝑡𝑖 +𝑈
(𝑡,𝑘 ) . (12)

We assume that the model’s performance is improved after the
𝑘 rounds. That is, among all clients, if a client’s local model of
round 𝑡 , i.e., 𝜃𝑡

𝑖
, during the parameter aggregation process is more

similar to the subsequent global parameter updates, i.e.,𝑈 (𝑡,𝑘 ) , then

Figure 3: Core idea of the cross-round valuation. The 𝜃𝑡
𝑖
,

which is consistent with the improvement direction of the
model in several rounds, i.e.,𝑈 (𝑡,𝑘 ) , has a larger contribution.

the contribution of this client in this training round is greater. We
demonstrate this idea in Figure 3. Clients will recalculate the local
models based on the last global model, so the choice of 𝑘 should
not be too large. Otherwise, the update direction represented by
𝑈 (𝑡,𝑘 ) may not capture the details of stochastic gradient updates
and thus cannot indicate the contribution in one training round.

Therefore, the contribution of client 𝑖 can be measured by the
similarity between 𝜃𝑡

𝑖
and𝑈 (𝑡,𝑘 ) . Here, we use Signed Cosine simi-

larity to measure the similarity because the 𝜃𝑡
𝑖
and𝑈 (𝑡,𝑘 ) are local

parameters and global updates, respectively. Note that Signed Co-
sine similarity is sensitive to the sign information of vectors and
can better reflect the directional relationship between vectors. Due
to the parameter pruning, the model updates can be considered
as the sign of each parameter’s update (Equation 10). That is, in
our design, the sign of these updates is more important than their
magnitude.

Note that 𝜃 and 𝑈 (𝑡,𝑘 ) share the same shape, and we assume
that they can be indexed through ℎ. CoAst calculates the client’s
contribution in round 𝑡 by

𝑝𝑡𝑖 =

|Θ |∑︁
ℎ=1

sgn(𝜃𝑡𝑖 [ℎ]) · sgn(𝑈
(𝑡,𝑘 ) [ℎ]), (13)

where sgn(·) is the function to indicate the sign of the value.

5 IMPLEMENTATION
5.1 Dataset Settings
We evaluate the CoAst’s performance on three datasets, i.e., CIFAR-
10 [8], CIFAR-100 [8], and STL-10 [1]. We randomly partition the
training dataset among each participant. We assume that by ran-
domly and evenly partitioning these three datasets according to the
number of clients, several datasets with the same data valuation can
be obtained. Therefore, if a group of clients uses these partitioned
datasets for training, the contribution of these clients is the same.
We have set up four scenarios to mimic the contribution differences
caused by data quality and quantity differences. 𝑁 in the following
settings denotes the number of clients.

5.1.1 Setting 1: Different quantity. Assuming that randomly par-
titioned datasets share a similar distribution, the more samples
in the training dataset, the higher the contribution to the model
accuracy. In this scenario, we prepare datasets with different con-
tributions by randomly assigning different numbers of samples
to each client. Let the number of clients be 𝑁 and the size of the
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Figure 4: Training samples to demonstrate our dataset set-
tings. Samples are randomly selected from STL-10.

training dataset be |𝑋train |. Then, the size of the dataset for the 𝑖-th
client is 𝐷𝑖 = 1 − 0.5 · 𝑖

𝑁
|𝑋train |.

5.1.2 Setting 2: Adding noise. In this scenario, we prepare the train-
ing datasets of different qualities for clients by adding Gaussian
noise of different intensities. We first randomly and evenly par-
tition the dataset according to the number of clients. Then we
perform the Gaussian noise to the dataset of client 𝑖 with a mean
of 𝜇𝑖 and standard deviation of 𝜎𝑖 , where 𝑖 ∈ {1, . . . , 𝑁 }. We set
the mean and variance of Gaussian noise decrease linearly, i.e.,
𝜇𝑖 = 0.01 · 𝑖, 𝜎𝑖 = 0.625 · 𝑖

𝑁
. We report some data samples in Fig-

ure 4a.

5.1.3 Setting 3: Adjusting resolution. In this scenario, we mimic the
data of different quality by adjusting the resolution of the training
data through Gaussian blur. Different degrees of Gaussian blur can
be achieved by setting kernels of different sizes and variances. We
first randomly and evenly partition the dataset according to the
number of clients. Then, we use different degrees of Gaussian blur
to preprocess the training data. Let the sequence of kernel sizes and
standard deviation be 𝑠𝑖 and 𝜎𝑖 , where 𝑖 ∈ {1, . . . , 𝑁 }. We select a
linearly decreasing sequence of kernel sizes and standard deviation,
i.e., 𝑠𝑖 = 2 · 𝑖 + 1, 𝜎𝑖 = 0.4 · 𝑖 + 1. We report some data samples in
Figure 4b.

5.1.4 Setting 4: Masking. In this scenario, we prepare the dataset
with different quality by adding a mask on training data. The con-
tent covered by the mask is set to 0. We first randomly and evenly
partition the dataset according to the number of clients. Then, for
each client, we randomly mask a part of the image. The area of
the mask covers 𝑟𝑖% of the image for client 𝑖 , and its position is
randomly generated. The 𝑟𝑖 is a random number between 𝑙𝑖 and 𝑢𝑖 ,
where 𝑙𝑖 = 0.5 · 𝑖

𝑁
, 𝑢𝑖 = 0.75 · 𝑖

𝑁
. We report some data samples in

Figure 4c.

5.2 Implementation Details
We perform experiments with Pytorch on a server with two A100
(80G) GPU cards. We use three model architectures, i.e., TinyRes-
Net, ConvNet [24], and ResNet-4. The TinyResNet consists of a
convolution layer, whose weight shape is 3 × 7 × 7 × 64, and a
ResBlock [3], whose kernel size is 3 × 3 and output channel is 64.
The ResNet-4 consists of 4 ResBlocks, whose kernel size is 3 × 3
and output channel is 64, 128, 128, and 128. In our setting, we use 1
central server and 5 clients, (i.e., 𝑁 = 5). We initialize the learning
rate to 0.01 and gradually decrease it as the training progresses. We
use the FedAvg method to aggregate the local models.

5.3 Baseline Methods
We use three baseline methods. The validation-based method [15],
denoted as baseline 1, measures the accuracy of the aggregated
models w/ or w/o one local model with the validation dataset to
calculate the contribution. Although baseline 1 is computationally
time-consuming, it has the highest accuracy among Shapley value-
based solutions by exhaustively considering all possible cases. We
implement two SOTA validation-free methods, i.e., Fed-PCA [10]
and CGSV [21], as the baseline 2 and baseline 3.

5.4 Metrics
To measure the accuracy of the contribution assessment, we use the
Spearman correlation coefficient [12] as the distance measurement
function 𝑑 in Equation 3. The Spearman correlation coefficient
is good at measuring the degree to which the ranks of the two
variables are associatedwith each other. And it also is used in related
works [17, 21]. Formally, 𝑅 and 𝑅 are two sequences of length 𝑛,
which denote the ground-truth order and predicted order of the
clients’ contribution, i.e., 𝑅 = [𝑜1, 𝑜2, . . . , 𝑜𝑛], 𝑅 = [𝑜1, 𝑜2, . . . , 𝑜𝑛].
We calculate the Spearman correlation coefficient (𝜌) through the:

𝜌 = 1 − 6
𝑛(𝑛2 − 1)

𝑛∑︁
𝑖=1

∥𝑜𝑖 − 𝑜𝑖 ∥2 . (14)

The 𝜌 ranges from -1 to 1, where -1 indicates a perfectly negative
correlation, i.e., sequences 𝑅 and 𝑅 are in reverse order, 0 indicates
no correlation, i.e., random guessing, and 1 indicates a perfectly
positive correlation.

6 EVALUATION
We measure the performance of our CoAst in four configurations
with three datasets and three model architectures. Configuration
1 is CIFAR-10 and TinyResNet; Configuration 2 is CIFAR-100 and
TinyResNet; Configuration 3 is STL-10 and ResNet-4; Configura-
tion 4 is CIFAR-100 and ConvNet.

6.1 Overall Performance
In the CoAst’s experiments, for hyperparameters in Algorithm 1,
we set 𝑟 to 10, 𝛼 to 0.02, and 𝑁 to 5. We set the 𝑘 in Equation 13
to 2. We report the overall performance in Table 1. SV, PCA, and
CGSV represent baseline 1, baseline 2, and baseline 3, respectively.

The average accuracy of baseline 1 and CoAst are 0.855 and 0.9,
which means that our CoAst is comparable to that of baseline 1,
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Setting 1: Quantity Setting 2: Noise Setting 3: Resolution Setting 4: MaskC. SV PCA CGSV Ours SV PCA CGSV Ours SV PCA CGSV Ours SV FP CGSV Ours
1 0.60 -1.00 1.00 1.00 1.00 0.30 0.30 1.00 1.00 0.60 0.30 1.00 1.00 0.00 -0.70 1.00
2 0.90 -0.10 1.00 1.00 1.00 0.10 0.60 1.00 1.00 0.10 -0.30 0.90 1.00 0.10 -1.00 1.00
3 0.70 0.00 1.00 1.00 0.90 0.30 0.30 1.00 1.00 0.70 0.40 0.20 0.10 -0.30 0.40 0.60
4 0.90 -0.10 1.00 1.00 1.00 -1.00 -0.10 1.00 1.00 -0.40 0.70 0.70 1.00 0.10 -0.30 1.00
A. 0.78 -0.30 1.00 1.00 0.98 -0.08 0.28 1.00 1.00 0.25 0.28 0.70 0.78 -0.03 -0.40 0.90

Table 1: Overall performance of CoAst. SV [15] represents baseline 1, a validation-based method. Note that some efforts, in
these years, optimize the system performance by estimating the Shapley value rather than improving the assessment accuracy
(Section 2). Therefore, we use the classical SV [15] to compare accuracy. PCA [10] and CGSV [21] represent baseline 2 and
baseline 3. Our CoAst (denoted as O). (C. is short for configuration, and A. is short for Average.)

which is a validation-based method. CoAst even outperforms base-
line 1 by 0.22, 0.02, and 0.12 in setting 1, setting 2, and setting 4.
Our CoAst’s performance outperforms the SOTA validation-free
methods, i.e., Fed-PCA (baseline 2) and CGSV (baseline 3), in almost
all cases. On average, our CoAst outperforms Fed-PCA by 0.94 and
CGSV by 0.52 in all cases. The poor performance of Fed-PCA is
because the model architecture used in our experiment is too com-
plex to perform precise probability analysis. Experimental results
demonstrate the CoAst’s effectiveness and robustness in different
cases.

6.2 Ablation Study
6.2.1 𝑘 in cross-round valuation. We explore how 𝑘 affects the per-
formance of CoAst. We perform the experiment with different 𝑘
values, which means that different numbers of global updates are
used to assess the local models’ contribution. We report the results
in Table 2. In different experimental settings, CoAst with 𝑘 = 5
reaches the best performance, and the performance of CoAst with
𝑘 = 2 is comparable to that of CoAst with 𝑘 = 5. The small and
large 𝑘 values, i.e., 𝑘 = 1 and 𝑘 = 10, have relatively poor perfor-
mance. This is because a small 𝑘 value may still let the contribution
assessment be affected by stochasticity, while a large value of 𝑘
may make CoAst lack attention to the stochastic gradient descent
process. We recommend setting 𝑘 to 2 or 5 when using our CoAst
in practical use.

6.2.2 Parameter pruning. Recall that the parameter pruning con-
sists of a parameter update clipping procedure (Line 9 in Algo-
rithm 1) and a top r% update selection procedure (Line 7 in Algo-
rithm 1). To measure the effect of parameter pruning, we perform
the following contrast experiments with different settings, which
are as follows.

(1) Ours. 𝑟 = 10, w/ update clipping.
(2) Exp1. 𝑟 = 20, w/ update clipping.
(3) Exp2. 𝑟 = 10, w/o update clipping.
(4) Exp3. 𝑟 = 100, w/o update clipping. (No parameter pruning.)

We report the results of these contrast experiments in Table 3.
By comparing the results of ours and Exp1, we can conclude that
increasing the proportion of parameter selection leads to a slight
decrease in performance, which is likely due to the noise introduced
by the selected parameters. Our CoAst’s average performance is

0.40625 and 0.25625 higher than Exp2 and Exp3, respectively, indi-
cating that the design of parameter pruning effectively ensures the
accuracy of contribution assessment.

6.2.3 Update clipping strategy. In the CoAst, we use a hyperpa-
rameter 𝛼 (Equation 8) to normalize the local parameter update
in each round. Here we explore how the hyperparameter 𝛼 value
affects the contribution assessment effectiveness. We perform three
experiments with CIFAR-10 and TinyResNet. We set𝑀 to 100, 𝑁
to 5, and 𝑟 to 10. In the first two experiments, we set the value of 𝛼
to 0.01 and 0.02, respectively. In the third experiment, we use an
adaptive clipping strategy, where we set 𝛼 as the average value of
the selected r% parameters (i.e., 10) of each layer. We report the
results of these three experiments in Table 4. By comparing the
experimental results of the first two experiments, it can be seen that
the choice of hyperparameters has little impact on the assessment
performance. However, in the third experiment, the assessment
performance decreases. This is because clipping the parameter up-
date to different values interferes with the assessment process. In
our design, we aim to quantize all parameter updates and assess
the contribution based on the direction of the local parameters and
global parameter updates.

6.2.4 Client number. Here we explore how the number of clients,
i.e.,𝑁 , affects the stability of CoAst. We experiment with CIFAR-100
and TinyResNet and set 𝑘 to 10 and 𝑟 to 10. We report the exper-
imental results in Table 5. When the number of clients increased
from 5 to 10, the performance change of Fed-PCA averaged 0.4775,
the performance change of CGSV averaged 0.38, and the accuracy
change of our method averaged 0.07. When the number of clients
is 5, our CoAst outperforms Fed-PCA and CGSV by an average of
1.025 and 0.5225, respectively. When the number of clients is 10,
our CoAst outperforms Fed-PCA and CGSV by an average of 0.775
and 0.795, respectively. The experimental results fully demonstrate
the stability of our method with respect to changes in the number
of clients.

7 DISCUSSION AND LIMITATION
Recall that in the procedure of parameter aggregation, CoAst prunes
local parameters according to their importance. Although weight
quantization methods are often used in practical FL scenarios to
reduce network bandwidth, they tend to incurring performance
degradation of the model as well as slower convergence speed. Thus
the convergence time of our CoAst is slightly longer than that of
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C. Setting 1: Quantity Setting 2: Noise Setting 3: Resolution Setting 4: Mask
k=1 k=2 k=5 k=10 k=1 k=2 k=5 k=10 k=1 k=2 k=5 k=10 k=1 k=2 k=5 k=10

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 0.90 1.00 1.00 1.00 1.00
3 0.80 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.10 0.20 0.60 0.50 0.60 0.60 0.60 -0.60
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.70 0.70 0.70 0.90 1.00 1.00 1.00
A. 0.95 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.70 0.70 0.80 0.78 0.85 0.90 0.90 0.60

Table 2: The effect of the number of subsequent global updates, i.e., 𝑘 , on the contribution assessment’s performance. (C. is
short for configuration, and A. is short for Average.)

C. Setting 1: Quantity Setting 2: Noise Setting 3: Resolution Setting 4: Mask
O Exp1 Exp2 Exp3 O Exp1 Exp2 Exp3 O Exp1 Exp2 Exp3 O Exp1 Exp2 Exp3

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 -0.70 0.30 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 -0.10 -0.10 0.60 1.00 1.00 1.00 1.00
3 1.00 1.00 -0.30 0.40 1.00 0.70 0.40 0.40 0.20 -0.40 -0.40 -0.40 0.60 0.70 -0.70 -0.70
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.40 0.70 0.70 1.00 1.00 1.00 1.00
A. 1.00 1.00 0.68 0.85 1.00 0.93 0.85 0.85 0.70 0.00 -0.13 0.30 0.90 0.93 0.58 0.58

Table 3: Experimental results of exploring how 𝑟 and update clipping affects the assessment performance. (C. is short for
configuration, and A. is short for Average.)

𝛼 Quantity Noise Resolution Mask
0.01 1.00 1.00 0.90 1.00
0.02 1.00 1.00 1.00 1.00
avg 1.00 1.00 0.40 1.00

Table 4: The effect of update clipping strategy on contribution
assessment. We perform the experiment with CIFAR-10 and
TinyResNet. We set 𝑁 to 5, and𝑀 to 100.

#Client Quantity Noise
PCA CGSV Ours PCA CGSV Ours

5 -1.00 1.00 1.00 0.30 0.30 1.00
10 0.30 0.99 0.99 0.86 0.88 0.99

#Client Resolution Mask
PCA CGSV Ours FP CGSV Ours

5 0.60 0.30 1.00 0.00 -0.70 1.00
10 0.61 -0.37 0.82 -0.14 -0.96 0.92

Table 5: Experimental results of how the number of clients
affects the performance of contribution assessment.

the typical method, i.e., without applying any quantization. We
report the model performance trained through the typical method
and ours in Table 6. The model trained through the typical method
converges after 100 rounds (i.e.,𝑀 = 100), while the model trained
in our method requires 200 rounds (i.e.,𝑀 = 200) to converge. As
can be seen, the performance of the model trained through CoAst
outperforms that of the model trained through the typical method
at the 100th round only in one case. When the model converges, the
performance of the model trained through CoAst exceeds the model
trained in the typical scenario in two cases. However, experiments
in Section 6.2.2 show that weight quantization is important to

C. Typical Ours
M=100 M=100 M=150 M=200

1 0.7963 0.7732 0.7816 0.7880
2 0.4931 0.4456 0.4555 0.4555
3 0.5776 0.5186 0.5590 0.5876
4 0.5767 0.5883 0.5906 0.5906

Table 6: The performance of the FLmodel trained in a typical
way and our methods. M represents the number of training
rounds. (C. is short for configuration.)

the accuracy of the assessment since quantization mitigates the
negative impact of redundant model parameters on the assessment.
As future work, we will draw on research ideas in the direction of
model quantization to improve the model performance in accuracy
and convergence.

8 CONCLUSION
In this work, we propose a validation-free contribution assessment,
CoAst, for the FL scenario. Compared with existing efforts, it greatly
improves the contribution assessment performance under different
dataset settings by introducing two key designs: parameter pruning
and cross-round valuation. Comprehensive evaluations showed
that our CoAst outperforms existing methods on different dataset
settings and different models. We believe that CoAst will inspire
the data valuation design in other scenarios in the future.
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