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ABSTRACT

The recent surge in contrast-based graph self-supervised learning has prominently
featured an intensified exploration of spectral cues. Spectral augmentation, which
involves modifying a graph’s spectral properties such as eigenvalues or eigenvec-
tors, is widely believed to enhance model performance. However, an intriguing
paradox emerges, as methods grounded in seemingly conflicting assumptions or
heuristic approaches regarding the spectral domain demonstrate notable enhance-
ments in learning performance. This paradox raises the critical question of whether
spectral augmentations are really necessary for contrast-based graph self-supervised
learning. This study undertakes an extensive investigation into this inquiry, con-
ducting a thorough study of the relationship between spectral characteristics and
the learning outcomes of contemporary methodologies. Based on this analysis, we
claim that the effectiveness and significance of spectral augmentations need to be
questioned. Instead, we revisit simple edge perturbation: random edge dropping
designed for node-level self-supervised learning and random edge adding intended
for graph-level self-supervised learning. Compelling evidence is presented that
these simple yet effective strategies consistently yield superior performance while
demanding significantly fewer computational resources compared to existing spec-
tral augmentation methods. The proposed insights represent a significant leap
forward in the field, potentially reshaping the understanding and implementation
of graph self-supervised learning.

1 INTRODUCTION

In recent years, graph learning has emerged as a powerhouse for handling complex data relation-
ships in multiple fields, offering vast potential and value, particularly in domains such as data
mining (Hamilton et al., 2017), computer vision (Xu et al., 2017), network analysis (Chen et al.,
2020b), and bioinformatics (Jin et al., 2018). However, limited labels make graph learning challenging
to apply in real-world scenarios. Inspired by the great success of Self-Supervised Learning (SSL) in
other domains (Devlin et al., 2018; Chen et al., 2020a), Graph Self-Supervised Learning (Graph SSL)
has made rapid progress and has shown promise by achieving state-of-the-art performance on many
tasks (Xie et al., 2022), where Contrast-based Graph SSL (CG-SSL) are most dominant (Liu et al.,
2023). This type of method is grounded in the concept of mutual information (MI) maximization.
The primary goal is to maximize the estimated MI between augmented instances of the same object,
such as nodes, subgraphs, or entire graphs. Among the new developments in CG-SSL, approaches
inspired by graph spectral methods have garnered significant attention. A prevalent conviction is that
spectral information, including the eigenvalues and eigenvectors of the graph’s Laplacian, plays a
crucial role in enhancing the efficacy of CG-SSL (Liu et al., 2022a; Ko et al., 2023; Lin et al., 2023;
Yang et al., 2023; Chen et al., 2024).

In general, methods in CG-SSL can be categorized into two types based on whether augmentation is
performed on the input graph to generate different views (Chen et al., 2024). i.e. augmentation-based
and augmentation-free methods. Of the two, the augmentation-based methods are more predominant
and widely studied (Hassani & Khasahmadi, 2020; Liu et al., 2023; You et al., 2020; Liu et al., 2022a;
Lin et al., 2023; Yang et al., 2023). Specifically, spectral augmentation has received significant
attention, as it modifies a graph’s spectral properties. This approach is believed to enhance model
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performance, aligning with the proposed importance of spectral information in CG-SSL. However,
there seems no consensus on the true effectiveness of spectral information in the previous works
proposing and studying spectral augmentation. SpCo (Liu et al., 2022a) introduces the general graph
augmentation (GAME) rule, which suggests that the difference in high-frequency parts between
augmented graphs should be larger than that of low-frequency parts. SPAN (Lin et al., 2023)
contends that effective topology augmentation should prioritize perturbing sensitive edges that have a
substantial impact on the graph spectrum. Therefore, a principled augmentation method is designed
by directly maximizing spectral change with a certain perturbation budget, without mentioning any
specific domain of spectrum. GASSER (Yang et al., 2023) selectively perturbs graph structures
based on spectral cues to better maintain the required invariance for contrastive learning frameworks.
Specifically, it aims to augment the graphs to preserve task-relevant frequency components and
perturb the task-irrelevant ones with care. While all three related methods are augmentation-based
and share in the set of CG-SSL frameworks like GRACE (Zhu et al., 2020) and MVGRL (Hassani &
Khasahmadi, 2020), a contradiction emerges among these related works on spectral augmentation:
while SPAN advocates for maximizing the distance between the spectrum of augmented graphs
regardless of spectral domains, SpCo and GASSER argue for the preservation of specific spectral
components and domains during augmentation. The consistent performance gain derived from
opposing methodical designs naturally raises our concern:

• Are spectral augmentations necessary in contrast-based graph SSL?

Given the question, this study aims to critically evaluate the effectiveness and significance of spectral
augmentation in contrast-based graph SSL frameworks (CG-SSL). With evidence-supported claims
and findings in the following sections, we can give a negative answer to the question above: No,
they are not very effective and we don’t really need them. To be specific, we find that spectral
augmentation does not significantly contribute to the learning efficacy while more straightforward
edge perturbations are already good enough for CG-SSL. We manage to elaborate on our conclusion
through a series of studies carried out in the following efforts:

1. In Sec. 4, we explore the dependency of spectral augmentation effectiveness on the depth
of the network, positing that shallower networks with fewer convolutional layers perform
better but demonstrate diminished benefits from spectral changes.

2. In Sec 5 We claim that simple edge perturbation techniques, like adding edges to or dropping
edges from the graph, not only compete well but often outperform spectral augmentations,
without any significant help from spectral cues. To support this,
(a) In Sec. 6, overall model performance on test accuracy with four state-of-the-art frame-
works on both node- and graph-level classification tasks support the superiority of simple
edge perturbation. (b) Studies in Sec. 7.1 reveal the indistinguishability between the average
spectrum of augmented graphs from edge perturbation with optimal parameters on different
datasets, no matter how different that of original graphs is, indicating GNN encoders can
hardly learn spectral information from augmented graphs. That is to say, edge perturbations
can not benefit from spectral information. (c) In Sec. 7.2, we analyze the effectiveness of
state-of-the-art spectral augmentation baseline (i.e., SPAN) by perturbing edges to alter the
spectral characteristics of augmented graphs from simple edge perturbation augmentation
and examining the impact on model performance. As it turns out, the results show no
performance degradation, indicating the spectral information contained in the augmentation
is not significant to the model performance. (d) In Appendix E.4, statistical analysis is
carried out to argue that the major reason edge perturbation works well is not because of the
spectral information as they are statistically not the key factor on model performance.

2 RELATED WORK

Contrast-based Graph Self-Supervised (CG-SSL). CG-SSL learning alleviates the limitations of
supervised learning, which heavily depends on labeled data and often suffers from limited generaliza-
tion (Liu et al., 2022b). This makes it a promising approach for real-world applications where labeled
data is scarce. CG-SSL applies a variety of augmentations to the training graph to obtain augmented
views. These augmented views, which are derived from the same original graph, are treated as positive
sample pairs or sets. The key objective of CG-SSL is to maximize the mutual information between
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these views to learn robust and invariant representations. However, directly computing the mutual
information of graph representations is challenging. Hence, in practice, CG-SSL frameworks aim to
maximize the lower bound of mutual information using different estimators such as InfoNCE (Gut-
mann & Hyvärinen, 2010), Jensen-Shannon (Nowozin et al., 2016), and Donsker-Varadhan (Belghazi
et al., 2018). For instance, frameworks like GRACE (Zhu et al., 2020), GCC (Qiu et al., 2020), and
GCA (Zhu et al., 2021b) utilize the InfoNCE estimator as their objective function. On the other hand,
MVGRL (Hassani & Khasahmadi, 2020) and InfoGraph (Sun et al., 2019) adopt the Jensen-Shannon
estimator. Some CG-SSL methods explore alternative principles. G-BT (Bielak et al., 2022) extends
the redundancy-reduction principle, minimizing dissimilarity between metrics from two augmented
graph views. BGRL (Thakoor et al., 2021) adopts a momentum-driven Siamese architecture, using
node feature masking and edge modification as augmentations to maximize mutual information
between online and target network representations.

Graph Augmentations in CG-SSL. Beyond the choice of objective functions, another crucial aspect
of augmentation-based methods in CG-SSL is the selection of augmentation techniques. Early work
by (Zhu et al., 2020) and (You et al., 2020) introduced several domain-agnostic heuristic graph
augmentation for CG-SSL, such as edge perturbation, attribute masking, and subgraph sampling.
These straightforward and effective methods have been widely adopted in subsequent CG-SSL
frameworks due to their demonstrated success (Thakoor et al., 2021; Yu et al., 2024). However, these
domain-agnostic graph augmentations often lack interpretability, making it difficult to understand the
exact impact of these augmentations on the graph structure and learning outcomes. To address this
issue, MVGRL (Hassani & Khasahmadi, 2020) introduces graph diffusion as an augmentation strategy,
where the original graph provides local structural information and the diffused graph offers global
context. MVGRL demonstrates experimentally that by optimizing for consistency between node
representations from these two perspectives, it’s possible to obtain representations that encode both
local and global structural information. Moreover, three spectral augmentation methods–SpCo (Liu
et al., 2022a), GASSER (Yang et al., 2023), and SPAN (Lin et al., 2023)–stand out by offering design
principles based on spectral graph theory, focusing on how to enhance CG-SSL performance through
spectral manipulations. However, our explorations show that these methods are unable to consistently
outperform heuristic graph augmentations such as edge perturbation (DROPEDGE or ADDEDGE) in
terms of performance under fair comparisons, and thus the design principles of graph augmentation
still require further validation.

3 PRELIMINARY STUDY

Contrast-based graph self-supervised learning framework. CG-SSL captures invariant features
of a graph by generating multiple views (typically two) through augmentations and then maximizing
the mutual information between these views (Xie et al., 2022). This approach is ultimately used to
improve performance on various downstream tasks. Following previous work (Wu et al., 2021; Liu
et al., 2022b; Xie et al., 2022), we first denote the generic form of the augmentation T and objective
functions Lcl of graph contrastive learning. Given a graph G = (A,X) with adjacency matrix A and
feature matrix X, the augmentation is defined as the transformation function T . In this paper, we are
mainly concerned with topological augmentation, in which feature matrix X remains intact:

Ã, X̃ = T (A,X) = T (A),X (1)

In practice, two augmented views of the graph are generated, denoted as G(1) = G(T1(A,X)) and
G(2) = G(T2(A,X)). The objective of GCL is to learn representations by minimizing the contrastive
loss Lcl between the augmented views:

θ∗, ϕ∗ = argmin
θ,ϕ

Lcl

(
pϕ

(
fθ

(
G(1)

)
, fθ

(
G(2)

)))
, (2)

where fθ represents the graph encoder parameterized by θ, and pϕ is a projection head parameterized
by ϕ. The goal is to find the optimal parameters θ∗ and ϕ∗ that minimize the contrastive loss.

In this paper, we utilize four prominent CG-SSL frameworks to study the effect of spectral: MVGRL,
GRACE, BGRL, and G-BT. MVGRL introduces graph diffusion as augmentation, while the other
three frameworks use edge perturbation as augmentation. Each framework employs different strategies
for its contrastive loss functions. MVGRL and GRACE use the Jensen-Shannon and InfoNCE
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estimators as object functions, respectively. In contrast, BGRL and G-BT adopt the BYOL loss (Grill
et al., 2020) and Barlow Twins loss (Zbontar et al., 2021), which are designed to maximize the
agreement between the augmented views without relying on negative samples. A more detailed
description of the loss function can be found in the Appendix C.

Graph spectrum & Definition and application of spectral augmentation. We follow the standard
definition of graph spectrum in this study, details of which can be found in Appendix B. Among
various augmentation strategies proposed to enhance the robustness and generalization of graph
neural networks, spectral augmentation has been considered a promising avenue (Lin et al., 2023; Liu
et al., 2022a; Bo et al., 2023; Yang et al., 2023). Spectral augmentation typically involves implicit
modifications to the eigenvalues of the graph Laplacian, aiming at enhancing model performance by
encouraging invariance to certain spectral properties. Among them, SPAN achieved state-of-the-art
performance in both node classification and graph classification. In short, SPAN elaborates two
augmentation functions, T1 and T2, where T1 maximizes the spectral norm in one view, and T2
minimizes it in the other view. Subsequently, these two augmentations are implemented in the four
CG-SSL frameworks mentioned above (Strict definition in Appendix B). The paradigm used by
SPAN aims to allow the GNN encoder to focus on robust spectral components and ignore the sensitive
edges that can change the spectral drastically when perturbed.

4 LIMITATIONS OF SPECTRAL AUGMENTATIONS

Limitations of shallow GNN encoders in capturing spectral information. Multiple previous
studies indicate that shallow, rather than deep, GNN encoders can be effective in graph self-supervised
learning. This might be the result of overfitting commonly witnessed in standard GNN tasks. We
have also carried out many empirical studies with a range of CG-SSL frameworks and augmentations
to support this idea in contrast-based graph SSL. As the most commonly applied GNN encoder in
CG-SSL (You et al., 2020; Yu et al., 2024; Guo et al., 2024; Lin et al., 2024), an empirical study
on the relationship between the depth of GCN encoder and learning performance is conducted and
results are presented in Fig. 1. From that, we can conclude that shallow GCN encoders with 1 or 2
layers usually have the best performance. Note that this tendency is not very clear on graph-level
tasks because the embedding of the graph from all layers will be concatenated together to perform
prediction. It indicates that a deep encoder has theoretically better expressive power than shallower
encoders. Therefore, still better performance of GCN encoders with 1 or 2 layers implies that any
more layers are unnecessary and might hurt the quality of the learned representation of the graph.

(a) G-BT on node CLS (b) MVGRL on node CLS (c) G-BT on graph CLS (d) MVGRL on graph CLS

Figure 1: Accuracy of CG-SSL v.s. number of GCN layers on node and graph classification on
representative datasets. (a) G-BT on node classification. (b) MVGRL on node classification. (c) G-BT
on graph classification. (d) MVGRL on graph classification. We choose two representative datasets
for each task, i.e. CORA and CITESEER for the node-level and PROTEINS and IMDB-BINARY
for the graph-level classification. Definition of the accuracy of CG-SSL, details of datasets and other
experimental settings are mentioned in Section 6.1.

By design, most GNN encoders primarily aggregate local neighborhood information through their
layered structure, where each layer extends the receptive field by one hop. The depth of a GNN
critically determines its ability to integrate information from various parts of the graph. With only
a limited number of layers, a GNN’s receptive field is restricted to immediate neighborhoods (e.g.,
1-hop or 2-hop distances). This limitation severely constrains the network’s ability to assimilate
and leverage broader graph topologies or global features that are essential for encoding the spectral
properties of the graph, given the definition of the graph spectrum.

Limited implications for spectral augmentation in CG-SSL. Given the limitations of shallow
GNNs in capturing spectral information, the utility of spectral augmentation techniques in graph
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self-supervised learning settings warrants scrutiny. Spectral augmentation involves modifying the
spectral components (e.g., eigenvalues and eigenvectors) of a graph to enrich the training process
or to create diverse samples for enhancing learning robustness. However, if the primary encoder’s
architecture—specifically, a shallow GNN—is intrinsically limited in its ability to perceive and
process spectral properties, then the benefits of such augmentations are likely to be minimal.

Gap between spectral theory and graph learning. Furthermore, beyond the limitations of shallow
GNNs in capturing spectral information, there is a significant gap between the theoretical foundations
of spectral methods and their practical application in graph learning. These methods often rely on
simplifying assumptions that may not hold in real-world scenarios (Liu et al., 2022a; Yang et al.,
2023). A detailed discussion of these challenges is provided in Appendix D.

5 EDGE PERTURBATION IS ALL YOU NEED

So far, our findings indicate that spectral augmentation is not particularly effective in contrast-based
graph self-supervised learning. It may suggest that spectral augmentation essentially amounts to
random topology perturbation, based on inconsistencies in previous studies (Lin et al., 2023; Liu et al.,
2022a; Yang et al., 2023) and the theoretical insight that a shallow encoder can hardly capture spectral
properties. In fact, most of the spectral augmentations are basically performing edge perturbations on
the graph with some targeted directions. Since we preliminarily conclude that it is quite difficult for
those augmentations to benefit from the spectral properties of graphs, it is very intuitive to hypothesize
that edge perturbation itself matters in the learning process.

Consequently, we are turning back to Edge Perturbation (EP), a more straightforward and proven
method for augmenting graph data. The two primary methods of edge perturbation are DROPEDGE
and ADDEDGE. We want to claim that edge perturbation has a better performance than spectral
augmentations and prove empirically that none of them actually or even can benefit much from any
spectral information and properties. Also, we demonstrate edge perturbation is much more efficient
in practical applications for both time and space sake, where spectral operations are almost infeasible.
Overall, we will support the idea with evidence in the following sections that simple edge perturbation
is not only good enough but even very optimal in CG-SSL compared to spectral augmentations.

Edge perturbation involves modifying the topology of the graph by either removing or adding edges
at random. We detail the two main types of edge perturbation techniques used in our frameworks:
edge dropping and edge adding.

DROPEDGE. Edge dropping is the process of randomly removing a subset of edges from the
original graph to create an augmented view. Adopting the definition from (Rong et al., 2020), let
G = (A,X) be the original graph with adjacency matrix A. We introduce a mask matrix M of
the same dimensions as A, where each entry Mij follows a Bernoulli distribution with parameter
1 − p (denoted as the drop rate). The edge-dropped graph G′ is then obtained by element-wise
multiplication of A with M (where ⊙ denotes the Hadamard product):

A′ = A⊙M (3)

ADDEDGE. Edge adding involves randomly adding a subset of new edges to the original graph to
create an augmented view. Let N be an adding matrix of the same dimensions as A, where each
entry Nij follows a Bernoulli distribution with parameter q (denoted as the add rate), and Nij = 0
for all existing edges in A. The edge-added graph G′′ is obtained by adding N to A:

A′′ = A+N (4)

These two operations ensure that the augmented views G(1) and G(2) have modified adjacency
matrices A′ and A′′ respectively, which are used to generate contrastive views while preserving the
feature matrix X.

5.1 ADVANTAGE OF EDGE PERTURBATION OVER SPECTRAL AUGMENTATIONS

Edge perturbation offers several key advantages over spectral augmentation, making it a more effective
and practical choice for CG-SSL. Compared to augmentations related to the graph spectrum, it has
three major advantages.
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Theoretically intuitive. Edge perturbation is inherently simpler and more intuitive. It directly
modifies the graph’s structure by adding or removing edges, which aligns well with the shallow GNN
encoders’ strength in capturing local neighborhood information. Given that shallow GNNs have a
limited receptive field, they are better suited to leveraging the local structural changes introduced by
edge perturbation rather than the global changes implied by spectral augmentation.

Significantly better efficiency. Edge perturbation methods such as edge dropping (DROPEDGE)
and edge adding (ADDEDGE) are computationally efficient. Unlike spectral augmentation, which
requires costly eigenvalue and eigenvector computations, edge perturbation can be implemented with
basic graph operations. This efficiency translates to faster training and inference times, making it
more suitable for large-scale graph datasets and real-time applications. As shown in Table 1, the time
and space complexity of spectrum-related calculations are several orders of magnitude higher than
those of simple edge perturbation operations. This makes spectrum-related calculations impractical
for the large datasets typically encountered in real-world applications.

Table 1: Time and space complexity of different methods (Empirical Time is on PUBMED dataset)

Method Time Complexity Space Complexity Empirical Time (s/epoch)

Spectrum calculation O(n3) O(n2) 26.435
DROPEDGE O(m) O(m) 0.140
ADDEDGE O(m) O(m) 0.159

Optimal learning performance. Most importantly and directly, our comprehensive empirical stud-
ies indicate that edge perturbation methods lead to significant improvements in model performance,
as presented and analyzed in Sec. 6. From the results there, the conclusion can be drawn that the
performance of the proposed augmentations is not only better than those of spectral augmentations
but also matches or even surpasses the performance of other strong benchmarks.

These advantages position edge perturbation as a robust and efficient method for graph augmentation
in self-supervised learning. In the following section, we will present our experimental analysis,
demonstrating the accuracy gains achieved through edge perturbation methods.

6 EXPERIMENTS ON SSL PERFORMANCE

6.1 EXPERIMENTAL SETTINGS

Task and Datasets. We conducted extensive experiments for node-level classification on seven
datasets: CORA, CITESEER, PUBMED (Kipf & Welling, 2016), PHOTO, COMPUTERS (Shchur et al.,
2018), COAUTHOR-CS, and COAUTHOR-PHY. These datasets include various types of graphs, such
as citation networks, co-purchase networks, and co-authored networks. Note that we do not include
huge-scale datasets like OGBN (Hu et al., 2021) for the high complexity of spectral augmentations.
While both DROPEDGE and ADDEDGE have linear complexity that can easily run on those huge
datasets, no spectral augmentation can scale to them. Additionally, we carried out graph-level
classification on five datasets from the TUDataset collection (Morris et al., 2020), which include
biochemical molecules and social networks. More details of these datasets be found in Appendix A.

Baselines. We conducted experiments under four CG-SSL frameworks: MVGRL, GRACE, G-BT,
and BGRL (mentioned in Sec 3), using DROPEDGE, ADDEDGE, and SPAN (Lin et al., 2023) as
augmentation strategies. Note that there are only three very relevant studies on spectral augmentation
strategies of CG-SSL to the authors’ best knowledge, i.e., SPAN, SpCo (Liu et al., 2022a) and
GASSER (Yang et al., 2023). Among them, GASSER does not have open-sourced code so we are
not able to reproduce any related results, but we try our best to directly adopt the best performance
reported in that study to ensure comparison is possible. Also, SpCo is only applicable to node-level
tasks and its implementation is not robust enough to generalize to all the node-level datasets and
CG-SSL frameworks. Therefore, we manage to include the results of all the settings that it is feasible
to do, which is its original setting and the combination of GRACE and it. Given the infeasibility and
inaccessibility of the two, we selected SPAN as a major baseline because it is robust and general
enough to all the datasets and experimental settings while allowing the modular plug-and-play
integration of edge perturbation methods, enabling a very direct angle to evaluate the effectiveness
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Table 2: Node classification. Results of baselines with ’†’ are adopted directly from previous works.
MVGRL+PPR is the original setting of MVGRL. The best results in each cell are highlighted by
grey . The best results overall are highlighted with bold and underline. Metric is accuracy (%).

Model CORA CITESEER PUBMED PHOTO COMPUTERS COAUTHOR-CS COAUTHOR-PHY

GCA† 83.67 ± 0.44 71.48 ± 0.26 78.87 ± 0.49 92.53 ± 0.16 88.94 ± 0.15 93.10 ± 0.01 —
GMI† 83.02 ± 0.33 72.45 ± 0.12 79.94 ± 0.25 90.68 ± 0.17 82.21 ± 0.31 91.08 ± 0.56 —
DGI† 82.34 ± 0.64 71.85 ± 0.74 76.82 ± 0.61 91.61 ± 0.22 83.95 ± 0.47 92.15 ± 0.63 —

SpCo 83.78 ± 0.70 71.82 ± 1.26 80.86 ± 0.43 — — — —
GASSER† 85.27 ± 0.10 75.41 ± 0.84 83.00 ± 0.61 93.17 ± 0.31 88.67 ± 0.15 — —

MVGRL + PPR 83.53 ± 1.19 71.56 ± 1.89 84.13 ± 0.26 88.47 ± 1.02 89.84 ± 0.12 90.57 ± 0.61 OOM
MVGRL + DROPEDGE 84.31 ± 1.95 74.85 ± 0.73 85.62 ± 0.45 89.28 ± 0.95 90.43 ± 0.33 93.20 ± 0.81 95.70 ± 0.28
MVGRL + ADDEDGE 83.21 ± 1.65 73.65 ± 1.60 84.86 ± 1.19 87.15 ± 1.36 87.59 ± 0.53 92.91 ± 0.65 95.33 ± 0.23

MVGRL +SPAN 84.57 ± 0.22 73.65 ± 1.29 85.21 ± 0.81 92.33 ± 0.99 88.75 ± 0.20 92.25 ± 0.76 OOM
MVGRL + GASSER† 80.36 ± 0.05 74.48 ± 0.73 80.80 ± 0.19 — — — —

G-BT + DROPEDGE 86.51 ± 2.04 72.95 ± 2.46 87.10 ± 1.21 93.55 ± 0.60 88.66 ± 0.46 93.31 ± 0.05 96.06 ± 0.24
G-BT + ADDEDGE 82.10 ± 1.48 66.36 ± 4.25 85.98 ± 0.81 93.68 ± 0.79 87.81 ± 0.79 91.98 ± 0.66 95.51 ± 0.02

G-BT + SPAN 84.06 ± 2.85 67.46 ± 3.18 85.97 ± 0.41 91.85 ± 0.22 88.73 ± 0.62 92.63 ± 0.07 OOM

GRACE + DROPEDGE 84.19 ± 2.07 75.44 ± 0.32 87.84 ± 0.37 92.62 ± 0.73 86.67 ± 0.61 93.15 ± 0.23 OOM
GRACE + ADDEDGE 85.78 ± 0.62 71.65 ± 1.63 85.25 ± 0.47 89.93 ± 0.74 76.74 ± 0.57 92.46 ± 0.25 OOM

GRACE + SPAN 82.84 ± 0.91 67.76 ± 0.21 85.11 ± 0.71 93.72 ± 0.21 88.71 ± 0.06 91.72 ± 1.75 OOM
GRACE + GASSER† 84.10 ± 0.26 74.47 ± 0.64 83.97 ± 0.52 — — — —

GRACE + SpCo 81.61 ± 0.75 70.83 ± 1.47 84.97 ± 1.13 — — — —

BGRL + DROPEDGE 83.21 ± 3.29 71.46 ± 0.56 86.28 ± 0.13 92.90 ± 0.69 88.68 ± 0.65 91.58 ± 0.18 95.29 ± 0.19
BGRL + ADDEDGE 81.49 ± 1.21 69.66 ± 1.34 84.54 ± 0.22 91.85 ± 0.75 86.75 ± 1.15 91.78 ± 0.77 95.29 ± 0.09

BGRL + SPAN 83.33 ± 0.45 66.26 ± 0.92 85.97 ± 0.41 91.72 ± 1.75 88.61 ± 0.59 92.29 ± 0.59 OOM

of the spectral augmentations compared to much simpler alternatives. Besides the major baselines
mentioned above, other related ones are added to clearly and comprehensively benchmark our work.
For MVGRL, we also compared its original PPR augmentation. For the node classification task, we
use GCA (Zhu et al., 2021b), GMI (Peng et al., 2020), DGI (Velickovic et al., 2019), and SpCo (Liu
et al., 2022a) as baselines. For the graph classification task, we use RGCL (Li et al., 2022) and
GraphCL (You et al., 2020) as baselines. Detailed experimental configurations are in Appendix A.

Evaluation Protocol. We adopt the evaluation and split scheme from previous works (Veličković
et al., 2019; Zhang et al., 2023; Lin et al., 2023). Each GNN encoder is trained on the entire graph with
self-supervised learning. After training, we freeze the encoder and extract embeddings for all nodes
or graphs. Finally, we train a simple linear classifier using the labels from the training/validation
set and test it with the testing set. The accuracy of classification on the testing set shows how good
the learned representations are. For the node classification task nodes are randomly divided into
10%/10%/80% for training, validation, and testing, and for graph classification datasets, graphs are
randomly divided into 80%/10%/10% for training, validation, and testing.

6.2 EXPERIMENTAL RESULTS

We present the prediction accuracy of the node classification and graph classification tasks in Table 2
and Table 3, respectively. Our comparative analysis of graph augmentation for both node and graph
classification reveals distinct performance trends. For node classification, DROPEDGE consistently
achieves the best performance across multiple datasets and CG-SSL frameworks, demonstrating su-
perior robustness and consistency. While ADDEDGE also achieves competitive accuracy, DROPEDGE
stands out in this area. In graph classification, ADDEDGE frequently achieves the best performance
across multiple datasets and CG-SSL frameworks, showing superior and more consistent results. In
contrast, all the results from SPAN as well as GASSER and SpCo generally underperform relative to
both DROPEDGE and ADDEDGE while also encountering scalability issues on larger datasets and
suffering from a high overhead of training time.

6.3 ABLATION STUDY

To validate our findings, we conducted a series of ablation experiments on two exemplar datasets,
CORA and MUTAG, representing node- and graph-level tasks, respectively. These ablation studies are
crucial to rule out potential confounding variables, such as model architectures and hyperparameters,
ensuring that our conclusions about the performance of CG-SSL are robust and comprehensive.
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Table 3: Graph classification. Results of baselines with ’†’ are adopted directly from previous works.
MVGRL+PPR is the original setting of MVGRL. The best results in each cell are highlighted by
grey . The best results overall are highlighted with bold and underline. Metric is accuracy (%).

Model MUTAG PROTEINS NCI1 IMDB-BINARY IMDB-MULTI

GraphCL† 86.80 ± 1.34 74.39 ± 0.45 77.87 ± 0.41 71.14 ± 0.44 48.58 ± 0.67
RGCL† 87.66 ± 1.01 75.03 ± 0.43 78.14 ± 1.08 71.85 ± 0.84 49.31 ± 0.42

MVGRL + PPR 90.00 ± 5.40 78.92 ± 1.83 78.78 ± 1.52 71.40 ± 4.17 52.13 ± 1.42
MVGRL+ SPAN 93.33 ± 2.22 79.81 ± 2.45 77.56 ± 1.77 75.00 ± 1.09 51.20 ± 1.62

MVGRL+ DROPEDGE 93.33 ± 2.22 78.92 ± 1.33 77.81 ± 1.50 76.40 ± 0.48 51.46 ± 3.02
MVGRL+ ADDEDGE 94.44 ± 3.51 81.25 ± 3.43 77.27 ± 0.71 74.00 ± 2.82 51.73 ± 2.43

G-BT + SPAN 90.00 ± 6.47 80.89 ± 3.22 78.29 ± 1.12 65.60 ± 1.35 45.60 ± 2.13
G-BT + DROPEDGE 92.59 ± 2.61 77.97 ± 0.42 78.18 ± 0.91 73.33 ± 1.24 49.11 ± 1.25
G-BT + ADDEDGE 92.59 ± 2.61 80.64 ± 1.68 75.91 ± 0.59 73.33 ± 1.24 48.88 ± 1.13

GRACE + SPAN 90.00 ± 4.15 79.10 ± 2.30 78.49 ± 0.79 70.80 ± 3.96 47.73 ± 1.71
GRACE + DROPEDGE 88.88 ± 3.51 78.21 ± 1.92 76.93 ± 1.14 71.00 ± 3.75 47.46 ± 3.02
GRACE + ADDEDGE 92.22 ± 4.44 80.17 ± 2.21 79.97 ± 2.35 71.67 ± 2.36 49.86 ± 4.09

BGRL + SPAN 90.00 ± 4.15 79.28 ± 2.73 78.05 ± 1.62 72.40 ± 2.57 47.46 ± 4.35
BGRL + DROPEDGE 88.88 ± 4.96 76.60 ± 2.21 76.15 ± 0.43 71.60 ± 3.31 51.47 ± 3.02
BGRL + ADDEDGE 91.11 ± 5.66 79.46 ± 2.18 76.98 ± 1.40 72.80 ± 2.48 47.77 ± 4.18

Number of Layers of GCN Encoder. To assess the impact of model depth, we conducted both
node-level and graph-level experiments using varying numbers of GCN encoder layers. This analysis
is to rule out the possibility that model depth, rather than augmentation strategies, influences the
claim. As expected, the results, detailed in Appendix E.1, show that deeper encoders generally lead to
worse performance. This suggests that excessive model complexity may introduce noise or overfitting,
diminishing the benefits of spectral information. Therefore, our conclusion still holds tightly.

Type of GNN Encoder. While we initially selected GCN to align with the common protocols in
previous studies for a fair comparison, we also explored other GNN architectures to ensure our
findings are not specific to GCN alone. To further validate our results, we conducted additional
experiments using GAT (Veličković et al., 2019) for both node- and graph-level tasks, as well as
GPS (Rampášek et al., 2024) for the graph-level task. As reported in Appendix E.2, the performance
trends observed with GAT and GPS are consistent with those obtained using GCN. This consistency
across different encoder types further supports our conclusion that simple edge perturbation strategies
are sufficient, and that spectral augmentation does not significantly enhance performance, regardless
of the type of GNN encoder applied.

7 THE INSIGNIFICANCE OF SPECTRAL CUES

Given the superior empirical performance of edge perturbations mentioned in Sec. 6, one may still
argue whether it is a result of some spectral cues or not, as all the analyses mentioned are not direct
evidence of the insignificance of the spectral information in the study. To clarify this, we have
three questions to answer, (1) Can GNN encoders learn spectral information from augmented graphs
produced edge perturbations? (2) Are spectrum in spectral augmentation necessary? (3) Is spectral
information statistically a significant factor in the performance of edge perturbation? Given the
questions, we conduct a series of experimental studies to answer them respectively in Sec. 7.1, 7.2
and Appendix E.4.

7.1 DEGENERATION OF THE SPECTRUM AFTER EDGE PERTURBATION (EP)

Here we want to conduct studies to answer the question of whether the GNN encoders applied can
learn spectral information from the augmented graph views produced by EP. Therefore, we collect
the spectrum of all augmented graphs ever produced along the way of the contrastive learning process
of the best framework with the optimal parameter we have in this study, i.e., G-BT + EP with best
drop rate p or add rate q, and calculate the average one for each representative dataset in this study for
both node- and graph-level tasks. We find that though the average spectrum of those original graphs
is strikingly different, that of augmented graphs is quite similar for node- and graph-level tasks,
respectively. This indicates a certain degree of degeneration of the spectra as they are no longer easy
to separate after EP. Therefore, GNN encoders can hardly learn spectral information and properties
between different original graphs from those augmented graph views. Note that, though we have
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defined some context of frameworks, this result is generally only dependent on the augmentation
methods. Due to the limited space, we will elaborate the node-level results in this section and
postpone the graph-level ones in Appendix E.3, as they support the claim very consistently.

Node-Level Analysis. Here, we visualize the distributions of the average spectrum of graphs at
the node level using histograms. The spectral distribution for each graph is represented by a sorted
vector of its eigenvalues. When referring to the average spectrum, we mean the average over the
eigenvalue vectors of each augmented graph. We plot the histograms of different spectra, normalized
to show the probability density. Note that eigenvalues are constrained within the range [0, 2], as we
adopted the commonly used symmetrical normalization. We analyze the spectral distributions of three
node classification datasets: CORA, CITESEER, and COMPUTERS. We compare the average spectral
properties of both original and augmented graphs. The augmentation method used is DROPEDGE,
applied with optimal parameters identified for the G-BT method. The results of the visualization are
presented in Fig. 2. By comparing the spectrum distributions of original graphs for the datasets in
Fig. 2a, we can easily distinguish the spectra of the three datasets. This contrasts with the highly
overlapped average spectra of all the datasets, indicating the degeneration mentioned. To support this
claim, we also present the comparison of the spectra of original and augmented graphs on all three
datasets in Fig. 2c, 2d, and 2e, respectively, to show the obvious changes after the edge perturbations.

(a) Spectrum of original graphs (b) Spectrum of augmented graphs

(c) Comparison on CORA (d) Comparison on CITESEER (e) Comparison on COMPUTERS

Figure 2: The spectrum distributions of graphs on different node classification datasets. CORA,
CITESEER, and COMPUTERS are chosen as they are well representative of all the node classification
datasets. OG means original graph and AUG means average augmented graphs. The augmentation
method is DROPEDGE with the best parameter on G-BT method.

7.2 SPECTRAL PERTURBATION

To further destruct the spectral properties from model performance, we introduce Spectral Pertur-
bation Augmentor (SPA) for finer-grained anatomy. SPA performs random edge perturbation with
an empirically negligible ratio rSPA to transform the input graph G into a new graph GSPA, such
that G and GSPA are close to each other topologically, while being divergent in the spectral space.
The spectral divergence dSPA between G and GSPA is measured by the L2-distance of the respective
spectra. With properly chosen hyperparameters rSPA and dSPA, we view the augmented graph GSPA

as a doppelganger of G that preserves most of the graph-proximity, with only spectral information
eliminated.

Spectral perturbation on spectral augmentation baselines. SPAN, being a state-of-the-art spectral
augmentation algorithm, demonstrated the correlation between graph spectra and model performance

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

through designated perturbation on spectral priors. However, the effectiveness of simple edge
perturbation motivated us to further investigate whether such a relationship is causational.

Specifically, for each pair of SPAN augmented graphs G1,G2, we further augment them into
G1
SPA,G2

SPA with our proposed SPA augmentor. The SPA-augmented training is performed un-
der the same setup as SPAN, with graphs being SPA-augmented graphs GSPA. Experiment results
in Fig 3 show that the effectiveness of graph augmentation can be preserved and, in some cases
improved, even if the spectral information is destroyed.

SPAN, along with other spectral augmentation algorithms, can be formulated as an optimization on a
parameterized 2-step generative process:

sSPAN ∼ pθ (SSPAN |G0) , GSPAN ∼ pϕ (GSPAN |SSPAN ) (5)

Given the property that GSPA is topologically close to GSPAN and the performance function P =
f (G) , limG→GSPAN

P (G) = P (GSPAN ), which indicates the continuity around GSPAN , we make a
reasonable assertion that GSPA comes from the same distribution as GSPAN . However, with their
spectral space being enforced to be distant, GSPA is almost impossible to be sampled from the same
spectral augmentation generative process:

dSPA → ∞ =⇒ pθ (sSPA |G0) → 0 =⇒ pθ,ϕ (GSPA |G0) → 0 (6)

Although the constrained generative process in Eq. 5 does indicate some extent of causality between
spectral distribution S and the spectral-augmented graph distribution GSPAN , our experiment
challenges a more essential and fundamental aspect of such reasoning: such causality exists upon
pre-defined generative processes, which does not intrinsically exist in the graph distributions. Even
worse, such constrained generative process is incapable of modeling the full distribution of GSPAN

itself. In our experiment setup, all GSPA serve as strong counter examples.
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(a) Node classification
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Figure 3: Comparison of SPAN performance before and after applying SPA. After severely disrupting
the spectral, the performance of SPAN is still comparable to that of the original version.

8 CONCLUSION

In this study, we investigate the effectiveness of spectral augmentation in contrast-based graph
self-supervised learning (CG-SSL) frameworks to answer the question: Are spectral augmentations
necessary in CG-SSL? Our findings indicate that spectral augmentation does not significantly enhance
learning efficacy. Instead, simpler edge perturbation techniques, such as random edge dropping for
node-level tasks and random edge adding for graph-level tasks, not only compete well but often
outperform spectral augmentations. To be specific, we demonstrate that the benefits of spectral
augmentation diminish with shallower networks, and edge perturbations yield superior performance
in both node- and graph-level classification tasks. Additionally, GNN encoders struggle to learn
spectral information from augmented graphs, and perturbing edges to alter spectral characteristics
does not degrade model performance. These results challenge the current emphasis on spectral
augmentation, advocating for more straightforward and effective edge perturbation techniques in
CG-SSL, potentially reshaping the understanding and implementation of graph self-supervised
learning.
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Ethics Statement To the authors’ best knowledge, no major ethics issues in this submission.

Reproducibility Statement We have made efforts to ensure the reproducibility of our work:

• Datasets: All datasets used in this study are publicly available through the PyTorch Geo-
metric (PyG) library1. The statistics of node-level and graph-level datasets are detailed in
Tables 4 and 5 respectively.

• Implementation: Our CG-SSL framework implementation is based on the work of Zhu
et al. (2021a)2. We will open-source our code in the near future to facilitate reproducibility.

No additional data processing steps were required beyond those inherent in the PyG library. Detailed
model architectures and evaluation protocols are provided in the Sec. 6.1 and Appendix A.
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Table 4: Statistics of node classification datasets

Dataset #Nodes #Edges #Features #Classes

CORA 2,708 5,429 1,433 7
CITESEER 3,327 4,732 3,703 6
PUBMED 19,717 44,338 500 3

COMPUTERS 13,752 245,861 767 10
PHOTO 7,650 119,081 745 8

COAUTHOR-CS 18,333 81,894 6,805 15
COAUTHOR-PHY 34,493 247,962 8,415 5

Table 5: Statistics of node classification datasets

Dataset #Avg. Nodes #Avg. Edges # Graphs #Classes

MUTAG 17.93 19.71 188 2
PROTEINS 39.06 72.82 1,113 2

NCI1 29.87 32.30 4110 2
IMDB-BINARY 19.8 96.53 1,000 2
IMDB-MULTI 13.0 65.94 1,500 5

A DATASET AND TRAINING CONFIGURATION

Datasets. The node classification datasets used in this paper include the CORA, CITESEER, and
PUBMED citation networks (Kipf & Welling, 2016), as well as the PHOTO and COMPUTERS co-
purchase networks (Shchur et al., 2018). Additionally, we use the COAUTHOR-CS and COAUTHOR-
PHY co-author relationship networks. The statistics of node-level datasets are present in Table 4. The
graph classification datasets include: The MUTAG dataset, which features seven types of graphs
derived from 188 mutagenic compounds; the NCI1 dataset, which contains compounds tested for
their ability to inhibit human tumor cell growth; the PROTEINS dataset, where nodes correspond to
secondary structure elements connected if they are adjacent in 3D space; and the IMDB-BINARY
and IMDB-MULTI movie collaboration datasets, where graphs depict interactions among actors
and actresses, with edges denoting their collaborations in films. These movie graphs are labeled
according to their genres. The statistics of graph-level datasets are present in Table 5. All datasets
can be accessed through PyG library 3. All experiments are conducted using 8 NVIDIA A100 GPU.

Training configuration. For each CG-SSL framework, we implement it based on (Zhu et al., 2021a)
4. We use the following hyperparameters: the learning rate is set to 5× 10−4, and the node hidden
size is set to 512, the number of GCN encoder layer is set ∈ {1, 2}. For all node classification
datasets, training epochs are set ∈ {50, 100, 150, 200, 400, 1000}, and for all graph classification
datasets, training epochs are set ∈ {20, 40, ..., 200}. To achieve performance closer to the global
optimum, we use randomized search to determine the optimal probability of edge perturbation and
SPAN perturbation ratio. For CORA and CITESEER the search is conducted one hundred times, and
for all other datasets, it is conducted twenty times. For all graph classification datasets, the batch size
is set to 128.

B PRELIMINARIES OF GRAPH SPECTRUM AND SPAN

Given a graph G = (A,X) with adjacency matrix A and feature matrix X, we introduce some
fundamental concepts related to the graph spectrum.

Laplacian Matrix Spectrum The Laplacian matrix L of a graph is defined as:

L = D−A

where D is the degree matrix, a diagonal matrix where each diagonal element Dii represents the
degree of vertex i. The eigenvalues of the Laplacian matrix, known as the Laplacian spectrum, are

3https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.
html

4https://github.com/PyGCL/PyGCL
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crucial in understanding the graph’s structural properties, such as its connectivity and the number of
spanning trees (Chung, 1997).

Normalized Laplacian Spectrum The normalized Laplacian matrix Lnorm is given by:

Lnorm = D−1/2LD−1/2

The eigenvalues of the normalized Laplacian matrix, referred to as the normalized Laplacian spectrum,
are often used in spectral clustering (Von Luxburg, 2007) and other applications where normalization
is necessary to account for varying vertex degrees.

SPAN The core assumption of SPAN is to maximize the consistency of the representations of two
views with a large spectrum distance, thereby filtering out edges sensitive to the spectrum, such as
edges between clusters. By focusing on more stable structures relative to the spectrum, the objective
of SPAN can be formulated as:

max
T 1,T 2∈S

∥eig (L1)− eig (L2)∥22 (7)

where the transformations T1 and T2 convert A to A1 and A2, respectively, producing the normalized
Laplacian matrices L1 and L2. Here, S represents the set of all possible transformations, and the
graph spectrum can be calculated by eig (L).

C OBJECT FUNCTION OF GCL FRAMEWORK

Here we briefly introduce the object functions of the four CG-SSL frameworks used in this paper,
for a more detailed discussion about object functions including other graph contrastive learning and
graph self-supervised learning frameworks which can refer to the survey papers (Xie et al., 2022; Wu
et al., 2021; Liu et al., 2022b). We use the following notations:

• pϕ: Projection head parameterized by ϕ.

• hi, hj : Representations of the graph nodes.

• h′
n: Representations of negative sample nodes.

• P: Distribution of positive sample pairs.

• P̃N : Distribution of negative sample pairs.

• B: Set of nodes in a batch.

• H(1), H(2): Node representation matrices of two views.

GRACE uses the InfoNCE loss to maximize the similarity between positive pairs and minimize the
similarity between negative pairs. InfoNCE loss encourages representations of positive pairs (gener-
ated from the same node via data augmentation) to be similar while pushing apart the representations
of negative pairs (from different nodes). The loss function LNCE denotes as:

LNCE (pϕ (hi,hj)) = −EP×P̃N

[
log

epϕ(hi,hj)

epϕ(hi,hj) +
∑

n∈N epϕ(hi,h′
n)

]
(8)

MVGRL employs the Jensen-Shannon Estimator (JSE) for contrastive learning, which focuses on the
mutual information between positive pairs and negative pairs.JSE maximizes the mutual information
between positive pairs and minimizes it for negative pairs, thus improving the representations’
alignment and uniformity. The loss function LJSE denotes as:

LJSE (pϕ (hi,hj)) = EP×P̃
[
log

(
1− pϕ

(
hi,h

′
j

))]
− EP [log (pϕ (hi,hj))] (9)

BGRL utilizes a loss similar to BYOL, which does not require negative samples. It uses two networks,
an online network and a target network, to predict one view from the other:
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LBYOL (pϕ (hi,hj)) = EP×P

[
2− 2 · [pϕ (hi)]

T
hj

∥pϕ (hi)∥ ∥hj∥

]
(10)

G-BT applies the Barlow Twins’ loss to reduce redundancy in the learned representations, thereby
ensuring better generalization:

LBT

(
H(1),H(2)

)
=EB∼P|B|

∑
a

1−
∑

i∈B H
(1)
ia H

(2)
ia∥∥∥H(1)

ia

∥∥∥∥∥∥H(2)
ia

∥∥∥
2

+λ
∑
a

∑
b̸=a

∑
i∈B H

(1)
ia H

(2)
ib∥∥∥H(1)

ia

∥∥∥∥∥∥H(2)
ib

∥∥∥
2

 .

(11)

D THEORETICAL GAPS IN SPECTRAL AUGMENTATION FOR GRAPH
LEARNING

A significant gap exists between the theoretical foundations of spectral methods (Liu et al., 2022a;
Yang et al., 2023) and their practical application in graph learning. Applying spectral theory to
graph learning is often non-trivial, as it typically requires several simplifying assumptions that may
not hold in real-world scenarios. This disconnect is evident in the underlying motivations of many
spectral-based self-supervised learning (CG-SSL) methods. While spectral techniques aim to harness
the eigenvalues and eigenvectors of graph Laplacians, their direct application to SSL tasks often leads
to assumptions that are challenging to justify in practice (Liu et al., 2022a; Yang et al., 2023).

For instance, Theorem 1 in SpCo (Liu et al., 2022a) posits an upper bound on the InfoNCE loss in
terms of the L2 distance between the eigenvalues of the original and augmented graphs, moderated
by adaptive weights:

LInfoNCE ≤ 1 +N

2

∑
i

θi

[
2− (λi − γi)

2
]
. (12)

However, this relationship is relatively loose, resting on assumptions such as using a GCN encoder
without activation layers. Furthermore, while InfoNCE is a widely used contrastive learning objective,
its upper bound guarantees performance only within the specific contrastive training setup. This does
not necessarily reflect the quality of the learned representations themselves, nor does it imply that
these representations will perform well on downstream tasks like node classification. Thus, while
the theorem provides useful theoretical insights, its direct relevance to practical graph learning tasks
remains limited.

E MORE EXPERIMENTS

E.1 EFFECT OF NUMBERS OF GCN LAYERS

We explore the impact of GCN depth on accuracy by testing GCNs with 4, 6, and 8 layers, using our
edge perturbation methods alongside SPAN baselines. Experiments were conducted with the GRACE
and G-BT frameworks on the Cora dataset for node classification and the MUTAG dataset for graph
classification. Each configuration was run three times, with the mean accuracy and standard deviation
reported.

Overall, deeper GCNs (6 and 8 layers) tend to perform worse across both tasks, reinforcing the
observation that deeper architectures, despite their theoretical expressive power, may negatively
impact the quality of learned representations. The results are summarized in Tables 6 and 7.
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Table 6: Impact of GCN depth on node classification task on the CORA dataset. The best result of
each column is in grey . Metric is accuracy (%).

MODEL 4 6 8

GBT+DROPEDGE 83.53± 1.48 82.06± 3.45 80.88± 1.38
GBT +ADDEDGE 81.99± 0.79 79.04± 1.59 79.41± 1.98

GBT+SPAN 80.39± 2.17 81.25± 1.67 79.41± 1.87

GRACE+DROPEDGE 82.35± 1.08 82.47± 1.35 81.74± 2.42
GRACE +ADDEDGE 79.17 ±1.35 78.80± 0.96 81.00± 0.17

GRACE+SPAN 80.15± 0.30 80.15± 0.79 75.98± 1.54

Table 7: Impact of GCN depth on graph classification task on the MUTAG dataset. The best result of
each column is in grey . Metric is accuracy (%).

MODEL 4 6 8

GBT+DROPEDGE 90.74 ± 2.61 88.88 ± 4.53 88.88 ± 7.85
GBT +ADDEDGE 94.44 ± 0.00 94.44 ± 4.53 94.44 ± 4.53

GBT+SPAN 94.44 ± 4.53 92.59 ± 2.61 90.74 ± 2.61

GRACE+DROPEDGE 94.44 ± 0.00 90.74 ± 2.61 90.74 ± 2.61
GRACE +ADDEDGE 92.59 ± 5.23 94.44 ± 4.53 94.44 ± 0.00

GRACE+SPAN 90.74 ± 2.61 90.74 ± 5.23 88.88 ± 7.85

E.2 EFFECT OF GNN ENCODER

To further validate the generality of our approach, we conducted additional experiments using different
GNN encoders. For the node classification task, we evaluated the CORA dataset with GAT as the
encoder, while for the graph classification task, we performed experiments on the MUTAG dataset
using both GAT and GPS as encoders.

The results, presented in Tables 8 and 9, are shown alongside the results obtained with GCN encoders.
These findings demonstrate that our simple edge perturbation method consistently outperforms
the baselines, regardless of the choice of the encoder. This confirms that our conclusions hold
across different encoder architectures, underscoring the robustness and effectiveness of the proposed
approach.

E.3 GRAPH-LEVEL ANALYSIS FOR DEGENERATION OF THE SPECTRUM AFTER EP (SEC. 7.1
CONT.)

For graph-level analysis, we basically follow the settings mentioned above in node-level one. The
only difference from the node-level task is that we have multiple original graphs with various numbers
of nodes, leading to the inconsistent dimensions of the vector of the eigenvalues. Therefore, to provide
a more detailed comparison of spectral properties at the graph level, we employ Kernel Density
Estimation (KDE) (Parzen, 1962) to interpolate and smooth the distributions of eigenvalues. We
compare two groups of graph spectra. Each group’s spectra are processed to compute their KDEs,
and the mean and standard deviation of these KDEs are calculated.

We analyze the spectral distributions of two node classification datasets: MUTAG and PROTEINS.
We compare the average spectral properties of both original and augmented graphs. The augmentation
method used is ADDEDGE as it is the better among two EP methods, applied with optimal add rate
identified for the G-BT method.

Like the results in node-level analysis, in Fig. 4a and 4b, we witness the obvious difference between
the average spectra of original graphs while the significant overlap between those of augmented
graphs, especially if pay attention to the overlapping of the area created by the standard deviation
of KDEs. Again, this contrast is not trivial because of the striking mismatch between the average
spectra of original and augmented graphs in both datasets, as presented in Fig. 4c and 4d.
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Table 8: Accuracy of node classification with different GNN encoders on CORA dataset. The best
result of each column is in grey . Metric is accuracy (%).

MODEL GCN GAT

MVGRL+SPAN 84.57 ± 0.22 82.90 ± 0.86
MVGRL+DROPEDGE 84.31 ± 1.95 83.21 ± 1.41
MVGRL +ADDEDGE 83.21 ± 1.65 83.33 ± 0.17

GBT+SPAN 82.84 ± 0.90 83.47 ± 0.39
GBT + DROPEDGE 84.19 ± 2.07 84.06 ± 1.05
GBT + ADDEDGE 85.78 ± 0.62 81.49 ± 0.45

GRACE + SPAN 82.84 ± 0.91 82.74 ± 0.47
GRACE + DROPEDGE 84.19 ± 2.07 82.84 ± 2.58
GRACE + ADDEDGE 85.78 ± 0.62 82.84 ± 1.21

BGRL + SPAN 83.33 ± 0.45 82.59 ± 0.79
BGRL + DROPEDGE 83.21 ± 3.29 80.88 ± 1.08
BGRL + ADDEDGE 81.49 ± 1.21 82.23 ± 2.00

Table 9: Accuracy of graph classification with different GNN encoders on MUTAG dataset. The best
result of each column is in grey . Metric is accuracy (%).

MODEL GCN GAT GPS

MVGRL+SPAN 93.33 ± 2.22 96.29 ± 2.61 94.44 ± 0.00
MVGRL+DROPEDGE 93.33 ± 2.22 92.22 ± 3.68 96.26 ± 5.23
MVGRL +ADDEDGE 94.44 ± 3.51 94.44 ± 6.57 95.00 ± 5.24

GBT+SPAN 90.00 ± 6.47 94.44 ± 4.53 90.74 ± 5.23
GBT + DROPEDGE 92.59 ± 2.61 94.44 ± 4.53 94.44 ± 4.53
GBT + ADDEDGE 92.59 ± 2.61 92.59 ± 2.61 94.44 ± 4.53

GRACE + SPAN 90.00 ± 4.15 96.29 ± 2.61 92.59 ± 2.61
GRACE + DROPEDGE 88.88 ± 3.51 94.44 ± 0.00 94.44 ± 4.53
GRACE + ADDEDGE 92.22 ± 4.22 96.29 ± 2.61 94.44 ± 0.00

BGRL + SPAN 90.00 ± 4.15 94.44 ± 4.53 94.44 ± 0.00
BGRL + DROPEDGE 88.88 ± 4.96 90.74 ± 4.54 92.59 ± 5.23
BGRL + ADDEDGE 91.11 ± 5.66 96.29 ± 2.61 96.29 ± 2.61

E.4 RELATIONSHIP BETWEEN SPECTRAL CUES AND PERFORMANCE OF EP

Based on the findings obtained from Sec 7.1, it is very likely that spectral information can not be
distinguishable enough for good representation learning on the graph. But to more directly answer the
question of whether spectral cues and information play an important role in the learning performance
of EP, we continue to conduct a statistical analysis to evaluate the influence of various factors on
the learning performance. The results turn out to be consistent with our claim that spectral cues are
insignificant aspects of outstanding performance on accuracy observed in Sec. 6.

E.4.1 STATISTICAL ANALYSES ON KEY FACTORS ON PERFORMANCE OF EP

From a statistical angle, we have a few dimensions of factors that can possibly influence learning
performance, like the parameters of EP (i.e. drop rate p in DROPEDGE or add rate q in ADDEDGE)
as well as potential spectral cues lying in the argument graphs. Therefore, to rule out the possibility
that spectral cues and information are significant, comparisons are conducted on the impact of the
parameters of EP in the augmentations versus:

1. The average L2-distance between the spectrum of the original graph (OG) and that of each
augmented graph (AUG) which is introduced by EP augmentations, denoted as OG-AUG.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Average spectra of original graphs (b) Average spectra of augmented graphs

(c) The Spectrum of MUTAG (d) The Spectrum of PROTEINS

Figure 4: The spectrum distributions of graphs on different graph classification datasets. MUTAG
and PROTEINS are chosen as they are well representative of all the node classification datasets. OG
means original graph and AUG means augmented graph. The augmentation method is ADDEDGE
with the best parameter on G-BT method.

2. The average L2-distance between the spectra of a pair of augmented graphs appearing in the
same learning epoch when having a two-way contrastive learning framework, like G-BT,
denoted as AUG-AUG.

Two statistical analyses have been carried out to argue that the former is a more critical determinant
and a more direct cause of the model efficacy. Each analysis was chosen for its ability to effectively
dissect and compare the impact of edge perturbation parameters versus spectral changes.

Due to the high cost of calculating the spectrum of all AUGs in each epoch and the stability of the
spectrum of the node-level dataset (as the original graph is fixed in the experiment), we perform this
experiment on the contrastive framework and augmentation methods with the best performance in the
study, i.e. G-BT with DROPEDGE on node-level classification. Also, we choose the small datasets,
CORA for analysis. Note that the smaller the graph, the higher the probability that the spectrum
distance has a significant influence on the graph topology.

Analysis 1: Polynomial Regression. Polynomial regression was utilized to directly model the
relationship between the test accuracy of the model and the average spectral distances introduced
by EP. This method captures the linear, or non-linear influences that these spectral distances may
exert on the learning outcomes, thereby providing insight into how different parameters affect model
performance.
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Table 10: Polynomial regression of node-level accuracy over drop rate p in DROPEDGE, average
spectral distance between OG and AUG (OG-AUG), and average spectral distance between AUG
pairs (AUG-AUG). The method is G-BT and the dataset is CORA. The best results are in grey .

Order of the regression Regressor R-squared ↑ Adj. R-squared ↑ F-statistic ↑ P-value ↓

1 (i.e. linear)
Drop rate p 0.628 0.621 81.12 6.94e-12
OG-AUG 0.388 0.375 30.45 1.35e-06

AUG-AUG 0.338 0.325 24.55 9.39e-06

2 (i.e. quadratic)
Drop rate p 0.844 0.837 126.9 1.14e-19
OG-AUG 0.721 0.709 60.78 9.23e-14

AUG-AUG 0.597 0.580 34.88 5.16e-10

The polynomial regression analysis in Table 10 highlights that the drop rate p is the primary factor
influencing model performance, showing strong and significant linear and non-linear relationships
with test accuracy. In contrast, both the OG-AUG and AUG-AUG spectral distances have relatively
minor impacts on performance, indicating that they are not significant determinants of the model’s
efficacy.

Analysis 2: Instrumental Variable Regression. To study the causal relationship, we perform an
Instrumental Variable Regression (IVR) to rigorously evaluate the influence of spectral information
and edge perturbation parameters on the performance of CG-SSL models. Specifically, we employ
a Two-Stage Least Squares (IV2SLS) method to address potential endogeneity issues and obtain
unbiased estimates of the causal effects.

In IV2SLS analysis, we define the variables as follows:

• Y (Dependent Variable): The outcome we aim to explain or predict, which in this case is
the performance of the SSL model.

• X (Explanatory Variable): The variable that we believe directly influences Y. It is the
primary factor whose effect on Y we want to measure.

• Z (Instrumental Variable): A variable that is correlated with X but not with the error term
in the Y equation. It helps to isolate the variation in X that is exogenous, providing a means
to obtain unbiased estimates of X’s effect on Y.

In this specific experiment, we conduct four separate regressions to compare the causal effects of
these factors:

1. (X = AUG-AUG, Z = Parameter): Examines the relationship where the spectral distance be-
tween augmented graphs (AUG-AUG) is the explanatory variable (X) and edge perturbation
parameters are the instrument (Z).

2. (X = Parameter, Z = AUG-AUG): Examines the relationship where the edge perturbation
parameters are the explanatory variable (X) and the spectral distance between augmented
graphs (AUG-AUG) is the instrument (Z).

3. (X = OG-AUG, Z = Parameter): Examines the relationship where the spectral distance
between the original and augmented graphs (OG-AUG) is the explanatory variable (X) and
edge perturbation parameters are the instrument (Z).

4. (X = Parameter, Z = OG-AUG): Examines the relationship where the edge perturbation
parameters are the explanatory variable (X) and the spectral distance between the original
and augmented graphs (OG-AUG) is the instrument (Z).

The IV2SLS regression results for the node-level task in Table 11 indicate that the edge perturba-
tion parameters are more significant determinants of model performance than spectral distances.
Specifically, when the spectral distance between augmented graphs (AUG-AUG) is the explanatory
variable (X) and drop rate p are the instrument (Z), the model explains 34.1% of the variance in
performance (R-squared = 0.341). Conversely, when the roles are reversed (X = p, Z = AUG-AUG),
the model explains 61.1% of the variance (R-squared = 0.611), indicating a stronger influence of
edge perturbation parameter p. A similar conclusion can be made when comparing OG-AUG and p.
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Table 11: IV2SLS regression results for the node-level task. The parameter p refers to the drop rate in
DROPEDGE. The experiment comes in pairs for each pair of variables and the better result is marked
in grey .

Variable settings R-squared ↑ F-statistic ↑ Prob (F-statistic) ↓
(X = AUG-AUG, Z = p) 0.341 45.77 1.68e-08
(Z = p ,Z = AUG-AUG) 0.611 47.85 9.85e-09
(X = OG-AUG, Z = p) 0.250 40.22 7.51e-08
(X = p, Z = OG-AUG) 0.606 41.27 5.62e-08

Summary of Regression Analyses The analyses distinctly show that the direct edge perturbation
parameters have a consistently stronger and more significant impact on model performance than
the two types of spectral distances that serve as a reflection of spectral information. The results
support the argument that while spectral information might have contributed to model performance,
its significance is extremely limited and the parameters of the EP methods themselves are more
critical determinants.
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