
Adversarial Robustness of Streaming Algorithms
through Importance Sampling

Vladimir Braverman 1 Avinatan Hassidim 1 Yossi Matias 1 Mariano Schain 1 Sandeep Silwal 2 Samson Zhou 3

Abstract
In the adversarial streaming model, an adversary
gives an algorithm a sequence of adaptively cho-
sen updates as a data stream and the goal of the al-
gorithm is to compute or approximate some prede-
termined function for every prefix of the adversar-
ial stream. However, the adversary may generate
future updates based on previous outputs of the al-
gorithm and in particular, the adversary may grad-
ually learn the random bits internally used by an
algorithm to manipulate dependencies in the input.
This is especially problematic as many important
problems in the streaming model require random-
ized algorithms, as they are known to not admit
any deterministic algorithms that use sublinear
space. In this paper, we introduce adversarially
robust streaming algorithms for central machine
learning and algorithmic tasks, such as regres-
sion and clustering, as well as their more general
counterparts, subspace embedding, low-rank ap-
proximation, and coreset construction. Our results
are based on a simple, but powerful, observation
that many importance sampling-based algorithms
give rise to adversarial robustness in contrast to
sketching based algorithms, which are very preva-
lent in the streaming literature but suffer from
adversarial attacks. In addition, we show that
the well-known merge and reduce paradigm used
for corset construction in streaming is adversari-
ally robust. To the best of our knowledge, these
are the first adversarially robust results for these
problems yet require no new algorithmic imple-
mentations. Finally, we empirically confirm the
robustness of our algorithms on various adversar-
ial attacks and demonstrate that by contrast, some
common existing algorithms are not robust.

Authors listed in alphabetical order. 1Google 2Electrical En-
gineering and Computer Science Department, Massachusetts In-
stitute of Technology, Cambridge, MA, USA 3Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA, USA.
Correspondence to: Samson Zhou <samsonzhou@gmail.com >.
Accepted by the ICML 2021 workshop on A Blessing in Disguise:
The Prospects and Perils of Adversarial Machine Learning. Copy-
right 2021 by the author(s).

1. Introduction
Robustness against adversarial attacks have recently been
at the forefront of algorithmic design for machine learning
tasks (Goodfellow et al., 2015; Carlini & Wagner, 2017;
Athalye et al., 2018; Madry et al., 2018; Tsipras et al., 2019).
We extend this line of work by studying adversarially robust
streaming algorithms.

In the streaming model, data points are generated one at
a time in a stream and the goal is to compute some mean-
ingful function of the input points while using a limited
amount of memory, typically sublinear in the total size of
the input. The streaming model is applicable in many algo-
rithmic and ML related tasks where the size of the data far
exceeds the available storage. Applications of the streaming
model include monitoring IP traffic flow, analyzing web
search queries (Liu et al., 2016), processing large scientific
data, feature selection in machine learning (Hou et al., 2021;
Gomes et al., 2019; Wu et al., 2010), and estimating word
statistics in natural language processing (Goyal et al., 2012)
to name a few. Streaming algorithms have also been imple-
mented in popular data processing libraries such as Apache
Spark which have implementations for streaming tasks such
as clustering and linear regression (Zaharia et al., 2016a).

In the adversarial streaming model (Mitrovic et al., 2017;
Bogunovic et al., 2017; Avdiukhin et al., 2019; Ben-Eliezer
& Yogev, 2020; Ben-Eliezer et al., 2020; Hassidim et al.,
2020; Woodruff & Zhou, 2020; Alon et al., 2021; Kaplan
et al., 2021), an adversary gives an algorithm a sequence of
adaptively chosen updates u1, . . . , un as a data stream. The
goal of the algorithm is to compute or approximate some
predetermined function for every prefix of the adversarial
stream, but the adversary may generate future updates based
on previous outputs of the algorithm. In particular, the ad-
versary may gradually learn the random bits internally used
by an algorithm to manipulate dependencies in the input.
This is especially problematic as many important problems
in the streaming model require randomized algorithms, as
they are known to not admit any deterministic algorithms
that use sublinear space. Studying when adversarially robust
streaming algorithms are possible is an important problem
in lieu of recent interest in adversarial attacks in ML with
applications to adaptive data analysis.

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Related Works. Adversarial robustness of streaming al-
gorithms has been an important topic of recent research.
On the positive note, (Ben-Eliezer et al., 2020) gave a ro-
bust framework for estimating the Lp norm of points in a
stream in the insertion-only model, where previous stream
updates cannot later be deleted. Their work thus shows that
deletions are integral to the attack of (Hardt & Woodruff,
2013). Subsequently, (Hassidim et al., 2020) introduced a
new algorithmic design for robust Lp norm estimation algo-
rithms, by using differential privacy to protect the internal
randomness of algorithms against the adversary. Although
(Woodruff & Zhou, 2020) tightened these bounds, showing
that essentially no losses related to the size of the input n or
the accuracy parameter ε were needed, (Kaplan et al., 2021)
showed that this may not be true in general. Specifically,
they showed a separation between oblivious and adversarial
streaming in the adaptive data analysis problem.

(Ben-Eliezer & Yogev, 2020) showed that sampling is not
necessarily adversarially robust; they introduce an exponen-
tially sized set system where a constant number of samples,
corresponding to the VC-dimension of the set system, may
result in a very unrepresentative set of samples. However,
they show that with an additional logarithmic overhead in
the number of samples, then Bernoulli and/or reservoir sam-
pling are adversarially robust. This notion is further formal-
ized by (Alon et al., 2021), who showed that the classes that
are online learnable require essentially sample-complexity
proportional to the Littlestone dimension of the underlying
set system, rather than VC dimension. However, these sam-
pling procedures are uniform in the sense that each item
in the stream is sampled with the same probability. Thus
the sampling probability of each item is oblivious to the
identity of the item. By contrast, we show the robustness
for a variety of algorithms based on non-oblivious sampling,
where each stream item is sampled with probability roughly
proportional to the “importance” of the item.

1.1. Our Contributions

Our main contribution is a powerful yet simple statement
that algorithms based on non-oblivious sampling are ad-
versarially robust if informally speaking, the process of
sampling each item in the stream can be viewed as using
fresh randomness independent of previous steps, even if the
sampling probabilities depend on previous steps.

Let us describe, very informally, our meta-approach. Sup-
pose we have an adversarial stream of elements given by
u1, . . . , un. Our algorithm A will maintain a data structure
At at time t which updates as the stream progresses. A
will use a function g(At, ut) to determine the probability
of sampling item ut to update At to At+1. The function g
measures the “importance” of the element ut to the overall
problem that we wish to solve. For example, if our applica-

tion is k-means clustering and ut is a point far away from
all previously seen points so far, we want to sample it with
a higher probability. We highlight that even though the sam-
pling probability for ut given by g(At, ut) is adversarial,
since the adversary designs ut and previous streaming ele-
ments, the coin toss performed by our algorithm A to keep
item ut is independent of any events that have occurred so
far, including the adversary’s actions. This new randomness
introduced by the independent coin toss is a key concep-
tual step in the analysis for all of the applications listed in
Table 1.

Contrast this to the situation where a “fixed” data structure
or sketch is specified upfront. In this case, we would not
be adaptive to which inputs ut the adversary designs to
be “important” for our problem which would lead us to
potentially disregard such important items rendering the
algorithm ineffective.

As applications of our meta-approach, we introduce adver-
sarially robust streaming algorithms for two central machine
learning tasks, regression and clustering, as well as their
more general counterparts, subspace embedding, low-rank
approximation, and coreset construction.

We show that several methods from the streaming algorithms
“toolbox”, namely merge and reduce, online leverage score
sampling, and edge sampling are adversarially robust “for
free.” As a result, existing (and future) streaming algorithms
that use these tools are robust as well. We discuss our results
in more detail below and provide a summary of our results
and applications in Table 1.

Meta-approach Applications

Merge and reduce
(Theorem 1.1)

Coreset construction, SVMs,
Gaussian mixture models,
k-means/median clustering,
projective clustering, PCA,

M -estimators

Row sampling
(Theorem 1.2)

Linear regression,
spectral approximation,
low-rank approximation,

projection-cost preservation,
L1-subspace embedding

Table 1. Summary of our robust sampling frameworks and corre-
sponding applications

We first show that the well-known merge and reduce
paradigm is adversarially robust. Since the merge and re-
duce paradigm defines coreset constructions, we thus obtain
robust algorithms for k-means, k-median, Bregman clus-
tering, projective clustering, principal component analysis
(PCA), non-negative matrix factorization (NNMF) (Lucic
& Krause, 2017).

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Theorem 1.1 (Merge and reduce is adversarially robust)
Given an offline ε-coreset construction, the merge and
reduce framework gives an adversarially robust streaming
construction for an ε-coreset with high probability.

For regression and other numerical linear algebra related
tasks, we consider the row arrival streaming model, in
which the adversary generates a sequence of row vectors
a1, . . . ,an in d-dimensional vector space. For t ∈ [n], the
t-th prefix of the stream induces a matrix At ∈ Rt×d with
rows a1, . . . ,at. We denote this matrix as At = a1◦. . .◦at
and define κ to be an upper bound on the largest condition
number1 of the matrices A1, . . . ,An.

Theorem 1.2 (Row sampling is adversarially robust)
There is a row sampling based framework for adversarially
robust streaming algorithms that at each t ∈ [n]:

(1) Outputs a matrix Mt such that (1 − ε)A>t At �
M>t Mt � (1 + ε)A>t At, while sampling

O
(
d2κ
ε2 log n log κ

)
rows (spectral approx-

imation/subspace embedding/linear regres-
sion/generalized regression).

(2) Outputs a matrix Mt such that for all
rank k orthogonal projection matrices
P ∈ Rd×d, (1 − ε) ‖At −AtP‖2F ≤
‖Mt −MtP‖2F ≤ (1 + ε) ‖At −AtP‖2F , while
sampling O

(
dkκ
ε2 log n log2 κ

)
rows (projection-cost

preservation/low-rank approximation).

(3) Outputs a matrix Mt such that (1 − ε) ‖Atx‖1 ≤
‖Mtx‖1 ≤ (1 + ε) ‖Atx‖1, while sampling

O
(
d2κ
ε2 log2 n log κ

)
rows (L1 subspace embedding).

Finally, we show that our analysis also applies to algorithms
for graph sparsification in which edges are sampled accord-
ing to their “importance”. See the appendix for details.

Sketching vs Sampling Algorithms. A central tool for
randomized streaming algorithms is the use of linear
sketches. These methods maintain a data structure f such
that after the (i+1)-th input xi, we can update f by comput-
ing a linear function of xi. Typically, these methods employ
a random matrix. For example, if the input consists of vec-
tors, sketching methods will use a random matrix to project
the vector into a much smaller dimension space. In (Hardt &
Woodruff, 2013), it was proved no linear sketch can approxi-
mate the L2-norm within a polynomial multiplicative factor
against such an adaptive adversary. In general, streaming
algorithms that use sketching are highly susceptible to the
type of attack described in (Hardt & Woodruff, 2013) where

1the ratio of the largest and smallest nonzero singular values

the adversary can effectively “learn” the kernel of the linear
function used and send inputs along the kernel. For example,
if an adversary knows the kernel of the random matrix used
to project the input points, then by sending points that lie on
the kernel of the matrix as inputs, the adversary can render
the whole streaming algorithm useless.

One the other hand, we employ a different family of stream-
ing algorithms that are based on sampling the input rather
than sketching it. Surprisingly, this simple change allows
one to automatically get many adversarially robust algo-
rithms either “for free” or without new algorithmic over-
heads. For more information, see Section 1.1. We empha-
size that while our techniques are not theoretically sophisti-
cated, we believe its power lies in its simple message that
sampling is often superior to sketching for adversarial
robustness. In addition to downstream algorithmic and
ML applications, this provides an interesting separation and
trade-offs between the two paradigms; for non-adversarial
inputs sketching often gives similar or better performance
guarantees for many tasks (Bar-Yossef et al., 2001).

2. Experiments
To illustrate the robustness of importance sampling based
streaming algorithms, we devise adversarial settings for
clustering and linear regression. With respect to our adver-
sarial setting, we show that the performance of a merge-
and-reduce based streaming k-Means algorithm is robust
while a popular streaming k-Means implementation (not
based on importance sampling) is not. Similarly, we show
the robustness superiority of a streaming linear regression
algorithm based on row sampling over a popular streaming
linear regression implementation and over sketching.

Streaming k-means In this adversarial clustering setting
we consider a series of point batches where all points except
those in the last batch are randomly sampled from a two
dimensional standard normal distribution and points in the
last batch similarly sampled but around a distant center (see
the data points realization in both panels of Figure 1). We
then feed the point sequence to StreamingKMeans, the
streaming k-Means implementation of Spark (Zaharia et al.,
2016b) the popular big-data processing framework. As illus-
trated in the left panel of Figure 1, the resulting two centers
are both within the origin. Now, this result occurs regardless
of the last batch’s distance from the origin, implying that
the per-sample loss performance of the algorithm can be
made arbitrarily large. Alternatively, we used a merge and
reduce based streaming k-Means algorithm and show that
one of the resulting cluster centers is at the distant clus-
ter (as illustrated in the right panel of Figure 1) thereby
keeping the resulting per sample loss at the desired mini-
mum. Specifically we use Streamkm an implementation
of StreamKM++ (Ackermann et al., 2012) from the ClusOpt

Adversarial Robustness of Streaming Algorithms through Importance Sampling

0 2 4 6 8 10
0

2

4

6

8

10 Data points
Spark Streaming Cluster Centers

0 2 4 6 8 10
0

2

4

6

8

10 Data points
StreaKM++ Cluster Centers
StreaKM++ Coresets

Figure 1. Cluster centers (x) on our adversarial datapoints setting for the popular Spark implementation (left) and StreamKM++ (right).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2

1

0

1

2 Optimal regression
Data points

0 20 40 60 80 100 120
Iteration

0.2

0.4

0.6
M

SE
River streamed
Leveraged sample

0 10 20 30 40 50 60

0

200

400
Leveraged sample
Streamed regression
Data points

0 20 40 60 80 100 120
Iteration

0

200000

400000

600000

800000

M
SE

River streamed
Leveraged sample

Figure 2. Streaming Linear Regression experiment (from left to right): points constellation without last batch, loss trajectory up to (not
including) last batch, resulting regression lines upon training with last batch, and loss trajectory including the last batch.

0 25 50 75 100 125 150 175
Iteration

0

10

20

30

40

50

60

Lo
g

re
la

tiv
e

M
SE

Sketch (50 samples out of 2000)
Leveraged Sampling (26 samples out of 2000)

Figure 3. Comparing the performance trajectory of leveraged sam-
pling Algorithm 1 to Sketching, for an adversarial data stream
tailored to a sketching Matrix. Sketching performance deteriorates
catastrophically upon the last batch, while leveraged sampling
remains robust.

Core library (Macedo, 2020).

Streaming linear regression. Similar to the clustering set-
ting, in the adversarial setting for streaming linear regression
all batches except the last one are sampled around a con-
stellation of four points in the plane such that the optimal
regression line is of−1 slope through the origin (see the left-
most panel of Figure 2). The last batch of points however,
is again far from the origin (L,L) such that the resulting
optimal regression line is of slope 1 through the origin2.
We compare the performance of LinearRegression
from the popular streaming machine learning library River
(Montiel et al., 2020) to our own row sampling based im-
plementation of streaming linear regression along the lines
of Algorithm 1 and observe the following: Without the
last batch of points, both implementations result in the op-
timal regression line, however, the River implementation
reaches that line only after several iterations, while our im-
plementation is accurate throughout (This is illustrated in
the second-left panel of Figure 2). When the last batch is

2For MSE loss, this occurs for L at least the square root of the
number of batches.

used, nevertheless, Algorithm 1 picks up the drastic change
and adapts immediately to a line of the optimal slope (the
blue line of the second right panel of Figure 2) while the
River implementation update merely moves the line in the
desired direction (the orange line in that same panel) but is
far from catching up. Finally, the rightmost panel of Fig-
ure 2) details the loss trajectory for both implementations.
While the River loss skyrockets upon the last batch, the loss
of Algorithm 1 remains relatively unaffected, illustrating its
adversarial robustness.

Note that in both the clustering and linear regression set-
tings above, the adversary was not required to consider the
algorithms internal randomization to achieve the desired
effect (this is due to the local nature of the algorithms com-
putations). This is not the case in the following setting.

Sampling vs. sketching. Finally, we compare the perfor-
mance of the leverage sampling Algorithm 1 to Sketching.
In this setting, for a random unit sketching matrix S (that
is, each of its elements is sampled from {−1, 1} with equal
probability), we create an adversarial data stream A such
that its columns are in the null space of S. As a result, the
linear regression as applied to the sketched data S ·A as a
whole is unstable and might significantly differ from the re-
sulting linear regression applied to streamed prefixes of the
sketched data. As illustrated in Figure 3, this is not the case
when applying the linear regression to the original streamed
data A using Algorithm 1. Upon the last batch, the per-
formance of the sketching-based regression deteriorates by
orders of magnitude, while the performance of Algorithm 1
is not affected. Moreover, the data reduction factor achieved
by leveraged sampling3 is almost double compared to the
data reduction factor achieved by sketching.

3The original stream A contained 2000 samples, each of di-
mension 10.

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Acknowledgments
Sandeep Silwal was supported in part by a NSF Graduate
Research Fellowship Program. Samson Zhou was supported
by a Simons Investigator Award of David P. Woodruff.

References
Ackermann, M. R., Märtens, M., Raupach, C., Swierkot,

K., Lammersen, C., and Sohler, C. Streamkm++: A
clustering algorithm for data streams. ACM J. Exp. Al-
gorithmics, 17, May 2012. ISSN 1084-6654. doi: 10.
1145/2133803.2184450. URL https://doi.org/
10.1145/2133803.2184450. 3

Ahn, K. J. and Guha, S. Graph sparsification in the semi-
streaming model. In Automata, Languages and Program-
ming, pp. 328–338, 2009. 10, 15, 16

Alon, N., Ben-Eliezer, O., Dagan, Y., Moran, S., Naor, M.,
and Yogev, E. Adversarial laws of large numbers and opti-
mal regret in online classification. CoRR, abs/2101.09054,
2021. 1, 2

Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. Syn-
thesizing robust adversarial examples. In Proceedings of
the 35th International Conference on Machine Learning,
ICML, pp. 284–293, 2018. 1

Avdiukhin, D., Mitrovic, S., Yaroslavtsev, G., and Zhou,
S. Adversarially robust submodular maximization un-
der knapsack constraints. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD, pp. 148–156, 2019. 1

Bar-Yossef, Z., Kumar, R., and Sivakumar, D. Sampling al-
gorithms: Lower bounds and applications. In Proceedings
of the Thirty-Third Annual ACM Symposium on Theory
of Computing, pp. 266–275, 2001. 3

Baykal, C., Liebenwein, L., Gilitschenski, I., Feldman,
D., and Rus, D. Data-dependent coresets for compress-
ing neural networks with applications to generalization
bounds. In 7th International Conference on Learning
Representations, ICLR, 2019. 11

Ben-Eliezer, O. and Yogev, E. The adversarial robustness
of sampling. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS, pp. 49–62, 2020. 1, 2

Ben-Eliezer, O., Jayaram, R., Woodruff, D. P., and Yogev,
E. A framework for adversarially robust streaming al-
gorithms. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS, pp. 63–80, 2020. 1, 2

Benczúr, A. A. and Karger, D. R. Approximating s-t mini-
mum cuts in Õ(n2) time. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Com-
puting, pp. 47–55, 1996. 10, 15, 16

Bogunovic, I., Mitrovic, S., Scarlett, J., and Cevher, V. Ro-
bust submodular maximization: A non-uniform partition-
ing approach. In Proceedings of the 34th International
Conference on Machine Learning, ICML, volume 70, pp.
508–516, 2017. 1

Braverman, V., Feldman, D., and Lang, H. New frameworks
for offline and streaming coreset constructions. CoRR,
abs/1612.00889, 2016. 8, 11

Braverman, V., Lang, H., Ullah, E., and Zhou, S. Improved
algorithms for time decay streams. In Approximation,
Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM, pp. 27:1–
27:17, 2019. 11

Braverman, V., Drineas, P., Musco, C., Musco, C., Upad-
hyay, J., Woodruff, D. P., and Zhou, S. Near optimal
linear algebra in the online and sliding window models.
In 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS, pp. 517–528, 2020. 8, 9, 11, 12,
13, 14

Carlini, N. and Wagner, D. A. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium
on Security and Privacy, SP, pp. 39–57. IEEE Computer
Society, 2017. 1

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,
M. Dimensionality reduction for k-means clustering and
low rank approximation. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC, pp. 163–172, 2015. 9

Cohen, M. B., Musco, C., and Pachocki, J. W. Online
row sampling. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM, pp. 7:1–7:18, 2016. 9, 13

Cohen, M. B., Musco, C., and Musco, C. Input sparsity
time low-rank approximation via ridge leverage score
sampling. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 1758–1777, 2017. 9, 14

Eliás, M., Kapralov, M., Kulkarni, J., and Lee, Y. T. Dif-
ferentially private release of synthetic graphs. In Pro-
ceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 560–578, 2020. 10

Feldman, D. Introduction to core-sets: an updated survey.
CoRR, abs/2011.09384, 2020. 9, 11

https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1145/2133803.2184450

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Feldman, D. and Langberg, M. A unified framework for
approximating and clustering data. In Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC,
pp. 569–578. ACM, 2011. 8, 11

Feldman, D., Monemizadeh, M., Sohler, C., and Woodruff,
D. P. Coresets and sketches for high dimensional sub-
space approximation problems. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 630–649, 2010. 11

Feldman, D., Kfir, Z., and Wu, X. Coresets for gaussian
mixture models of any shape. CoRR, abs/1906.04895,
2019. 9

Freedman, D. A. On tail probabilities for martingales. the
Annals of Probability, 3(1):100–118, 1975. 11

Goel, A., Kapralov, M., and Khanna, S. Graph sparsification
via refinement sampling. CoRR, abs/1004.4915, 2010.
URL http://arxiv.org/abs/1004.4915. 14,
15

Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., and Gama,
J. a. Machine learning for streaming data: State of the art,
challenges, and opportunities. SIGKDD Explor. Newsl.,
21(2):6–22, 2019. 1

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In 3rd International
Conference on Learning Representations, ICLR, Confer-
ence Track Proceedings, 2015. 1

Goyal, A., Daumé, H., and Cormode, G. Sketch algorithms
for estimating point queries in nlp. In Proceedings of the
Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language
Learning, pp. 1093–1103, 2012. 1

Hardt, M. and Woodruff, D. P. How robust are linear
sketches to adaptive inputs? In Symposium on Theory of
Computing Conference, STOC, pp. 121–130, 2013. 2, 3

Hassidim, A., Kaplan, H., Mansour, Y., Matias, Y., and
Stemmer, U. Adversarially robust streaming algorithms
via differential privacy. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on
Neural Information Processing Systems, 2020. 1, 2

Hou, B., Zhang, L., and Zhou, Z. Learning with feature
evolvable streams. IEEE Trans. Knowl. Data Eng., 33(6):
2602–2615, 2021. 1

Huang, L. and Vishnoi, N. K. Coresets for clustering in
euclidean spaces: importance sampling is nearly optimal.
In Proccedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC, pp. 1416–1429,
2020. 8, 11

Huggins, J. H., Campbell, T., and Broderick, T. Coresets
for scalable bayesian logistic regression. In Advances
in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems,
pp. 4080–4088, 2016. 9

Kaplan, H., Mansour, Y., Nissim, K., and Stemmer, U.
Separating adaptive streaming from oblivious streaming.
CoRR, abs/2101.10836, 2021. 1, 2

Kapralov, M., Nouri, N., Sidford, A., and Tardos, J. Dy-
namic streaming spectral sparsification in nearly linear
time and space. CoRR, abs/1903.12150, 2019. URL
http://arxiv.org/abs/1903.12150. 15

Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., and Braver-
man, V. One sketch to rule them all: Rethinking network
flow monitoring with univmon. In Proceedings of the
2016 ACM SIGCOMM Conference, pp. 101–114, 2016.
1

Lucic, O. B. M. and Krause, A. Practical coreset construc-
tions for machine learning. CoRR, abs/1703.06476, 2017.
2, 8, 9, 11

Macedo, G. O. D. Github, 2020. URL https://github.
com/giuliano-oliveira/clusopt_core. 4

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In 6th International Conference on
Learning Representations, ICLR, 2018. 1

Mitrovic, S., Bogunovic, I., Norouzi-Fard, A., Tarnawski, J.,
and Cevher, V. Streaming robust submodular maximiza-
tion: A partitioned thresholding approach. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems,
pp. 4557–4566, 2017. 1

Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G.,
Sourty, R., Vaysse, R., Zouitine, A., Gomes, H. M., Read,
J., Abdessalem, T., and Bifet, A. River: machine learning
for streaming data in python, 2020. 4

Munteanu, A., Schwiegelshohn, C., Sohler, C., and
Woodruff, D. P. On coresets for logistic regression. In
Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing
Systems 2018, NeurIPS, pp. 6562–6571, 2018. 11

Mussay, B., Osadchy, M., Braverman, V., Zhou, S., and Feld-
man, D. Data-independent neural pruning via coresets.
In 8th International Conference on Learning Representa-
tions, ICLR, 2020. 11

Rossi, R. A. and Ahmed, N. K. The network data repository
with interactive graph analytics and visualization. In

http://arxiv.org/abs/1004.4915
http://arxiv.org/abs/1903.12150
https://github.com/giuliano-oliveira/clusopt_core
https://github.com/giuliano-oliveira/clusopt_core

Adversarial Robustness of Streaming Algorithms through Importance Sampling

AAAI, 2015. URL http://networkrepository.
com. 10

Satuluri, V., Parthasarathy, S., and Ruan, Y. Local graph
sparsification for scalable clustering. In Proceedings of
the 2011 ACM SIGMOD International Conference on
Management of Data, pp. 721–732, 2011. 10

Sinha, S., Zhang, H., Goyal, A., Bengio, Y., Larochelle, H.,
and Odena, A. Small-gan: Speeding up GAN training
using core-sets. In Proceedings of the 37th International
Conference on Machine Learning, ICML, pp. 9005–9015,
2020. 9

Sohler, C. and Woodruff, D. P. Strong coresets for k-median
and subspace approximation: Goodbye dimension. In
59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS, pp. 802–813, 2018. 11

Spielman, D. A. and Srivastava, N. Graph sparsification
by effective resistances. In Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, pp.
563–568, 2008. 10

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy. In
7th International Conference on Learning Representa-
tions, ICLR, 2019. 1

Tukan, M., Baykal, C., Feldman, D., and Rus, D. On
coresets for support vector machines. In Theory and Ap-
plications of Models of Computation, 16th International
Conference, TAMC Proceedings, pp. 287–299, 2020. 9

Varadarajan, K. R. and Xiao, X. A near-linear algorithm
for projective clustering integer points. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 1329–1342, 2012a. 8

Varadarajan, K. R. and Xiao, X. On the sensitivity of shape
fitting problems. In IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer
Science, FSTTCS, pp. 486–497, 2012b. 8

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing
Systems, 2018. 10

Woodruff, D. P. and Zhou, S. Tight bounds for adversari-
ally robust streams and sliding windows via difference
estimators. CoRR, abs/2011.07471, 2020. 1, 2

Wu, X., Yu, K., Wang, H., and Ding, W. Online streaming
feature selection. In Proceedings of the 27th International
Conference on Machine Learning ICML, pp. 1159–1166,
2010. 1

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust,
M., Dave, A., Meng, X., Rosen, J., Venkataraman, S.,
Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S.,
and Stoica, I. Apache spark: A unified engine for big
data processing. Commun. ACM, 59(11):56–65, 2016a. 1

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust,
M., Dave, A., Meng, X., Rosen, J., Venkataraman, S.,
Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S.,
and Stoica, I. Apache spark: A unified engine for big
data processing. Commun. ACM, 59(11):56–65, October
2016b. ISSN 0001-0782. doi: 10.1145/2934664. URL
https://doi.org/10.1145/2934664. 3

Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W.,
Chen, H., and Wang, W. Robust graph representation
learning via neural sparsification. In Proceedings of the
37th International Conference on Machine Learning, pp.
11458–11468, 2020. 10

A. Merge and Reduce
We show that the general merge and reduce paradigm is
adversarially robust. Merge and reduce is widely used for
the construction of a coreset, which provides dimensionality
reduction on the size of an underlying dataset, so that algo-
rithms for downstream applications can run more efficiently:

Definition A.1 (ε coreset) Let P ⊂ X be a set of elements
from a universe X , z ≥ 0, ε ∈ (0, 1), and (P,dist, Q) be
a query space. Then a subset C equipped with a weight
function w : P → R is called an ε-coreset with respect to
the query space (P,dist, Q) if

(1− ε)
∑
p∈P

dist(p, Q)z ≤
∑
p∈C

w(p) dist(p, Q)z

≤ (1 + ε)
∑
p∈P

dist(p, Q)z.

The study of efficient offline coreset constructions for a
variety of geometric and algebraic problems forms a long
line of active research. For example, offline coreset con-
structions are known for linear regression, low-rank approx-
imation, L1-subspace embedding, k-means clustering, k-
median clustering, k-center, support vector machine, Gaus-
sian mixture models, M -estimators, Bregman clustering,
projective clustering, principal component analysis, k-line
center, j-subspace approximation, and so on. Thus, our
result essentially shows that using the merge and reduce
paradigm, these offline coreset constructions can be ex-
tended to obtain robust and accurate streaming algorithms.
The merge and reduce paradigm works as follows. Sup-
pose we have a stream p1, . . . , pn of length n = 2k for

http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1145/2934664

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Stream:

{C1,j}: C1,1 C1,2 C1,3 C1,4

{C2,j}: C2,1 C2,2

{C3,j}: C3,1

Figure 4. Merge and reduce framework. Each C1,j is an O (ε/ logn)-coreset of the corresponding partition of the substream and each
Ci,j is an ε-coreset of Ci−1,2j−1 and Ci−1,2j for i > 1.

some integer k, without loss of generality (otherwise we
can use a standard padding argument to increase the length
of the stream). Define C0,j = pj for all j ∈ [n]. Consider
k levels, where each level i ∈ [k] consists of n

2i coresets
Ci,1, . . . , Ci,n/2i and each coreset Ci,j is an ε

2k -coreset of
Ci−1,2j−1 and Ci−1,2j . Note that this approach can be im-
plemented efficiently in the streaming model, since each
Ci,j can be built immediately once Ci−1,2j−1 and Ci−1,2j
are constructed, and after Ci,j is constructed, then both
Ci−1,2j−1 and Ci−1,2j can be discarded. For an illustration
of the merge and reduce framework, see Figure 4, though we
defer all formal proofs to Section D. Using the coresets of
(Braverman et al., 2020), Theorem 1.1 gives the following
applications:

Theorem A.2 There exists a merge-and-reduce row sam-
pling based framework for adversarially robust streaming
algorithms that at each time t ∈ [n]:

(1) Outputs a matrix Mt such that (1 − ε)A>t At �
M>t Mt � (1 + ε)A>t At, while sampling

O
(
d2

ε2 log4 n log κ
)

rows (spectral approx-
imation/subspace embedding/linear regres-
sion/generalized regression).

(2) Outputs a matrix Mt such that for all rank k orthogo-
nal projection matrices P ∈ Rd×d,

(1− ε) ‖At −AtP‖2F ≤ ‖Mt −MtP‖2F
≤ (1 + ε) ‖At −AtP‖2F ,

while sampling O
(
k
ε2 log4 n log2 κ

)
rows (projection-

cost preservation/low-rank approximation).

(3) Outputs a matrix Mt such that (1 − ε) ‖Atx‖1 ≤
‖Mtx‖1 ≤ (1 + ε) ‖Atx‖1, while sampling
O
(
d
ε2 log5 n log κ

)
rows (L1 subspace embedding).

Using coresets of (Huang & Vishnoi, 2020), then Theo-
rem 1.1 also gives applications for (k, z)-clustering such
as k-median for z = 1 and k-means for z = 2. More-
over, (Lucic & Krause, 2017) noted that constructions of
(Feldman & Langberg, 2011) give coresets for Bregman

clustering, which handles µ-similar Bregman divergences
such as the Itakura-Saito distance, KL-divergence, Maha-
lanobis distance, etc.

Theorem A.3 There exists a merge-and-reduce importance
sampling based framework for adversarially robust stream-
ing algorithms that at each time t:

(1) Outputs a set of centers that gives a
(1 + ε)-approximation to the optimal (k, z)-
clustering, k-means clustering (z = 2), and
k-median clustering (z = 1), while storing
O
(

1
ε2z+2 k log2z+2 n log k log k logn

ε

)
points.

(2) Outputs a set of centers that gives a (1 + ε)-
approximation to the optimal k-Bregman clustering,
while storing O

(
1
ε2 dk

3 log3 n
)

points.

Using the sensitivity bounds of (Varadarajan & Xiao,
2012a;b) and the coreset constructions of (Braverman et al.,
2016), then Theorem 1.1 also gives applications for the
following shape fitting problems:

Theorem A.4 There exists a merge-and-reduce importance
sampling based framework for adversarially robust stream-
ing algorithms that at each time t:

(1) Outputs a set of lines that gives a (1+ε)-approximation
to the optimal k-lines clustering, while storing
O
(
d
ε2 f(d, k)kf(d,k) log4 n

)
points of Rd, for a fixed

function f(d, k).

(2) Outputs a subspace that gives a (1 + ε)-approximation
to the optimal dimension j subspace approximation,
while storingO

(
d
ε2 g(d, j)kg(d,j) log4 n

)
points of Rd,

for a fixed function g(d, j).

(3) Outputs a set of subspaces that gives
a (1 + ε)-approximation to the optimal
(j, k)-projective clustering, while storing
O
(
d
ε2 h(d, j, k) log3 n(log n)h(d,j,k)

)
points of

Rds, for a fixed function h(d, j, k), for a set of input
points with integer coordinates.

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Adversarially robust approximation algorithms for Bayesian
logistic regression, Gaussian mixture models, generative
adversarial networks (GANs), and support vector machine
can be obtained from Theorem 1.1 and coreset constructions
of (Huggins et al., 2016; Feldman et al., 2019; Sinha et al.,
2020; Tukan et al., 2020); a significant number of additional
applications of Theorem 1.1 using coreset constructions can
be seen from recent works and surveys on coresets, e.g.,
see (Lucic & Krause, 2017; Feldman, 2020).

B. Adversarial Robustness of Subspace
Embedding and Applications

We use [n] to represent the set {1, . . . , n} for an integer
n > 0. We typically use bold font to denote vectors and
matrices. For a matrix A, we use A−1 to denote the Moore-
Penrose inverse of A. We first formally define the goals of
our algorithms:

Problem B.1 (Spectral Approximation) Given a matrix
A ∈ Rn×d and an approximation parameter ε > 0, the goal
is to output a matrix M ∈ Rm×d with m � n such that
(1− ε) ‖Ax‖2 ≤ ‖Mx‖2 ≤ (1 + ε) ‖Ax‖2 for all x ∈ Rd
or equivalently, (1− ε)A>A �M>M � (1 + ε)A>A.

We note that linear regression is a well-known specific ap-
plication of spectral approximation.

Problem B.2 (Projection-Cost Preservation) Given a
matrix A ∈ Rn×d, a rank parameter k > 0, and an
approximation parameter ε > 0, the goal is to find a
matrix M ∈ Rm×d with m � n such that for all rank k
orthogonal projection matrices P ∈ Rd×d,

(1−ε) ‖A−AP‖2F ≤ ‖M−MP‖2F ≤ (1+ε) ‖A−AP‖2F .

Note if M is a projection-cost preservation of A, then its
best low-rank approximation can be used to find a projection
matrix that gives an approximation of the best low-rank
approximation to A.

Problem B.3 (Low-Rank Approximation) Given a ma-
trix A ∈ Rn×d, a rank parameter k > 0, and an approxi-
mation parameter ε > 0, find a rank k matrix M ∈ Rn×d

such that (1 − ε)
∥∥A−A(k)

∥∥2
F
≤ ‖A−M‖2F ≤ (1 +

ε)
∥∥A−A(k)

∥∥2
F

, where A(k) for a matrix A denotes the
best rank k approximation to A.

Problem B.4 (L1-Subspace Embedding) Given a matrix
A ∈ Rn×d and an approximation parameter ε > 0, the
goal is to output a matrix M ∈ Rm×d with m � n such
that (1 − ε) ‖Ax‖1 ≤ ‖Mx‖1 ≤ (1 + ε) ‖Ax‖1 for all
x ∈ Rd.

We consider the general class of row sampling algorithms,
e.g., (Cohen et al., 2016; Braverman et al., 2020). Here we

maintain a Lp subspace embedding of the underlying matrix
by approximating the online Lp sensitivities of each row as
a measure of importance to perform sampling. For more
details, see Algorithm 1.

Definition B.5 (Online Lp Sensitivities) For a matrix
A = a1 ◦ . . . ◦ an ∈ Rn×d, the online sensitivity of row ai
for each i ∈ [n] is the quantity maxx∈Rd

|〈ai,x〉|p
‖Aix‖pp , where

Ai−1 = a1 ◦ . . . ◦ ai−1.

Algorithm 1 Row sampling based algorithms, e.g., (Cohen
et al., 2016; Braverman et al., 2020)
Input: A stream of rows a1, . . . ,an ∈ Rd, parameter p >

0, and an accuracy parameter ε > 0
Output: A (1 + ε) Lp subspace embedding.

1: M← ∅
2: α← Cd

ε2 log n with sufficiently large parameter C > 0
3: for each row ai, i ∈ [n] do
4: if ai ∈ span(M) then
5: τi ← 2 · maxx∈Rd,x∈span(M)

|〈ai,x〉|p
‖Mx‖pp+|〈ai,x〉|p

.See Remark B.6
6: else
7: τi ← 1

8: pi ← min(1, ατi)
9: With probability pi, M←M ◦ ai

p
1/p
i

.Online

sensitivity sampling
10: return M

We remark on standard computation or approximation of the
online Lp sensitivities, e.g., see (Cohen et al., 2015; 2016;
2017; Braverman et al., 2020).

Remark B.6 We note that for p = 1, a constant fraction
approximation to any online Lp sensitivity τi such that
τi >

1
poly(n) can be computed in polynomial time using (of-

fline) linear programming while for p = 2, τi is equivalent
to the online leverage score of ai, which has the closed form
expression a>i (A>i Ai)

−1ai, which can be approximated by
a>i (M>M)−1ai, conditioned on M being a good approxi-
mation to Ai−1 when ai is in the span of M. Otherwise, τi
takes value 1 when ai is not in the span of M.

Lemma B.7 (Adversarially Robust Lp Subspace Em-
bedding and Linear Regression) Given ε > 0, p ∈ {1, 2},
and a matrix A ∈ Rn×d whose rows a1, . . . ,an arrive
sequentially in a stream with condition number at most κ,
there exists an adversarially robust streaming algorithm
that outputs a (1 + ε) spectral approximation with high

probability. The algorithm samples O
(
d2κ2

ε2 log n log κ
)

rows for p = 2 and O
(
d2λ2

ε2 log2 n log κ
)

rows for p = 1,
with high probability, where λ is a ratio between upper and
lower bounds on ‖A‖1.

Adversarial Robustness of Streaming Algorithms through Importance Sampling

We also show robustness of row sampling for low-rank ap-
proximation by using online ridge-leverage scores. Together,
Lemma B.7 and Lemma B.8 give Theorem 1.2.

Lemma B.8 (Adversarially Robust Low-Rank Approx-
imation)

Given accuracy parameter ε > 0, rank parameter k > 0,
and a matrix A ∈ Rn×d whose rows a1, . . . ,an arrive
sequentially in a stream with condition number at most κ,
there exists an adversarially robust streaming algorithm
that outputs a (1 + ε) low-rank approximation with high

probability. The algorithm samples O
(
kdκ2

ε2 log n log κ
)

rows with high probability.

C. Graph Sparsification
In this section, we highlight how the sampling paradigm
gives rise to an adversarially robust streaming algorithm for
graph sparsification. First, we motivate the problem of graph
sparsification. Massive graphs arise in many theoretical and
applied settings, such as in the analysis of large social or
biological networks. A key bottleneck in such analysis is
the large computational resources, in both memory and time,
needed. Therefore, it is desirable to get a representation of
graphs that take up far less space while still preserving the
underlying “structure” of the graph. Usually the number
of vertices is much fewer than the number of edges; for
example in typical real world graphs, the number of vertices
can be several orders of magnitude smaller than the number
of edges (for example, see the graph datasets in (Rossi &
Ahmed, 2015)). Hence, a natural benchmark is to reduce
the number of edges to be comparable to the number of
vertices.

The most common notion of graph sparsification is that of
preserving the value of all cuts in the graph by keeping a
small weighted set of edges of the original graph. More
specifically, suppose our graph is G = (V,E) and for sim-
plicity assume all the edges have weight 1. A cut of the
graph is a partition of V = (C, V \ C) and the value of a
cut, ValG(C), is defined as the number of edges that cross
between the vertices in C and V \ C. A graph H on the
same set of vertices as V is a sparsifier if it preserves the
value of every cut in G and has a few number of weighted
edges. For a precise formulation, see Problem C.1.

In addition to being algorithmically tractable, this formu-
lation is natural since it preserves the underlying cluster
structure of the graph. For example, if there are two well
connected components separated by a sparse cut, i.e. two
distinct communities, then the sparsifier according to the def-
inition above will ensure that the two communities are still
well separated. Conversely, by considering any cut within
a well connected component, it will also ensure that any

community remains well connected (for more details, see
(Satuluri et al., 2011) and references therein). Lastly, graph
sparsification has been considered in other frameworks such
as differential privacy (Eliás et al., 2020), distributed op-
timization (Wangni et al., 2018), and even learning graph
sparsification using deep learning methods (Zheng et al.,
2020). The formal problem definition of graph sparsifica-
tion is as follows.

Problem C.1 (Graph Sparsification) Given a graph
weighted G = (V,E) with |V | = n, |E| = m, and an
approximation parameter ε > 0, compute a weighted
subgraph H of G on the same set of vertices such that

(1) every cut in H has value between 1−ε and 1+ε times
its value in G: (1 − ε)ValG(C) ≤ ValH(C) ≤ (1 +
ε)ValG(C) for all cuts C where ValG(C),ValH(C)
denotes the cost of the cut in the graphs G and H
respectively and for the latter quantity, the edges are
weighted,

(2) the number of edges in H is O
(
n logn
ε2

)
.

Ignoring dependence on ε, there are previous results that
already get sparsifiers H with O(n log n) edges (Benczúr &
Karger, 1996; Spielman & Srivastava, 2008). Their setting
is when the entire graph is present up-front in memory. In
contrast, we are interested in the streaming setting where
future edges can depend on past edges as well as revealed
randomness of an algorithm while processing the edges.

Our main goal is to show that the streaming algorithm from
(Ahn & Guha, 2009) (presented in Algorithm 2 in Section
F), which uses a sampling procedure to sample edges in a
stream, is adversarially robust, albeit with a slightly worse
guarantee for the number of edges. Following the proof
techniques of the non streaming algorithm given in (Benczúr
& Karger, 1996), it is shown in (Ahn & Guha, 2009) that
Algorithm 2 outputs a subgraph H such that H satisfies the
conditions of Problem C.1 with probability 1− 1/ poly(n)
where the probability can be boosted by taking a larger
constant C. We must show that this still holds true if the
edges of the stream are adversarially chosen, i.e., when
new edges in the stream depend on the previous edges
and the randomness used by the algorithm so far. We
thus again use a martingale argument; the full details are
given in Section F. As in Section B, we let κ1 and κ2 to be
deterministic lower/upper bounds on the size of any cut in
G and define κ = κ2/κ1.

Theorem C.2 Given a weighted graph G = (V,E) with
|V | = n whose edges e1, . . . , em arrive sequentially in a
stream, there exists an adversarially robust streaming algo-
rithm that outputs a 1± ε cut sparsifier with O

(
κ2n logn

ε2

)
edges with probability 1− 1/ poly(n).

Adversarial Robustness of Streaming Algorithms through Importance Sampling

D. Missing Proofs from Section A
In this section, we give the full details of the statements
in Section A. Coreset constructions are known for a vari-
ety of problems, e.g., in computational geometry (Feldman
et al., 2010; Feldman & Langberg, 2011; Braverman et al.,
2016; Lucic & Krause, 2017; Sohler & Woodruff, 2018;
Braverman et al., 2019; Huang & Vishnoi, 2020; Feldman,
2020), linear algebra (Braverman et al., 2020), machine
learning (Munteanu et al., 2018; Baykal et al., 2019; Mus-
say et al., 2020). We first show that coreset construction is
adversarially robust by considering the merge and reduce
framework. For example, consider the offline coreset con-
struction through sensitivity sampling.

Lemma D.1 (Lemma 2.3 in (Lucic & Krause, 2017))
Given ε > 0 and δ ∈ (0, 1), let P be a set of weighted
points, with non-negative weight function µ : P → R≥0
and let s : P → R≥0 denote an upper bound on the
sensitivity of each point. For S =

∑
p∈P µ(p)s(p),

let m = Ω
(
S2

ε2

(
d′ + log 1

δ

))
, where d′ is the pseudo-

dimension of the query space. Let C be a sample of m
points from P with replacement, where each point p ∈ P is
sampled with probability q(p) = µ(p)s(p)

S and assigned the
weight µ(p)

m·q(p) if sampled. Then C is an ε-coreset of P with
probability at least 1− δ.

We first observe that any streaming algorithm that uses linear
memory is adversarially robust because intuitively, it can
recompute an exact or approximate solution at each step.

Lemma D.2 Given a set of points P , there exists an offline
adversarially robust construction that outputs an ε-coreset
of P with probability at least 1− δ.

Proof : Given an adversary A, let P = p1, . . . , pn be a
set of points such that each pi with i ∈ [n] is generated by
A, possibly as a function of p1, . . . , pi−1. For example, it
may be possible that the points p1, . . . , pn/2 are a coreset
of some set of points P1 and the points pn/2+1, . . . , pn (1)
were either generated with full knowledge of p1, . . . , pn/2
or (2) are a coreset of a set of points P2 generated with
full knowledge of P1. Let s(p) be an upper bound on the
sensitivity of each point in P and consider the sensitivity
sampling procedure described in Lemma D.1. We would
like to sample each point with probability q(p). Each point
in C is chosen to be p with probability q(p). However, if
our algorithm generates internal randomness to perform this
sampling procedure, it may be possible for an adversary
to either learn correlations with the internal randomness
or even learn the internal randomness entirely (such as the
seed of a pseudorandom generator). Thus the choice for
each point of C may no longer be independent, so we are
no longer guaranteed that the resulting construction is a
coreset.

Instead, suppose the randomness used by the algorithm
at time i in the sampling procedure is independent of the
choices of p1, . . . , pi−1, e.g., the algorithm has access to a
source of fresh public randomness at each time in the data
stream. Then the algorithm can generate C independent of
the choices of p1, . . . , pi−1. Thus by Lemma D.1, C is an
ε-coreset of P with probability at least 1− δ. 2

We emphasize that Lemma D.2 shows that any offline core-
set construction is adversarially robust; the example of sen-
sitivity sampling is specifically catered to our applications
of the merge and reduce framework to clustering.

We now prove our main statement.

Proof of Theorem 1.1: Let δ = 1
poly(n) and consider an

ε-coreset construction with failure probability δ. We prove
that the merge and reduce framework gives an adversarially
robust construction for an ε-coreset with probability at least
1 − 2nδ. We consider a proof by induction on an input
set P of n points, supposing that n = 2k for some integer
k > 0. Observe that C0,j is a coreset of pj for j ∈ [n] since
C0,j = pj . Let Ei be the event that for a fixed i ∈ [k] that
Ci−1,j is an ε

2k -coreset of Ci−1,2j−1 and Ci−1,2j for each
j ∈

[
n

2i−1

]
. By Lemma D.2, it holds that for a fixed j, Ci,j

is an ε
2k -coreset of Ci−1,2j−1 and Ci−1,2j with probability

at least 1− δ. By a union bound over n
2i−1 possible indices

j, we have that for a fixed i, all Ci,j are ε
2k -coresets of

Ci−1,2j−1 and Ci−1,2j with probability at least 1− n
2i−1 · δ.

Thus, Pr [Ei+1] ≥ 1− nδ
2i−1 , which completes the induction.

Hence with Pr
[
∪ki=0Ei

]
, we have that the cost induced by

Ck,1 is a
(
1 + ε

2k

)k
-approximation to the cost induced by P .

Since
(
1 + ε

2k

)k ≤ eε/2 ≤ 1 + ε, then Ck,1 is an ε-coreset
of P with probability Pr

[
∪ki=0Ei

]
. By a union bound,

we have that Pr
[
∪ki=0Ei

]
≥ 1−

∑k
i=0 (1−Pr [Ei+1]) ≥

1− 2nδ. 2

E. Missing Proofs from Section B
Theorem E.1 (Freedman’s inequality) (Freedman, 1975)
Suppose Y0, Y1, . . . , Yn is a scalar martingale with differ-
ence sequence X1, . . . , Xn. Specifically, we initiate Y0 = 0
and set Yi = Yi−1 + Xi for all i ∈ [n[Let R ≥ |Xt|
for all t ∈ [n] with high probability. We define the pre-
dictable quadratic variation process of the martingale by
wk :=

∑k
t=1 E

t−1

[
X2
t

]
, for k ∈ [n]. Then for all ε ≥ 0 and

σ2 > 0, and every k ∈ [n],

Pr

[
max
t∈[k]
|Yt| > ε and wk ≤ σ2

]
≤ 2 exp

(
− ε2/2

σ2 +Rε/3

)
.

We first show robustness of our algorithm by justifying
correctness of approximation for Lp norms.

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Lemma E.2 (Lp subspace embedding) Suppose ε > 1
n ,

p ∈ {1, 2}, and C > κp, where κ is an upper bound on the
condition number of the stream. Then Algorithm 1 returns a
matrix M such that for all x ∈ Rd,

| ‖Mx‖p − ‖Ax‖p | ≤ ε ‖Ax‖p ,

with high probability.

Proof : Consider an arbitrary x ∈ Rd and suppose
ε ∈ (0, 1/2) with ε > 1

n . We claim through induction the
stronger statement that |‖Mjx‖pp − ‖Ajx‖pp| ≤ ε‖Ajx‖pp
for all times j ∈ [n] with high probability. Here Mj is the
matrix consisting of the rows of the input matrix A that have
already been sampled at time j and Aj = a1 ◦ . . .◦aj . Note
that either a1 is the zero vector or p1 = 1, so that either
way, we have M1 = A1 for our base case. We assume the
statement holds for all j ∈ [n− 1] and prove it must hold
for j = n. We implicitly define a martingale Y0, Y1, . . . , Yn
through the difference sequence X1, . . . , Xn, where for
j ≥ 1, we set Xj = 0 if Yj−1 > ε‖Aj−1x‖pp and otherwise
if Yj−1 ≤ ε‖Aj−1x‖pp, we set

Xj =

{(
1
pj
− 1
)
|a>j x|p if aj is sampled in M

−|a>j x|p otherwise.
(1)

Since E [Yj |Y1, . . . , Yj−1] = Yj−1, then the sequence
Y0, . . . , Yn induced by the differences is indeed a valid
martingale. Furthermore, by the design of the difference
sequence, we have that Yj = ‖Mjx‖pp − ‖Ajx‖pp.

If pj = 1, then aj is sampled in Mj , so we have that
Xj = 0. Otherwise, we have that

[E
[
X2
j |Y1, . . . , Yj−1

]
= pj

(
1

pj
− 1

)2

|a>j x|2p + (1− pj)|a>j x|2p

≤ 1

pj
|a>j x|2p.

For pj < 1, then we have pj = ατj and thus
E
[
X2
j |Y1, . . . , Yj−1

]
≤ 1

ατj
|a>j x|2p. By the definition

of τj and the inductive hypothesis that |‖Mj−1x‖pp −
‖Aj−1x‖pp‖ ≤ ε‖Aj−1x‖pp < 1

2‖Aj−1x‖pp, then we have

τj ≥
2|a>j x|p

‖Mj−1x‖pp + |a>j x|p

≥
|a>j x|p

‖Aj−1x‖pp + |a>j x|p
=
|a>j x|p

‖Ajx‖pp
≥
|a>j x|p

‖Ax‖pp
.

Thus,
n∑
j=1

E
[
X2
j |Y1, . . . , Yj−1

]
≤

n∑
j=1

‖Ax‖pp · |a>j x|p

α

≤
‖Ax‖2pp

α
.

Moreover, we have that |Xj | ≤ 1
pj
|a>j x|p. For pj = 1,

we have 1
pj
|a>j x|p ≤ ‖Ajx‖pp ≤ ‖Ax‖pp. For pj < 1, we

have pj = ατj < 1. Again by the definition of τj and by
the inductive hypothesis that |‖Mj−1x‖pp − ‖Aj−1x‖pp‖ ≤
ε‖Aj−1x‖pp < 1

2‖Aj−1x‖pp, we have that

|〈aj ,x〉|p

2‖Ajx‖pp
≤ |〈aj ,x〉|p

|Mj−1x|pp + |〈aj ,x〉|p
≤ τj .

Hence for α = Cd
ε2 log n, it follows that

|Xj | ≤
1

pj
|a>j x|p ≤

2

α
‖Ajx‖pp

≤ 2ε2

Cd log n
‖Ajx‖pp ≤

2ε2

Cd log n
‖Ax‖pp.

We would like to apply Freedman’s inequality (Theo-

rem E.1) with σ2 =
‖Ax‖2pp

α for α = O
(
d
ε2 log n

)
and

R ≤ 2ε2

d logn‖Ax‖pp, as in (Braverman et al., 2020). How-
ever, in the adversarial setting we won’t be able bound the
probability that |Yn| exceeds ε‖Ax|pp using Freedman’s in-
equality as the latter is a random variable. Thus we instead
assume that κ1, κ2 are constants so that for p = 1, we
have κ1 and κ2 are lower and upper bounds on ‖A‖1 and
for p = 2, we have that κ1 and κ2 are lower and upper
bounds on the singular values of A. We are now ready

to apply Freedman’s inequality with σ2 ≤ κ2p
2 ‖x‖

2p
p

α for
α = O

(
d
ε2 log n

)
and R ≤ 2ε2

d lognκ
p
2‖x‖pp. By Freedman’s

inequality, we have that

Pr
[
|Yn| > εκp1‖x‖pp

]
≤ 2 exp

(
−

κ2p1 ε
2‖x‖2pp /2

σ2 +Rκp1ε‖x‖
p
p/3

)

≤ 2 exp

(
−3Cdκ2p1 log n/2

6κ2p2 + 2κp1κ
p
2

)

≤ 1

2d poly(n)
,

for sufficiently large C > (κ1/κ2)p. Note for p = 2, we
have the upper bound on the condition number κ ≥ κ1/κ2
so it suffices to set C = κ2. Since κp1‖x‖pp ≤ ‖Ax‖pp, then
we have

Pr
[
|Yn| > ε‖Ax‖pp

]
≤ Pr

[
|Yn| > εκp1‖x‖pp

]
.

Thus | ‖Mx‖pp − ‖Ax‖pp | ≤ ε ‖Ax‖pp with probability at
least 1− 1

2d poly(n)
. By a rescaling of ε since p ≤ 2, we thus

have that | ‖Mx‖p − ‖Ax‖p | ≤ ε ‖Ax‖p with probability
at least 1− 1

2d poly(n)
.

We now show that we can union bound over an ε-net. We
first define the unit ball B = {Ay ∈ Rn | ‖Ay‖p = 1}.
We also define N to be a greedily constructed ε-net of B.

Adversarial Robustness of Streaming Algorithms through Importance Sampling

Since balls of radius ε
2 around each point cannot overlap,

but must all fit into a ball of radius 1+ ε
2 , then it follows that

N has at most
(
3
ε

)d
points. Therefore, by a union bound

for 1
ε < n, we have | ‖My‖p−‖Ay‖p | ≤ ε ‖Ay‖p for all

Ay ∈ N , with probability at least 1− 1
poly(n) .

We now argue that accuracy on this ε-net implies accuracy
everywhere. Indeed, consider any vector z ∈ Rd normalized
to ‖Az‖p = 1. We shall inductively define a sequence

Ay1,Ay2, . . . such that
∥∥∥Az−

∑i
j=1 Ayj

∥∥∥
p
≤ εi and

there exists some constant γi ≤ εi−1 with 1
γi
Ayi ∈ N for

all i. Define our base point Ay1 to be the closest point to
Az in the ε-net N . Then since N is a greedily constructed
ε-net, we have that ‖Az−Ay1‖p ≤ ε. Given a sequence

Ay1, . . . ,Ayi−1 such that γi :=
∥∥∥Az−

∑i−1
j=1 Ayj

∥∥∥
p
≤

εi−1, note that 1
γi

∥∥∥Az−
∑i−1
j=1 Ayj

∥∥∥
p

= 1. Thus we

inductively define the point Ayi ∈ N so that Ayi is within
distance ε of Az−

∑i−1
j=1 Ayj . Therefore,

| ‖Mz‖p − ‖Az‖p | ≤
∞∑
i=1

| ‖Myi‖p − ‖Ayi‖p |

≤
∞∑
i=1

εi ‖Ayi‖p

= O (ε) ‖Az‖p ,

which completes the induction for time n. 2

E.1. Adversarially Robust Spectral Approximation

We observe that Lemma E.2 provides adversarial robustness
for free.

Lemma E.3 (Adversarially robust spectral approximation)
Algorithm 1 is adversarially robust.

Proof : Let us inspect the proof of Lemma E.2. Ob-
serve that since the adversary can observe the past data
and the past randomness of Algorithm 1, then the rows
ai are random variables that depend on the history and
the randomness of the algorithm. In other words, ai is
measurable with respect to the sigma algebra generated by
a1, . . . ,ai−1, B1, . . . , Bi−1, Ci where Bi is the indicator
of the event that we sample row ai in Algorithm 1 and Ci
is the random vector generated by the adversary at step i to
create row ai.

Denote Fi the sigma algebra generated by
a1, . . . , ai−1, B1, . . . Bi−1, Ci. Then ai is measur-
able with respect to Fi. Let us remind that Yj = Yj−1 +Xj

and let us observe that the definition of Xj in Equation (1)

can be rewritten as((
1

pj
− 1

)
|a>j x|pBj − |a>j x|p(1−Bj)

)
IYj−1<ε.

It can be easily checked that

E [Xj |Fj]

=

((
1

pj
− 1

)
|a>j x|ppj − |a>j x|p(1− pj)

)
IYj−1<ε

= 0.

This is because Yj−1, pj , aj are measurable with respect to
Fj . This implies that in the adversarial setting sequence
Yj is a martingale with respect to the filtration F0 ⊂ F1 ⊂
· · · ⊂ Fn.

The remainder of the proof of Lemma E.2 goes through
as is for arbitrary rows ai’s. Thus, the algorithm is indeed
adversarially robust. 2

We note the established upper bounds on the sum of the
online Lp sensitvities, e.g., Theorem 2.2 in (Cohen et al.,
2016), Lemma 2.2 and Lemma 4.7 in (Braverman et al.,
2020).

Lemma E.4 (Bound on Sum of Online Lp Sensitivities)
(Cohen et al., 2016; Braverman et al., 2020) Let the rows
of A = a1 ◦ . . . ◦ an ∈ Rn×d arrive in a stream with
condition number at most κ and let `i be the online Lp
sensitivity of ai. Then

∑n
i=1 `i = O (d log n log κ) for

p = 1 and
∑n
i=1 `i = O (d log κ) for p = 2.

We note that κ is an adversarially chosen parameter, since
the rows of the input matrix A are generated by an adver-
sary. One can mitigate possible adversarial space attacks by
tracking κ and aborting if log κ exceeds a desired threshold.

Proof of Lemma B.7: Algorithm 1 is adversarially robust
by Lemma E.3. It remains to analyze the space complexity
of Algorithm 1. By Lemma E.3 and a union bound over the
n rows in the stream, each row ai is sampled with probabil-
ity at most 4ατi, where τi is the online leverage score of row
ai. By Lemma E.4, we have

∑n
i=1 τi = O (d log κ) and we

also set α = O
(
dκ
ε2 log n

)
. Let γ > 0 be a sufficiently large

constant such that
∑n
i=1 ατi ≤

d2γκ log κ
ε2 log n.

We use a martingale argument to bound the number of rows
that are sampled. Consider a martingale U0, U1, . . . , Un
with difference sequence W1, . . . ,Wn, where for j ≥ 1,
we set Wj = 0 if Uj−1 > d2γκ log κ

ε2 log n and otherwise if

Uj−1 ≤ d2γκ log κ
ε2 log n, we set

Wj =

{
1− pj if aj is sampled in M

−pj otherwise.
(2)

Adversarial Robustness of Streaming Algorithms through Importance Sampling

We have E [Uj |U1, . . . , Uj−1] = Uj−1, then the sequence
U0, . . . , Un induced by the differences is indeed a valid mar-
tingale. Note that intuitively, Un is the difference between
the number of sampled rows and

∑n
j=1 pj .

Since aj is sampled with probability pj ∈ [0, 1],

E
[
W 2
j |U1, . . . , Uj−1

]
≤

n∑
j=1

pj ≤
n∑
j=1

ατj .

Moreover, we have E [|Wj | |U1, . . . , Uj−1] ≤ 1. Thus
by Freedman’s inequality (Theorem E.1) with σ2 =∑n
j=1 ατj ≤

d2γκ log κ
ε2 log n and R ≤ 1,

Pr

[
|Un| >

d2γκ log κ

ε2
log n

]
≤ 2 exp

(
− d4γ2κ2 log2 κ log2 n/(2ε4)

σ2 +Rd2γκ log κ log n/(3ε2)

)
≤ 1

poly(n)
.

Hence we have that with high probability, the number of
rows sampled is O

(
1
ε2 d

2κ log κ log n
)
. 2

We remark that the space bounds for Lemma B.7 could sim-
ilarly be shown (with constant probability of success) using
Markov’s inequality though analysis Freedman’s inequality
provides much higher guarantees in terms of probability of
success.

On the other hand, it is not clear how to execute a similar
strategy using the Matrix Freedman’s Inequality rather than
using Freedman’s inequality. This is because to obtain the
desired spectral bound, we must define a martingale at time
j in terms of both the matrix Aj and whether the rows
a1, . . . ,aj−1 were previously sampled. However, since Aj

is itself a function of whether a1, . . .aj−1 were previously
sampled, the resulting sequence is not a valid martingale.

We first require the following bound on the sum of the online
ridge leverage scores, e.g., Theorem 2.12 from (Braverman
et al., 2020), which results from considering Lemma 2.11
in (Braverman et al., 2020) at O (log n) different scales.

Lemma E.5 (Bound on Sum of Online Ridge Leverage
Scores) (Braverman et al., 2020) Let the rows of A = a1 ◦
. . . ◦ an ∈ Rn×d arrive in a stream with condition number
at most κ, let λi =

‖Ai−(Ai)(k)‖2F
k , where Ai = a1 ◦ . . .◦ai

and (Ai)(k) is the best rank k approximation to Ai. Let `i
be the online ridge leverage score of ai with regularization
λi. Then

∑n
i=1 `i = O (k log n log κ).

From Lemma E.5 and a similar argument to Lemma E.2, we
also obtain adversarially robust projection-cost preservation
and therefore low-rank approximation. Namely, (Cohen

et al., 2017; Braverman et al., 2020) showed that projection-
cost preservation essentially reduces to sampling a weighted
submatrix M of A such that ‖Mx‖22 + λ‖x‖22 ∈ (1 ±
ε)(‖Ax‖22 + λ‖x‖22) for a ridge parameter λ. Since the
online ridge leverage score of each row ai can be rewritten
as maxx∈Rd

〈ai,x〉2+λ‖x‖22
‖Aix‖22+λ‖x‖22

, then the same concentration
argument of Lemma E.2 gives Lemma B.8.

E.2. Adversarially Robust Linear Regression

We first give the formal definition of linear regression:

Problem E.6 (Linear Regression) Given a matrix A ∈
Rn×d, a vector b ∈ Rn and an approximation param-
eter ε > 0, the goal is to output a vector y such that
‖Ay − b‖2 ≤ (1 + ε) minx∈Rn ‖Ax− b‖2.

Lemma E.7 (Adversarially Robust Linear Regression)
Given ε > 0 and a matrix A ∈ Rn×d whose rows
a1, . . . ,an arrive sequentially in a stream with condition
number at most κ, there exists an adversarially robust
streaming algorithm that outputs a (1 + ε) approximation

to linear regression and uses O
(
d3

ε2 log2 n log κ
)

bits of
space, with high probability.

Proof : Suppose each row of A arrives sequentially, along
with the corresponding entry in b. Let B = A ◦ b so that
the effectively, the rows of B arrive sequentially. Note that
if M is a spectral approximation to B, then we have

(1− ε) ‖Bv‖2 ≤ ‖Mv‖2 ≤ (1 + ε) ‖Bv‖2

for all vectors v ∈ Rd+1. In particular, let w ∈ Rd+1 be
the vector that minimizes ‖Mv‖2 subject to the constraint

that the last coordinate of w is 1, and let w =

[
y
1

]
. Then

we have

‖Ay − b‖2 = ‖Bw‖2 ≤
1

1− ε
‖Mw‖2 .

Let z be the vector that minimizes ‖Ax− b‖2 and let u =[
z
1

]
. Then we have

‖Az− b‖2 = ‖Bu‖2 ≥
1

1 + ε
‖Mu‖2 ≥

1

1 + ε
‖Mw‖2 ,

where the last inequality follows from the minimality of w.
Thus we have that ‖Ay − b‖2 ≤ (1 +O (ε)) ‖Az− b‖2.
2

F. Missing Proofs from Section C
Other Related Works Note that there is an alternate
streaming algorithm for graph sparsification given in (Goel

Adversarial Robustness of Streaming Algorithms through Importance Sampling

et al., 2010) which has the same guarantees but is computa-
tionally faster. However, we choose to analyze the algorithm
of (Ahn & Guha, 2009) since its core argument is sampling
based. Nevertheless, it is possible that the algorithm from
(Goel et al., 2010) is also adversarially robust. Lastly, we
recall that our model is the streaming model where edges ar-
rive one at a time. There is also related work in the dynamic
streaming model (see (Kapralov et al., 2019) and references
therein) where previously shown edges can be deleted but
this is not the scope of our work.

The notion of the connectivity of an edge is needed to in the
algorithm of (Ahn & Guha, 2009).

Definition F.1 (Connectivity (Benczúr & Karger, 1996))
A graph is k-strong connected iff every cut in the graph
has value at least k. A k-strong connected component
is a maximal node-induced subgraph which is k-strong
connected. The connectivity of an edge e is the maximum k
such that there exists a k-strong connected component that
contains e.

Algorithm 2 Graph sparsification algorithm from (Ahn &
Guha, 2009).
Input: A stream of edges e1, · · · , em and an accuracy pa-

rameter ε > 0
Output: Sparified graph H

1: H ← ∅
2: ρ← C(log n+logm)/ε2 for sufficiently large constant
C > 0

3: for each new edge e do
4: compute the connectivity ce of e in H
5: pe = min(ρ/ce, 1) .Importance of edge e, see

Definition F.1
6: Add e to H with probability pe and weight 1/pe

times its original weight
7: return H

We begin by providing a brief overview of our proof. The
first step is to show that for a cut in G of value c, the same
cut in the sparsified graph H has value that concentrates
around c. Note that in (Ahn & Guha, 2009), the concentra-
tion inequality they obtain depends roughly on exp(−c). In
other words, they get a stronger concentration for larger cuts
in the original graph. However, their concentration inequal-
ity is not valid in our setting since the value c is random.
Therefore, we employ a different concentration inequality,
namely Freedman’s inequality (Theorem Theorem E.1) in
conjunction with an assumption about the sizes of cuts in
the graph to obtain concentration for a fixed cut. The second
step is to use a standard worst-case union bound strategy to
bound the total number of cuts with a particular size in the
original graph. This uses the standard fact that the number
of cuts in a graph that is at most α times the minimum cut

is at most n2α. Then the final result for the property (1) in
Problem C.1 follows by combining the union bound with the
previously mentioned concentration inequality. The bound
for the total number of edges (condition (2) in Problem C.1)
is a “worst case” calculation in (Ahn & Guha, 2009) so it
automatically ports over to our setting. Note that we assume
κ1 and κ2 to be deterministic lower and upper bounds on
the size of any cut in G and define κ to be their ratio.

Theorem C.2 Given a weighted graph G = (V,E) with
|V | = n whose edges e1, . . . , em arrive sequentially in a
stream, there exists an adversarially robust streaming algo-
rithm that outputs a 1± ε cut sparsifier with O

(
κ2n logn

ε2

)
edges with probability 1− 1/ poly(n).

Proof : We claim through induction the stronger state-
ment that the value CH of any cut in H is a (1 + ε)-
approximation of the value CG of the corresponding cut
in G for all times j ∈ [m] with high probability. Consider a
fixed set S ⊆ V and the corresponding cut C = (S, V \ S).
Let e1, . . . , em be the edges of the stream in the order that
they arrive. We emphasize that e1, . . . , em are possibly
random variables given by the adversary rather than fixed
edges. For each j ∈ [m], let Gj be the graph consisting
of the edges e1, . . . , ej and let Hj be the corresponding
sampled weighted subgraph. We abuse notation and define
pj := pej to denote the probability of sampling the edge ej
that arrives at time j. We use C(j)

G and C(j)
H to denote the

value of the cut at time j in graphs G and H , respectively.
Note that p1 = 1, so we have H1 = G1 for our base case.

We assume the statement holds for all j ∈ [m − 1]
and prove it must hold for j = m. We define a mar-
tingale Y0, Y1, . . . , Ym through its difference sequence
X1, . . . , Xm, where for j ≥ 1, we set Xj = 0 if C(j−1)

H 6∈
(1 ± ε)C(j−1)

G . Otherwise if (1 − ε)C(j−1)
G ≤ C

(j−1)
H ≤

(1+ε)C
(j−1)
G , then we setXj equal to 0 if ej does not cross

the cut C,
(

1
pj
− 1
)

if ej crosses the cut and is sampled in
H , and −1 if ej crosses the cut and is not sampled in H .

Because E [Yj |Y1, . . . , Yj−1] = Yj−1, then we have that
the sequence Y0, . . . , Yn is indeed a valid martingale and
that Yj = C

(j)
H − C

(j)
G . (We abuse notation and use

Y1, . . . , Yi to indicate the similar filtration to the one in
Lemma Lemma E.3).

If pj = 1, then ej is sampled inHj , so we have thatXj = 0.
Otherwise,

E
[
X2
j |Y1, . . . , Yj−1

]
= pj

(
1

pj
− 1

)2

+ (1− pj) ≤
1

pj
.

For pj < 1, then we have pj = ρ/cej
and thus E

[
X2
j |Y1, . . . , Yj−1

]
≤ cej

ρ . Thus,

Adversarial Robustness of Streaming Algorithms through Importance Sampling∑n
j=1 E

[
X2
j |Y1, . . . , Yj−1

]
≤

∑
j:ej∈C

cej
ρ . Recall

that cej is the connectivity of ej in H rather than G.
However, by the definition of cej and the inductive
hypothesis that Hj−1 is a (1 + ε) cut sparsifier of Gj−1,
then we have that for ε < 1

2 , the connectivity of cej in H is
within a factor of two of the connectivity of cej in G. By
definition of connectivity, we have that the connectivity of
cej at time j in G is at most C(j)

G ≤ C(m)
G if ej crosses the

cut C. Hence,

m∑
j=1

E
[
X2
j |Y1, . . . , Yj−1

]
≤

∑
j:ej∈C

C
(j)
G

ρ
≤

2(C
(m)
G)2

ρ
.

By similar reasoning, we have |Xj | ≤ 1
pj
≤ cej

ρ ≤
2(C

(m)
G)

ρ .
Now we would like to apply Freedman’s inequality (The-

orem E.1) with σ2 =
2(C

(m)
G)2

ρ and R ≤ 2(C
(m)
G)

ρ for
ρ = C(log n + logm)/ε2. However, we cannot bound
the probability that |Yn| exceeds εC(m)

G , as the latter is a
random variable. Thus we instead assume that κ1 and κ2
are lower and upper bounds on C(m)

G . By Freedman’s in-
equality,

Pr [|Yn| > εκ1] ≤ 2 exp

(
− κ21ε

2/2

σ2 +Rκ1ε/3

)
≤ 2 exp

(
−3Cκ21 log n/2

6κ22 + 2κ1κ2

)
≤ n−O(C/κ2),

where we define κ := κ2/κ1. Since κ1 ≤ C
(m)
G , then we

have

Pr
[
|Yn| > εC

(m)
G

]
≤ Pr [|Yn| > εκ1] .

Thus |C(m)
H − C

(m)
G | ≤ εC

(m)
G with probability at least

1− n−O(C/κ2).

We now union bound over all cuts C. Based on our as-
sumption that every cut in G has value at least κ1, it fol-
lows that for any α ≥ 1, the number of cuts in G of
size ακ1 is at most n2α (Benczúr & Karger, 1996; Ahn
& Guha, 2009). Note that we are using a deterministic up-
per bound on the number of cuts that holds for any graph.
Due to our assumption, on the size of cuts, we know that
α ranges from 1 ≤ α ≤ κ2/κ1 = κ. Then using our
concentration result derived above, it follows by a union
bound that the probability that there exists some C such that
|C(m)
H − C(m)

G | ≤ εC(m)
G is at most∫ κ2/κ1

1

n2α · n−O(C/κ2) dα ≤ n2κ

2 log(κ)
· n−O(C/κ2)

≤ 1

poly(n)

where the last inequality follows by setting C = c′κ2 for
some large enough constant c′ > 1. This verifies part (1) of
Problem C.1.

We now need to check the number of edges in H . For this,
we note that the proof of Theorem 3.2 in (Ahn & Guha,
2009) carries over to our setting since the proof there only
relies on the fact that if an edge has strong connectivity at
most z in G, its weight in H is at most z/ρ in H which is
true for us as well. The extra κ2 factor in the number of
edges comes from our setting of the parameter C in ρ. 2

