
Closed-Loop Action Chunks with Dynamic Corrections for
Training-Free Diffusion Policy

Pengyuan Wu1,2,∗, Pingrui Zhang2,3,∗,
Zhigang Wang2, Dong Wang2, Bin Zhao2,4, Xuelong Li5,

B

Abstract— Diffusion-based policies have achieved remarkable
results in robotic manipulation but often struggle to adapt
rapidly in dynamic scenarios, leading to delayed responses
or task failures. We present DCDP, a Dynamic Closed-Loop
Diffusion Policy framework that integrates chunk-based action
generation with real-time correction. DCDP integrates a self-
supervised dynamic feature encoder, cross-attention fusion, and
an asymmetric action encoder–decoder to inject environmental
dynamics before action execution, achieving real-time closed-
loop action correction and enhancing the system’s adaptability
in dynamic scenarios. In dynamic PushT simulations, DCDP
improves adaptability by 19% without retraining while requir-
ing only 5% additional computation. Its modular design enables
plug-and-play integration, achieving both temporal coherence
and real-time responsiveness in dynamic robotic scenarios,
including real-world manipulation tasks.

I. INTRODUCTION

In recent years, diffusion policies have achieved remark-
able progress in robotic manipulation tasks [1], [2], [3].
These methods typically reason over action chunks to capture
non-Markovian dependencies, reducing compounding errors
in sequential prediction and enabling coherent long-horizon
action generation [4], [5], [6].

However, efficient manipulation in dynamic environments
requires not only long-horizon planning but also rapid re-
sponsiveness to environmental changes.

This dual requirement poses a significant challenge to
existing approaches: the policy must generate coherent action
sequences over extended time horizons while simultaneously
perceiving and adapting to external disturbances or target
motions during execution.

To address these challenges, prior work has mainly pur-
sued two directions. The first improves system respon-
siveness by shortening the prediction horizon or reducing
denoising steps [7], [1], [5], but often at the expense of
action quality and sequence smoothness, compromising task
stability. The second leverages temporal ensembling or bidi-
rectional decoding to integrate multi-step action sequences
for closed-loop control [8], [9]. However, these methods are
either constrained by reliance on past inference—hindering
real-time feedback—or require sampling multiple candidate
sequences per step, leading to high computational cost.

To address these limitations, we propose a Dynamic
Closed-Loop Diffusion Policy (DCDP) framework (Fig. 1)

1Zhejiang University. 2Shanghai Artificial Intelligence Laboratory.
3Fudan University. 4Northwestern Polytechnical University. 5Institute of
Artificial Intelligence, China Telecom Corp Ltd.

∗Equal contribution. BCorresponding author.

Open-Loop

Action Chunking

Closed-Loop

Action Chunking

Closed-Loop

Action Chunking

with

Dynamic Correction

H-horizon

H-horizon

Single-horizon

M-History Bank

……

Action

Observation

Dynamic Correction

Trajectory

Fig. 1. Comparison among open-loop, closed-loop, and our dynamic
correction diffusion policies. Our method leverages a history bank for
lightweight real-time correction and efficient closed-loop control.

that integrates long-horizon action chunks planning with real-
time correction. It leverages diffusion policies for consis-
tent long-horizon planning while incorporating a lightweight
dynamic module that injects high-frequency environmental
feedback at each step for closed-loop adaptation.

Specifically, we design a self-supervised dynamic fea-
ture encoder that captures environmental variations by
learning differential representations from recent observa-
tions.Temporal and cross-attention modules enhance tem-
poral modeling. An asymmetric action encoder compresses
action sequences into latent representations, which are re-
constructed using dynamic features. The combined recon-
struction loss and KL regularization encourage the decoder
to leverage recent dynamics, improving action adaptability.

Generally, the training and inference stages of the pro-
posed method can be illustrated as follows:

Stage 1 (Training): Based on human demonstration data,
the asymmetric action encoder and the self-supervised dy-
namic feature encoder are trained end-to-end. The differ-
ential loss enforces the dynamic feature module to capture
temporal dynamics, whereas the reconstruction loss and KL
divergence regularize the action decoder to attend to dynamic
features.

Stage 2 (Inference): The pretrained policy outputs action
chunks for long-term consistency, while the dynamic feature
module extracts environmental changes in real time and
corrects actions at every step. Updating at the same rate
as action execution, this process improves adaptability to

dynamic environments without sacrificing action coherence.
Notably, our method requires no retraining of the diffu-

sion policy. By inserting the dynamic correction module at
inference, it greatly improves responsiveness and robustness
in dynamic settings. Its modular design allows seamless in-
tegration with other chunk-based policies, enabling a flexible
way to balance long-term planning and real-time control.

We evaluated DCDP on a dynamic PushT simulation
and two real-world manipulation tasks. Results show that
DCDP alleviates the adaptability limitations of diffusion
policy in dynamic scenarios without retraining, achieving a
19% higher success rate with only 5% extra computation.
Even in static settings, its efficient closed-loop design further
improved task performance.

In summary, the contributions of this work are as follows:

• Closed-Loop Action Correction Framework: Integrates
long-horizon action chunks planning with real-time cor-
rection, preserving temporal coherence of actions while
enabling fast responses to environmental changes.

• Dynamic Feature Fusion Module: Lightweight temporal
attention module learns environmental dynamics and fuses
them with latent actions, allowing flexible adaptation to
perturbations and moving targets.

• Training-Free Modular Integration: Improves dynamic
adaptability without retraining and supports plug-and-play
integration with various chunk-based policies

II. METHOD

A. Stage 1: Fast Dynamic Aware Policy Training

This stage trains the Fast Dynamic-Aware Policy (Fig 2,
left).

1) History Bank Memory Learning: We propose a Dy-
namic Feature Extractor that uses a sliding window of recent
observations from the History Bank and applies convolution
and attention to capture temporal dependencies and scene
dynamics. Let Ot−M+1:t be the M most recent observations.
These frames are passed through a pre-trained ResNet18
to extract spatial features, which serve as the input to the
temporal modeling module.

2) Differential Feature Computation: To capture the
dynamic changes between consecutive frames, we compute
the differential feature Dt as follows:

Dt = α · (Xt+1 −Xt), (1)

where Xt denotes the extracted feature map at frame t, and α

is a learnable scaling parameter. The differential feature Dt ∈
R(M−1)×C′×H f ×W f represents the temporal differences within
the sliding window. This operation enables the model to
effectively capture the temporal dynamics between adjacent
frames.

3) Temporal Attention: To model dependencies across
time, we apply a temporal attention mechanism over the
frame features Xspatial. For each time step t, queries, keys,
and values are obtained via linear projections, and attention

scores are computed as

Attnt,t ′ = SoftMax

(
QtK⊤

t ′√
D

)
, (2)

where D is the feature dimension. The attended feature is
the weighted sum of values:

Xattended,t = ∑
t ′

Attnt,t ′Vt ′ . (3)

This allows the model to focus on the most relevant frames
and capture long-range temporal dependencies, crucial for
dynamic scene understanding.

4) Fusion Cross-Attention: To relate dynamic features
to the observation history, we apply cross-attention to fuse
the differential feature Dt with temporal context from the
history bank Xtemporal. Given queries Qt from Xtemporal and
keys/values Kt ,Vt from Dt , the attention output is

Attn(Qt ,Kt ,Vt) = softmax
(

QtK⊤
t√

dk

)
Vt , (4)

where dk is the key dimensionality. This cross-attention
aligns temporal context with differential cues, enabling the
model to attend to dynamic changes over time. Let FM denote
the fused representation that summarizes both historical
memory and dynamic variation.

5) Self-Supervised with Differential: In this section, we
present a self-supervised learning scheme for the dynamic
feature extractor that leverages frame-to-frame differentials
to model temporal change, removing the need for manual
labels.

During training, at step M the extractor produces predicted
dynamic features FM , while the history bank provides differ-
ential targets DM−1 (Sec. II-A.1). The model is conditioned
on preceding frames, and DM−1 serves as supervision.

To align predictions with observed changes, we minimize
the KL divergence between normalized features:

Ldiff =
T

∑
t=1

KL
(

softmax(F(t)
M)∥ softmax(D(t)

M−1)
)
. (5)

This objective encourages the representation to capture tem-
poral dynamics without manual annotations.

6) Variational Autoencoder: We adopt a lightweight
Variational Autoencoder (VAE) to model future actions. The
encoder maps the input action sequence At to a Gaussian
latent distribution q(z |At) =N (µ,σ2), and samples z using
the reparameterization trick z = µ + σε, ε ∼ N (0, I) for
backpropagation. The decoder, conditioned on z and dynamic
features FM , reconstructs the action sequence using an RNN:

p(At | z,FM) = N (Ât ,σ
2
dec). (6)

This enables the policy to learn a compact latent represen-
tation and predict actions informed by temporal context.

7) Loss: The VAE is trained with a weighted sum of
reconstruction, KL, and differential losses:

Ltotal = Lrecon +λKLLKL +λdiffLdiff, (7)

Here λKL and λdiff balance regularization and differential
feature learning.

Stage 1

VAE

Encoder

VAE

Decoder

Stage 2 Inference Time Direction

T = t

…

T = t+n ~ t+n+M

…

Observations

…

Fast Dynamic Aware policy

…

Temporal Attention

Fusion Cross Attention

Query

Key

Value

ResNet

T = t+H T = t+H+n ~ t+H+n+M

Fast Dynamic Aware policy

Denoising

U-Net

Action

Chunking
…

Action Chunking with

Dynamic Correction

VAE

Encoder

VAE

Decoder

… …

Fast Dynamic Aware policy

Denoising

U-Net

Action

Chunking

VAE

Encoder

VAE

Decoder

Waiting for the

dynamic correction …

Fig. 2. Overview of the DCDP. Our method uses a two-stage framework: (Stage 1) train a Fast Dynamic-Aware Policy and a asymmetric Variational
Autoencoder (VAE); (Stage 2) apply training-free, per-step action corrections using the fast policy and decode corrected actions with the VAE.

B. Stage 2: Dynamic Injection for Training-Free Diffusion
Policy

During dynamic evaluation (Fig 2, right), we main-
tain a sliding window of length M over the observations,
Ot−M+1:t = [ot−M+1, . . . ,ot]. We then compute dynamics-
aware features online using the Stage-1 Fast Dynamic-Aware
extractor π f :

Ft = π f (Ot−M+1:t) ∈ Rd f . (8)

A frozen slow diffusion policy produces a horizon-H open-
loop action chunk conditioned on the current observation,

At:t+H−1 ∼ πs(· | ot), At:t+H−1 = [at , . . . ,at+H−1]. (9)

For feature injection, we first apply elementwise normal-
ization using known bounds amin,amax:

Ãt:t+H−1 = 2
At:t+H−1 −amin

amax −amin
−1, (10)

where all operations are elementwise and 1 denotes an all-
ones tensor matching the shape of At:t+H−1. We then encode
this chunk into a latent vector with the frozen VAE encoder
E trained in Stage 1:

zt = E
(
Ãt:t+H−1

)
∈ Rdz . (11)

Within each chunk, execution proceeds in a closed loop.
For each step s ∈ {0, . . . ,H − 1}, we refresh the history
window and recompute features:

Ft+s = π f (Ot+s−M+1:t+s) . (12)

We then decode a dynamically corrected action with the
frozen VAE decoder D trained in Stage 1, conditioned on
a step embedding es:

ât+s = D(zt , Ft+s, es) . (13)

Aggregating over steps yields the closed-loop chunk:

Â′
t:t+H−1 = [D(zt ,Ft ,e0), . . . , D(zt ,Ft+H−1,eH−1)] . (14)

Equivalently, this induces a deterministic joint closed-loop
policy

πc(ât+s | ot ,Ot+s−M+1:t+s) =δ (ât+s −D(E(norm(πs(ot))),

π f (Ot+s−M+1:t+s),es))
(15)

where norm(·) denotes the linear normalization above and
δ (·) is a Dirac delta indicating a deterministic mapping. After
s = H − 1, we replan by resampling a new chunk from πs
with the latest observation (receding-horizon), while keeping
all modules frozen; thus, the entire Stage-2 procedure is
training-free. The continual injection of Ft+s provides fine-
grained online corrections to the open-loop diffusion chunk,
improving responsiveness and robustness in rapidly changing
scenes.

III. EXPERIMENT

A. Experimental Settings

For the PushT task, we employ a diffusion policy trained
from human demonstrations as the basic policy.

During inference, we set the batch size to N = 50, meaning
that 50 initial poses are randomly generated in the simulation
environment and kept fixed throughout the experiments.

For each initial condition, we perform rollouts and eval-
uate task success rate and inference latency. Each episode
ends when Tmax = 300 steps are reached or the object–target
overlap σ exceeds 95%. The environment runs at 10 Hz. The
model predicts 16 actions per inference and executes the first
8 in open-loop mode.

Baselines: We compare our method with three repre-
sentative inference baselines: Open-loop(H=8): Execute an
entire action chunk at each inference step; Closed-loop(H=1):
Execute only the most recent action at each inference step;
Temporal Ensemble [10](H=1): At each overlapping step, we
average the new prediction a with the previous prediction â
to produce smoother action chunks: at = λat + (1− λ)ât ,
with λ set to 0.5.

H denotes that the diffusion policy model is inferred every
H time steps.

Perturbations: To evaluate robustness and generalization
under dynamic scenarios, we introduce two perturbations in
simulation: (1) Constant-direction: a fixed-magnitude offset
with constant direction is applied at each step to simulate
sustained external forces; (2) Random-direction: a fixed-
magnitude offset with randomly sampled direction is applied
at each step, resampled every N = 50 steps.

Inference Latency Measurement: To ensure a fair eval-
uation of inference efficiency, we measure all inference
latencies on a single NVIDIA RTX 4090 GPU 24GB under
identical hardware and software configurations.

B. Quantitative Analysis

Table I presents a comparison of task success rates be-
tween the proposed method and several baselines in both
static scenarios and dynamic scenarios under varying pertur-
bations. Table II shows the average single-step latency for
each method, highlighting the real-time and computational
improvements of our method.

TABLE I
SUCCESS RATES

Methods Static Constant
perturbations

Random
perturbations

Open-Loop 88.4 58.2 52.8
Closed-Loop 84.6 76.1 61.6

Temporal
Ensemble 81.0 65.8 57.3

DCDP 92.5 77.6 71.9

TABLE II
COMPARISON OF PER-STEP INFERENCE LATENCY.

Methods OL(H=8) CL(H=1) TE(H=1) DCDP(H=8)

Delay (ms) 7.05 53.60 53.74 7.39

The original closed-loop method improves task success
in dynamic scenarios but degrades performance in static
settings. This is likely due to full-sequence replanning at each
inference step, which disrupts continuity between consecu-
tive actions and impairs long-horizon coordination learned
from human demonstrations. In contrast, DCDP reduces
replanning frequency, combining long-horizon planning with
recent observations for rapid closed-loop control, resulting in
significant gains in both static and dynamic tasks.

Although DCDP introduces a lightweight feature extractor
and an asymmetric action VAE for dynamic correction,
it adds only 5% computational overhead (Table II) while
keeping inference latency below 10 ms per step on an RTX
4090.

C. Ablation Study

To evaluate the necessity and effectiveness of each module
in the proposed architecture, we conduct ablation studies to
analyze their relative contributions to model performance.

Specifically, we conducted ablation studies on the self-
supervised dynamic feature extraction module. Key compo-
nents were sequentially removed, and Stage 1 was retrained
after each removal.

TABLE III
TASK SUCCESS RATES AFTER ABLATING INDIVIDUAL MODULES.

TA SSD DCA SRstatic SRdynamic

88.40 58.20
✓ ✓ 92.05 73.59

✓ ✓ 92.31 73.50
✓ ✓ 93.36 68.23
✓ ✓ ✓ 92.50 77.60

Consant Perturb Consant Perturb Consant Perturb

Random Perturb Random Perturb Random Perturb

Pick and place a moving cup

Pour liquid into a moving cup

Fig. 3. The two tasks involve two types of perturbations: constant-direction
and random-direction. These perturbations were applied exclusively to the
components highlighted in the figure.

Table III presents the results of the ablation experi-
ments.TA refers to temporal attention, SSD refers to self-
supervised diff loss, DCA refers to diff cross attention, and
SRstatic, SRdynamic, denotes success rate (%). We selected
static scenarios and constant-direction perturbations as eval-
uation metrics.

The results demonstrate that all proposed modules make
positive contributions to system performance.

D. Real-World Application

To validate the proposed algorithm in real-world scenarios,
we evaluate it on two representative manipulation tasks: pick-
and-place of a moving cup and pouring liquid into a moving
cup, as shown in Fig. 3.

We employed the UMI [11] gripper and utilized the
publicly available FastUMI [12] dataset, reproducing its
scenarios to construct a real-world evaluation platform.

In real-world evaluations, we adopted a similar task setup
with constant- and random-direction perturbations. Constant
perturbations were applied in the pick-and-place of a moving
cup task, where the cup moved along a fixed direction.
Random perturbations were applied in the pouring liquid into
a moving cup task, requiring the robot to accurately pour into
a cup moving in unpredictable directions.

The results indicate that, compared with the original
method, DCDP exhibits significantly enhanced adaptability
in dynamic scenarios.

ACKNOWLEDGMENT

This work is supported by the Shanghai AI Laboratory.

REFERENCES

[1] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion Policy: Visuomotor Policy Learning via Action Diffusion,”
in Robotics: Science and Systems XIX. Robotics: Science and Systems
Foundation, July 2023.

[2] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned imi-
tation learning using score-based diffusion policies,” arXiv preprint
arXiv:2304.02532, 2023.

[3] Y. Liu, W. C. Shin, Y. Han, Z. Chen, H. Ravichandar, and D. Xu,
“Immimic: Cross-domain imitation from human videos via mapping
and interpolation,” arXiv preprint arXiv:2509.10952, 2025.

[4] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu, “3d
diffusion policy: Generalizable visuomotor policy learning via simple
3d representations,” arXiv preprint arXiv:2403.03954, 2024.

[5] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Plan-
ning with diffusion for flexible behavior synthesis,” arXiv preprint
arXiv:2205.09991, 2022.

[6] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu,
S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, et al.,
“Imitating human behaviour with diffusion models,” arXiv preprint
arXiv:2301.10677, 2023.

[7] A. Prasad, K. Lin, J. Wu, L. Zhou, and J. Bohg, “Consistency policy:
Accelerated visuomotor policies via consistency distillation,” arXiv
preprint arXiv:2405.07503, 2024.

[8] Y. Liu, J. I. Hamid, A. Xie, Y. Lee, M. Du, and C. Finn, “Bidirectional
decoding: Improving action chunking via closed-loop resampling,”
International Conference on Learning Representations (ICLR), 2025.

[9] A. George and A. B. Farimani, “One act play: Single demonstration
behavior cloning with action chunking transformers,” arXiv preprint
arXiv:2309.10175, 2023.

[10] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

[11] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake,
and S. Song, “Universal manipulation interface: In-the-wild robot
teaching without in-the-wild robots,” arXiv preprint arXiv:2402.10329,
2024.

[12] K. Liu, C. Guan, Z. Jia, Z. Wu, X. Liu, T. Wang, S. Liang, P. Chen,
P. Zhang, H. Song, et al., “Fastumi: A scalable and hardware-
independent universal manipulation interface with dataset,” arXiv
preprint arXiv:2409.19499, 2024.

	Introduction
	Method
	Stage 1: Fast Dynamic Aware Policy Training
	History Bank Memory Learning
	Differential Feature Computation
	Temporal Attention
	Fusion Cross-Attention
	Self-Supervised with Differential
	Variational Autoencoder
	Loss

	Stage 2: Dynamic Injection for Training-Free Diffusion Policy

	Experiment
	Experimental Settings
	Quantitative Analysis
	Ablation Study
	Real-World Application

	References

