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Abstract

Outlier detection in high-dimensional tabular data is challenging since data is often distributed
across multiple lower-dimensional subspaces — a phenomenon known as the Multiple Views
effect (MV). This effect led to a large body of research focused on mining such subspaces,
known as subspace selection. However, as the precise nature of the MV effect was not well
understood, traditional methods had to rely on heuristic-driven search schemes that struggle
to accurately capture the true structure of the data. Properly identifying these subspaces is
critical for unsupervised tasks such as outlier detection or clustering, where misrepresenting
the underlying data structure can hinder the performance. We introduce Myopic Subspace
Theory (MST), a new theoretical framework that mathematically formulates the Multiple
Views effect and writes subspace selection as a stochastic optimization problem. Based on
MST, we introduce V-GAN, a generative method trained to solve such an optimization
problem. This approach avoids any exhaustive search over the feature space while ensuring
that the intrinsic data structure is preserved. Experiments on 42 real-world datasets show
that using V-GAN subspaces to build ensemble methods leads to a significant increase
in one-class classification performance — compared to existing subspace selection, feature
selection, and embedding methods. Further experiments on synthetic data show that V-
GAN identifies subspaces more accurately while scaling better than other relevant subspace
selection methods. These results confirm the theoretical guarantees of our approach and also
highlight its practical viability in high-dimensional settings.

1 Introduction

High-dimensional data, such as images, text, or some tabular datasets, constitutes much of the available
data on the internet, in medical domains, and even in the private sector. Especially when high-dimensional,
data can exhibit multiple complex relations between its features. Outlier Detection (OD), as well as other
downstream tasks, can greatly benefit from correctly exploiting these relations to achieve more accurate
results (Aggarwal, 2017; Trittenbach and Böhm, 2019). A popular research direction in the literature is to
search for subspaces maximizing a given quality metric. The multiple subspaces are later employed either
to study complex interactions between features or to build an ensemble of models, with each member in a
different subspace (Aggarwal, 2017).

Methods for obtaining subspaces work in two ways. One type extracts a single subspace that better represents
all data — like embedding and feature selection methods (Balın et al., 2019; Meilă and Zhang, 2023; Healy and
McInnes, 2024). These methods assume that the data lies on a single, low-dimensional subspace preserving
its properties, such as point distances, topology, or notably, the underlying distribution. As discussed in
Example 1, however, a single, low-dimensional subspace might not be enough to characterize the data. It is
therefore common in unsupervised tasks to assume that the data instead lies on multiple subspaces — known
as the Multiple Views effect (MV) (Keller et al., 2012). Subspace selection methods handle this latter
scenario by providing a list of interesting subspaces and, hence, better preserving the relationships within the
data (Keller et al., 2012; Trittenbach and Böhm, 2019; Agrawal et al., 2005).
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(a) Population from example 1.
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Figure 1: (a) Population from example 1 and the performance of the SotA for subspace search in it. We
colored in blue those in subspace U1 and purple those in subspace U2. (b) The normalized weights F̂ and
1 − F̂ assigned by GMD (Trittenbach and Böhm, 2019) to subspaces S1 and S2 should be as close as possible
to F and 1 − F , i.e., the dashed grey lines.

The extra information provided by mining for multiple subspaces can be crucial for unsupervised tasks with
little prior information, like clustering and outlier detection (Keller et al., 2012; Qu et al., 2023; Cribeiro-
Ramallo et al., 2024). Particularly, one can create ensembles of outlier detection methods, like LOF (Breunig
et al., 2000), by training multiple detectors, each on a lower-dimensional projection of the data. Subspace
selection methods that provide projections into each subspace are known as subspace search methods. The
most common approach, as discussed in (Aggarwal, 2017, Chapter 4), is to search for those feature subspaces
maximizing some heuristic quality metric. The obtained subspaces are hence necessarily axis-parallel. Despite
this limitation, this approach proved to be an effective technique for some downstream tasks, including outlier
detection. The usage of a heuristic as the quality metric, however, does not guarantee that the extracted
subspaces preserve the data’s properties, such as its distribution. As we elaborate in the following example,
this can happen even in simple settings.
Example 1. Consider a population as in Figure 1a, where 3-dimensional data lies with probability F on
the x1-x2 plane and with probability 1 − F on the x3 line. We refer to these two subspaces as S1 and S2
respectively. The data exhibits Multiple Views, as it lies within S = S1 ∪ S2 ⊂ R3. As the data lies on two
subspaces, methods that return a single subspace are not able to correctly represent it. On the other hand,
methods that return a list of subspaces should be able to (1) identify S1 and S2 as the relevant subspaces
and (2) assign them scores proportional to F and 1 − F . However, as shown in 1b, the state-of-the-art
(GMD (Trittenbach and Böhm, 2019)) fails to identify both subspaces and to assign them an accurate score.
Indeed, the retrieved subspaces approximately degenerate to the sole S1 if F < 0.5 and to S2 otherwise.

Our goal is to avoid using a heuristic quality metric while guaranteeing that the underlying data distribution
is preserved. This presents the following challenges. (1) To the best of our knowledge, the only previous
attempt at formalizing the Multiple Views effect focused on proving the efficacy of subspace ensembles for
tabular Outlier Detection (OD) (Cribeiro-Ramallo et al., 2024). Consequently, their theory is not directly
usable to find subspaces, nor does it extend to arbitrary data types; we will elaborate on this in Section 3.1.
(2) Even with a theory able to recognize the subspaces relevant for MV, these latter live in an exponential
search space — the power set of the set of features. An exhaustive search is therefore unfeasible. The designed
method should be able to find relevant subspaces and approximate their weights while avoiding searching in
such a power set.

Our contributions are the following: (1) We generalize the theory from Cribeiro-Ramallo et al. to be both
more applicable to general data types and to allow us to obtain subspaces in practice. In our revised theory,
subspaces can be obtained by solving a stochastic optimization problem, while we can provide guarantees on
the underlying data distribution being preserved. (2) To solve the optimization problem, we propose the
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Table 1: Summary of existing methods and their capabilities.

Multi-subspace Represent Project

Feature Selection ✗ ✓ ✓
Embedding Methods ✗ ✓ ✓
Subspace Search ✓ ✗ ✓
Subspace Discovery ✓ ✓ ✗

Subspace Generation (Ours) ✓ ✓ ✓

generative network V-GAN, whose goal is to generating projections into the desired subspaces. We prove that
its loss function is optimizable and that the network converges into the desired global optimum under mild
conditions. (3) We validate our theoretical results in practice using synthetic data, showing how V-GAN can
extract the predicted subspaces by our theory. (4) We study the quality of V-GAN subspaces by training an
ensemble of outlier detection methods using them, and testing their performance. In particular, we show how
V-GAN’s subspaces consistently lead to ensembles that are significantly better than all their competitors on
42 real-world benchmark datasets from (Han et al., 2022). (5) Finally, we provide the code for all of our
experiments and methods1.

2 Related Work

This section briefly overviews the subspace selection field together with its subfields. Table 1 includes a
summary of the discussion.

A classic approach to dealing with high-dimensional data is to assume that data lies on a lower-dimensional
manifold and to provide a projection into it. This can be done by removing unwanted features (Balın et al.,
2019) or finding other (not necessarily) orthogonal transformations (Jones and Artemiou, 2021; Meilă and
Zhang, 2023). These transformations always focus on preserving the original distribution of the data in
order to use it in a given downstream task. For unsupervised downstream tasks, it is common to use a more
general assumption on the data, known as Multiple Views effect (MV). Under MV, data lies in a collection
of subspaces {Si}ns

i=1, rather than in a single well-behaved one (Keller et al., 2012; Elhamifar and Vidal,
2013). Subspace selection methods aim to obtain a set of projections {πi}ns

i=1 into each subspace, ensuring
that any new datapoint can be projected into these subspaces (Aggarwal, 2017; Keller et al., 2012). The
number of subspaces, ns, is assumed unknown beforehand (Agrawal et al., 2005), in contrast to other classical
approaches employed in subspace clustering like (Wang et al., 2009; Vidal et al., 2012). Using these subspaces,
one can build powerful ensembles for outlier detection (Trittenbach and Böhm, 2019) or obtain more precise
clusters (Qu et al., 2023). There exist two big families of methods in subspace selection, as we will elaborate
in what follows.

Subspace Search. Subspace search methods assume that the subspaces conforming the data are feature
subspaces, i.e., axis-parallel projections of the data. Thanks to this, they work on a finite search space
P({1, ..., d}) simplifying the search scheme. More specifically, these methods explicitly output the subspaces
that maximize a certain quality metric in P({1, ..., d}). As the subspaces are explicitly known, one can trivially
project the data into each subspace for the desired downstream task using axis-parallel projections. They are
popular for outlier detection, as they allow the use of subspaces to create ensembles with off-the-shelf outlier
detectors (Aggarwal, 2017). These methods are also used for clustering, like in (Agrawal et al., 2005; Cheng
et al., 1999), although they are typically coupled with a particular clustering algorithm. However, as discussed
earlier, the main drawbacks of these methods are the cardinality of P(1, ..., d) and the selection of a quality
metric. Although some efforts address the search space problem, no work in the subspace search literature
offers a theoretical definition of what an ’important’ subspace is. Current methods rely on heuristic quality
metrics that do not guarantee the selected subspaces accurately preserve the data’s properties. For instance,
a method like Enclus (Cheng et al., 1999) relies on subspace search based on the entropy metric. Therefore,
Enclus would select the subspaces with minimal entropy, missing potential subspaces if the assumption of low

1Anonymized
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entropy subspaces does not hold — like for the population from Example 1. This leads to a collection of
subspaces that do not represent the data correctly.

Subspace Discovery. Given the problems with subspace search, a second group of methods adopted a
different approach for subspace selection. That is, they do not assume that the subspaces are necessarily
feature subspaces, nor do they explicitly output the projections themselves. Instead, they solely focus on
identifying which data points are likely belong to the same subspace to output an adjacency matrix based
on it. This relationship matrix is then typically used as a graph adjacency matrix for spectral clustering.
Authors successfully used these methods to develop clustering techniques for various applications, including
face, motion, and sentiment recognition (Qu et al., 2023; Elhamifar and Vidal, 2013). However, since they
rely on a relationship matrix between the clustered points, these methods focus on projecting the clustered
data only. Therefore, they cannot project new data points into the subspaces without retraining, which
limits the use of subspace discovery methods for outlier detection. While there are adaptations to handle
incoming data points, they typically treat data in an online manner, continuously updating the projections
with each new datapoint inferred (Kong et al., 2011; Langone et al., 2014; Sui et al., 2022). Consequently,
this adaptation falls under the category of online machine learning. As we treat data in an offline manner,
this adaptation is outside of our scope (Ben-David et al., 1997).

Previous Descriptions of Multiple Views. In the recent literature on outlier detection, Cribeiro-Ramallo
et al. attempted to mathematically describe the MV effect for a given population. Previous attempts aim to
study the distribution of data laying in subspaces by characterizing parts of the fullspace where the probability
measure concentrates (Pal et al., 2023). In contrast, Cribeiro-Ramallo et al. focused on providing specific
probability measures for the subspaces, allowing both their characterization and measurement. In particular,
the authors defined a family of distributions called myopic distributions, and show how the MV effect occurs
when the data is generated as such. For example, a distribution of a population x is myopic when its density
Px is invariant under the transformations of a random orthogonal projection matrix U. That is, whenever
Px = PUx, with each realization of U being an orthogonal projection matrix (Cribeiro-Ramallo et al., 2024).
As an example, if one considers again the population from Example 1, one can easily verify that it is myopic
under the effects of:

U =
{

U1 = diag(1, 1, 0) with probability F ,
U2 = diag(0, 0, 1) else.

While the theory can predict certain behavior on paper, (Cribeiro-Ramallo et al., 2024) do not provide any
way to obtain such U′s in practice. Additionally, it lacks sufficient generality to do so trivially, as density
functions are difficult to estimate in practice (Guo et al., 2022). This complicates the task of obtaining the
random projection matrix by directly using the definition in (Cribeiro-Ramallo et al., 2024).

Subspace Generation. Our work centers around a generalization of the definition of myopic distribution
that allows us to frame it using components one can easily estimate in practice. Thanks to this, we can fit a
generative method capable of approximating the distribution of a U verifying the definition. This way, we
can sample projections into these subspaces This novel approach to subspace selection, which we dubbed
Subspace Generation, avoids searching in P({1, ..., d}), and provides a suitable notion of "important"
subspace. This solves the representation problem of subspace search, while not sacrificing the ability to
project the data into the subspaces.

3 Myopic Subspace Theory

In this section, we will discuss the preliminaries for introducing our Subspace Generation method. We will
frame our theoretical background in a generalization of the theory of myopic distributions introduced by
Cribeiro-Ramallo et al.. In particular, we will introduce their definition first and discuss the main drawbacks
that motivate a more general framework (Section 3.1). After that, we will propose such a generalization and
use it to write subspace selection as an optimization problem (Section 3.2). Lastly, we will show optimality
guarantees under general conditions (Section 3.3).
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3.1 Original Definition

A large collection of authors observed that high-dimensional tabular data seem to behave differently in
certain feature subspaces than in others. In particular, a significant body of research empirically examines the
occurrence of data variability concentrating on a specific collection of subspaces (Keller et al., 2012; Nguyen
et al., 2014; Trittenbach and Böhm, 2019). This effect is called Multiple Views of the data (MV) (Müller
et al., 2012). Cribeiro-Ramallo et al. tried to mathematically describe MV, to then propose a way to train
parametric methods under it. Their definition goes as follows.

First, consider (Ed, T ) a metric space. Further consider xν : (Ω, Bσ,P) −! Ed a random vector with
(Ω, Bσ,P) a measurable probability space with Borel’s sigma algebra. Lastly, consider Diag({0, 1})d×d the
space of d × d diagonal binary matrices2, and Pxν = xν

∗P the distribution of xν with Pxν = dPxν

dµ its density
in the Radon-Nikodym sense3.
Definition 1 (Cribeiro-Ramallo et al.). Consider E = R and U : (Ω, Bσ,P) −! Diag({0, 1})d×d a random
binary matrix. We will say that xν is myopic under the views of U, iff:

Pxν = PUxν , point-wise in their support.

In this case, we call xν myopic under U or simply, myopic, if there is no risk of confusion.

By Definition 1, a population is myopic under the views of a random binary matrix iff the random vector
Uxν has the same density as xν for all points in its support. As diagonal matrices are orthogonal projections,
it is the same as saying that observing xν and a randomly projected version of xν lead to the same density
for any point in its support. The authors then prove that one can calculate PUxν under myopicity by

PUxν =
N∑

i=1
PUi

(Ui)PUixν ,

This result is very important for the particular use case of outlier detection (Cribeiro-Ramallo et al., 2024;
Trittenbach and Böhm, 2019; Aggarwal, 2017). However, how to find such U is not properly described. In
particular, we identify the following problems with Definition 1.

1. The point-wise equality of densities. In order to provide an estimate for the validity of the
definition, one would have to estimate first both densities. Not only density estimation is hard in
high-dimensional data, but the existence of densities is not guaranteed for a general distribution,
limiting the applicability.

2. Limited to E = R and U ∈ Diag({0, 1})d×d. The limitation of the metric space E to the real line
and the realizations of U to diagonal binary matrices further restricts the use of this theory to more
general data types.

3. Estimation in Practice. Even with all the limitations to the definition of xν and U, it is unclear
how to properly find a U∗ that verifies Definition 1 for a given xν . Even assuming that we can
perfectly estimate the densities, how to find such a random matrix that |Pxν (p) − PUxν (p)| = 0 for
almost all p is unclear for the finite sample setting.

In the following section, we will propose a general definition that addresses all previous weaknesses, while
also giving certain generality conditions for it.

3.2 Myopicity via its Representation in H

We will first introduce a collection of notations and necessary conditions for our generalized definition. After
that, we will explain how our generalization solves all of the previously raised problems.

2Without the identity.
3With µ >> Pxν .

5



Under review as submission to TMLR

3.2.1 Tackling the Point-wise Equality of Densities and the Space Limitations

Consider (E, T ) a separable metric space, H the associated Reproducing Kernel Hilbert Space (RKHS)
of real-valued functions on E with kernel κ and M+

1 (E) ⊂ M+(E) the space of positive signed measures
with value 1 (i.e., probability measures) on E. Further consider x : (Ω, Bσ,P) −! E a random variable
with (Ω, Bσ,P) a measurable probability space with Borel’s sigma-algebra, and X the space of such random
variables. In order to avoid problems 1 and 2, one can consider a richer definition as follows:

Definition 2 (Myopicity of a distribution). Consider C(X) the class of continuous operators from and to the
space of random variables on E, X, and a subset Θ(X) ⊂ C(X). Further consider

U : (Ω, Bσ,P) −! Θ(X) ⊂ C(X),

a random operator taking values on Θ(X). We say that x is myopic to the views of U iff

Px = PUx. (1)

In this case, we say that x is Θ(X)-myopic and U is a lens operator for x.

It is clear that Definition 2 generalizes Definition 1, by taking E = Rd, Θ(X) = Diag({0, 1})d×d and invoking
the uniqueness of Radon-Nikodym’s derivative (Simonnet, 1996, Chapter 10). Furthermore, Ux is correctly
defined as the mapping

Ux : ω ∈ (Ω, Bσ,P) 7−! Ux ∈ E,

with both U and x being realizations of U and x respectively. Multiple examples of different myopic
distributions with their lens operators can be found in Example 2 in Appendix A.1.

Certainly, both problems 1 and 2 are successfully addressed by Definition 2. However, equality between two
measures in M+

1 is still too general to tackle problem 3. Generally, when searching for a way to determine
when two elements a, b of the same space X are equal, one defaults to check whether m(a, b)X = 0, if such
a space X is equipped with a metric m(·, ·)X . Our goal is to do the same for two probability measures
p, q ∈ M+

1 (E). In what follows, we will introduce how to obtain such a metric, and in which conditions that
metric exists.

3.2.2 Tackling the Estimation

There exists a large body of literature focusing on embedding M+
1 (E) ⊂ M+(E) into a RKHS H of real-valued

functions on E — see (Berlinet and Thomas-Agnan, 2004, Chapter 4) for a survey. The particular embedding
employed to represent a measure as a function in H will determine the metric that one obtains at the end.
This is why is important to carefully embed M+ in a way that the resulting metric can be easily estimated.
For that, we will follow the existing body of work that aims to obtain a metric (Gretton et al., 2012; Schrab
et al., 2023; Fukumizu et al., 2007) that is easy to estimate and has a known asymptotic (Gretton et al.,
2012) distribution.

First, consider the linear functional on H:

Ep : f ∈ H 7−! Epf =
∫

fdp ∈ R.

Given this mapping, one can define:

Definition 3 (Definition 2 in Gretton et al. (2012)). Let F ⊂ H be a class of functionals on E. The
Maximum Mean Discrepancy (MMD) is defined as:

MMDκ(p, q) = sup
f∈F

(Epf − Eqf) . (2)

6
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In H an RKHS with kernel κ is measurable and such that4 ∫ √κ(·, ·)dp < ∞, for all p ∈ M+
1 (E), and F the

unit ball in H, one can easily prove (Sriperumbudur et al., 2010) that:

∃!µp ∈ H such that Epf =< µp, f >H, ∀p ∈ M+
1 , (3)

MMDκ(p, q)2 = ∥µp − µq∥2
H = Ex,x′∼p [κ(x, x′)] − 2Ex∼p,x′∼q [κ(x, x′)] + Ex,x′∼q [κ(x, x′)] . (4)

The unique representer of p in H, µp, is known as the mean embedding of p in H. The use of the unit ball for
F is not arbitrary, as different function classes lead to different metrics. We want to use the one in Equation 4
as it has a consistent5 U -estimator with better rate of convergence than other popular metrics in M+

1 — see
(Sriperumbudur et al., 2010). An interesting consequence of working in an RKHS is that one can characterize
specific properties of the MMD and the estimator by properties of the kernel κ. The most important one
for us is that the MMD defined as in eq. 4, on a RKHS H with a characteristic6 kernel is a metric —see
(Fukumizu et al., 2007). Thus, MMDκ(p, q) = 0 ⇐⇒ p = q.

Therefore, one can state the following:
Lemma 1. Consider H a RKHS with a characteristic kernel κ; and x, U and MMD as previously defined.
Further, consider V to be a lens operator for x. Then,

arg min
U

MMDκ(Px,PUx) ∋ V

Thus, by Lemma 1, for a Θ(X)-myopic x, one could find a lens operator V by solving the stochastic
optimization problem

arg min
U

MMDκ(Px,PUx) ∋ V.

As we only have access to the sample estimate of the MMD in the finite sample setting, M̂MDκ (Gretton
et al., 2012), we need to work with the problem

arg min
U

M̂MD
2
κ(Px,PUx) ∋ V. (5)

The question now is whether the optimization problem 5 is optimizable, and under which conditions we can
obtain a lens operator. We will answer these questions in what follows.

3.3 Convergence to a Lens Operator

Consider now a random operator U as before, and the space MΘ(X)
x ⊂ M+

1 of probability measures on E
generated by Θ(X) and x. I.e.,

p ∈ MΘ(X)
x ⇐⇒ ∃U such that PUx = p.

The following theorem and corollary establishes the conditions for the optimization problem 5 to have a global
minima for M+

1 — i.e., a lens operator. We first will write it in terms of probabilities in MΘ(X)
x ⊂ M+

1 , and
then we will show that one can rewrite it in terms of the random operators under certain conditions.
Theorem 2. Consider x a random variable on (E, T ) — a separable metric space — and U a random
operator taking values on Θ(X) ⊂ C(X). Further consider the associated RKHS H of functions on E with
characteristic kernel κ, the induced MMD metric on M+

1 . Under these conditions, if MΘ(X)
x is compact and

x Θ(X)-myopic, we have that:
4here the kernel is integrated with respect to both variables at the same time. I.e, as:

κ(·, ·) : x ∈ E 7−! κ(x, x)

5More precisely,
√

mn/(m + n)−consistent
6κ is characteristic iff Epf = Eqf, ∀f =⇒ p = q.
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Figure 2: Diagram of the relation between Theorem 2 and Corollary 3.

Given an iterative convergence strategy F such that F(pn−1) = pn ∈ N ⊂ M+
1 and {pn}n∈N −! p′ ∈

arg inf
p∈N

MMDκ(Px, p), it follows that:

F(pn−1) = pn ∈ MΘ(X)
x =⇒ {pn}n∈N −! p′ ∈ arg min

p∈M+
1

MMDκ(Px, p) and p′ ∈ MΘ(X)
x .

Logically, any way of obtaining a sequence in a subset N ⊂ M+
1 whose limit optimizes min MMDκ(Px, p)

in N — like (Arbel et al., 2019; Mroueh and Nguyen, 2021) —, can be used to obtain such a sequence in
MΘ(X)

x . Under Theorem 2, we know that such sequence has a limit in MΘ(X)
x , and that the limit will also be

a global optimum in M+
1 . The usefulness of this is made clear in the following corollary, which also give us

the conditions to write Theorem 2 in terms of operators on Θ(X) — see Figure 2 for a visual summary. This
corollary will allow us to solve equation 5 given a large enough sample size for M̂MDκ, and a proper way of
sampling realizations of random operators.
Corollary 3 (Convergence to a lens operator). Consider x a random variable on (E, T ) — a separable
metric space — and U a continuous random operator taking values on Θ(X) ⊂ C(X). Further consider the
associated RKHS H of functions on E with characteristic kernel κ and the induced MMD metric on M+

1 .
Under this conditions, if Θ(X) is compact and x is Θ(X)-myopic, we have that

Given an iterative convergence strategy F such that F(pn−1) = pn ∈ N ⊂ M+
1 and {pn}n∈N −! p′ ∈

arg inf
p∈N

MMDκ(Px, p), it follows that:

{Un}n∈N such that F(PUn−1x) = PUnx =⇒ MMDκ(Px,PUnx) −! 0, and {Un}n∈N
a.s
−! V ∈ Θ(X).

In other words, Corollary 3 shows that Theorem 2 also imply that a sequence of operators {Un}n∈N obtained
via F, will converge almost surely to a lens operator in Θ(X) — as long as Θ(X) is compact, and x myopic.
Thus, by Corollary 3, Equation 5 will have a solution that is a lens operator for x.

Now that we know that we can solve Equation 5, there are only two questions left

1. In practice, how can we sample random operators to solve Equation 5 in a differentiable manner?
2. If we find a lens operator V, can we still characterize the density PVx by the marginals PV x? I.e., is

there an equivalent to (Cribeiro-Ramallo et al., 2024, Proposition 1) in this general theory?

Solving Question 1 will give us a way to obtain lens operators in Θ(X)-myopic populations in practice. Section
4 will introduce such method. Solving Question 2 is important to the downstream task of outlier detection.
It is immediate under the assumptions of Corollary 3 by invoking the Disintegration and Radon-Nikodym
Theorems (Faden, 1985; Simonnet, 1996). We included a more general result akin to (Cribeiro-Ramallo et al.,
2024, Proposition 1) in the Appendix as such generality is not necessary in our setting.
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4 Adversarial Subspace Generation: V-GAN

In this section, we will employ our previous theoretical findings to propose a method for sampling a lens
operator. We will describe our setting and propose our method, and then propose a way to identify whether
V is a lens operator or not. A pseudo-code of the training is included in the Appendix

4.1 Subspace Generation with MMD-GANs

Our goal is to find a way to sample a lens operator V. I.e., we want to approximate the sampling function
of V using a parametric model. In particular, we aim to learn a parametric function Gθ, from an arbitrary
latent space Z to the space of operators Θ(X). The goal is that, when Gθ is composed with a uniform random
variable z in Z, PGθ(z) = PV. We do so by minimizing the loss function:

L(θ) = M̂MD
2
κ(Px,PGθ(z)x). (6)

Approximating sampling functions is a common problem in the machine learning literature, being the main
use case of generative models (Goodfellow et al., 2016, Chapter 20). In particular, Generative Moment
Matching Networks (MMD-GANs) use the squared sample MMD as their loss function, written as

L(θ) = M̂MD
2
κ(Px,PFθ(z)),

with Fθ : z ∈ Z 7−! Fθ(z) = x̂ ∈ E a generative network. These networks guarantee convergence in
distribution of Fθ(z) to x when minimizing the loss in terms of the parameters (Bińkowski et al., 2021; Arbel
et al., 2019; Li et al., 2017). However, none of them guarantee convergence to a solution in MΘ(X)

x that is
a global optimum also in M+

1 — which we need for myopicity. Theorem 2 gives sufficient conditions that
guarantee convergence within MΘ(X)

x , and Corollary 3 writes it in terms of the space of operators Θ(X).

As such, we will consider a neural network Gθ such that:

Gθ : z ∈ Z 7−! Gθ(z) = U ∈ Θ(X),

with Θ(X) compact. In practice, the architecture of Gθ, the metric space E, and the space of operators Θ(X)
have to be defined case-by-case. We will study the case of axis-parallel subspace selection, as it is the most
common setting in the literature of subspace search and subspace outlier detection (Aggarwal, 2017). We call
this strategy of searching subspaces by generating them Subspace Generation, and our proposed method,
V-GAN. Section B.2 in the Appendix contains examples of how one can apply the Myopic Subspace Theory
and V-GAN to different datatypes using different operators.

4.1.1 Axis-parallel Subspace Generation

Let E = Rd and Θ(X) = Diag({0, 1})d×d, separable and compact respectively. As matrix-vector multiplication
with diagonal matrices is the same as the element-wise product of the vector and the diagonal, we will build
Gθ such that Gθ(z) ∈ {0, 1}d. Thus, the loss function of our network, given a set of samples {xi}n

i=1 and
noise {zj}n

j=1, can be written as:

Lκ

(
{xi}n

i=1, {zj}n
j=1; θ

)
= M̂MD

2
κ(Px,PGθ(z)x) = 1

n(n − 1)

n∑
i=1

n∑
j=1
i ̸=j

κ(xi, xj)

+ 1
n(n − 1)

n∑
i=1

n∑
j=1
i ̸=j

κ(Gθ(zi) ⊙ xi, Gθ(zj) ⊙ xj)

− 2
n2

n∑
i=1

n∑
j=1
i̸=j

κ(xi, Gθ(zj) ⊙ xj),

(7)
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with a characteristic kernel κ (Gretton et al., 2012). To obtain a Gθ(zj) ∈ {0, 1}d we will use the upper-softmax
activation function, defined as:

σus(x) = u

(
σsm(x) −

!
1
d

)
,

with σsm the softmax activation, u the element-wise unit-step function and
!

1/d a vector of size d with
1
d in each entry. As the unit-step function is not differentiable, we will use the softmax directly during
backpropagation, similar to other binary-NN (Goodfellow et al., 2016). We described the particular layers
employed in the experiments in the Experimental Details in Section 5.1.2.

4.1.2 Kernel Learning for V-GAN

The literature of MMD-GANs also studies the case of using kernel learning, where κ is now a trainable
function κϕ. Particularly, Li et al. provide a way to train such kernels while also maintaining the convergence
guarantees. The resulting loss function can be written as:

Lkl
(
{xi}n

i=1, {zj}n
j=1; θ, ϕ

)
) = Lκϕ

(
{xi}n

i=1, {zj}n
j=1; θ

)
−

n∑
i=1

∥xi − E−1
ϕ (Eϕ(xi))∥2, (8)

with Eϕ and E−1
ϕ being an encoder and decoder network, and κϕ = κ ◦ Eϕ = κ(Eϕ(·), Eϕ(·)). κϕ will be a

characteristic kernel as long as κ is characteristic and Eϕ is injective (Berlinet and Thomas-Agnan, 2004).
The second addend of Equation 8 guarantees the injectivity (Bińkowski et al., 2021). Thus, the optimization
problem becomes (Li et al., 2017):

min
θ

max
ϕ

Lkl
(
{xi}n

i=1, {zj}n
j=1; θ, ϕ

)
. (9)

4.2 A Test for Myopicity

In practice, we only have access to a sample of i.i.d realizations of x. Thus, if one limits itself to simply
minimize Loss (6) one could end with a random operator approximately lens. That is why, to assess whether
the two random variables x and Ux have the same distribution, we need to use the following hypothesis test:{

H0 : Px = PUx,

Ha : Px ̸= PUx.
(10)

As the sample MMD’s asymptotic distribution is tabulated, one can use it for such statistical test.

In other words, we can test whether a given operator U is a lens operator for x by using the MMD test
statistic (Gretton et al., 2012) for the Test 10. This is ideal, as Gretton et al. proved that the resulting test
is asymptotically consistent7. Therefore, for a sufficiently large sample, we could study whether U is a lens
operator for x with a probability of a false negative ≈ 0. I.e., for any particular population, we can study
whether a given U is a lens operator, allowing us to obtain random operators that are exactly lens in practice.

5 Experiments

We evaluate different aspects of V-GAN as follows. First, we examine its ability to recover a derived
lens operator. Second, we compare its effectiveness in building one-class classification ensembles across 42
real-world datasets to nine competitors. Finally, we analyze its scalability in comparison to other subspace
selection methods. We will start by describing the experimental setup.

5.1 Experimental Details

This section has three parts. First, we describe the synthetic and real datasets for our experiments. Then, we
describe V-GAN’s configuration. Finally, we introduce our competitors.

7A test ∆ is called consistent iff, given any level α, the Type II error is β = 0.
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z ∈	 𝒵 𝐺𝜃 𝑧 = U ∈ Θ(𝔛)

𝜎

	𝐺𝜃(z)x
x

𝐺𝜃

min
𝜃

ℒ𝜅 𝜃 =  MMD(ℙ𝐱,ℙ𝐺𝜃 𝐳 𝐱)
																		"

(a) Without kernel learning

z ∈	 𝒵 𝐺𝜃 𝑧 = U ∈ Θ(𝔛)

𝜎

	𝐺𝜃(z)x
x

𝐺𝜃

min
𝜃

max
𝜙

ℒkl 𝜃, 𝜙 = ℒ𝜅∘ℰ𝜙 𝜃 −  𝑥 − ℰ𝜙
−!(ℰ𝜙(𝑥))

∶= Linear

∶= Upper	softmax

(b) With kernel learning

Figure 3: Diagram of the network and the training without and with kernel learning, from left to right,
respectively. (a) The network Gθ is trained to minimize the loss Lκ(θ) — the empirical estimator of the
MMD (Gretton et al., 2012) between samples of x and Gθ(z)x using kernel κ. (b) The network Gθ is trained
to minimize the same loss as before, but with κ composed with Eϕ, the encoder part of an autoencoder. At
the same time, Eϕ is trained to maximize Lκ◦Eϕ

, while minimizing the reconstruction loss.

5.1.1 Datasets

Real We used 42 normalized datasets from the benchmark study by Han et al., listed in Tables 11-15 in
the appendix. For those datasets with multiple versions, we chose the first in alphanumeric order. Details
about each dataset are available in (Han et al., 2022).

Synthetic Consider the random variables x1, x2, x3 ∼ N(0, 1). As data for our experiments in section 5.2,
we will consider a 3-dimensional population x generated by randomly drawing points from S1 = ⟨x1, x2, 0⟩
and S2 = ⟨0, 0, x3⟩ with probabilities F1 = F and F2 = 1 − F respectively. In section 5.4 we generate n points
from a d-dimensional Uniform distribution and vary n and d to study the scalability of various methods.

5.1.2 Network Settings

Generator Figure 3 contains a diagram of the architecture and the training of the generator. It features
four hidden linear layers with an increasing number of neurons: hl1 = d

8 , hl2 = d
4 , hl3 = d

2 , and hl4 = d, where
d represents the data dimensionality. The input layer from the latent space has d

16 neurons, while the output
layer employs the upper softmax activation σus — see Section 4.

Kernel Unless stated otherwise, following the advice from (Li et al., 2017), we will use the kernel κϕ = ς ◦Eϕ.
Here, ς is a Gaussian kernel with the median heuristic bandwidth parameter (Garreau et al., 2018) and Eϕ

an encoder trained by kernel learning — see Section 4.1.2. Particularly, we use an upside-down version of the
generator’s hidden layers for Eϕ, with the identity function as the output layer.

Training We trained the network for 2000 epochs, with minibatch gradient descent using the Adadelta
optimizer (Zeiler, 2012) following preliminary results. In particular, we use batches of size 500, a learning
rate of lrG = lrE = 0.007 for the generator and the encoder, respectively. We set momentum (0.99) and
weight-decay (0.04) (Goodfellow et al., 2016). Additionally, we updated Eϕ once every 5 epochs.

Number of Subspaces We generate 500 samples of the lens operator V to approximate its distribution.
Thus, the number of subspaces depends on the number of unique values of its distribution.

5.1.3 Competitors & Baselines

We selected popularly used in outlier detection and state-of-the-art (SotA) subspace search — CLIQUE
(Agrawal et al., 2005), HiCS (Keller et al., 2012), GMD (Trittenbach and Böhm, 2019) — feature selection —
CAE (Balın et al., 2019) —, and embedding methods — PCA (F.R.S., 1901), UMAP (Healy and McInnes,

11
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Table 2: Table of the different competitors in our experiments grouped by method type.

Type Competitors
Subspace Selection CLIQUE 2005, HiCS 2012, GMD 2019
Feature Selection CAE 2019
Embedding Method PCA 1901, UMAP 2024, ELM 2023

0.0 0.5 1.0

F

0.0

0.5

1.0

F̂

S1

S2

(a) HiCS

0.0 0.5 1.0

F

0.0

0.5

1.0

F̂

(b) GMD

0.0 0.5 1.0

F

0.0

0.5

1.0

F̂

(c) V-GAN

Figure 4: Comparison of the relative scores for each subspace across different values of F .

2024), ELM (Xu et al., 2023) — with openly available implementations, as competitors; see Table 2 for a
quick summary. As subspace discovery methods cannot project newly incoming data into For all methods
included, we used the recommended parameters and training regimes. Specific details for each competitor
are in the appendix, Section B.1. Additionally, we included regular Feature Bagging (FB) (Lazarevic and
Kumar, 2005) as a baseline in Section 5.3.1. We built homogeneous feature ensembles using off-the-shelf
outlier detectors in the outlier detection experiments. With the Embedding method, we used the embedded
version of the dataset to fit a singular off-the-shelf detector. Specifically, we utilized the most popular and
best-performing detectors from (Han et al., 2022): LOF, kNN, CBLOF, ECOD, and COPOD (Breunig et al.,
2000; Aggarwal, 2017; He et al., 2003; Li et al., 2023; 2020), with their respective recommended or default
parameters.

All experiments were implemented in Python. We used popular implementations for all competitors and
baselines and implemented V-GAN in PyTorch. We used pyod for outlier detectors, except HiCS, which is in
Nim. Experiments ran on a Ryzen 9 7900X CPU and an Nvidia RTX 4090 GPU.

5.2 Obtaining the Theoretical Lens Operator

To study the properties of the operator V obtained by V-GAN, we use synthetic data. Specifically, we
consider a population similar to Example 1, where a lens operator can be directly calculated. Using the
synthetic population described in Section 5.1.1, we define a random operator U with values U1 = diag(1, 1, 0)
and U2 = diag(0, 0, 1), occurring with probabilities F1 = F and F2 = 1 − F , respectively. This operator is
trivially a lens operator. The experiment aims to extract subspaces S1 and S2 with scores F̂1 and F̂2 as close
as possible to F1 and F2, using a subspace selection method. The steps are as follows:

1. Generate a dataset D by sampling 10000 points from x.
2. Use D to train a given subspace selection method.
3. Obtain the subspace qualities F̂i of all selected subspaces {Si} and map them into [0, 1] probabilities

by F̂ ′
i = F̂i∑

j
F̂j

.

4. Report the probabilities F̂ ′
1, F̂ ′

2 of subspaces S1 and S2.
5. Repeat steps 1−4 10 times.

In step 3 we considered the subspace selection methods HiCS and GMD (Keller et al., 2012; Trittenbach and
Böhm, 2019) apart from V-GAN. We could not include the subspace selection method CLIQUE (Agrawal

12
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(a) LOF (b) kNN (c) ECOD

(d) COPOD (e) CBLOF (f) Legend

Figure 5: Boxplots of ranks of the comparison with baselines using myopic datasets with different numbers of
features. The bins contained 3, 7, 5, and 6 datasets, respectively.

et al., 2005) as it does not report a quality metric for the subspaces. As we are using a 3-dimensional dataset,
it will be enough to employ a regular Gaussian kernel with the recommended bandwidth parameter for
V-GAN’s training. We reported the results in Figure 4. As we can see, V-GAN is the only method capable
of properly extracting the true weight of each subspace.

5.3 One-class Classification

This section presents outlier detection experiments using V-GAN to build ensembles. The goal is to detect
outliers in a test set Dtest after training on an inlier train set Dtrain, a problem known as one-class classification
(Perera et al., 2021). The experimental process is as follows:

1. Split the dataset D into a training set Dtrain containing 80% of the inliers from D, and a test set
Dtest containing the remaining 20% and the outliers.

2. Obtain a collection of K subspaces {Si}K
i=1 using a subspace selection method.

3. Given an outlier detector M, obtain {Mi}K
i=1 by fitting M on each of the K selected subspaces. As

a dataset, use Dtrain|Si
, the projection of Dtrain into the subspace.

4. Evaluate the performance of each detector by reporting the AUC of the aggregated scores across all
Dtest|Si . If K = 1 (like in feature selection), use the score in Dtest|S .

5. Repeat steps 2 to 4 10 times.

We aim to address two key questions about the performance of V-GAN’s lens operator: (Q1) How does it
compare to baselines for outlier detection, such as the full-space method and a randomly selected collection
of subspaces (feature bagging)? (Q2) How does it perform relative to other subspace selection methods and
dimensionality reduction techniques? Furthermore, we will evaluate its performance on datasets with and
without a myopic distribution, providing insights into both the best-case scenario (where V acts as a lens
operator) and the worst-case scenario (where V does not).

5.3.1 Comparison with Baselines (Q1)

In this section, we compare V-GAN to two classical baselines in the subspace selection literature: the
full-space method and Feature Bagging (FB) (Lazarevic and Kumar, 2005). For FB, we chose the number
of subspaces K from a set of five equidistant values from 50 to 500. For each dataset, we selected the K
yielding the highest average AUC across 10 repetitions. To aggregate scores, we used a weighted average

13
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Table 3: Results of the Conover-Iman test for the rankings against baselines on myopic datasets

LOF kNN ECOD COPOD CBLOF

FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN

FB + + - - - - - - - - - -
None - - - - - - - - - -
V-GAN + + + + + + + + + + + + + + + + + + + +

based on the probability assigned to each subspace, following (Cribeiro-Ramallo et al., 2024, Proposition 1).
For FB, this reduces to a simple average.

Furthermore, we will evaluate its performance on datasets with and without a myopic distribution, providing
insights into both the best-case scenario (where V is a lens operator, and hence x is myopic) and the
worst-case scenario (where V is not a lens operator, and hence x is not myopic). To study whether this
is the case for each dataset, we will study the hypothesis test presented in Section 4.2. We collected the
test results in Tables 11-15. If the test returns in favor of the null hypothesis, then the operator is lens (i.e.,
MMD(Px,PUx)) for the studied population. Further details can be found in Section B.1 in the Appendix.

Myopic Datasets. Figure 5 shows rankings contingent on dataset dimensionality group and average
rankings. V-GAN demonstrates consistent performance improvements as dimensionality increases, often
outperforming baselines for all outlier detectors. To assess statistical significance, we apply the Conover-Iman
post-hoc test (Conover and Iman, 1979), commonly used in outlier detection (Campos et al., 2016), following
a preliminary positive result from the Kruskal-Wallis test (Kruskal and Wallis, 1952). Table 3 contains
the results, where ‘+’ indicates the row method has a significantly lower median rank than the column
method, and ‘−’ indicates a significantly higher rank. One symbol marks p-values ≤ 0.1, two symbols mark
p-values ≤ 0.05, and blanks indicate no significant difference. Entirely grayed-out subtables denote cases
where the Kruskal-Wallis test, a prerequisite for using the Conover-Iman post-hoc test, was not passed.
V-GAN outperformed all baselines across detectors. The appendix summarizes the complete AUC results in
Tables 11-15.

Non-myopic Datasets. Non-myopicity represents the worst-case scenario for V-GAN, as its guarantees
rely on this property. Figure 9 in the Appendix shows rank boxplots for non-myopic datasets, similar to
those for myopic datasets. It is evident that V-GAN’s performance is not worse than any baseline, and the
Conover-Iman test results (Table 5) support this. V-GAN’s performance in its worst-case scenario is no worse
than that of a tuned feature bagging (FB) and outperforms the full-space approach for some outlier detectors.

5.3.2 Comparison with Competitors (Q2)

We now compare V-GAN to the competitors introduced in Section 5.1.3 (see Table 1). As before, we analyze
performance separately for myopic and non-myopic datasets.

Myopic Datasets. Figure 6 plots the ranks of all competitors for myopic datasets. V-GANconsistently
achieves the lowest median rank, with GMD typically being the closest competitor. Table 4 contains the
results of the Conover-Iman test. V-GAN significantly outperforms all methods and is the best option for
enhancing outlier detection performance under myopicity.

Non-myopic Datasets. Figure 10 plots ranks for the non-myopic case, and Table 6 contains the Conover-
Iman test results. V-GAN demonstrates a closer performance to its competitors on non-myopic datasets,
as expected, but it is never statistically worse than any competitor. I.e., we can recommend V-GAN as a
default approach for ensemble outlier detection using subspaces, which brings significant advantages in the
myopic case while having no disadvantage in the absence of myopicity.
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Figure 6: Boxplots of ranks of the comparison with our competitors using myopic datasets.
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Table 4: Results of the Conover-Iman test for the rankings against competitors on myopic datasets

OD method SS method CAE HiCS CLIQUE ELM GMD PCA UMAP V-GAN

LOF

CAE ++ ++ −−
HiCS ++ ++ −−
CLIQUE −− −− −− −− −− −−
ELM ++ ++ −−
GMD ++ ++ −−
PCA ++ ++ −−
UMAP −− −− −− −− −− −−
V-GAN ++ ++ ++ ++ ++ ++ ++

kNN

CAE ++ −− + ++ −−
HiCS ++ + ++ −−
CLIQUE −− −− −− −− −− −−
ELM ++ − ++ ++ −−
GMD ++ ++ −−
PCA − ++ ++ −−
UMAP −− −− −− −− −− −−
V-GAN ++ ++ ++ ++ ++ ++ ++

ECOD

CAE −− ++ + −− −−
HiCS ++ ++ −−
CLIQUE −− −− −− −− −−
ELM − ++ −−
GMD ++ ++ −−
PCA
UMAP
V-GAN ++ ++ ++ ++ ++

COPOD

CAE −− ++ −− −−
HiCS ++ ++ −−
CLIQUE −− −− −− −− −−
ELM ++ −−
GMD ++ ++ −
PCA
UMAP
V-GAN ++ ++ ++ ++ +

CBLOF

CAE ++ −−
HiCS ++ ++ ++ −−
CLIQUE −− −− −− −− −−
ELM −− −− −− −−
GMD ++ ++ ++ −
PCA ++ ++ ++ −−
UMAP −− −− −− −−
V-GAN ++ ++ ++ ++ + ++ ++
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Figure 7: Time taken for performing subspace search, per feature count.

5.4 Scalability

We now compare the scalability of V-GAN with other subspace search methods. For these experiments,
all methods were tested with their parameters set as in Section 5.1.2. The dataset consists of uniformly
generated noise with d ∈ {0.1, 1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 10} · 103 features. All experiments are run
using a single CPU thread to ensure a fair comparison.

Figure 7 presents the results of scalability experiments, showing the runtime in hours required to obtain a
collection of subspaces as a function of the number of features. V-GAN is more scalable than all subspace
search competitors: It is over 4, 30, and 8000 times faster than HiCS, GMD, and CLIQUE, respectively.

6 Limitations & Future Work

The experiments in this article center around obtaining lens operators in high-dimensional tabular data.
While our specific setting work with simple axis-parallel projections, MST potentially allows arbitrary levels
of complexity for Θ(X). This, especially for high-dimensional tabular data, can lead to a limitation of the
interpretability of the derived operators. This limitation is a common characteristic of tabular data, leading
to its own field of interpretable models for tabular data aiming to alleviate this (Yan et al., 2025; Si et al.,
2023). For instance, it is clear that in domains such as image processing or NLP, the results of V-GAN are
interpretable — see Figures 12 and 14. We believe that further research into these interpretable datatypes
can help to better interpret lens operators for tabular data.

While MST is a general theory, it does not consider general stochastic structures of the form:

x· : Ω × T −! E

ω, t 7! xt(ω) = xt,

i.e., it does not consider time-correlated datatypes like time series, functional data or Markov’s processes.
Analyzing such datatypes requires a suitable extension of MST and thus, we consider it as future work.
Furthermore, we focus our experimental evaluation to outlier detection, but there exists other downstream
tasks interested in obtaining projections of the data, like clustering (Cheng et al., 1999; Agrawal et al., 2005;
Qu et al., 2023). In this setting, a classical approach is to employ some clustering aggregation method, like
consensus clustering (Lipor et al., 2021), or hierarchical clustering (Baumgartner et al., 2004). Another
interesting application, that might not necessarily consider projections, is contrastive learning. In contrastive
learning, the goal is to augment the data by utilizing transformations x+ of samples of x with high similarity
(Chen et al., 2020). This augmented data, together with other samples x− not following the same distribution
as x, are used to train representation learning methods for a wide variety of downstream tasks(Chen et al.,
2020; Van Gansbeke et al., 2021). MST could provide a set of particular transformations given by U that
have guarantees to be optimal in terms of similarity — since Px = PUx. This is appealing, as we know
that there exists literature on obtaining better transformations by heuristically searching from a predefined
collection of transformations (Cubuk et al., 2019). Studying whether MST can derive useful transformations
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in practice, and how it can affect the rich theoretical background of contrastive learning (Wang et al., 2021)
is treated as future work.

Next, in Section 5 we performed experiments for outlier detection using V-GAN. Therefore, we set up a
default choice of hyperparameters for the training. This was to study how easily one can converge to a
significant solution in real practical scenarios. As we have Test (10), we can study whether the network has
converged to a solution or not. While in our case one could derive lens operators effortlessly — see Table
11’s last column — we believe that an analysis in the effect of hyperparameters in training can help with
harder datatypes. Firstly, harder higher-dimensional datatypes like high-resolution images, may result into a
more complicated optimization surface for Equation (8). Secondly, hyperparameters might not only affect
the optimization surface, but also Test (10) itself. Particularly, Test (10) depends on the selected kernel for
its performance, like mentioned in (Gretton et al., 2012; Bińkowski et al., 2021; Schrab et al., 2023). Lastly,
while Test (10) is consistent — see Section 4.2 —, its consistency is only asymptotic. This means that the
performance of Test (10) depends heavily on the batch size selected — the higher the better. This is not a
problem for our particular setting, but it can be one for datasets of much higher dimensionality — like text
with a large token count, or high-resolution images — or when trying to use models with a high memory
complexity — like large transformers. Moreover, the particular selection of kernel κ will also influence
the quality of Test (10). These four limitations are shared between all MMD-based generative models and
kernel-based inference methods (Gretton et al., 2012; Li et al., 2015). Thus, an exhaustive analysis like the
one performed in (Bińkowski et al., 2021) is considered an important future work.

7 Conclusions

Subspace search can improve outlier detection for an off-the-shelf detector in tabular data (Müller et al.,
2012; Keller et al., 2012; Nguyen et al., 2014; Trittenbach and Böhm, 2019). In our experiments, however, we
did not observe this improvement in all datasets, with the methods sometimes failing to beat näive baselines.
Besides, existing subspace search methods can hardly be applied to non-tabular data due to poor scaling. The
above mentioned factors hindered the use of such methods in practice. This paper proposes a new theoretical
framework that explains when subspace selection is helpful and, more importantly, how can we exploit it
in our advantage. Using this theory, we introduced a new way of performing subspace selection, akin to
subspace search methods, that is theoretically sound, scalable and usable in general scenarios — a strategy
that we called subspace generation. Our first attempt in subspace generation, called V-GAN, demonstrate a
significant performance increase against other baselines and competitors in the downstream task of outlier
detection — one of the main use cases for subspace search. In addition, our experiments suggest that the
performance increase is conditioned on the data’s distribution being myopic, a property we can infer from
data without any prior knowledge. Furthermore, even when the data is not myopic, V-GAN is still not
outperformed by its competitors. Our findings not only validate the superior performance of V-GAN for
subspace selection, but also show the potential of our Myopic Subspace Theory (MST) beyond the use case
of outlier detection on tabular data.
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A Theoretical Appendix

This appendix contains the proofs for all the statements in Section 3, extra general statements, and a collection
of examples of lens operators on different spaces.
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A.1 Myopic Subspace Theory (Extension)

We will first introduce all of the proofs of the statemes from Section 3, and then introduce all of the additional
statements and proofs. To maintain the clarity of this section, we will re-introduce all of the statements
before their proofs.
Lemma 1. Consider H a RKHS with a characteristic kernel κ; and x, U and MMD as previously defined.
Further, consider V to be a lens operator for x. Then,

arg min
U

MMDκ(Px,PUx) ∋ V

Proof. V lens for x =⇒ PVx = Px =⇒ MMDκ(PVx,Px) = 0 =⇒ V ∈ arg min
U

MMD(Px,PVx). The first
implication comes from the definition of a lens operator, the second for κ being characteristic, and the last
one is trivial when considering MMDκ(p, q) ≥ 0, ∀p, q ∈ M+

1 .

Theorem 2. Consider x a random variable on (E, T ) — a separable metric space — and U a random
operator taking values on Θ(X) ⊂ C(X). Further consider the associated RKHS H of functions on E with
characteristic kernel κ, the induced MMD metric on M+

1 . Under these conditions, if MΘ(X)
x is compact and

x Θ(X)-myopic, we have that:

Given an iterative convergence strategy F such that F(pn−1) = pn ∈ N ⊂ M+
1 and {pn}n∈N −! p′ ∈

arg inf
p∈N

MMDκ(Px, p), it follows that:

F(pn−1) = pn ∈ MΘ(X)
x =⇒ {pn}n∈N −! p′ ∈ arg min

p∈M+
1

MMDκ(Px, p) and p′ ∈ MΘ(X)
x .

Proof. By the definition of F, we can construct a sequence {pn}n∈N ∈ MΘ(X)
x such that

{pn}n∈N −! p′ ∈ arg min
p∈MΘ(X)

x

MMDκ(Px, p) (11)

Since x is Θ(X)−myopic, ∃V : Ω −! Θ(X) that is a lens operator for x. By Lemma 1, and the definion of
MΘ(X)

x , is clear that:
PVx ∈ arg min

p∈MΘ(X)
x

MMDκ(Px, p). (12)

Additionally, by the definition of a lens operator,

PVx ∈ arg min
p∈M+

1

MMDκ(Px, p). (13)

Thus, by (11), (12), and (13), is clear that

p′ ∈ arg min
p∈M+

1

MMDκ(Px, p).

Additionally, as {pn}n∈N is a sequence in a compact space,

{pn}n∈N −! p′ ∈ MΘ(X)
x .

Corollary 3 (Convergence to a myopic operator). Consider x a random variable on (E, T ) — a separable
metric space — and U a continous random operator taking values on Θ(X) ⊂ C(X). Further consider the
associated RKHS H of functions on E with characteristic kernel κ and the induced MMD metric on M+

1 .
Under this conditions, if Θ(X) is compact and x is Θ(X)-myopic, we have that
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Given an iterative convergence strategy F such that F(pn−1) = pn ∈ N ⊂ M+
1 and {pn}n∈N −! p′ ∈

arg inf
p∈N

MMDκ(Px, p), it follows that:

{Un}n∈N such that F(PUn−1x) = PUnx =⇒ MMDκ(Px,PUnx) −! 0, and {Un}n∈N −! V ∈ Θ(X).

Proof. Consider {pn}n∈N ∈ MΘ(X)
x , such that F(pn−1) = pn. By Zorn’s Lemma, one can construct a parallel

sequence {Un}n∈N such that F(pn−1) = pn = PUnx. As such,

{PUnx} −! p′ ∈ arg inf
p∈MΘ(X)

x

MMD(Px, p).

If MΘ(X)
x is compact, we can solve the remainder of the proof equivalently as done for Theorem 2. Thus, we

will focus on proving such a statement.

Θ(X) compact =⇒ {Un}n∈N −! V for all sequences in Θ(X). If we now consider {Un}n∈N and V such that
Un(ω) = Un −! V = V(ω) for almost all ω ∈ Ω, it is clear that:

P(lim
n

Un(ω) = V(ω)) = 1.

In other words, Un
a.s
−! V. Therefore, since Θ(X) ⊂ C(X) and E is a separabale metric space, by the definition

of almost sure convergence it is clear that:

Un
a.s
−! V =⇒ Unx a.s

−! Vx.

And lastly, by the convergence laws of random variables, we know that:

Unx a.s
−! Vx =⇒ Unx d

−! Vx =⇒ PUnx −! PVx.

Now, we introduce the result mentioned at the end of Section 3.3. This result motivates the way we aggregate
in our outlier detection experiments.
Proposition 4. Consider E a Radon space, (Ω, F ,P) a probability space, X the space of random variables
on E, and Θ(X) the space of operators from X to X. Further consider all U ∈ Θ(X) to be defined on fibers of
E, and U : Ω −! Θ(X) ⊂ C(X) a lens operator for x ∈ X. Lastly, consider the following conditions

i) U is such that, given any two realizations U1 and U2 (U1 ̸= U2), if PU1x(A) ̸= 0 =⇒ PU2x(A) = 0,
for A ∈ F(Ux) — i.e., all realizations are mutually exclusive.

ii) The set of all realizations of U is countable.

iii) There exists a meassure µ such that µ >> PUx and µ >> PU(ω)x, ∀ω ∈ Ω.

In this case, Px =
∑

ω∈Ω PU(U(ω))PU(ω)x and Px =
∑

ω∈Ω PU(U(ω))PU(ω)x.

Proof. Consider all U ∈ Θ(X) to be defined on fibers of E. By the disintegration theorem, we know that the
pushforward functions U∗Px are (probability) measures. Then, by (i) − (ii), we can apply the law of total
probabilities to derive:

PUx =
∑
ω∈Ω

PU(U(ω))PU(ω)x.

The result for the densities (in the Radon-Nikodym sense) is imediate by the Radon-Nikodym Theorem.

These conditions are trivially fulfilled by the axis-parallel case for outlier detection — akin to the one in
(Cribeiro-Ramallo et al., 2024, Proposition 1). Consider that this result focuses on the case when the operators
U ∈ Θ(X) each reside on different fibers of the space E, which is enough for our downstream setting.

Coming next, we will introduce a collection of examples of lens operators for a different set of cases — not
necessarily having Θ(X) defined on fibers of E.
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Example 2.

i) Normal Projected Population from Example 1. Consider the same population as Example 1,
with F = 0.5. Clearly, by the law of total probabilities

Px = 1
2Px|x∈S1 + 1

2Px|x∈S2 .

In this case, any non-zero measurable set on S1 will get projected into a zero-measure set in S2, and
vice-versa. Thus, we can write Px|x∈S1 = PU1x and Px|x∈S2 = PU2x, with

U1 =

1 0 0
0 1 0
0 0 0

 , U2 =

0 0 0
0 0 0
0 0 1

 .

Equivalently, defining U as randomly taking values on {U1, U2} with equal probability trivially fulfills
the conditions of Proposition 4.

ii) General non-parallel hyperplanes. Consider now a population lying in H1 and H2, two different
non-parallel hyperplanes of E = Rn of (non-necessarily equal) finite dimensionality, with probability F
and 1 − F . Further consider E to be equiped with the usual topology. As an illustrative example, one
can consider the simplified version of Figure 8. Consider E to be a normed topological vector space
and both H1 and H2 subspaces. Now, consider the projections U1 and U2 to H1 and H2, parallel to
H2 and H1 respectively. I.e., U1 and U2 are normal to the orthogonal planes H⊥

2 and H⊥
1 respectively.

Clearly, U2(H1) ⊊ H2, otherwise any point of H2 can be written as a linear combination of H1’s basis
. This would, in turn, lead to a contradiction as H1 and H2 are non-parallel, and thus H2 ̸⊂ H1.
Therefore, U2(H1) is a subspace of H2 with lower dimension. The equivalent can be derived for
U1(H2).
Consider U as the random operator such that it takes values U1 and U2 with probabilities F and 1−F
respectively. Clearly, Px = F Px|x∈H1 + (1 − F ) Px|x∈H2 as in the previous example. Furthermore,
as we just proved, any open set from H1 will get projected into a subspace in H2, and vice versa. As
F is a Borel’s sigma algebra and E = Rn, U2(H1) is of measure 0 in H2 (Rudin, 1987, Theorem
2.20(e)). Thus, all measurable subsets of H1 will get projected into zero-measure subsets in H2, and
vice-versa. Then, as we did before, Px|x∈H1 = PU1x and Px|x∈H2 = PU2x. Therefore,

Px = F PU1x + (1 − F ) PU2x,

making U a lens operator for x. This process can be repeated to obtain the lens operator to an
arbitrary finite collection of non-parallel hyperplanes {Hi}i∈I with probabilities {pi}i∈I with linearly
independent bases.

iii) We can take it one step further and consider the general case of two (n − 1)-submanifolds M1, M2
of the ambient n-manifold M. If one considers that the intersection of both submanifolds is not null,
we can use the notion of transversality to prove that the intersection is a 0 measure set. For instance,
we say that two manifolds intersect transversely iff the tangent spaces TpM1, TpM2 span TpM at
all points p (Guillemin and Pollack, 2010). In this case, the intersection M1

⋃
M2 is a submanifold

with dimensionality dim M1 + dim M2 − dim M = n − 2. If one takes a look at Figure 8 we can see
an example in 3 dimensions, where the intersection of these two 2-manifolds — 2-spheres — is of
dimensionality 1 —- a 1-sphere. Consider U1 the parallel transport to the closest point to M1 and
U2 the parallel transport to the closest point in M2. Thus, by taking U1 and U2 we can construct a
similar lens operator for any population x laying in the transversal manifolds.

iv) Homoskedastic errors. Assume the following random variable y = βx + ε, with β ∈ Rd×d and ε
another random variable acting as noise. Now, given an infinite set D = {βxi + εi}i∈I of samples of
y, we can define

Ui : βxj + εj ∈ Rd 7−! βxj + εi ∈ Rd, ∀i ∈ I.
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(a) Example 2.(ii). (b) Example 2.(iii).

Figure 8: Simplified version of the subspaces of the population in Example 2.(ii) and Example 2.(iii).

As such, defining a U selecting all Ui with equal probability will trivially be a lens operator, if all εi

are equally distributed. The finite sample setting of this case is a common bootstrap technique known
as Resampling Residuals.

v) Location Operator for the Variance. A trivial example in R can be obtained by considering the
random variables x ∼ Px and y = V ar(x). Consider U(ω) ∈ {U1, U2}, with U1y = V ar(x + 3) and
U2y = V ar(x + 10). Trivially, as the variance is invariant to location changes, Uy = y.

A.2 Subspace Generation with MMD-GANs (Extension)

In this Section, we will extend the results from Section 4.1 by including a pseudo-code of V-GAN in Algorithm
1. Here, we included the training for V-GAN with kernel learning. Using an identity matrix I as the encoder
is sufficient to derive the pseudo-code for training without kernel learning. In practice, the simultaneous
training of the generator G and the autoencoder (Eϕ, E−1

ϕ ) has to be done sequentially. In other words, we
will train the autoencoder for a given number of epochs first, then the generator, and after that, we restart
the loop until we reach the maximum number of epochs.

Algorithm 1 takes as input the dataset D, the kernel κ, the number of epochs and batches, and the iteration
count for the autoencoder and generator — iternumEϕ

and iternumGθ
, respectively. During training (lines

3-19), a batch of data points is drawn from D, and an equal amount of random noise is sampled (lines 5-6).
The update loop (lines 8-17) alternates between updating the encoder and the generator. The autoencoder
is updated (lines 8-10) as long as its epoch counter trained_epochsEϕ

is less than iternumEϕ
. After each

update, the counter is incremented by 1. Once the autoencoder’s counter reaches iternumEϕ
, the generator

is updated (lines 11-16) until its counter trained_epochsGθ
reaches iternumGθ

. When both counters reach
their limits, they are reset to 0 (lines 14-16), and the process repeats.

B Experimental Appendix

In this Appendix, we extend Section 5 by including further information about our experimental settings,
extra images and tables from Section 5.3, and further experiments with extra data types.

B.1 One-class Classification (Extended)

In Section 5.3 we compared V-GAN with other subspace selection, embedding, and feature selection methods.
We now introduce the exact default values employed for each of them, as well as specific information regarding
their implementation.

CAE (Balın et al., 2019). We followed the original CAE implementation by selecting K = 20 features,
fixing a start and minimum temperature of 10 and 0.1, respectively, and 300 epochs with a tryout limit of

26



Under review as submission to TMLR

Algorithm 1 V-GAN training
Require: Dataset D, the RKHS kernel κ, epochs, batches, number of epochs training the autoencoder

iternumEϕ
, number of epochs training the generator iternumGθ

1: Initialize Generator Gθ

2: Initialize the Encoder Eϕ and Decoder E−1
ϕ

3: for epoch ∈ {1, ..., epochs} do
4: for batch ∈ {1, ..., batches} do
5: noise Random noise z(1), ..., z(m) from Z
6: data Draw current batch x(1), ..., x(m)

7: trained_epochsEϕ
= 0, trained_epochsGθ

= 0
8: if trained_epochsEϕ

< iternumEϕ
then

9: Update Eϕ and E−1
ϕ by ascending the stochastic gradient: ∇ϕLkl(data, noise; θ, ϕ)

10: trained_epochsEϕ
+= 1

11: else if trained_epochsGθ
< iternumGθ

then
12: Update G by descending the stochastic gradient: ∇θLkl(data, noise; θ, ϕ)
13: trained_epochsGθ

+= 1
14: if trained_epochsGθ

≥ iternumGθ
& trained_epochsEϕ

≥ iternumEϕ
then

15: trained_epochsEϕ
= 0, trained_epochsGθ

= 0
16: end if
17: end if
18: end for
19: end for

5. The architecture of the network, optimizer, and default learning rate were taken as-is from their official
implementation.

HiCS (Keller et al., 2012). We used the only official implementation of HiCS available together with
their recommended parameters. In particular, we used 100 runs with 500 subspace candidates and kept a
critical value for the test statistic α = 0.10. We did use a different amount of output subspaces, 500, to
keep it consistent as to what V-GAN uses. Additionally, we added direct Python support to their source
code — originally in Nim. The compiled binary is available for download in our code repository.

CLIQUE (Agrawal et al., 2005). We used the only readily available implementation of the algorithm
in Python.8 In our experiments we employed the default values of ξ = 3 and τ = 0.1.

ELM (Xu et al., 2023). We used the Extreme Learning Machines that perform the dimensionality
reduction for Deep Isolation Forests as another competitor, due to the popularity and similarity of the method.
In particular, we used the default architecture and parameters from their implementation in pyod. This is 50
ensemble members, a hyperbolic tangent activation layer, and a representation space of dimensionality 20.

GMD (Trittenbach and Böhm, 2019). We employed the only readily avaialble implementation of
GMD online9. We employed the default parameters of α = 0.1 and 100 runs.

PCA (Maćkiewicz and Ratajczak, 1993). We used the implementation of PCA available in sklearn
(Pedregosa et al., 2011). For reducing the dimensionality of the data, we selected the components with the
most share of variability, until reaching 90%.

UMAP (Healy and McInnes, 2024). We employed the implementation provided in their official
package. We chose 15 neighbors as recommended by the authors. As for the dimensionality of the underlying

8https://github.com/georgekatona/Clique
9https://github.com/andersonvaf/gmd
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(a) LOF (b) kNN (c) ECOD

(d) COPOD (e) CBLOF (f) Legend

Figure 9: Boxplots of ranks of the comparison with baselines using non-myopic datasets across features

Table 5: Results of the Conover-Iman test for the rankings against baselines on non-myopic datasets

LOF kNN ECOD COPOD CBLOF

FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN

FB + + +
None - - - - - - -
V-GAN + + ++

manifold, the authors recommend using between 10 and 100 for downstream machine learning tasks. As the
dimensionality of our datasets D varies, we opted to use min

{
dim(D)

2 , 100
}

.

Additionally, we included the figures and tables from the non-myopic case from our experiments. Figure 9
contains the boxplots, and Table 6 the Conover-Iman test for the baselines. Figure 10 and Table 5 contain
both the boxplots and the Conover-Iman test for the competitors, respectively. We also included the p-values
of all the Conover-Iman tests, in Tables 1-1. To finalize, we included the raw AUC results in Tables 11-15.
We fixed a 5-hour time-out per repetition of the subspace search experiment, denoted by OT. Additionally,
if the Outlier Detection Method employed failed to report any results due to an implementation error, we
reported ERR. We excluded results with errors from the ODM during the Conover-Iman test analysis but
treated time-outs as 0 AUC values when calculating the ranks. The last column of the tables contains the
results of the Myopicity test with the derived operator. A 1 signifies that the p-value of the test statistic was
larger than 0.10 — i.e. that the distribution is myopic — and 0 signifies the contrary.

B.2 Other Data types

This section aims to exemplify the flexibility of the Myopic Subspace Theory (MST) to adapt to different
data types. In particular, we will present preliminary experiments for both Images and Natural Language in
what follows. Our goal will be to exploit the human-friendly nature of images and text to visualize what a
lens operator looks like in these cases. We include more specific details regarding all implementations and the
training for both data types in their respective repositories. To encourage further research on MST, we are
releasing all original data, code, and even model weights for all experiments for both data types10.

10Forked from the original repository
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Figure 10: Boxplots of ranks of the comparison with our competitors using non-myopic datasets.
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Table 6: Results of the Conover-Iman Test for the rankings against competitors on non-myopic Datasets

OD method SS method CAE HiCS CLIQUE ELM GMD PCA UMAP V-GAN

LOF

CAE ++ - ++ - -
HiCS ++ ++
CLIQUE - - - - - - - - - - - -
ELM ++ ++ -
GMD + ++ ++
PCA ++ ++ -
UMAP - - - - - - - - - - - -
V-GAN ++ ++ + + ++

kNN

CAE - - ++ - - - - - + - -
HiCS ++ ++ ++
CLIQUE - - - - - - - - - - - -
ELM + ++ ++ - -
GMD ++ ++ ++
PCA ++ ++ ++
UMAP - - - - - - - - - - -
V-GAN ++ ++ ++

ECOD

CAE ++ - - -
HiCS ++ - -
CLIQUE - - - - - - - -
ELM - - - -
GMD + ++ ++
PCA
UMAP
V-GAN ++ ++ ++ ++

COPOD

CAE ++ - - -
HiCS ++ - - -
CLIQUE - - - - - - - - - -
ELM ++ - -
GMD ++ + ++
PCA
UMAP
V-GAN ++ ++ ++ ++

CBLOF

CAE - - - - -
HiCS ++ ++ ++
CLIQUE - - - - - - - -
ELM - - - - - - - -
GMD ++ ++ ++ ++
PCA ++ ++ ++ ++
UMAP - - - - - - - -
V-GAN + ++ ++ ++

Table 7: p-values of the Conover-Iman Test for Rankings against baselines on myopic Datasets

LOF kNN ECOD COPOD CBLOF

FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN

FB 0.00 0.00 0.84 0.01 0.41 0.04 0.83 0.00 0.42 0.00
None 0.00 0.00 0.84 0.01 0.41 0.01 0.83 0.00 0.42 0.00
V-GAN 0.00 0.00 0.01 0.01 0.04 0.01 0.00 0.00 0.00 0.00

Table 8: p-values of the Conover-Iman Test for Rankings against baselines on non-myopic Datasets

LOF kNN ECOD COPOD CBLOF
FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN FB None V-GAN

FB 0.06 0.80 0.06 0.80
None 0.06 0.05 0.06 0.05
V-GAN 0.80 0.05 0.80 0.05
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Table 9: p-values of the Conover-Iman Test for Rankings against competitors on myopic Datasets

OD Method SS method CAE HiCS CLIQUE ELM GMD PCA UMAP V-GAN

CAE 0.25 0.00 0.68 0.46 0.87 0.00 0.00
HiCS 0.25 0.00 0.46 0.68 0.19 0.00 0.04
CLIQUE 0.00 0.00 0.00 0.00 0.00 0.36 0.00
ELM 0.68 0.46 0.00 0.74 0.56 0.00 0.01
GMD 0.46 0.68 0.00 0.74 0.36 0.00 0.01
PCA 0.87 0.19 0.00 0.56 0.36 0.00 0.00
UMAP 0.00 0.00 0.36 0.00 0.00 0.00 0.00

LOF

V-GAN 0.00 0.04 0.00 0.01 0.01 0.00 0.00

CAE 0.59 0.00 0.02 0.18 0.06 0.00 0.00
HiCS 0.59 0.00 0.06 0.42 0.18 0.00 0.00
CLIQUE 0.00 0.00 0.00 0.00 0.00 0.86 0.00
ELM 0.02 0.06 0.00 0.28 0.59 0.00 0.02
GMD 0.18 0.42 0.00 0.28 0.59 0.00 0.00
PCA 0.06 0.18 0.00 0.59 0.59 0.00 0.00
UMAP 0.00 0.00 0.86 0.00 0.00 0.00 0.00

kNN

V-GAN 0.00 0.00 0.00 0.02 0.00 0.00 0.00

CAE 0.01 0.04 0.06 0.00 0.00
HiCS 0.01 0.00 0.38 0.86 0.02
CLIQUE 0.04 0.00 0.00 0.00 0.00
ELM 0.06 0.38 0.00 0.29 0.00
GMD 0.00 0.86 0.00 0.29 0.03
PCA
UMAP

ECOD

V-GAN 0.00 0.02 0.00 0.00 0.03

CAE 0.03 0.00 0.21 0.01 0.00
HiCS 0.03 0.00 0.38 0.70 0.03
CLIQUE 0.00 0.00 0.00 0.00 0.00
ELM 0.21 0.38 0.00 0.21 0.00
GMD 0.01 0.70 0.00 0.21 0.07
PCA
UMAP

COPOD

V-GAN 0.00 0.03 0.00 0.00 0.07

CAE 0.43 0.02 0.11 0.12 0.14 0.10 0.00
HiCS 0.43 0.00 0.02 0.49 0.57 0.02 0.02
CLIQUE 0.02 0.00 0.47 0.00 0.00 0.41 0.00
ELM 0.11 0.02 0.47 0.00 0.00 0.95 0.00
GMD 0.12 0.49 0.00 0.00 0.90 0.00 0.06
PCA 0.14 0.57 0.00 0.00 0.90 0.00 0.05
UMAP 0.10 0.02 0.41 0.95 0.00 0.00 0.00

CBLOF

V-GAN 0.00 0.02 0.00 0.00 0.06 0.05 0.00
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Table 10: p-values of the Conover-Iman Test for Rankings against competitors on non-myopic Datasets

OD Method SS method CAE HiCS CLIQUE ELM GMD PCA UMAP V-GAN
CAE 0.19 0.01 0.40 0.06 0.44 0.00 0.01
HiCS 0.19 0.00 0.64 0.54 0.59 0.00 0.18
CLIQUE 0.01 0.00 0.00 0.00 0.00 0.27 0.00
ELM 0.40 0.64 0.00 0.28 0.94 0.00 0.07
GMD 0.06 0.54 0.00 0.28 0.25 0.00 0.46
PCA 0.44 0.59 0.00 0.94 0.25 0.00 0.06
UMAP 0.00 0.00 0.27 0.00 0.00 0.00 0.00

LOF

V-GAN 0.01 0.18 0.00 0.07 0.46 0.06 0.00
CAE 1.00 0.03 0.05 0.06 0.00 0.05 0.08 0.00
HiCS 0.03 1.00 0.00 0.83 0.40 0.88 0.00 0.48
CLIQUE 0.05 0.00 1.00 0.00 0.00 0.00 0.81 0.00
ELM 0.06 0.83 0.00 1.00 0.29 0.94 0.00 0.36
GMD 0.00 0.40 0.00 0.29 1.00 0.32 0.00 0.88
PCA 0.05 0.88 0.00 0.94 0.32 1.00 0.00 0.40
UMAP 0.08 0.00 0.81 0.00 0.00 0.00 1.00 0.00

kNN

V-GAN 0.00 0.48 0.00 0.36 0.88 0.40 0.00 1.00
CAE 1.00 0.29 0.04 0.57 0.07 0.00
HiCS 0.29 1.00 0.00 0.10 0.45 0.02
CLIQUE 0.04 0.00 1.00 0.12 0.00 0.00
ELM 0.57 0.10 0.12 1.00 0.02 0.00
GMD 0.07 0.45 0.00 0.02 0.13
PCA
UMAP

ECOD

V-GAN 0.00 0.02 0.00 0.00 0.13
CAE 1.00 0.85 0.02 0.57 0.05 0.00
HiCS 0.85 1.00 0.01 0.71 0.07 0.00
CLIQUE 0.02 0.01 1.00 0.00 0.00 0.00
ELM 0.57 0.71 0.00 1.00 0.16 0.01
GMD 0.05 0.07 0.00 0.16 1.00 0.22
PCA
UMAP

COPOD

V-GAN 0.00 0.00 0.00 0.01 0.22
CAE 0.27 0.13 0.22 0.03 0.04 0.11 0.06
HiCS 0.27 0.01 0.02 0.27 0.38 0.01 0.41
CLIQUE 0.13 0.01 0.75 0.00 0.00 0.98 0.00
ELM 0.22 0.02 0.75 0.00 0.00 0.73 0.00
GMD 0.03 0.27 0.00 0.00 0.81 0.00 0.84
PCA 0.04 0.38 0.00 0.00 0.81 0.00 0.99
UMAP 0.11 0.01 0.98 0.73 0.00 0.00 0.00

CBLOF

V-GAN 0.06 0.41 0.00 0.00 0.84 0.99 0.00
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z ∈	 𝒵 𝐺𝜃 𝑧 = U ∈ Θ(𝔛)

𝜎
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∶= Linear

∶= Upper	softmax

∶= Batch	norm

∶= Gaussian	Noise

∶= LeakyReLU

∶= Batch	disc

	𝐺𝜃(z)x
x

min
𝜃

ℒ𝜅 𝜃 =  MMD(ℙ𝐱,ℙ𝐺𝜃 𝐳 𝐱
)																		"

(a) Image data architecture

z ∈	 𝒵 𝐺𝜃 𝑧 = U ∈ Θ(𝔛)

𝜎

𝐺𝜃

∶= Linear

∶= Upper	softmax

∶= Batch	norm

∶= LeakyReLU

	𝐺𝜃(z)x
x

min
𝜃

ℒ𝜅 𝜃 =  MMD(ℙ𝐱,ℙ𝐺𝜃 𝐳 𝐱)
																		"

(b) Text data architecture

Figure 11: Diagram of the network for both image (left) and text (right) data.

B.2.1 V-GAN vision: Myopic Subspace Theory on Image Data

We will first explore the results of applying V-GAN to image data. For this experiment, we defined E = R3·h·w

and Θ(X) = Diag(h·w)×(h·w)({0, 1}), with h and w being the height and width of an image. Therefore, we
are considering E to be the vectorized space of all 3 RGB channels of an image, and Θ(X) to be the space of
(h · w) × (h · w) binary diagonal matrices acting on random images as:

Θ(X) ∋ U : X −! X

x⇝ Ux = (UxR | UxG | UxB).
(14)

In other words, we are applying the operators simultaneously in all color channels. To make V-GAN generate
such subspaces, the only required change is to alter the head of the network to output a binary vector of
the required size. In particular, we changed the layers of V-GAN in order to better handle image data. In
particular, we employ 5 sequential layers, each consisting of a linear layer for the learning, a Gaussian noise
layer and a Batch Normalization layer for regularization, and a Leaky ReLU as an activation. After this, we
include a last Batch Discrimination layer and a final linear layer, before passing the output into an upper
softmax. The kernel that we use is a Gaussian kernel composed with an ImageNet-pretrained Autoencoder,
and we did not employ kernel learning during training. We included a summary in Figure 11. We will study
V-GAN’s lens operators for image data with both real and synthetic data.

Real Data. We chose two popular datasets, FashionMNIST and MVTec-AD . The first consists of 28×28
grey-scaled images of clothes, while the second consists of 900×900 colored images of different industrial
materials. We used the classes pants (images of pants) and bottle (cross-sections of steel bottles), respectively.
Figure 12 contains the results for both FashionMNIST (Figure 12a) and MVTec-AD (Figure 12b). As we
can see, the lens operators managed to extract interesting similarity patterns for each class. While in
FashionMNIST, operators are mostly pant-shaped, in MVTec-AD, a more complex pattern emerged. Here,
the operators selected different ring-shaped parts of the cross-sections rather than chunks of the image. These
results further validate our theoretical claims that lens operators can extract complex relations in the data.

Synthetic Data. To mirror the methodology in Section 5.2, we generated 10,000 synthetic images (32×32
pixels) with half-white/half-black sections. In particular, 5000 images had a white top part and a black
bottom part, while the remaining 5000 had the inverse. Logically, as what happened with Section’s 5.2
population, one would expect that a lens operator consists of the two parts with equal probability. As we can
see in Figure 13, the derived lens operator was exactly as we expected, further strengthening our derivations.

B.2.2 V-GAN text: Myopic Subspace Theory on Natural Language

We will try to extract lens operators from the token space of Natural Language data directly. We could do
this by considering E = Ns and Θ(X) = Diags×s({0, 1}), where s is the predifined sentence length for each
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(a) FashionMNIST (28×28) (b) MVTec-AD (rescaled 64×64)

Figure 12: Visualization of the lens operators obtained using V-GAN in FashionMNIST and MVTec-AD. In
the top row of both figures, we plotted 5 realizations of U, and a final average between 500 samples. On the
left-most column of both figures, we plotted 5 non-altered images. In the remaining columns and rows, we
plotted each image after applying the corresponding operator in the column.

Figure 13: Visualization of the lens operators obtained using V-GAN in synthetic data. In the top row of the
figure, we plotted 5 realizations of U, and a final average between 500 samples. On the left-most column, we
plotted 5 non-altered images. In the remaining columns and rows, we plotted each image after applying the
corresponding operator in the column.
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(a) Average selected token by U in AGnews (b) Average selected token in AGnews’ text

(c) Average selected token by U in Emotions (d) Average selected token in Emotions’ text

Figure 14: Visualization of the lens operators obtained using V-GAN in AGnews and Emotions. The first
row corresponds to AGnews, and the second to Emotions. The left figures contain the average probability of
selecting each token using U. The right figures contain a visualization of the previous average probability on
top of 4 text samples.

dataset. We also utilize a different architecture than before, featuring 3 sequential layers, each consisting in a
Linear layer, a leaky ReLu and a Batch Normalization layer. After them, the outputs are passed into a final
Linear layer with an upper softmax output for obtaining the operators. We use a simple gaussian kernel
during training with no kernel learning.

We planned similar experiments utilizing real data for Natural Language. In particular, we employed the AG
news dataset and the Emotions dataset. The first one contains descriptions of news articles from different
outlets, and the latter contains tweets about sentiments and feelings. Figure 14 contains the results for both.

In AGnews, Figure 14a shows how the derived lens operator U selects, on average, the beginning and the end
of the sentence. By Figure 14b, this means that U on average selects the news outlet — the beginning of each
sample — and the core event of the news — the end of each sample. A similar behaviour can be observed for
Emotions, where we can see that the network focuses on selecting the end of each tweet, corresponding to
the actual feeling — see Figures 14c and 14d. These results motivate the possible use of Myopic Subspace
Theory also for Natural Language, further strengthening the applicability of this theory.
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