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Abstract

Compressive phase retrieval is a popular variant of the standard compressive
sensing problem in which the measurements only contain magnitude information.
In this paper, motivated by recent advances in deep generative models, we provide
recovery guarantees with near-optimal sample complexity for phase retrieval with
generative priors. We first show that when using i.i.d. Gaussian measurements and
an L-Lipschitz continuous generative model with bounded k-dimensional inputs,
roughly O(k logL) samples suffice to guarantee that any signal minimizing an
amplitude-based empirical loss function is close to the true signal. Attaining this
sample complexity with a practical algorithm remains a difficult challenge, and
finding a good initialization for gradient-based methods has been observed to pose a
major bottleneck. To partially address this, we further show that roughlyO(k logL)
samples ensure sufficient closeness between the underlying signal and any globally
optimal solution to an optimization problem designed for spectral initialization
(though finding such a solution may still be challenging). We also adapt this result to
sparse phase retrieval, and show that O(s log n) samples are sufficient for a similar
guarantee when the underlying signal is s-sparse and n-dimensional, matching
an information-theoretic lower bound. While these guarantees do not directly
correspond to a practical algorithm, we propose a practical spectral initialization
method motivated by our findings, and experimentally observe performance gains
over various existing spectral initialization methods for sparse phase retrieval.

1 Introduction

In this paper, we consider the (real-valued) phase retrieval problem, which aims to recover a signal
x ∈ Rn from noisy magnitude-only measurements:

yi = |〈ai,x〉|+ ηi, i = 1, 2, . . . ,m, (1)

where ai ∈ Rn is the i-th sensing vector, and ηi represents additive noise. This problem arises
naturally in areas such as diffraction imaging, X-ray crystallography, microscopy, optics and astron-
omy [8], where it is often difficult or even impossible to observe the linear measurements directly,
and one can only record the magnitudes or intensities (squared magnitudes).

In many real applications, to reduce the required number of measurements, it is of interest to exploit
structure in the signal being estimated. In particular, for applications related to signal processing and
imaging, it is well-known that the underlying signal typically admits a sparse or approximately sparse
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representation in some known basis [40]. Motivated by this, and considering the popularity of the
standard compressive sensing (CS) problem [16], the sparse phase retrieval problem has attracted
significant research interest.

Moreover, inspired by the successful applications of deep generative models in many fields [15],
recently, a new perspective of CS has emerged, for which the sparsity assumption is replaced by a
generative model assumption. That is, instead of assuming sparsity, the signal is assumed to be close to
the range of a generative model [5]. In addition to the theoretical developments in [5], the authors also
provide impressive numerical results showing that for some imaging applications, using generative
priors can significantly reduce the required number of measurements (e.g., by a factor of 5 to 10) for
recovering the signal up to a given accuracy. Follow-up works of [5] include [58, 22, 45, 67, 12, 29],
just to name a few.

In this paper, we focus on providing recovery guarantees with near-optimal sample complexity bounds
(e.g., optimal up to constant factors) for the compressive phase retrieval problem, considering both
sparse and generative priors.

1.1 Related Work

In this subsection, we provide a summary of some relevant works, which can roughly be divided into
(i) the general phase retrieval problem with no structural assumptions on the signal, (ii) sparse phase
retrieval, and (iii) phase retrieval with generative models.

General phase retrieval: A wide range of approaches have been designed to solve the phase retrieval
problem. Error-reduction approaches [18, 14] work well in practice, but they lack provable guarantees.
Convex methods such as PhaseLift [9] and PhaseCut [62] lift the phase retrieval problem to a higher
dimension, and typically suffer from high computation cost. Convex relaxations that operate in the
natural domain of the signal are proposed in [19, 2]. However, these convex relaxation based methods
are not empirically competitive against widely-used non-convex methods.

Following the seminal work of Netrapalli et al. [42], several works have studied theoretically-
guaranteed non-convex optimization algorithms for phase retrieval [8, 10, 63, 72]. These algorithms
start from a spectral initialization method, and then use an iterative algorithm (e.g., alternating
minimization or gradient descent) to further decrease the approximation error. For the general phase
retrieval problem, the optimal sample complexity of O(n) can be achieved by certain non-convex
methods [10, 63, 72]. Interestingly, optimal (up to a logarithmic factor) sample complexity guarantees
have also been provided in the case of a random initialization [55, 11]. It is worth mentioning that
some variants of the classic Wirtinger Flow (WF) algorithm [8, 10] and trust-region methods [55]
consider squared measurements:

yi = |〈ai,x〉|2 + εi, i = 1, 2, . . . ,m, (2)

and minimize the intensity based empirical loss function:

fI(w) :=
1

2

∥∥y − |Aw|2
∥∥2

2
, (3)

where A ∈ Rm×n is the sensing matrix with its i-th row being aTi , and | · | is applied element-wise.
Nonetheless, numerical results suggest that algorithms minimizing the amplitude based empirical
risk (with the measurement model (1))

f(w) := ‖y − |Aw|‖22 (4)

are usually more efficient in computation [63, 72, 54]. Based on this, we focus on the measurement
model (1) and the associated loss function (4).

Sparse phase retrieval: A variety of algorithms have been devised for sparse phase retrieval [44,
53, 50]. In particular, there exist various non-convex optimization based algorithms, including
thresholded/projected WF [7, 54], sparse truncated amplitude flow [64], compressive phase retrieval
with alternating minimization [28], and sparse phase retrieval by hard iterative pursuit [6]. All of
these approaches are analyzed under the assumption of using a sensing matrix with i.i.d. Gaussian
entries. In addition, similar to non-convex methods for the general phase retrieval problem, all of
these approaches start with a spectral initialization step, and then use an iterative algorithm to refine
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the initial vector. More specifically, in the initialization step, these approaches try to accurately
estimate the support of the underlying signal.

Unlike the general phase retrieval setting in which optimal sample complexity guarantees are provided
for some practical algorithms, for non-convex methods of sparse phase retrieval, the typical sample
complexity requirement is O(s2 log n), where s is the sparsity level. This does not match the
information theoretic lower bound [49, 57]; the bottleneck comes from the accurate estimation of
the support set [64, 54, 28]. Improved guarantees are also available in the noiseless setting under
more restrictive assumptions on the magnitudes of the non-zero entries [68]. In addition, for sparse
phase retrieval, recovery guarantees with respect to globally optimal solutions of both the intensity
and amplitude based loss functions have been provided in [13, 26, 24, 23, 69], achieving the optimal
sample complexity O(s log n). However, designing a computationally efficient algorithm achieving
the optimal sample complexity for s-sparse vectors remains an important open problem.

Phase retrieval with generative models: Phase retrieval using generative models has been studied
in [20, 25, 27, 52, 66, 1]. Extensive numerical experiments for phase retrieval with generative models,
as well as both Gaussian and coded diffraction pattern measurements, have been presented in [52].
Algorithms proposed in both works [20, 52] minimize the objective function directly over the latent
variable z ∈ Rk using gradient descent, where k is the latent dimension. The corresponding objective
function is highly non-convex, and performing gradient descent directly over z limits the explorable
solution space, which may lead to getting stuck in local minima.

We highlight two particularly relevant works in more detail. To guarantee favorable global geometry
for gradient methods, the authors of [20] assume a ReLU neural network generative model with i.i.d.
zero-mean Gaussian weights and no offsets. In addition, the neural network needs to be sufficiently
expansive such that ni ≥ Ω(ni−1 log ni−1), where ni represents the number of neurons in the i-th
layer. Under such conditions, a sample complexity O(kd2 log n) is obtained, where d is the number
of layers. In another related work studying an approximate message passing algorithm, the authors of
[1] maintain i.i.d. Gaussian weights but slightly relax to general activation functions (not only ReLU)
and ni ≥ Ω(ni−1). Under these conditions, the high-dimensional regime is studied (n,m, k →∞
with m/n kept fixed), and an asymptotic analysis is given (not yet established as fully rigorous). We
also note that [1] focuses on the case that z ∼ Pz for some separable Pz. Both [1] and [20] focus on
the noiseless case, though [1] states that the extension to noisy phase retrieval is possible.

Recovery guarantees for non-convex optimization algorithms for phase retrieval with pre-trained
ReLU neural network priors and untrained neural network priors have been provided in [25, 27],
with assumptions of noiseless measurements and the existence of a good initial vector. Recovery
guarantees for phase retrieval with generative models can also be found in [66], within a more general
setting of using differentiable but unknown link functions. The weaker assumption of an unknown
link function comes at a price; namely, it is an open problem to handle signals with representation
error [47]. Moreover, the assumption of differentiability makes it is not directly applicable to the
measurement model (1), and the loss function considered in [66] is different from both (3) and (4),
which are widely adopted for phase retrieval.

1.2 Contributions

• We show that for compressive phase retrieval with i.i.d. Gaussian measurements, when the
signal is close to the range of an L-Lipschitz continuous generative model with bounded k-
dimensional inputs, roughly O(k logL) samples suffice for ensuring the closeness between the
signal and any vector minimizing the amplitude-based empirical loss function (4).

• To address the sample complexity barrier posed by spectral initialization, we propose a relevant
optimization problem, and show that roughly O(k logL) samples are sufficient to guarantee
that any globally optimal solution of the optimization problem is close to the true signal. This
suggests the plausibility of practical spectral initialization algorithms that are able to find such a
global optimum, though we do not attempt to provide one that can provably do so.

• We adapt our analysis to the case of sparse phase retrieval, and show that roughly O(s log n)
samples suffice for a similar recovery guarantee, where s is the sparsity level and n is the
ambient dimension. This matches the information-theoretic lower bound up to constant factors
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for broad signal-to-noise ratios, and up to a logarithmic factor in general; see for example [7,
Theorem 3.2] and [34, Section 6.1]).

• Motivated by our theoretical findings for sparse phase retrieval, we propose a spectral initializa-
tion method based on sparse principal component analysis. We verify on synthetic experiments
that our initialization method significantly outperforms several popular spectral initialization
methods of sparse phase retrieval (in the sense of relative error). This further corroborates the
optimal sample complexity guarantee in our theory.

1.3 Notation

We use upper and lower case boldface letters to denote matrices and vectors respectively. We write
[N ] = {1, 2, · · · , N} for a positive integer N . We define the `2-ball Bk2 (r) := {z ∈ Rk : ‖z‖2 ≤ r},
and the unit sphere Sn−1 := {x ∈ Rn : ‖x‖2 = 1}. We use G to denote an L-Lipschitz continuous
generative model from Bk2 (r) to Rn. For a set B ⊆ Bk2 (r), we write G(B) = {G(z) : z ∈ B}. The
sensing matrix A ∈ Rm×n is assumed to have i.i.d. standard normal entries, i.e., aij

i.i.d.∼ N (0, 1).
For any s ∈ Rn, we use s̄ = s

‖s‖2 to denote the corresponding normalized vector. The support (set)
of a vector is the index set of its non-zero entries. For any X ∈ Rm×n and any index set I ⊆ [m],
XI denotes the |I| × n sub-matrix of X that only keeps the rows indexed by I . We use ‖X‖2→2 to
denote the spectral norm of a matrix X. For any positive integer N , we use IN to denote the identity
matrix in RN×N . We use the generic notations C and C ′ to denote large positive constants, and we
use c and c′ to denote small positive constants; their values may differ from line to line.

2 Amplitude-Based Loss Minimization for Generative Priors

In this section, we provide recovery guarantees with respect to optimal solutions of the amplitude
based loss function (4) for phase retrieval with generative models. We let the generative model
G : Bk2 (r) → Rn be any L-Lipschitz continuous function, and we suppose that the underlying
signal x is close to (but does not need to lie in) the range of G. We are interested in the case k � n
(i.e., relatively small latent dimension). The sensing matrix A is assumed to have i.i.d. standard
normal entries. Let q ∈ Range(G) minimize (4) to within additive τ > 0 of the optimum, i.e.,

‖y − |Aq|‖22 ≤ min
w∈Range(G)

‖y − |Aw|‖22 + τ, (5)

and define p ∈ Range(G) to be the point that is closest to the signal x, i.e.,

p = arg min
w∈Range(G)

‖x−w‖2. (6)

With the above settings in place, we present the following theorem, proved in Appendix B.
Theorem 1. Consider the observation model (1) with i.i.d. Gaussian measurements, and p,q
satisfying (5)–(6) with parameter τ . Then, for any δ > 0, we have that if m = Ω(k log Lr

δ ),1 with
probability 1− e−Ω(m), it holds that

min{‖q− x‖2, ‖q + x‖2} ≤ O
(
‖p− x‖2 +

‖η‖2 +
√
τ√

m
+ δ

)
. (7)

Since we assume that x is close to the range of G, the representation error ‖p − x‖2 is small
(compared to ‖x‖2). The optimization error τ is also ideally small. In addition, it is common to
assume that ‖η‖2√

m
≤ c‖x‖2 (e.g., see [72]), where c > 0 is also small. A typical d-layer neural

network generative model has poly(n)-bounded weights in each layer, and thus its Lipschitz constant
is L = nO(d) [5]. Then, the values of r and δ can be as extreme as r = nO(d) and δ = 1

nO(d) without
affecting the final scaling. In this case, Theorem 1 reveals that roughly O(k logL) samples suffice
to guarantee that any optimal solution of the amplitude-based loss function (4) is close to the true
signal (up to an unavoidable possible global sign flip). By the analysis of information-theoretic lower
bounds in [31, 37], this scaling cannot be improved without further assumptions.

1Here and subsequently, all m = Ω(·) statements are assumed to have a large enough implied constant.
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3 Spectral Initializations with Generative Priors

In Theorem 1, we provided recovery guarantees with respect to optimal solutions of the amplitude
based loss function. However, it is not clear whether such a guarantee is achievable by practical
algorithms.

A notable recent work is [25], showing that for a depth-d, width-w ReLU neural network, roughly
O(kd logw) samples2 suffice for their alternating phase projected gradient descent (APPGD) ap-
proach to obtain an accurate estimate of the signal, as long as there exists a proper initial vector
x(0), in the sense that min{‖x− x(0)‖2, ‖x + x(0)‖2} ≤ c‖x‖2 for some small positive constant c.
However, as we know from sparse phase retrieval, designing a practical algorithm to find a proper
initial vector with near-optimal sample complexity can be more difficult than designing the subsequent
iterative algorithm that refines the initial guess, and this still remains as an open problem. It is also
important to note that [25] assumes accurate projections onto the range of the generative model, but
this is not guaranteed in practice, due to the use of approximations [51, 48].

Existing initialization methods for sparse phase retrieval typically first estimate the support of the
sparse signal, and then perform a power method on a sub-matrix corresponding to the estimated
support set to calculate an initial vector. Without extra assumptions beyond sparsity, these methods
have a suboptimal sample complexity of O(s2 log n). For phase retrieval with generative models,
the situation is even worse – there is no theoretically-guaranteed initialization method at all. To
address this gap, we provide recovery guarantees for a spectral initialization method of phase retrieval
with generative models. We emphasize that our guarantees only concern the global optima of a
suitably-defined optimization problem; see (14) below. Similarly to [25], the caveat remains that
practical solutions may fail to find such optima (e.g., due to inexact projections).

We assume that x is in the range of G : Bk2 (r)→ Rn (again assumed to be L-Lipschitz continuous),
and we assume that the noise terms η1, η2, . . . , ηm are bounded as follows:

‖η‖2√
m
≤ c0‖x‖2, (8)

where c0 > 0 is a sufficiently small constant. This assumption states that the signal to noise
ratio (SNR) is sufficiently large, and has also been made in relevant existing works (see, e.g., [72,
Theorem 3]). Moreover, we assume that

‖η‖∞ ≤ c1‖x‖2, (9)

where c1 > 0 is also a sufficiently small constant. This assumption is satisfied, for example, when
(assuming (8)),

‖η‖∞ = O

(
‖η‖2√
m

)
, (10)

i.e., when none of the noise entries are unusually large. Again, similar assumptions have been made
in existing works such as [10, Theorem 2], and [71, Theorem 2].3

Let λ be defined as

λ :=

√
π

2
· 1

m

m∑
i=1

yi. (11)

Using sub-Gaussian concentration [60, Proposition 5.10], λ is close to ‖x‖2 with high probability
given enough samples. In the following, we focus on estimating the normalized signal vector
x̄ := x

‖x‖2 . For this purpose, similar to the idea in [35], we consider a normalized generative model

G̃ : D → Sn−1, where D := {z ∈ Bk2 (r) : ‖G(z)‖2 > Rmin} for some Rmin > 0,4 Sn−1 denotes
the unit sphere in Rn, and G̃(z) = G(z)

‖G(z)‖2 . Then, G̃ is L̃-Lipschitz continuous with L̃ = L
Rmin

.

2This matches the O(k logL) scaling upon substituting L = O
(
wd

)
for ReLU networks [5].

3When η is Gaussian with η ∼ N (0, σ2Im), (10) is not guaranteed, but any “truncated Gaussian” does
satisfy (10). In addition, to circumvent this issue under Gaussian noise, we may instead assume that σ

√
logm ≤

c0‖x‖2 in (8) (and remove the assumption in (9)). We also note that in [10, 71], the authors consider an intensity
based measurement model, and accordingly, the corresponding assumption is for ‖η‖∞

‖x‖22
instead of for ‖η‖∞

‖x‖2
.

4As discussed in [35], the dependence on Rmin in the sample complexity is very mild. Under the typical
scaling L = nO(d) for a d-layer neural network, the scaling laws remain unchanged even with Rmin = 1

nO(d) .
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In the following, we adopt an idea from [72] of considering an empirical matrix with a truncation
operation. We note that [72] only considered doing so for general phase retrieval; we are not aware
of any work doing so for constrained settings (e.g., with sparse or generative priors), and we found
that handling such settings required substantial additional effort. In more detail, we consider the
following matrix defined with a truncation operation (see Remark 2 below for a discussion comparing
to the non-truncated counterpart):

V :=
1

m

m∑
i=1

yiaia
T
i 1{lλ<yi<uλ}, (12)

where l, u are positive constants satisfying 1 < l < u, and λ is given in (11). Note that for the
noiseless case with yi = |〈ai,x〉|, in accordance with the above-mentioned closeness between λ and
‖x‖2, it is useful to consider the following expectation:

J := E

[
1

m

m∑
i=1

yiaia
T
i 1{l‖x‖2<yi<u‖x‖2}

]
= ‖x‖2(γ0In + β0x̄x̄

T ), (13)

where for g ∼ N (0, 1), we define γ0 := E[|g|1{l<|g|<u}] and β0 := E
[
|g|31{l<|g|<u}

]
− γ0 (cf.

Lemma 8 in Appendix C.2). Based on the observation that x̄ is a leading eigenvector of J and the
assumption x ∈ Range(G), we consider using the following optimization problem to find an x̂ that
approximates x̄:

x̂ := arg max
w∈G̃(D)

wTVw. (14)

In addition, in order to take the norm of x into account, we set the the initial vector x(0) as

x(0) = λx̂. (15)

We show that roughly O(k logL) samples suffice for ensuring the closeness between x(0) and x (up
to a global signal flip). Formally, we have the following.
Theorem 2. Consider the model (1) with i.i.d. Gaussian measurements and noise satisfying (8)–(9),
and let x̂ be as defined in (14). Suppose that5 x̄ ∈ G̃(D) and u > l > 1 + c1, where c1 ≥ ‖η‖∞‖x‖2
appears in (9). Given a sufficiently small positive constant c,6 when m = Ω

(
k log(L̃nr)

)
, we have

with probability 1− e−Ω(m) that

min{‖x̂− x̄‖2, ‖x̂ + x̄‖2} < 0.9c. (16)

In addition, we have with probability 1− e−Ω(m) that x(0) = λx̂ satisfies

min{‖x(0) − x‖2, ‖x(0) + x‖2} < c‖x‖2. (17)

The proof is given in Appendix C. Using well-established chaining arguments as those in [5, 35, 36],
the sample complexity Ω(k log(L̃nr)) can be reduced to Ω(k log(L̃r)). However, since for a typical
d-layer neural network, we have the Lipschitz constant L = nO(d) (and thus L̃ and r can also be of
order nO(d)) [5], such a reduction is typically of minor importance.

4 Sparse Phase Retrieval

The proof of Theorem 2 relies on the fact that x̄ lies in Range(G̃) ⊆ Sn−1, with the δ-covering
number being upper bounded by

(
L̃r
δ

)k
. Letting Σns be the set of all s-sparse unit vectors in Rn, we

know that the δ-covering number of Σns is upper bounded by
(
n
s

)(
1
δ

)s ≤ ( enδs )s [3]. Based on this
observation, we can readily adapt the proof of Theorem 2 to obtain the following theorem.

5This is weaker than the assumption that ‖x‖2 > Rmin made in [35]. Moreover, even if ‖x‖2 ≤ Rmin, the
condition x̄ ∈ G̃(D) may be satisfied (e.g., when G is a ReLU neural network generative model with no offsets,
then the range of G becomes a cone, and if 0 < ‖x‖2 ≤ Rmin, we can choose a sufficiently large C such that
C‖x‖2 > Rmin, with Cx ∈ Range(G)).

6Note that the smaller c is taken to be here, the smaller the constant c0 needs to be in the assumption (8).

6



Theorem 3. Consider the model (1) with i.i.d. Gaussian measurements and noise satisfying (8)–(9),
and suppose that x ∈ Rn is s-sparse. Let λ be defined as in (11). Suppose that u > l > 1 + c1,
where c1 ≥ ‖η‖∞‖x‖2 appears in (9), and V is defined in (12). Let x̂ be defined as

x̂ := arg max
w∈Σns

wTVw. (18)

Then, when m = Ω
(
s log n

)
, we have with probability 1− e−Ω(m) that

min{‖x̂− x̄‖2, ‖x̂ + x̄‖2} < 0.9c, (19)

where c > 0 is a sufficiently small constant. In addition, we have with probability 1− e−Ω(m) that
x(0) = λx̂ satisfies

min{‖x(0) − x‖2, ‖x(0) + x‖2} < c‖x‖2. (20)

Implications regarding SPCA and support recovery: We note that (18) is essentially a problem
of sparse principal component analysis (SPCA) [73, 38]. Existing spectral initialization methods for
sparse phase retrieval typically start from estimating the support of x, with an accurate estimate of the
support requiring a suboptimal O(s2 log n) sample complexity [7, 64, 28]. This serves as the major
bottleneck of the sample complexity upper bound of the whole procedure (i.e., the initialization step
and the subsequent iterative step), and it is unknown whether there is a practical and sample-optimal
approach for estimating the support. In fact, to our knowledge, even the following question has not
been answered previously:

Key question: Does there exist any spectral-based method (computationally efficient or otherwise)
attaining an accurate initial vector with near-optimal sample complexity?

We provide a positive answer to this question, showing that O(s log n) samples suffice to ensure that
any optimal solution of the SPCA problem (18) is close to the underlying (normalized) signal.

Motivated by the strong sample complexity guarantee provided in Theorem 3, we propose a spectral
initialization method for sparse phase retrieval as described in Algorithm 1. In particular, after
calculating V from A and y, we use algorithms for SPCA to solve (18). We observe via numer-
ical experiments in Section 5 that our initialization method outperforms several popular spectral
initialization methods used for sparse phase retrieval.
Remark 1. In various works on SPCA, it has been shown that there exists a statistical-computational
gap for achieving consistency and optimal convergence rates uniformly over a parameter space ( e.g.,
see [4, 65, 7]). However, the models therein are all different from ours (e.g., the spiked covariance
model [17]), so it is unclear to what extent we should expect similar computational difficulties.

Remark 2. The truncation function 1{lλ<yi<uλ} in (12) plays an important role in our analysis.
Specifically, it allows us to apply sub-exponential concentration bounds to certain quantities of
interest, where the non-truncated version would involve heavier-tailed random variables (e.g., sub-
Weibull of order α < 1 [21, Theorem 3.1]). We believe that this distinction could be even more
important when seeking uniform recovery guarantees, though we do not do so in this work. In Section
5, we present numerical results for applying SPCA to the non-truncated weighted empirical matrix

Ṽ =
1

m

m∑
i=1

yiaia
T
i . (21)

We will see in our experiments that the method corresponding to the truncated empirical matrix
V outperforms the method corresponding to the non-truncated empirical matrix Ṽ, although the
expectations of these two matrices have a very similar structure. Thus, we believe that truncation
may potentially help in overcoming the computational challenges discussed above.

We note that [43, 56] consider solving sparse phase retrieval via practical SPCA methods, in a more
general setting considering an unknown link function. They consider a weighted empirical covariance
matrix with no truncation, and the derived sample complexity has a quadratic dependence on s.
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Algorithm 1 A spectral initialization method for sparse phase retrieval based on SPCA (PRI-SPCA)
Input: A, y, l, u
Output: An initial vector x(0)

1) Calculate λ from (11) and then calculate V from (12).
2) Use an SPCA algorithm to compute x̂ according to (18).
3) Let x(0) = λx̂.

5 Numerical Experiments

In this section, we perform synthetic experiments to complement our theoretical results. We focus
only on the sparse setting, in part because numerous existing algorithms are known for sparse priors
but not for generative priors. Having said this, generative priors come with their own unique practical
challenges (e.g., approximate projection methods), and we believe that their empirical study and
associated practical variations would also be of significant interest for future work.

We compare our method (PRI-SPCA; see Algorithm 1) with spectral initialization methods used
in several popular algorithms for sparse phase retrieval: Thresholded Wirtinger flow (ThWF) [7],
sparse truncated amplitude flow (SPARTA) [64], and compressive phase retrieval with alternating
minimization (CoPRAM) [28].7 We also compare with the approach of solving an SPCA problem with
respect to Ṽ (cf. (21)), which is a non-truncated version of V. The corresponding method is termed
PRI-SPCA-NT, with ‘NT’ standing for no truncation. For PRI-SPCA, we set l = 1 and u = 5, as
previously suggested in [72].

Various algorithms have been developed to tackle the SPCA problem, see, e.g., [41, 30, 39]. In
our experiments, we present the numerical results using the generalized Rayleigh quotient iteration
(GRQI) method [33], but we observed that other popular SPCA methods such as the truncated power
method (TPower) [70] give similar averaged relative errors.8 For GRQI, we set the deflation parameter
to be 0.2, and the total number of iterations to be 100. Since the sparsity level s is typically assumed
to be known a priori for SPARTA and CoPRAM (ThWF assumes the knowledge of a parameter that plays
the similar role as s), for GRQI, we set the parameter about the maximum number of non-zero indices
as s. Note that the time complexity of each iteration of GRQI is O(ns + s3), which scales mildly
compared to the subsequent O(s2n log n) time complexity of the iterative methods used in the three
approaches (for ThWF, the corresponding time complexity is O(n2 log n). See [28, Table I]). The
number of power method steps used in all the methods is fixed to be 100.

The authors of [33] suggest using the column of maximal norm as a starting point of GRQI. Because
this policy has a time complexity of O(n2), we instead choose the column corresponding to the
largest diagonal entry as the starting point. Due to the structure of V (cf. (13)), this modified strategy
is very similar to the suggested policy, but with a smaller time complexity requirement. For a fair
comparison, all power methods used in ThWF, SPARTA, and CoPRAM are similarly initialized. For
the initialization method used in ThWF, we set the tuning parameter as α = 0.1, as suggested in [7].
Similarly, we set |Ī| = d 1

6me for the initialization method of SPARTA.

The support of the signal vector x is uniformly random, and the non-zero entries are generated
from i.i.d. standard normal distributions. The noise vector η is generated from the distribution
N (0, σ2‖x‖22Im), where σ > 0 represents the noise level. The initial relative error is defined as

min{‖x− x(0)‖2, ‖x + x(0)‖2}
‖x‖2

, (22)

where x(0) is an initial vector produced by each of the above mentioned initialization methods. The
reported relative error is averaged over 50 random trials, and error bars indicate a single standard
deviation over these trials. All numerical experiments are conducted using MATLAB R2014b on a
machine with an Intel Core i5 CPU at 1.8 GHz and 8GB RAM.

7We use the MATLAB package shared by the authors of [28] at https://github.com/GauriJagatap/
model-copram. The package not only contains the codes for CoPRAM, but also for ThWF and SPARTA.

8Using TPower also results in small relative error for our PRI-SPCA method, but in general, we found it to
be less stable than GRQI in the absence of a careful design of its starting point.
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1. Sample size effect: In our first experiment, similarly to [64], we consider noiseless measure-
ments, and we fix the signal dimension as n = 1000. We consider s equaling both 10 and
20. The number of measurements m takes values in {100, 200, . . . , 3000}. From Figure 1, we
observe that our PRI-SPCA method almost always achieves the smallest initial relative error,
thus outperforming all other methods, including the PRI-SPCA-NT method, which uses the
non-truncated empirical matrix Ṽ.

2. Sparsity effect: We consider noiseless measurements and fix n = 1000, and set m = 1000
or 2000, and vary s in {5, 10, . . . , 50}. We observe from Figure 2 that for this experiment,
our PRI-SPCA method also gives the best empirical performance.

3. Noise effect: To demonstrate that PRI-SPCA also performs well in the noisy case, we vary σ
in {0.1, 0.2, . . . , 1}. In addition, similarly to [64], we fix n = 1000, m = 3000, and consider
s equaling both 10 and 20. For this experiment, similarly to that in [28], we do not compare
with ThWF, as it uses quadratic measurements. From Figure 3, we observe that PRI-SPCA
outperforms SPARTA and CoPRAM, and it is better than PRI-SPCA-NT at low noise levels.

In Appendix E, we additionally compare with other initialization methods in terms of the effectiveness
when combining with the subsequent iterative algorithm of CoPRAM. In particular, we compare the
relative error and empirical success rate in the noiseless case, whereas for the noisy case, we compare
the relative error when using approximately the same running time. We observe that for most cases,
our PRI-SPCA method is superior to all other methods we compare with. This again suggests that
PRI-SPCA can serve as a good initialization method in practice.

6 Conclusion and Future Work

We have provided a near-optimal recovery guarantee for amplitude-based loss minimization for phase
retrieval with generative priors. In addition, motivated by the bottleneck of the spectral initialization
for compressive phase retrieval, we have provided near-optimal recovery guarantees with respect to
the optimal solutions of optimization problems designed for spectral initialization. An immediate
future research direction is to design provably sample-optimal and computationally efficient spectral
initialization methods that build on our theoretical results. In addition, extensions to complex-valued
phase retrieval [32, 46] would be of significant interest.

Acknowledgment. This work was supported by the Singapore National Research Foundation (NRF)
under grant R-252-000-A74-281, and the Singapore Ministry of Education (MoE) under grants
R-146-000-250-133 and R-146-000-312-114.

9



No. of measurements m; s = 10
500 1000 1500 2000 2500 3000

In
it
ia

l 
re

la
ti
v
e
 e

rr
o
r

0.2

0.4

0.6

0.8

1

1.2

1.4 CoPRAM

PRI-SPCA

PRI-SPCA-NT

ThWF

SPARTA

No. of measurements m; s = 20
500 1000 1500 2000 2500 3000

0.4

0.6

0.8

1

1.2

1.4
CoPRAM

PRI-SPCA

PRI-SPCA-NT

ThWF

SPARTA

Figure 1: Average relative error vs. number of measurements m with s = 10 (Left), s = 20 (Right).
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Figure 2: Average relative error vs. sparsity level s with m = 1000 (Left), m = 2000 (Right).
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