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Abstract

In knowledge distillation literature, feature-based methods have dominated due to their
ability to effectively tap into extensive teacher models. In contrast, logit-based approaches,
which aim to distill ‘dark knowledge’ from teachers, typically exhibit inferior performance
compared to feature-based methods. To bridge this gap, we present LumiNet, a novel
knowledge distillation algorithm designed to enhance logit-based distillation. We introduce
the concept of ‘perception’, aiming to calibrate logits based on the model’s representation
capability. This concept addresses overconfidence issues in logit-based distillation method
while also introducing a novel method to distill knowledge from the teacher. It reconstructs
the logits of a sample/instances by considering relationships with other samples in the batch.
LumiNet excels on benchmarks like CIFAR-100, ImageNet, and MSCOCO, outperforming
leading feature-based methods, e.g., compared to KD with ResNet18 and MobileNetV2 on
ImageNet, it shows improvements of 1.5% and 2.05%, respectively.

1 Introduction

The advancement in deep learning models has undergone significant increases in both complexity and per-
formance. However, this progress brings challenges associated with computational demands and model
scalability. To mitigate this, knowledge distillation (KD) has been proposed as an efficient strategy (Hinton
et al., 2015) to transfer knowledge from a larger, intricate model (teacher) to a more compact, simpler model
(student). The primary objective is to trade off performance and computational efficiency. There are two
broad categories of KD: logit and feature-based strategies (Romero et al., 2014; Tian et al., 2020; Tung &
Mori, 2019; Yim et al., 2017). The logit-based methods aim to match the output distributions of the teacher
and student models (Zhang et al., 2018; Mirzadeh et al., 2020; Zhao et al., 2022). In contrast, feature-based
methods are centered on aligning the intermediate layer representations between the two models (Romero
et al., 2014). In general, it has been observed that feature-based KD outperforms logit-based KD (Zhao
et al., 2022). However, feature-based KD suffers from layer misalignment (Romero et al., 2014) (reducing
sample density in this space), privacy concerns (Goodfellow et al., 2015) (intermediate model layers accessible
for adversarial attacks revealing training data and posing significant threats), and escalating computational
requirements (Vaswani et al., 2017; Zhao et al., 2022) (see Fig. 1). These issues raise questions about its
effectiveness, particularly in industrial applications. Similarly, these issues underscore the potential merits of
logit-based KD over feature-based KD. This paper aims to enhance the effectiveness of logit-based knowledge
distillation by leveraging its underlying strengths.

Several reasons underpin the disparity between logit- and feature-based KD. Firstly, one significant challenge
in logit-based distillation, including data distillation(Zhu et al., 2023), is the issue of overconfidence. This is a
common feature of any high-capacity pre-trained teacher model, which tends to assign the highest probability
to the target class and shows a high variance in the probability distribution. The primary objective of
traditional KD, particularly for the lower-capacity student model, is not just to match the target class
probabilities but also to extract the ‘dark knowledge’ from the teacher model. The ‘dark knowledge’ refers
to the knowledge encoded by the relative probabilities of the non-target classes (Yang et al., 2018; Furlanello
et al., 2018; Hinton et al., 2015). However, a key issue is a substantial difference in confidence levels between
target and non-target classes, as evidenced in Fig. 1. Even though temperature scaling (Hinton et al.,
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Figure 1: Performance comparison of feature-based and logit-based methods on (a) CIFAR-100, (b) ImageNet, and
(c) MS COCO datasets. Our proposed LumiNet, a logit-based method, achieves high accuracy without using extra
parameters. (d-e): An example of (Left) before and (Right) after applying our proposed concept perception’ on
teacher’s predicted probabilities. The first set of plots in the top row shows spikes in raw logits for the targeted
class (Sweet Peppers, represented in red). This representation changes after the application of perception. Notably,
various classes exhibit similar magnitudes to the targeted class, indicating reduced specificity. In the second set,
despite conventional knowledge distillation softening, as seen in the left figure, there’s persistent overconfidence in
the target class. Perception minimizes the difference in softmax values between targeted and non-targeted classes,
as depicted in the right figure. The third set illustrates inter-class relationships among the top 10 classes. While
conventional scenarios (left) maintain these relationships, the perception method significantly alters them (right).

2015) is employed to address this, determining the optimal value to achieve proper alignment in learning
remains an issue (Kim et al., 2021; Chen et al., 2021a; Wang & Yoon, 2021). Moreover, previous attempts to
address the issue have led to increased complexity and computational load by introducing multiple objective
functions(Zhao et al., 2022; Jin et al., 2023). Secondly, most of the logit-based methods often employ a
simplistic matching criterion, which might not be robust enough to handle complex logit distributions for the
student model, leading to suboptimal knowledge transfer (Romero et al., 2014; Chen et al., 2021a; Wang &
Yoon, 2021). Thirdly, logit-based KD tends to struggle with granularity. Feature-based methods leverage
a broader spectrum of the teacher’s knowledge by aligning intermediate representations, providing richer
information to the student (Heo et al., 2019a; Bengio et al., 2013; Wang & Yoon, 2021). In contrast, logits
provide a more condensed representation, which might not always encapsulate the entirety of the teacher’s
knowledge (Romero et al., 2014). In addition, the student model learns the distribution of each instance
independently in logit-based distillation without considering the distribution of other instances. This leads
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to teacher-student fooling Ojha et al. (2023), where the student model may replicate errors or biases present
in the teacher’s logits for individual instances, affecting its overall performance and generalization. These
inherent challenges associated with logit-based distillation necessitate the development of a novel method
that strikes a balance between simplicity and effectiveness, mitigating overconfidence issues and enhancing
sample representation for better knowledge extraction.

In response to the above challenges, we present LumiNet, a novel approach to knowledge distillation algo-
rithms.The key focus of LumiNet is to generate a new representation of instance-level logit distributions.
This representation is expected to effectively address all the issues of the knowledge distillation process
discussed earlier. To enhance the model’s representation, we focus on the statistical characteristics, mean
and variance, of the model output. When focusing on a specific class, we analyze a vector field containing
logit values for that class across various samples. Within this vector, we calculate deviation scores (original -
mean) for logits, aiding in pinpointing anomalies and highest or lowest logit values. Additionally, by comput-
ing the variance, we gain insight into the interrelations among class values. Standardizing logits within the
vector provides known statistics, ensuring that, for a particular class vector, the mean of logits is zero (with
the maximum value receiving the highest positive score and the minimum value getting the least negative
score). While these statistics hold consistently within isolated vector fields, applying this approach to all
vector fields in the batch enables the formation of a novel inter-class relationship for each sample/instance.
The resulting transformation produces a distinctive representation, which we term ‘perception’, for each
sample, capturing essential insights from the collective statistical behaviors of individual class vectors. This
approach effectively addresses overconfidence issues and capacity gaps, eliminating the dark knowledge con-
cept, as illustrated in Fig. 1(d-e). By incorporating the internal relations of other samples/instances within
the class, each logit value gains contextual insights, mitigating overconfidence and confirmation bias issues
and facilitating the extraction of more subtle knowledge, as evidenced by improved performance scores.

Luminet draws inspiration from Kurt Lewin’s Field Theory in Gestalt Psychology Lindorfer (2021), which
emphasizes that perception is shaped by the overall psychological field or environment surrounding an en-
tity. Lewin’s concept suggests that human goals and behaviors are shaped or reshaped by psychological
forces—positive forces drive us toward goals, while negative forces push us away from undesired outcomes.
Just as humans perceive objects, Luminet adapts this principle to machine learning. Lumnet dynamically
adjusts each sample’s representation by leveraging interactions within the surrounding field (the field here is
the entire batch), where the forces exerted by other samples influence these adjustments. If a sample encoun-
ters suboptimal conditions (overconfidence, errors), the representations of neighboring samples collaborate
to minimize its degradation, enhancing overall model robustness. The name "perception" reflects this core
idea from Kurt Lewin’s Field Theory in Gestalt Psychology.

The performance of LumiNet is evaluated on three computer vision tasks: image recognition, object de-
tection, and transfer learning for feature transfer ability. Our empirical evaluations solidify the efficacy of
LumiNet: for instance, using ResNet8x4 as a student, we achieved a notable 77. 5% precision and further
established benchmark supremacy across tasks on datasets such as CIFAR100, ImageNet, MS-COCO, and
TinyImageNet.

Our contributions are as follows:

• We introduce LumiNet, a novel knowledge distillation algorithm that replaces the traditional dark
knowledge concept. It addresses issues of overconfidence, capacity gaps, and teacher-student fooling,
while incorporating contextual knowledge into logits by creating new representations for samples.

• Through extensive empirical evaluations, we demonstrate that our method consistently enhances
performance across diverse datasets (CIFAR100, ImageNet, MS-COCO, and TinyImageNe), deep
learning architectures (ResNet, VGG, ShuffleNet, MobileNet, WRN, and Faster-RCNN-FPN), and
tasks (recognition, detection, and transfer learning).
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2 Related Works

Logit-based KD: In the domain of KD, logit-based techniques have traditionally emphasized the distil-
lation process utilizing solely the output logits. Historically, the primary focus of research within logit
distillation has been developing and refining regularization and optimization strategies rather than exploring
novel methodologies. Noteworthy extensions to this conventional framework include the mutual-learning
paradigm, frequently referenced as DML (Zhang et al., 2018), and incorporating the teacher assistant mod-
ule, colloquially termed TAKD (Mirzadeh et al., 2020). Nonetheless, a considerable portion of the existing
methodologies remain anchored to the foundational principles of the classical KD paradigm, seldom probing
the intricate behaviors and subtleties associated with logits (Zhao et al., 2022). A novel approach to object
detection distillation, combining feature-based and logit-based methods with a closed-loop knowledge distil-
lation framework, has demonstrated improved accuracy and robustness compared to existing state-of-the-art
techniques (Song et al., 2024). While the versatility of these logit-based methods facilitates their applicability
across diverse scenarios, empirical observations suggest that their efficacy often falls short when juxtaposed
against feature-level distillation techniques.

Feature-based KD: Feature distillation, a knowledge transfer strategy, focuses on utilizing intermediate
features to relay knowledge from a teacher model to a student model. State-of-the-art methods have com-
monly employed this technique, with some working to minimize the divergence between features of the
teacher and student models (Heo et al., 2019b;a; Romero et al., 2014). A richer knowledge transfer is facili-
tated by forcing the student to mimic the teacher at the feature level. Others have extended this approach
by distilling input correlations, further enhancing the depth of knowledge transfer (Park et al., 2019; Tian
et al., 2020; Tung & Mori, 2019; Chen et al., 2021b). DiffKD (Huang et al., 2024), a novel knowledge dis-
tillation method utilizing diffusion models to denoise and align student features with teacher features, has
demonstrated state-of-the-art performance across image classification, object detection, and semantic seg-
mentation tasks These methods, though high-performing, struggle with substantial computational demands
and potential privacy issues, especially with complex models and large datasets. These challenges not only
amplify processing time and costs but can also limit their practical applicability in real-world scenarios.
Recognizing these challenges, we turn our attention to logit-based distillation techniques.

Applications with KD: Rooted in foundational work by (Hinton et al., 2015) and further enriched by ad-
vanced strategies like Attention Transfer (Zagoruyko & Komodakis, 2017), ReviewKd (Chen et al., 2021b),
Decoupled KD (Zhao et al., 2022) and other methods (Park et al., 2019; Tian et al., 2020), KD has signifi-
cantly improved performance in core vision tasks, spanning recognition (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2014; He et al., 2016), segmentation(Qin et al., 2021; Liu et al., 2019), and detection (Li et al.,
2022a; Yang et al., 2022; Zheng et al., 2023; Xu et al., 2022). Beyond vision, KD has also made notable
strides in NLP tasks like machine translation and sentiment analysis (Kim & Rush, 2016; Zhang et al., 2022).
KD has proven valuable in addressing broader AI challenges, such as reducing model biases (Hossain et al.,
2022; Chai et al., 2022; Zhou et al., 2021; Jung et al., 2021) and strengthening common-sense reasoning
(West et al., 2022). We evaluate our method within the realms of image classification and object detection.

3 Methodology

3.1 Knowledge Distillation Revisited

Consider a set of distinct samples denoted X = {xi}n
i=1, where xi ∈ Rm and n represent the total number of

samples. Given a parametric deep learning model fθ with learnable parameters θ, its output for a sample xi

is defined as zi = f(xi), where zi ∈ Rc, and c denotes the number of classes within the sample set X . In the
context of KD literature, the model’s output z is often referred to as the logit of the model. For brevity, we
will omit θ from the model notation f . To provide more context within the realm of knowledge distillation,
we designate fT as the teacher model and fS as the student model. The fundamental objective of KD is
to minimize the divergence between the logits of the student and teacher for each sample in X . This can
be expressed mathematically as minimizing the objective,LKD =

∑
xi∈X ℓ (fT (xi), fS(xi)). Here, ℓ(·, ·) is a

loss function that measures the discrepancy between two vectors. For logit-based distillation, the primary
objective is to align the softened logits of the student and teacher models. This alignment is quantified using
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the Kullback-Leibler (KL) divergence between the softened probabilities of the two models. Formally, the
distillation loss, LKD, is defined as:

LKD = KL

(
Softmax

(
fT (xi)

τ

) ∣∣∣∣ Softmax
(

fS(xi)
τ

))
(1)

Here, τ is the temperature parameter that modulates the softmax sharpness.

The primary hurdles with logit-based distillation lie in the fact that any logit vector zi = f(xi) is considerably
more compact than its feature vector counterpart. Another challenge is the tendency for overconfidence,
especially when the output zi is from a pre-trained teacher model. Overly confident teacher predictions in
knowledge distillation pose a critical issue where P (y = t|x) → 1 for target class t, consequently forcing
P (y = i|x) → 0 for all non-target classes i. This extreme probability distribution effectively suppresses the
valuable “dark knowledge" encoded in the relative magnitudes of non-target class probabilities, which Hinton
et al. (2015) identified as crucial information for student learning. The resulting near-zero probabilities
cause gradient signal degradation during KL-divergence minimization, making it challenging for the student
to capture the subtle inter-class relationships that contribute to the teacher’s generalization capabilities.
These aspects make it difficult for the student model to extract the full range of knowledge embedded in the
teacher model (Romero et al., 2014). The following section outlines some potential limitations associated
with logit-based knowledge distillation.

(1) Efficiency and Knowledge Representation: In neural networks, decision-making frequently relies
on the probabilities assigned to specific classes for individual instances or samples (Yegnanarayana, 2009).
For example, if the probability of an instance xi belonging to class c1 is close to the probability of it belonging
to class c2, we infer that the two classes are likely to represent similar objects or share common features. We
heavily rely on this representation in knowledge distillation, and the student model aims to grasp this pattern
(Zhao et al., 2022; Zhang et al., 2018; Mirzadeh et al., 2020). To achieve this, leading logit-based distillation
methods often employ multiple objective functions to capture essential information (Zhao et al., 2022; Jin
et al., 2023). For instance, Decouple Knowledge Distillation (DKD) (Zhao et al., 2022) uses two objective
functions to understand the patterns of target and non-targeted classes separately. However, this approach
increases the number of hyperparameters and may pose challenges for industrial applications. On the other
hand, MLLD (Jin et al., 2023) adopts multi-level distillation, involving multiple objective functions and
introducing computational complexities along with additional hyperparameters. This complexity gives rise
to considerations about the feasibility of applying these methods to extensive tasks and industrial contexts.
The fundamental question arises: Can we formulate a novel instance representation that simplifies instance-
level distillation, mirroring the simplicity of traditional KD? If attainable, this prospect could open the door
for a new research trajectory in knowledge distillation, as there would be no need to directly extract relative
information about classes from the teacher, which is the core philosophy of KD.

(2) Role of τ : In knowledge distillation, the temperature scaling softens the outputs of the teacher’s
model, serving as a regularizer to reduce overfitting. Moreover, by preventing premature over-confidence in
predictions, τ further promotes better generalization and reduces the risk of fitting too closely to training
data (Hinton et al., 2015). Because the outputs of the teacher and student model have inherent statistical
differences, finding a suitable value for τ is difficult (Liu et al., 2023b). Usually, KD methods require extensive
τ fine-tuning, leading to additional computational costs (Rafat et al., 2023).

3.2 Introducing LumiNet

Based on our previous discussion, the process of knowledge distillation is found to be further enriched for a
given instance xi when viewed in the context of its batch samples. The overconfidence issues in inter-class
relationships inside instances are also mitigated.

Formally, a measure of information K corresponding to xi can be obtained as:

K(xi) ∝ D(xi) +
∑
j ̸=i

R(xi, xj) (2)
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logit for each sample in the batch, denoted as zt
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Finally, a loss function ℓ is calculated between the teacher and student to complete the knowledge distillation
process.

Let K(xi) be defined as an information measure that quantifies the total information content of an instance
xi. The Relational Measure R(xi, xj) quantifies the similarity or mutual information between two instances
xi and xj in the feature space. Mathematically, it can be expressed as: R(xi, xj) = sim(f(xi), f(xj)), which
is a similarity function such as cosine similarity. The Divergence Measure D(xi) captures the variance of
an instance xi within its assigned class and is defined as: D(xi) = 1

|C|
∑

xj∈C ∥f(xi) − f(xj)∥2, where C

represents the set of all instances in the class of xi.

Constructing the perception: We formulate our approach considering a batch of data samples B =
{xi}b

i=1, which is randomly selected from the original dataset X . Consequently, the logits generated by
a model f for an instance xi ∈ B across c classes are represented as: zi = (zi1, zi2, . . . , zic), where zik

symbolizes the logit for the jth class for instance xi. We adjust the logits based on the mean Uj and variance
Vj across each class j of a batch. This transformed logit is given by:

hij = zij−Uj√
Vj

. Here, hij represents the augmented logit for the jth class for instance xi. Consequently, the
augmented logits for instance, xi are obtained as:

hi =
(

zi1 − U1√
V1

,
zi2 − U2√

V2
, . . . ,

zic − Uc√
Vc

)
(3)

In this context, the reconstructed logits hi capture the model’s perception. Instead of merely making raw
predictions, both the models (teacher and student) try to understand the finer details and differences within
the batch of data. As outlined in Eq. 3, the method of constructing ‘perceived’ logits is explained. In
short, when both the teacher and student models’ intra-class predictions are adjusted on the same scale, the
probability distribution across all the classes for individual instances is influenced. This new set of logits
offers us a more insightful representation of each instance. We refer to this set of logits hi as ‘perception’.

The LumiNet Loss: Classical knowledge distillation seeks to transfer the rich perceptual capabilities
of a teacher model onto a smaller student model. To this end, we introduce LumiNet, a novel approach
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Teacher KD KD* Ours
Temp - 4 2 4

Entropy 0.03 0.42 0.40 1.26
Instance Variance 4.4 2.3 - 0.91

Mutual Information 3.64 3.60 3.56 3.65
Avg. Gradient L2 Norm - 1.28 1.10 3.27

Gradient Variance - 0.013 0.013 0.015
Accuracy 79.42 73.08 72.91 77.50

Table 1: Entropy Analysis

Model FPR95 (%) ↓ ECE ↓ MCE ↓
CIFAR-100

CE / KD / Ours
ResNet8×4 3.58 / 4.15 / 2.74 0.09 / 0.11 / 0.06 0.21 / 0.23 / 0.18

VGG8 5.61 / 5.75 / 4.20 0.13 / 0.12 / 0.06 0.28 / 0.30 / 0.20
MobileNet-V2 10.7 / 11.71 / 6.14 0.17 / 0.21 / 0.09 0.38 / 0.35 / 0.21

WRN-40-1 4.13/4.59 / 3.51 0.09 / 0.15 / 0.07 0.17 / 0.34 / 0.14

Table 2: Calibration Analysis

emphasizing the alignment of ‘perceptions’ rather than raw logits. In LumiNet, we focus on the perceived
logits. Given an instance xi, we denote the logits from the teacher for class c as ht

ic and those from the
student as hs

ic. The softmax operation scaled by a temperature factor τ produces probability distributions
as: P T

c (xi) = exp(ht
ic/τ)∑

c′ exp(ht
ic′ /τ)

, P S
c (xi) = exp(hs

ic/τ)∑
c′ exp(hs

ic′ /τ)
.

Thus, the LumiNet loss can be represented as:

LLumiNet =
∑

xi∈X

∑
c

P T
c (xi) log P T

c (xi)
P S

c (xi)
, (4)

The objective of the LumiNet loss (Eq. 4) is for the student model to align its ‘perception’ with the teacher,
excluding the direct logit or inter-class relationships. This ensures that the student does not merely imitate
the teacher’s outputs but learns a deeper understanding of intra-class and inter-class relationships with a
new representation (it also aligns with our intent outlined in Eq. 2). By minimizing the LumiNet loss,
we ensure that the student model’s perception or representation of instances closely mirrors the teacher’s,
leading to a more robust student model.

Total Loss Formulation: The complete training objective for our knowledge distillation framework com-
bines the traditional cross-entropy loss LCE with our proposed LumiNet loss LLumiNet. While LCE operates
on the raw logits zi and ground truth labels yi to ensure correct classification:

LCE = − 1
N

N∑
i=1

C∑
c=1

yic log(ŷic) (5)

where (ŷic) is the softmax probability, (yic) is the ground truth label, (N) is the batch size, and (C) is the
number of classes. The LLumiNet term works with the perceived logits hi to transfer the teacher’s perceptual
knowledge to the student. The total loss is thus formulated as:

Ltotal = LCE + λLLumiNet (6)

where λ is a balancing scalar that controls the contribution of the LumiNet loss. This dual-objective opti-
mization ensures that the student model not only learns to correctly classify instances through LCE but also
acquires the teacher’s rich perceptual understanding through LLumiNet.

3.3 Theoretical Foundations and Empirical Validation of LumiNet

(a) Information-Theoretic Perspective: The transformation of perception logit, shown in Eq. 3, can
be analyzed using mutual information. Let Z be the random variable representing raw logits and H be
the perception logits of the same sample. We can show that: I(H; Y ) ≥ I(Z; Y ) where Y is the true
class label, and I(H; Y ) or I(Z; Y ) is mutual information. Where Mmutual information can be defined as:
I(H; Y ) =

∑
h∈H

∑
y∈Y P (h, y) log P (h,y)

P (h)P (y) , where H denotes the logits, Y represents the true class labels,
and P (h, y) is the joint probability distribution. Also, the inequality holds because the normalization process
reduces noise and emphasizes class-relevant information. Our calculations show that our model surpassed
the teacher’s mutual information score of 3.65.

(b) Gradient Flow Enhancement: The gradient of the LumiNet loss (Eq. 4) with respect to the param-
eters of the student model θs can be expressed as: ∂LLumiNet

∂θs
= ∂LLumiNet

∂hs
· ∂hs

∂zs
· ∂zs

∂θs
The term ∂hs

∂zs
= 1√

Vj
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acts as an adaptive learning rate, providing larger updates for classes with lower variance. This theoretically
leads to more balanced learning across classes. We tracked the L2 norm of gradients during training for
both traditional KD and LumiNet. LumiNet demonstrates a substantially higher average gradient L2 norm
(3.27) compared to KD (1.28) and KD* (1.10), indicating stronger parameter updates during training. The
gradient 0variance for LumiNet (0.015) is slightly higher than KD and KD *, (also demonstrated in the
convergence analysis Fig. 7), suggesting a more dynamic learning process while maintaining overall stability.

(c) Entropy Analysis: We measured the entropy of probability distributions derived from raw logits and
perception logits across various datasets. The results consistently showed higher entropy for perception logits,
as shown in Table 1. This increase in entropy suggests that the perception logits contain more information,
supporting our claim in the theoretical analysis. The entropy of LumiNet, which is 1.26, is significantly
higher than that of traditional KD (0.42), indicating a higher representation of logits.

(d) Calibration Analysis: To evaluate model calibration, we rely on three widely accepted met-
rics—FPR95Wei et al. (2022), Expected Calibration Error (ECE) , and Maximum Calibration Error
(MCE)Widmann et al. (2019). ECE quantifies the average mismatch between model confidence and ac-
curacy. The confidence range [0,1] is divided into 15 equal-width bins, and ECE is computed as the weighted
average of absolute differences between bin confidence and accuracy. MCE identifies the largest such dis-
crepancy across bins (15 bins), reflecting the worst-case calibration error. FPR95 measures the false positive
rate when the true positive rate is fixed at 95%. This metric evaluates the reliability of high-confidence
predictions and is computed per class in multi-class settings, with the average reported. These metrics
comprehensively assess alignment between model confidence and accuracy, highlighting reliability (FPR95),
overall calibration (ECE), and worst-case miscalibration scenarios (MCE). We understand overconfidence
mitigation by observing improvements in metrics like FPR95, ECE, and MCE, where a lower value indicates
fewer false high-confidence predictions and less extreme miscalibration, respectively. These metrics provide
a robust framework for analyzing both overconfidence and calibration performance. Our experiments show
that our method consistently outperforms models trained using traditional approaches, such as KD or Cross-
Entropy (CE) loss, across all three metrics listed in (2). This outcome demonstrates our method’s ability to
improve calibration while reducing overconfidence in the model’s predictions. Additionally, a discussion on
the analysis of confirmation bias is included in the Appendix(A6).

3.4 The bright side of LumiNet perception

While conventional Knowledge Distillation frameworks face challenges in both logit-based and feature-based
implementations, our proposed method sheds light on a renewed perspective to tackle these issues. Here is
a detailed exploration of the bright side of LumiNet’s approach to KD:

1. Enhanced logit granularity with perception: Traditional logit-based approaches are restricted
by the inherent granularity of their representations, as characterized by the direct logits of any
input xi. In contrast, LumiNet, leveraging its perception, refines this representation by introducing
a transformation. Using the mean Uj and the variance Vj for the logarithms of each class within a
batch, as defined in the perceived logits hi in Eq. 3, LumiNet achieves a more nuanced understanding.
This mathematical recalibration allows the model to encapsulate subtler distinctions and depth,
addressing the limitations inherent to conventional logit presentations.

2. Balanced softening and overfitting: In traditional KD, the temperature parameter τ tempers
logits by pushing their values closer to zero, effectively reducing variance and bridging the gap
between teacher and student logits for efficient knowledge transfer. In LumiNet, logits x′

i are intra-
class normalized, yielding a zero mean and unit variance for each class. Thus, the reliance on τ
for inter-class adjustments is diminished due to the intrinsically reduced variance and mean of the
logits.

In essence, LumiNet not only rectifies recognized challenges, but also paves the way to potentially enhance
logit-based KD techniques to overshadow their feature-based counterparts.
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Table 3: Recognition results on the CIFAR-100 validation.
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Feature-Based Methods

FitNet (Romero et al., 2014) 69.21 71.06 73.50 73.58 72.24 71.02
RKD (Park et al., 2019) 69.61 71.82 71.90 73.35 72.22 71.48
CRD (Tian et al., 2020) 71.16 73.48 75.51 75.48 74.14 73.94
OFD (Heo et al., 2019a) 70.98 73.23 74.95 75.24 74.33 73.95

ReviewKD (Chen et al., 2021b) 71.89 73.89 75.63 76.12 75.09 74.84
FCFD(Liu et al., 2023a) 71.68 - 76.80 76.34 75.43 74.86

Logit-Based Methods
KD(Hinton et al., 2015) 70.66 73.08 73.33 74.92 73.54 72.98
DML(Zhang et al., 2018) 69.52 72.03 72.12 73.58 72.68 71.79

TAKD(Mirzadeh et al., 2020) 70.83 73.37 73.81 75.12 73.78 73.23
DKD(Zhao et al., 2022) 71.97 74.11 76.32 76.24 74.81 74.68

TTM(Zheng & Yang, 2024) 71.83 73.97 76.17 76.23 74.32 74.33
Ours 72.29 74.2 77.50 76.38 75.12 74.94
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73.59 73.73 64.14 63.16 73.54
72.28 72.21 64.52 64.43 73.21
75.11 76.05 69.73 69.11 75.65
75.98 75.85 69.48 69.04 76.82
77.45 77.14 70.37 69.89 77.78
78.12 77.81 70.67 71.07 78.20

Logit-Based Methods
74.07 74.83 67.37 67.35 74.45
72.89 72.76 65.63 65.71 73.45
74.53 75.34 67.91 68.02 74.82
76.45 76.70 69.71 70.35 77.07
74.18 75.39 68.98 69.24 76.57
76.66 76.95 70.50 70.97 77.55
(0.08) (0.15) (0.10) (0.12) (0.21)
+2.59 +2.12 +3.13 +3.62 +3.1

4 Experiments

4.1 Setup

Dataset: Using benchmark datasets, we conducted experiments on three vision tasks: image classification,
object detection, and transfer learning. Our experiments leveraged four widely acknowledged benchmark
datasets. First, CIFAR-100 (Krizhevsky et al., 2009), encapsulating a compact yet comprehensive represen-
tation of images, comprises 60,000 32x32 resolution images, segregated into 100 classes with 600 images per
class. ImageNet (Russakovsky et al., 2015), a more extensive dataset, provides a rigorous testing ground
with its collection of over a million images distributed across 1,000 diverse classes, often utilized to probe
models for robustness and generalization. Concurrently, the MS COCO dataset (Lin et al., 2014), renowned
for its rich annotations, is pivotal for intricate tasks, facilitating both object detection and segmentation as-
sessments with 330K images, 1.5 million object instances, and 80 object categories. We strictly adhered
to standard dataset splits for reproducibility and benchmarking compatibility for training, validation, and
testing. The TinyImageNet1 dataset, although more compact, acts as an invaluable resource for transfer
learning experiments due to its wide variety across its 200 classes.

Network architectures: Various architectures are employed depending on the context. For CIFAR-100,
homogeneous configurations use teacher models such as ResNet56, ResNet110 (He et al., 2016), and WRN-
40-2, paired with corresponding students such as ResNet20 and WRN-16-2 (Table 3a). In heterogeneous
settings, architectures such as ResNet32×4 and VGG13 (Simonyan & Zisserman, 2014) for teachers are paired
with lightweight models like ShuffleNet-V1, ShuffleNet-V2 (Ma et al., 2018) and MobileNet-V2 (Sandler
et al., 2018) as students (Table 3b). For ImageNet classification, ResNet34 was employed as the teacher and
ResNet18 as the student. Additionally, for object detection on MS-COCO, Faster RCNN with FPN (Zhang
et al., 2022) was utilized as a feature extractor, with predominant teacher models being ResNet variants,
while the latter served as a student. A pre-trained WRN_16_2 model is further harnessed for transfer

1https://www.kaggle.com/c/tiny-imagenet
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Table 4: Reported are the Top-1 and Top-5 accuracy (%) on ImageNet validation.

Feature-Based Methods Logit-Based Methods
ResNet34 (Teacher) and ResNet18 (Student)

Teacher Student AT OFD CRD ReviewKD KD DML TAKD DKD Ours ∆
Top-1 73.31 69.75 70.69 70.69 70.81 71.17 70.66 70.82 70.78 71.70 72.16 +1.5
Top-5 91.42 89.07 90.01 90.01 89.98 90.13 89.88 90.02 90.16 90.41 90.60 +0.72

ResNet50 (Teacher) and MobileNet-V2 (Student)
Top-1 76.16 68.87 69.56 71.25 71.37 72.56 70.50 71.35 70.82 72.05 72.55 +2.05
Top-5 92.86 88.76 89.33 90.34 90.41 91.00 89.80 90.31 90.01 91.05 91.12 +1.32

Table 5: Detection results on MS-COCO using Faster-RCNN-FPN (Lin et al., 2017) backbone.

Feature-Based Methods Logit-Based Methods
ResNet101 (Teacher) and ResNet18 (Student)

Teacher Student FitNet FGFI ReviewKD KD TAKD DKD Ours ∆
AP 42.04 33.26 34.13 35.44 36.75 33.97 34.59 35.05 35.34 +1.37

AP50 62.48 53.61 54.16 55.51 56.72 54.66 55.35 56.60 56.82 +2.16
AP75 45.88 35.26 36.71 38.17 34.00 36.62 37.12 37.54 37.56 +0.94

ResNet50 (Teacher) and MobileNet-V2 (Student)
AP 40.22 29.47 30.20 31.16 33.71 30.13 31.26 32.34 32.38 +2.25

AP50 61.02 48.87 49.80 50.68 53.15 50.28 51.03 53.77 53.84 +3.56
AP75 45.88 30.90 31.69 32.92 36.13 31.35 33.46 34.01 33.57 +2.22

learning. We also performed tests on ViT models (Dosovitskiy et al., 2021). DeiT-Ti (Touvron et al., 2021),
PiT-Ti(Heo et al., 2021), PVT-Ti(Wang et al., 2021), and PVTv2-B0(Wang et al., 2022) served as student
models, with ResNet50 acting as the teacher model.

Evaluation metric: We assess methods’ performance using Top-1 and Top-5 accuracy for classification
tasks. We employ Average Precision (AP, AP50, and AP70) to gauge precision levels in object detection
tasks. We calculate a ∆ that denotes the performance improvement of LumiNet over the classical KD
method, underlining the enhancements of our approach.

Implementation details: We explore knowledge distillation using two configurations: a homogeneous
architecture, where both teacher and student models have identical architectural types (ResNet56 and
ResNet20), and a heterogeneous architecture, where they differ (ResNet32x4 as the teacher and ShuffleNet-
V1 as the student). Our study incorporates a range of neural network architectures such as ResNet, WRN,
VGG, ShuffleNet-V1/V2, and MobileNetV2. The training parameters are set as follows: for CIFAR-100, a
batch size of 64 and a learning rate of 0.05; for ImageNet, a batch size of 128 and a learning rate of 0.1; and
for MS-COCO, a batch size of 8 with a learning rate of 0.01. We followed the implementation settings of
(Zhao et al., 2022). To implement distillation in the ViT variant, we adopted the implementation settings
detailed by (Li et al., 2022b). All models are trained on a single GPU. Detailed implementation for each
task can be found in the appendix.

4.2 Main Results

Comparison methods: We compare our method with well-established feature- and logit-based distillation
methods, underscoring its potential and advantages in the knowledge distillation domain. Notable methods
in Feature Based Methods category include FitNet (Romero et al., 2014), which aligns features at certain
intermediary layers, RKD (Park et al., 2019) that focuses on preserving pairwise relations of examples, and
CRD (Tian et al., 2020), which minimizes the contrastive loss between the representations of the teacher
and student models. Other methods in this category include OFD (Cho & Hariharan, 2019) and ReviewKD
(Chen et al., 2021b), each bringing unique strategies to leverage intermediary network features. Logit Based
Methods methods include KD (Hinton et al., 2015), DML (Zhang et al., 2018), TAKD (Mirzadeh et al.,
2020), and DKD (Zhao et al., 2022), which ensure that the student’s logits are similar to the teacher’s.
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Table 6: Comparison of training time per batch, number of extra parameters (θ) on the CIFAR-100.

Teacher: ResNet32×4 KD RKD FitNet OFD CRD ReviewKd DkD OursStudent: ResNet8×4
Latency↓ (ms) 11 25 14 19 41 26 11 11
θ ↓ 0 0 16.8K 86.9K 12.3M 1.8M 0 0
Acc↑ (%) 73.33 71.90 73.50 74.95 75.51 75.63 76.32 77.50

Table 7: Results after applying Auto Augmentation.

Teacher WRN_40_2 WRN_40_2 VGG 13 ResNet32×4 WRN-40-2
Accuracy 75.61 75.61 74.64 79.42 75.61
Student WRN_16_2 WRN_40_1 VGG 8 ShuffleNet-V2 ShuffleNet-V1
Accuracy 73.26 71.98 70.36 71.82 70.50
MLLD 76.63 75.35 75.18 78.44 77.44
Ours 76.91 76.01 75.57 79.12 77.97
∆ +0.28 +0.66 +0.39 +0.68 +0.53

Recognition tasks: We perform image recognition tasks on CIFAR-100 and ImageNet. On CIFAR-100,
when teacher and student models shared identical architectures, shown in Table 3a, LumiNet presented
improvements of 2-3%. And when the architectures were from different series, shown in Table 3b, the
improvements were between 3-4%, consistently outperforming the baseline, classical KD, and other methods
rooted in KD’s principles. Similarly, on the intricate ImageNet dataset, LumiNet outshined all logit-based
distillation techniques and beat state-of-the-art feature-based distillation methods, shown in Table 4. These
results consistently demonstrate that, regardless of variations in the dataset or architectural differences,
LumiNet performs exceptionally well. In particular, it highlights the distinctive ability of LumiNet to learn
based on the concept of ‘perception.

In Table 6, we show that LumiNet demonstrates a superior trade-off between the number of extra parame-
ters/running time vs. precision. The necessity for extra parameters in feature-based techniques arises from
integrating projection or intermediate layers that align the teacher’s feature space to the student model.
With a latency of 11 ms, our method matched the best-performing models in speed and is exceptionally
efficient (77.50%) without extra parameters. This combination of low latency, less computation, and high
accuracy further underscores the exceptional effectiveness and efficiency of LumiNet.

Detection task: The quality of deep features is crucial for accurate object detection. One persistent
challenge is effective knowledge transfer between established teacher models and student detectors (Li et al.,
2017). Generally, logits cannot provide knowledge for object localization (Wang et al., 2019). Although logit-
based techniques have traditionally been used for this, they often do not meet state-of-the-art standards.
On MS COCO dataset, LumiNet delivered noticeably better results (Table 10) compared to logit-based
methods, which are comparable to feature-based methods. Also, it is possible to enhance accuracy through
hyperparameter tuning. Additionally, we enhance our approach by integrating a feature-based technique.
The combination of these two methods yields state-of-the-art results, as detailed in the appendix.

Transfer learning task: To assess the transferability of deep features, we carry out experiments to ver-
ify the superior generalization capabilities of our algorithm LumiNet. In this context, we used the Wide
Residual Network (WRN-16-2), distilled from WRN-40-2, as our principal feature extraction apparatus.
Subsequently, sequential linear probing tasks were performed on the benchmark downstream dataset, no-
tably Tiny-ImageNet. Our empirical results, delineated in Fig. 2(a), manifestly underscore the exemplary
transferability of features cultivated through LumiNet.

Effect of Strong Augmentation: In Table 7, we report performance after using auto-augmentation by
increasing the complexity of training samples (Cubuk et al., 2019). LumiNet outperforms auto augmentation-
based method (Jin et al., 2023) in heterogeneous and homogeneous settings on the CIFAR-100 dataset. The
results show our effectiveness in distilling knowledge from challenging samples.
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Table 8: Top-1 mean accuracy (%) comparison on CIFAR-100

Student Vanilla KD AT SP LG AutoKD Ours ∆
DeiT-Ti 65.08 73.25 73.51 67.36 78.15 78.58 79.05 +5.8
PiT-Ti 73.58 75.47 76.03 74.97 78.48 78.51 79.80 +4.33
PVT-Ti 69.22 73.60 74.66 70.48 77.07 77.48 78.12 +4.52

PVTv2-B0 77.44 78.81 78.64 78.33 79.30 79.37 79.94 +1.13
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Figure 3: (a) Transfer learning experiments from CIFAR-100 to Tiny-ImageNet. (b) Ablation study on
different batch sizes. (c) Impact of different τ values. (d) Performance on ensemble learning.

Vision Transformer: To explore the capabilities of LumiNet beyond conventional ConvNet models, we
performed experiments using different variants of vision transformers (ViT) in the CIFAR-100 dataset. We
trained ViT with the optimal distiller obtained using ResNet-56 as a CNN teacher. Table 8 presents the
results of experiments that involve both vanilla and distillation models in a variety of distillation methods.
The results indicate a notable improvement in the performance of vision transformers with the application
of LumiNet, showcasing improvements ranging from 2% to 14% compared to vanilla. In particular, LumiNet
consistently outperforms other methods, demonstrating improvements of 1 to 6% compared to KD, partic-
ularly. The effectiveness of our proposed method is affirmed in various ViT architectures, highlighting its
versatility. It is essential to emphasize that our approach, despite being a straightforward logit-based( soft
logits) method in this context, proves to be more effective in transformer-based architectures compared to
feature-based distillation methods.

4.3 Ablation study

Varying batch sizes: Fig. 3(b) showcases an ablation study that compares the performance of the LumiNet
method with both a basic student model and the KD method in various batch sizes. Batch sizes range from 32
to 256. The student model, which serves as a standard baseline, demonstrates a slight decline in performance
as the batch size increases. In comparison, LumiNet consistently outperforms both the student and the KD
methods in all batch sizes tested, suggesting its robustness and superiority in the given context.

Varying τ : The logits within our perception framework are reconstructed with a clear statistical under-
standing of intra-class logits. For this, both the teacher and the student models exhibit “softened" values,
achieved through normalization by variance and maintaining an intra-class mean of zero. Consequently, the
dependency on temperature τ is minimal. Empirical evaluations in Fig. 3(c) suggest minimal performance
fluctuations across τ (ranging between 1 and 8) yield optimal results.

Ensemble of teachers: We employ an ensemble of two teacher models: ResNet 8x4 and WRN-40-2 (labeled
in the figure as “8x4" and “40-2”). This ensemble technique, which we term “Logit Averaging Ensemble,”
involves averaging the logits produced by the two teacher models (Sagi & Rokach, 2018). When training
the student model, WRN-16-2 (labeled as “16-2” for the regular student and “16-2(en)” for the student
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learned by ensemble technique), we observed a notable improvement in accuracy using this ensemble-derived
guidance. As shown in Fig. 3(d), when conventionally training with our LumiNet approach with only the
WRN-40-2 teacher, we achieve an accuracy of 76. 38%. However, the results improve slightly to 76. 52%
when training is augmented with insights from the ensemble technique. This suggests that the ensemble’s
aggregated information potentially enables the student model to capture more intricate patterns and nuances
from the teachers.

4.4 Discussion

Achievments of LumiNet: LumiNet addresses a fundamental challenge in knowledge distillation. The
inherent capacity gap between teacher and student models manifests in their logit distributions. Traditional
methods often struggle when student models, with their limited capacity, attempt to match the complex,
high-variance logit distributions of teacher models. This perception-based calibration simultaneously nor-
malizes both teacher and student logits, significantly reducing their distributional variance and eliminating
teacher overconfidence. This dual calibration effectively narrows the representational gap between mod-
els, making it easier for the student to converge to optimal solutions despite its capacity constraints. The
empirical evidence supports this through improved gradient flow (3.27 L2 norm compared to KD’s 1.28)
and higher entropy scores (1.26 versus 0.42), demonstrating that when both teacher and student operate in
a more balanced, normalized logit space, the student can more effectively learn and generalize despite its
architectural limitations. The experiments show that LumiNet outperforms numerous benchmark datasets,
including CIFAR-100, ImageNet, and MS-COCO. We observed accuracy gains ranging from 1.5% to 4.17%
over classic distillation methods, without additional parameters in training settings.

In addition, it likely solves another known problem in KD. When kD is performed per instance, the student
model risks inheriting errors or biases from the teacher, a problem known as teacher-student fooling(Ojha
et al., 2023). LumiNet mitigates this by incorporating relationships across all instances in a batch and
recalibrating logits using batch-level statistics. With batches randomly sampled and later recalibrated the
logits space by considering other samples in the batch, no single instance disproportionately influences the
student, reducing the chance of transferring biases or errors. This ensures a more robust and generalized
student model, resilient to dataset imperfections and teacher model flaws.

Limiation: LumiNet has some drawbacks in spite of its advantages. In complex or multi-modal tasks
where intermediate feature representations are essential, it might not perform likewise. The performance of
the model with small or less diverse batches may be limited by its dependence on batch-level relationships.
Although LumiNet has demonstrated impressive performance in computer vision tasks, it is still unclear if
it can be applied to non-visual fields like natural language processing.

Future work: Future research could examine LumiNet’s approach to KD outside of computer vision, as it
is thought to have significant potential in other disciplines. The perception-based logit calibration technique
could be used to improve the deployment and compression of large language models in resource-constrained
environments. Furthermore, LumiNet could be used for continual learning settings to investigate how the
method can aid in successful knowledge acquisition while avoiding catastrophic forgetting.

5 Conclusion

We propose LumiNet, a novel knowledge distillation method, which introduces a unique representation for
instances through a concept we term ’perception.’In this novel representation, we depart from the funda-
mental philosophy of classical KD, which centers around extracting relative information from the teacher
model. Within this framework, our main focus lies on addressing overconfidence issues to achieve improved
optimization. It also tackles the capacity gap issue, where the student model struggles to learn due to the
high variance in the teacher model’s logit distribution. In addition, we integrate statistical knowledge from
other instances into an instance, resulting in a substantial improvement in accuracy compared to leading
methods, which mitigates the problem of teacher-student fooling, where the student model can be misled by
the teacher when it only relies on sole instance distributions. Also, LumiNet demonstrates efficiency on par
with traditional KD, solidifying its suitability for industry adoption. Our comprehensive empirical experi-
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ments, spanning recognition using both convnets and vision transformers, detection, and transfer learning,
consistently highlight the superior performance of LumiNet.
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A Appendix

A.1 Alternative Perspective on Traditional Knowledge Distillation Method.

Figure 4: Comparing teacher-student prediction
similarity in DKD method.

Figure 5: Comparing Teacher-Student Predic-
tions Similarity in Our Method

The primary goal of traditional knowledge distillation is to replicate the raw logits of the teacher, as illus-
trated in Fig 4. This figure demonstrates that the predictions closely resemble the teacher’s logits.In this
method, we often face overconfidence issues, resulting in inferior performance compared to feature-based KD.
Moreover, despite our aim to mimic the logits of the teacher, a substantial gap persists between teachers and
students. However, in our approach, LumiNet, depicted in Figure 5, the prediction similarity to the teacher’s
logits is significantly lower compared to DKD. Yet, as detailed in the main paper, LumiNet achieves better
performance scores than DKDZhao et al. (2022) also, the gap between teacher and student is minimized.
Importantly, teacher and student predictions are independent, diverging from similar logits. This indicates
that, in logit-based distillation, we can achieve superior performance without directly mimicking the raw log-
its. Also, within the parameters, the student models are capable of independently learning features through
their innate pattern recognition abilities without being explicitly guided to mimic the pattern learning pro-
cess of the teacher model. Consequently, this empowers the student model to create new representations
and inter-class relationships for instances, a capability that traditional knowledge distillation methods lack.

A.2 Implementation detail

For a fair comparison, we maintain a similar setup to previous methodsHinton et al. (2015); Zhao et al. (2022).
In traditional KDHinton et al. (2015), both Cross-Entropy loss and Kullback-Leibler (KL) Divergence loss
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Table 9: Performance of our method with the incorporation of ReviewKD Loss on CIFAR-100 dataset

Teacher/Student Architecture ReviewKD Ours Ours*
WRN-40-2 → ShuffleNet-V1 77.14 76.95 77.29
ResNet32×4 → ShuffleNet-V2 77.78 77.55 77.93

Table 10: Detection results on MS-COCO using Faster-RCNN-FPN Lin et al. (2017) backbone with incor-
porating ReviewKD.

Feature-Based Methods Logit-Based Methods
ResNet101 (Teacher) and ResNet18 (Student)

Teacher Student FitNet FGFI ReviewKD KD TAKD DKD Ours Ours*
AP 42.04 33.26 34.13 35.44 36.75 33.97 34.59 35.05 35.34 36.89

AP50 62.48 53.61 54.16 55.51 56.72 54.66 55.35 56.60 56.82 57.05
AP75 45.88 35.26 36.71 38.17 34.00 36.62 37.12 37.54 37.56 39.59

ResNet50 (Teacher) and MobileNet-V2 (Student)
AP 40.22 29.47 30.20 31.16 33.71 30.13 31.26 32.34 32.38 34.18

AP50 61.02 48.87 49.80 50.68 53.15 50.28 51.03 53.77 53.84 53.95
AP75 45.88 30.90 31.69 32.92 36.13 31.35 33.46 34.01 33.57 36.44

are employed. Consistent with traditional methods, we utilize Cross-Entropy loss with the regular logits of
a neural network, while the Luminet loss is applied to newly generated representations of instances. Further
details of the Luminet loss are provided in the main paper. In this scenario, the hyperparameter α is set
such that α > t2, where α represents a constant associated with the Luminet loss when combined with
Cross-Entropy loss and t represents temperature. Specific implementation details for each task are outlined
below.

Image Recognition: For training a student model on the CIFAR-100 dataset, we use a batch size of 64
and train for a total of 240 epochs. The initial learning rate (LR) is set to 0.05, with learning rate decay
applied at epochs 150, 180, and 210, where the LR is reduced by a factor of 0.1 each time. We employ a
weight decay of 0.0005 and a momentum of 0.9 in our stochastic gradient descent (SGD) optimizer.

When training on the ImageNet dataset, we use a batch size of 512 and train for a total of 100 epochs.
The initial LR is set to 0.2, with learning rate decay scheduled at epochs 30, 60, and 90, where the LR is
decreased by a factor of 0.1 each time. We apply a weight decay of 0.0001 and utilize a momentum of 0.9 in
the SGD optimizer.

Object Detection: For training object detection student models on the MS-COCO 2017 dataset, we use
an image per batch of 8. The base learning rate is set to 0.01, and the maximum number of iterations is set
to 180,000. Learning rate decay is applied at specific steps during training, with decay steps set at 120,000
and 160,000 iterations.

Vision Transformer We adopt the settings described in reference Li et al. (2022b) for training the student
model of vision transformer variants. The transformer architecture includes a patch size of 16, a hidden
dimension of 192, 12 transformer layers, four attention heads, and a multi-layer perceptron (MLP) ratio of
4. We set the dropout rate to 0.0, the drop path rate to 0.1, and the attention dropout rate to 0.0. For
optimization, we use the AdamW optimizer with a base learning rate of 5.0 × 10−4 and a minimum learning
rate of 5.0 × 10−6. The learning rate policy is cosine annealing (cos) with a maximum of 300 epochs. We
apply a weight decay of 0.05, a warm-up factor of 0.001, and warm-up epochs of 20.

A.3 Incorporating with feature-based distillation

In our experiments, we typically refrain from utilizing feature-based distillation loss, as our research primarily
aims to advance the domain of logit-based knowledge distillation methods. However, in certain architectures,
and to explore its compatibility with existing feature-based KD methods, we incorporated the feature-based
loss (ReviewKD Chen et al. (2021b)) alongside our LumiNet loss.
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This combination resulted in significant performance improvements, as demonstrated in Table 9 for the
image recognition task and Table 10 for the object detection task. In the tables, the asterisk (*) denotes the
utilization of the combined loss function. Overall, it highlights how integrating feature-based losses enhances
overall performance and showcases compatibility with existing methodologies.

Despite the performance improvements, we also investigated certain limitations in feature-based distillation
methods. These methods often require longer convergence times, which deterred us from incorporating
feature-based KD. For instance, ReviewKD Chen et al. (2021b), despite its comprehensive approach, requires
significant training time due to its multi-level distillation process and complex components like the Attention-
Based Fusion module. OFD Cho & Hariharan (2019), while focusing on multi-layer distillation, demands
extra convolutions for feature alignment, increasing computational needs. Similarly, CRD Tian et al. (2020)
employs a contrastive loss that requires a large memory bank, adding to computational costs.

In summary, while incorporating feature-based logits into our knowledge distillation method yields better
results, it also introduces significant drawbacks in terms of privacy, computational requirements, and training
time. Hence, we advocate for logit-based knowledge distillation as a more resource-efficient and versatile
alternative for various applications.

A.4 Logit Complexity Analysis

Neural knowledge distillation faces inherent challenges due to the architectural capacity gap between teacher
and student models, where students with fewer parameters struggle to directly mimic the complex distribu-
tions generated by larger teachers. Two critical issues arise in traditional KD. First, there is a significant
disparity between the probabilities of target and non-target classes. The teacher model tends to produce
overly confident predictions for the target classes, which creates a considerable learning burden for the
student model, as discussed in section X of the paper. Second, this challenge intensifies with an increas-
ing number of classes, manifesting as multiple high-probability regions (multi-mode) across the class space.
These issues become particularly pronounced in large language models, where the vocabulary size far exceeds
typical image classification tasks [cite], resulting in substantially more complex probability distributions for
the student to learn. Our perception-based approach effectively addresses these limitations by significantly
reducing the class dwarfing effect and diminishing the multi-mode peaks, as demonstrated in Figure 6. Using
ResNet18 on ImageNet (1000 classes), we observe that our method produces more balanced probability dis-
tributions compared to temperature-scaled KD (T=4), making the dark knowledge transfer more tractable
for the student model while preserving essential class relationships.

A.5 Ablation Study

A.6 LumiNet in Large-Language Model

KD in Large Language Models (LLMs) presents unique challenges compared to its application in computer
vision tasks. In vision models, the logit distribution usually displays a single-mode pattern, making it rel-
atively easy for student models to replicate the teacher’s probability distribution. However, LLMs operate
with vocabulary spaces that span thousands to millions of tokens, resulting in complex ’multi-mode’ dis-
tributions for a sample. This fundamental difference makes traditional KD approaches less effective for
LLMs.

We used the dataset split within this space for our experiment2. We have used 13.5k samples from the
Dolly dataset for fine-tuning, while 500 samples were reserved for testing. Additionally, 80 and 240 samples
were used from Vicuna and SelfInst, respectively for evaluation. We have adapted our method to make it
suitable for LLMs. Our experimental results, as shown in Table 11, demonstrate that our method consistently
outperforms existing KD approaches across different model sizes. For instance, with GPT-2 340M as the
student model, our method achieves 27.8, 13.8, and 17.1 R-L scores on Dolly, SelfInst, and Vicuna test
sets, respectively, surpassing both conventional KD (25.0, 12.0, 15.4) and Sequential KD. Notably, in several
cases, our student models even outperform the 1.5B teacher model.

2https://huggingface.co/MiniLLM
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Figure 6: Comparison of probability distributions between traditional KD and our proposed method on
ImageNet using ResNet18. The blue line represents temperature-scaled KD (T=4), showing multiple high-
confidence regions and significant disparities between target and non-target classes. The red line shows our
method’s distribution, which effectively reduces both the class dwarfing effect (lower peaks) and multi-modal
nature of the distribution, resulting in more manageable class relationships for the student model to learn.
This visualization demonstrates how our approach simplifies the dark knowledge transfer while maintaining
informative class relationships across the 1000 ImageNet classes.

Table 11: Evaluation results. We report the average R-L scores across 5 random seeds. The best scores of
each model size are boldfaced, and the scores where the student model outperforms the teacher are marked
with *.

Model #Params Method Dolly SelfInst Vicuna
Teacher 1.5B - 27.6 14.3 16.3

GPT-2

120M

SFT w/o KD 23.3 10.0 14.7
KD 22.8 10.8 13.4

SeqKD 22.7 10.1 14.3
Ours 23.8(0.37) 11.4(0.42) 14.9(0.10)

340M

SFT w/o KD 25.5 13.0 16.0
KD 25.0 12.0 15.4

SeqKD 25.3 12.6 16.9*
Ours 27.8*(0.47) 13.8(0.48) 17.1*(0.16)

760M

SFT w/o KD 25.4 12.4 16.1
KD 25.9 13.4 16.9*

SeqKD 25.6 14.0 15.9
Ours 28.6*(0.49) 14.7*(0.19) 17.5*(0.10)

For our experimental setup, we used a 1.5B parameter model as the teacher and tested student models
of varying sizes (120M, 340M, and 760M parameters) based on the GPT-2 architecture. The training
was conducted with a batch size of 2. We implemented sequence-level tokenization and used the AdamW
optimizer with a learning rate of 5e-5. The training was performed on a single 4090 GPU.
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Table 12: Error Rates by Class and Method for the Top 10 Most Inaccurate Classes of the Teacher Models.
The table shows the error rates of different Teacher-Student architectures, along with KD and our proposed
method. An asterisk (*) indicates an error rate lower than the Teacher model’s error rate. Our proposed
method consistently outperforms KD across different architectures.

Teacher (ResNet32x4) - Student(ResNet8x4)
Method C35 C11 C46 C72 C74 C52 C64 C10 C55 C50

(Bee) (Poppies) (Castle) (Girl) (Woman) (Mountain) (Skunk) (Orchids) (Camel) (Cloud)
Teacher 45.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 34.0
KD 43.0* 49.0 47.0 55.0 47.0 40.0 43.0 42.0 49.0 38.0
Ours 46.0 47.0 38.0* 52.0 37.0* 37.0* 38.0* 36.0* 44.0 38.0

Teacher (WideResNet-40-2) - Student(WideResNet-40-1)
Method C72 C35 C55 C10 C50 C46 C64 C67 C11 C74

(Girl) (Bee) (Camel) (Orchids) (Cloud) (Castle) (Skunk) (Snail) (Poppies) (Woman)
Teacher 51.0 50.0 48.0 47.0 46.0 45.0 44.0 44.0 43.0 43.0
KD 52.0 55.0 48.0 42.0* 48.0 39.0* 44.0 47.0 52.0 47.0
Ours 53.0 54.0 45.0* 45.0 46.0* 31.0* 41.0* 42.0* 44.0 45.0

Teacher (VGG13) - Student(VGG8)
Method C35 C72 C55 C44 C46 C10 C25 C11 C74 C64

(Bee) (Girl) (Camel) (Wolf) (Castle) (Orchids) (Clock) (Poppies) (Woman) (Skunk)
Teacher 54.0 53.0 50.0 48.0 47.0 46.0 46.0 45.0 45.0 43.0
KD 53.0* 54.0 57.0 54.0 46.0 53.0 56.0 53.0 46.0 50.0
Ours 53.0* 49.0* 45.0* 51.0 44.0* 41.0* 33.0* 45.0* 45.0* 47.0

A.7 Confirmation Bias Analysis

To empirically validate our hypothesis about confirmation bias in knowledge distillation, we analyze the
error rates across different classes, particularly focusing on the classes where the teacher model performs
poorly. Table 12 presents the error rates for the top 10 most challenging classes for the teacher model
(ResNet32x4), comparing them with both traditional KD and our proposed method using ResNet8x4 as the
student architecture. The results provide strong evidence of confirmation bias in traditional KD. For most
difficult classes where the teacher exhibits high error rates (ranging from 34% to 45%), the KD student
model not only inherits these mistakes but often amplifies them. For instance, in Class 72, while the teacher
model shows a 41% error rate, the KD student’s performance deteriorates to 55%, indicating a strong
propagation of teacher’s misconceptions. This pattern is consistent across multiple classes (Class 11, 46, 74,
10, 55), where KD consistently shows higher error rates than the teacher. In contrast, our proposed method
demonstrates remarkable resilience to confirmation bias. In 6 out of 10 challenging classes (marked with
asterisks), our approach achieves lower error rates than the teacher model, effectively breaking the cycle of
error propagation. Most notably, in Class 46 and Class 74, our method reduces the error rates from 42%
and 40% to 38% and 37% respectively, showing that the student can actually outperform the teacher in
challenging cases. Even in cases where our method doesn’t surpass the teacher, it consistently outperforms
traditional KD, suggesting more robust learning of class features.

A.8 Convergence Analysis

In this section, we analyze the convergence properties of the LumiNet loss function under the following
conditions:

• The loss function LLumiNet(θ) is smooth and differentiable.

• The gradient of the loss satisfies the Polyak-Lojasiewicz (PL) condition.

• The batch statistics are bounded and non-zero.

A.8.1 Gradient Consistency

Claim: For a batch B, the gradient of LumiNet loss maintains consistency with the cross-entropy gradient
while incorporating batch-level perception information.
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Figure 7: Comparison of various metrics between the proposed method and standard KD: (a) Loss Con-
vergence Trend over epochs, showing the progression of training loss; (b) Gradient Variance Evaluation on
a logarithmic scale, highlighting the stability of gradient updates; (c) Convergence Rate Analysis using a
moving average, illustrating the rate of model convergence; (d) Gradient Stability Distribution represented
by a boxplot, summarizing the distribution of gradient variance trends.

Proof: For any sample xi ∈ B, the perception logit hij and corresponding probability Pj are:

hij = zij − Uj√
Vj

, (7)

Pj(xi) = exp(hij/τ)∑
k exp(hik/τ) , (8)

where Uj and Vj are batch-level mean and variance statistics for class j.

The gradient of LLumiNet with respect to the logits is computed as:

∇zij LLumiNet = ∂LLumiNet

∂Pj
· ∂Pj

∂hij
· ∂hij

∂zij
, (9)

= 1
τ

(Pj − yj) · 1√
Vj

. (10)

Thus, the gradient maintains directional consistency with the cross-entropy gradient while being scaled by
batch-level statistics and temperature. This scaling incorporates perceptual information into the optimization
process without altering the fundamental direction.

A.8.2 Variance Bound

Claim: The variance of LumiNet gradient updates is bounded by batch statistics and temperature.

Proof: For class j in batch B:

Vj = 1
|B|

|B|∑
i=1

(zij − Uj)2 ≥ ϵ > 0. (11)

The gradient variance is then bounded as:

V(∇LLumiNet) = E[|∇LLumiNet − E[∇LLumiNet]|2], (12)

≤ 1
τ2 max

j

1
Vj

· C, (13)

≤ C

τ2ϵ
, (14)
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where C is a constant that depends on the bounded differences in probabilities, typically C ≤ 4.

A.8.3 Convergence Proof

Theorem: Under the following assumptions:

1. The total loss satisfies the PL condition: 1
2 |∇Ltotal(θ)|2 ≥ µ(Ltotal(θ) − Ltotal(θ∗)),

2. The gradients are L-Lipschitz continuous: |∇Ltotal(θ1) − ∇Ltotal(θ2)| ≤ L|θ1 − θ2|,

3. Batch statistics satisfy Vj ≥ ϵ > 0,

4. The learning rate satisfies η ≤ 1
L ,

5. The temperature τ > 0 is fixed,

the gradient descent generates a sequence {θt} satisfying:

Ltotal(θt) − Ltotal(θ∗) ≤ (1 − ηµ)t (Ltotal(θ0) − Ltotal(θ∗)) . (15)

Proof: By L-smoothness:

Ltotal(θt+1) ≤ Ltotal(θt) + ∇Ltotal(θt)T (θt+1 − θt) + L

2 |θt+1 − θt|2 = Ltotal(θt) − η|∇Ltotal(θt)|2 + Lη2

2 |∇Ltotal(θt)|2

(16)

Using η ≤ 1
L and the PL condition:

Ltotal(θt+1) − Ltotal(θ) ≤ Ltotal(θt) − Ltotal(θ) − η

2 |∇Ltotal(θt)|2 ≤ (1 − ηµ)(Ltotal(θt) − Ltotal(θ∗)) (17)

Applying this recursively yields the desired result.

Corollary: The convergence rate is linear and depends on both the learning rate and the PL constant.
The presence of batch normalization in perception logits ensures the PL constant µ remains well-behaved
throughout training.

A.8.4 Empirical Validation

To validate our theoretical analysis, we conducted experiments using the VGG8 architecture on CIFAR-
100, comparing our method with standard KD. Our results demonstrate that LumiNet achieves superior
stability with a stability score of 0.899 compared to 0.808 for KD. Gradient variance analysis shows a
significant reduction in variance (10−4 for LumiNet vs. 10−3 for KD), aligning with our theoretical bounds.
Additionally, LumiNet achieves faster and more stable convergence during early training, as evidenced by
smoother loss reduction patterns. Detailed results are shown in Figure 7.
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