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ABSTRACT

While softmax cross entropy loss is the standard objective for supervised classifi-
cation, it primarily focuses on the ground truth classes, ignoring the relationships
between the non-target, complementary classes. This leaves valuable information
unexploited during optimization. In this work, we set explicit non-zero target
distributions for the complementary classes, in order to address this limitation.
Specifically, for each class, we define an anti-class, which consists of everything
that is not part of the target class—this includes all complementary classes as well
as out-of-distribution samples, and in general any instance that does not belong
to the true class. Various distributions can be used as a target for the anti-classes.
For example, by setting a uniform one-cold encoded distribution over the com-
plementary classes as a target for each anti-class, we encourage the model to
equally distribute activations across all non-target classes. This approach promotes
a symmetric geometric structure of classes in the final feature space, increases
the degree of neural collapse during training, addresses the independence deficit
problem of neural networks and improves generalization. Our extensive evaluation
demonstrates that our proposed framework consistently results in performance
gains across multiple settings, including classification, open-set recognition, and
out-of-distribution detection.

1 INTRODUCTION

Deep learning has seen amazing progress over the past decade across multiple domains such as
vision, speech, and text (He et al., 2015b). The optimization criterion universally used for supervised
classification tasks is the cross entropy loss, which aims at minimizing the discrepancy between the
predicted probability distribution across classes and the ground truth probability distribution, typically
represented as a one-hot encoding of the true label (Goodfellow et al., 2016). Minimizing the cross
entropy loss maximizes the likelihood of correctly identifying disjoint classes under a given set of
parameters of a statistical learning model, such as a neural network, making it an intuitive choice,
with strong empirical results over the years.

Despite its theoretical and practical appeal, cross entropy loss is not without its limitations. Neural
networks optimized with cross entropy are known to result in overconfident predictions (Guo et al.,
2017), (Nguyen et al., 2015). This problem becomes more evident in open set classification scenarios,
where a model must be able to also recognize unknown (i.e., not seen in training) classes at inference
time (Scheirer et al., 2013). Current neural networks struggle to recognize out-of-distribution (OOD)
samples (Bendale & Boult, 2015), and often misclassify them to one of the known classes with high
confidence, which calls into question their trustworthiness. In a recent work, Feng et al. (2024)
also identified an independence deficit in neural networks, where the prediction confidence of some
classes is redundantly determined by others through simple linear relationships, even when the classes
are semantically unrelated. This entanglement can lead to overfitting and poor generalization, as the
network neglects learning distinct class representations.

In spite of these limitations, neural networks can generalize remarkably well, and understanding the
underlying reasons has been the focus of extensive research (Zhang et al., 2021), (Yang et al., 2020).
In this effort, recent work has uncovered the intriguing empirical phenomenon of Neural Collapse
(NC), which arises during the terminal stage of deep neural network training (Papyan et al., 2020),
(Zhu et al., 2024). In NC, class features collapse to their respective means, class means become

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

maximally separated in a Simplex Equiangular Tight Frame (ETF), and the classifier aligns with
these class means, leading to a highly structured decision boundary. NC has been linked to improved
robustness and benign overfitting (Bartlett et al., 2020), (Ma et al., 2018), with connections to the
information bottleneck theory (Tishby & Zaslavsky, 2015), which suggests that networks focus on
essential information, while discarding unnecessary variability.

While independence deficit and neural collapse are distinct and even contradicting behaviors—one
reflecting a redundancy in class independence and the other signifying maximally separated and
independent class representations— cross entropy loss does not provide a mechanism to explicitly
control these phenomena. Instead, their emergence during training is often incidental, with networks
passively exhibiting one behavior or the other, depending on the dataset size, class distribution,
task difficulty and model complexity rather than actively optimizing for either. In this work, we
rethink the classification objective by introducing the concept of an anti-class, which consists of
the complementary set of a class, encompassing all that the class is not. With anti-classes, we can
explicitly control the relationships between the complementary classes, and therefore the structure of
the classes in the final feature manifold.

We propose using a one-cold encoding, where the true class is labeled with 0, while the rest of the
classes are labeled with non-zero targets. Inspired by the geometric properties of the Simplex ETF, we
mainly focus on a uniform one-cold encoding, where each complementary class is labeled with 1, as
illustrated in Figure 1a. This encoding reflects that all complementary classes of a ground truth class
belong equally to its anti-class. (see Figure 1b). Through this simple label transformation, each class
is encouraged to maintain a symmetric relationship with all other classes, similar to the symmetry
in the Simplex ETF, where class centroids are equinorm and equiangular. This approach forces
the network to develop distinct and independent representations for each class, preventing reliance
on linear correlations with other classes. We argue that this enhances the model’s generalization
capability.

(a) One-hot encoding vs one-cold encoding. (b) Anti-class regions of one-hot cross entropy (left) and
one-cold cross entropy (right).

Figure 1: (b) Each point in the grid corresponds to a specific (x1, x2) coordinate in the input space X , (not limited
to visible class samples). Each point is passed through a trained MLP, its logits are negated and passed through a
softmax to provide an anti-class distribution (membership of that specific point of the grid to each anti-class).
The color assigned to each point is calculated with the linear combination between the anti-class distribution of
that point and the colors of the classes. For example, green and yellow classes become negatively correlated,
even if these classes are semantically unrelated. This can result in spurious correlations and independence deficit.
In contrast, uniform OCCE removes these connections by enforcing a uniform anti-class distribution, where all
complementary classes are equally represented in each anti-class.

Our key contributions are highlighted as follows:

• We introduce the concept of anti-classes, providing a novel approach to modeling classifica-
tion problems by directly optimizing the relationships between complementary classes.

• We propose using one-cold cross entropy (OCCE) to enable the model to learn target anti-
class distributions, in either a shared or decoupled layer from the class distributions, allowing
to control the geometric structure of classes.

• We analyze the impact of the uniform OCCE objective on neural collapse, independence
deficit, and the generalization capabilities of neural networks.

• Through extensive experiments, we demonstrate that our proposed method consistently
improves performance in both closed-set and open-set classification tasks.
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2 METHOD

2.1 ANTI-CLASS FORMULATION

Let’s consider a predefined set of N known classes. Each class k can be represented as a subspace in
a d-dimensional space, denoted by Ck ⊆ Rd. For every class k, we can define the complementary
subspace to Ck, which we denote as C̄k = Rd \ Ck and refer to as the anti-class subspace of k. The
anti-class subspace C̄k contains every instance that does not belong to class k, including instances
from other known or unknown classes, out-of-distribution instances, random noise or adversarial
examples. Intuitively, directly modeling the anti-class subspace C̄k seems a much harder problem
than modeling Ck, as the latter is clearly more restricted. Moreover, in mutually exclusive classes,
an instance that belongs to Ck inherently belongs to the anti-class of all other known classes C̄j ̸=k.
Consequently, in multi-class classification every vector p ∈ Rd belongs to at least N − 1 anti-classes,
and potentially to all N of them, if the vector does not represent an instance of a known class. We can
encode the anti-class labels using a one-cold encoded label l̄, where the ground truth class is labeled
with 0 (hence the term cold), and every complement class is labeled with a non-zero value, indicating
its membership to the anti-class. If we adopt hard assignments, the vector l̄ can be defined as:

l̄i =

{
0 if i = ground truth class,
1 if i = complementary class.

(1)

2.2 ORDINARY SUPERVISED CLASSIFICATION

In a standard supervised learning scenario, we deal with a set of n labeled instances D =
{(x0, l0), . . . , (xn, ln)} over an initial feature space X ⊆ Rd and a discrete label space L =
{1, . . . , N}, where d is the dimensionality of X and N the number of classes. An instance x which
belongs to class k is sampled from the subspace Ck. Given a model with parameters θ, the objective
of an ordinary classification task is to find the mapping f : X → L, where f(x; θ) = l, correctly
mapping each input x to its corresponding label l. Standard classification training minimizes the
cross entropy loss for each instance, comparing the model’s predicted probability distribution ŷ with
the one-hot encoded label y. The cross entropy loss is defined as:

LCE = −y⊤ log(ŷ), where ŷi =
exp(zi)∑C
j=1 exp(zj)

. (2)

In equation 2, only the log-probability of the ground truth labels is explicitly minimized, while the
probabilities of the complementary classes are indirectly influenced through the softmax normal-
ization. This approach overlooks the relationships between the complementary classes. Such a
limitation can be problematic, particularly for handling anomalous samples like adversarial examples
or out-of-distribution inputs. Ideally, for these cases, a model should produce a close to uniform
probability distribution across all classes, indicating maximum uncertainty. However, achieving this
uniform distribution requires equal activations z for all classes, which is not explicitly encouraged by
cross entropy loss. Furthermore, it does not enforce any specific geometric structure of the classes in
the feature space, leading to undesirable phenomena such as minority collapse (Fang et al., 2021),
where in imbalanced training the features of minority classes collapse towards identical clusters, or
independence deficit (Feng et al., 2024), where spurious correlations between classes emerge.

2.3 LEARNING WITH ANTI-CLASSES

Deriving the OCCE Loss. To address these challenges, we shift our focus to anti-classes. Since
one-cold encoded labels are not valid probability distributions, standard cross entropy loss cannot
be directly applied. A trivial solution would be to convert the task into a multi-label problem and
predict each anti-class probability independently using binary cross entropy loss. However, this
approach is redundant, as binary cross entropy treats labels 0 and 1 identically, learning each class
independently without controlling the relationships between complementary classes. To resolve this,
we introduce competition between anti-classes by applying a softmax function. While in one-hot
encoding, this results in a winner-takes-all scenario (Goodfellow et al., 2016), with anti-classes, the
target probability distribution can reflect how much an instance belongs to each anti-class. In this
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work, we mainly focus on a uniform one-cold encoding (hard assignments on anti-class labels l̄),
where a sample fully belongs to all anti-classes except its true class, implying that all anti-classes are
treated equally as winners. The target anti-class probability distribution ȳ can be simply defined for
each instance as:

ȳi =
l̄i∑N
j=1 l̄j

=

{
0 if i = ground truth class,

1
N−1 if i = complementary class.

(3)

Let now z̄ be the output activation vector of our network. For a network optimized to learn anti-
classes, higher activations correspond to higher probability of not belonging to the corresponding
class. We can now define the one-cold cross entropy loss as:

LOCCE = −ȳ⊤ log(ˆ̄y), where ˆ̄yi =
exp(z̄i)∑N
j=1 exp(z̄j)

(4)

Finally, to obtain class activations z we negate the anti-class activations z = −z̄ before softmax.

OCCE can be used also with non-uniform target distributions, as we demonstrate in the supplementary
material (see A.1.1), to handle different problems, e.g., accounting for different inter-class similarities.
When a uniform one-cold target distribution is used as a standalone objective, then we acquire, as
a special case, the reverse cross entropy (RCE) loss (Pang et al., 2017), which has been proposed
as a substitute of cross entropy loss for adversarial robustness. However, the RCE loss encounters
challenges with training stability on larger datasets. On the other hand, the proposed approach, can
effectively overcome these challenges by combining class and anti-class learning. This combination
results in consistent improvements across many classification tasks, distinguishing our approach from
RCE, which, as empirically shown, is not competitive in these scenarios.

Convergence Analysis. The gradients returned by one-hot cross entropy (CE) and by uniform
one-cold cross entropy (OCCE) lead to different convergence dynamics. The gradients with respect
to the activations z under CE and uniform OCCE are:

∂LCE

∂zi
=

{
ŷi − 1 if i = c,

ŷi if i ̸= c,
and

∂LOCCE

∂z̄i
=

{
ˆ̄yi if i = c,
ˆ̄yi − 1

N−1 if i ̸= c,
respectively. (5)

When the gradient of CE loss with respect to the activations vector z approaches zero, ∇zLCE → 0,
and under no further constraints, we get ŷc → 1, zc → +∞ for the correct class c, implying that its
predicted probability converges to 1, and its corresponding activation zc tends to positive infinity.
Similarly ŷk → 0, zk → −∞ for any complementary class k ̸= c, implying that the predicted
probabilities ŷk and activations zk of any complementary class independently approach 0 and
negative infinity, respectively. In the case of uniform OCCE loss, when the class activations are the
negated anti-class activations z = −z̄ and the gradient satisfies ∇z̄LOCCE → 0, the asymptotic
behavior with respect to the class activations z changes as follows:

ˆ̄yc → 0, zc → +∞ for the correct class c, (6)

ˆ̄yk → 1

N − 1
, zk → − log

(∑
j ̸=c exp(−zj)

N − 1

)
= zconst for any complementary class k. (7)

The limits in Equations 6 and 7 suggest that while the correct class activation zc still tends to
positive infinity, the activations of the complementary classes tend to equal values, since the sum
over complementary classes in the numerator is the same for all of them. Consequently, zk1 →
zk2 for any k1, k2 ̸= c.

Gradients Behaviour. In Figure 2, we analyze the gradient dynamics for both CE and OCCE under
the same setup: a 3-class scenario where the activation for the correct class is fixed at z0 = 2.5 and
the activations for the two complementary classes, z1 and z2, vary within the range [−5, 5]. In Figure
2a, we visualize the gradient fields for both cases. Under CE, the correct class is encouraged to have
a higher activation than the complementary classes, which are independently driven towards lower
values. In contrast, under OCCE, the gradients for the correct class become significant only when
both complementary classes have high activations. In the case of uniform OCCE, if the activations of
the complementary classes have different values, the gradients work to equalize them by reducing the
higher activation and increasing the lower one.
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(a) Gradients for all classes (b) Gradients norm
Figure 2: Given a 3-class classification scenario, we fix the ground truth class activation z0 = 2.5 and plot
activations for complement classes z1 and z2 ranging from -5 to 5. (a) Each grid shows the gradients for each
class at any (z1, z2) point. (b) The cumulative gradient norm over all classes is shown.

In Figure 2b, we compare the cumulative gradient norms across all classes. For CE, large gradients
appear when either complementary class has a competitive activation, without any regard for the
relationship between the complementary classes. Consequently, for a classification task with N
classes, gradients have small magnitude as long as maxj ̸=c zj ≪ zc. For OCCE, high magnitude
gradients are observed in most regions except where ∀j ̸= c : zj = zconst ≪ zc, which is a much
more restricted area, than that of CE.

Although theoretical analyses show that neural networks trained with CE loss converge to a Simplex
ETF under ideal optimization conditions (Lu & Steinerberger, 2022), in practice, the extent of neural
collapse observed varies. This variation is influenced by factors such as the number of classes, their
label distribution, the available data, and the complexity of the model. Empirically, neural collapse
tends to occur only in the later stages of training when CE loss approaches zero, implying that the
activations for all complementary classes converge towards zero, achieving nearly equal values. With
uniform OCCE, this behavior can be explicitly enforced from earlier stages of training, leading to
faster convergence toward this desired structure.

3 EXPERIMENTS

3.1 OCCE BEHAVIOUR ANALYSIS

Unified CE+OCCE Objective. The most straightforward
way to apply an OCCE loss is on the negated class activations
(z̄ = −z), as a unified objective with standard cross entropy
loss applied on z, as shown in Figure 3. However, OCCE
can also be combined with any other loss that emphasizes the
correct class. We also introduce a scalar γ in order to control
the contribution of OCCE in the final unified objective:

L = LCE + γ · LOCCE (8)
Figure 3: Unified architecture.

Neural Collapse. To study the effect of uniform OCCE loss on the occurrence of neural collapse
during optimization, we measure the amount of neural collapse during training using the four proposed
NC metrics by Zhu et al. (2024). NC1 measures the ratio between the within-class covariance ΣW

and the between-class covariance ΣB, NC2 quantifies the alignment of the learned classifier with a
Simplex ETF structure, NC3 evaluates the duality between the classifiers W and the centered class-
means H, while NC4 measures how the bias term b compensates for a nonzero global mean of the
features hG, reflecting the degree of collapse in the bias term (refer to A.9 for detailed computations).
Details on the calculation of these metrics are provided in Appendix. In Figure 4, we report the
measurements of these NC metrics during standard training of a ResNet18 architecture. Larger γ
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values consistently lead to higher degree of neural collapse, showing that uniform OCCE effectively
amplifies this phenomenon. The same behavior is noticed for vision transformers (see A.6.2).

(a) NC1 (b) NC2 (c) NC3 (d) NC4

Figure 4: Uniform OCCE impact on neural collapse during training of ResNet18v2 on CIFAR-100.

Indepedence Deficit. Uniform OCCE encourages each class to be equidistant from all the other
classes, enforcing decoupled classes with linearly independent representations. In order to show
the effect on independence deficit we follow the procedure from Feng et al. (2024) to estimate
the intrinsic dimension of the penultimate classification layer required to reconstruct the original
classification accuracy. We compute the covariance matrix of the representations in that layer, extract
its principal components, and project onto subspaces spanned by the top-K eigenvectors.

Figure 5a shows that with standard cross entropy loss, 80%, 90%, and 99% of the original classifi-
cation accuracy can be reconstructed using only 22, 37, and 64 dimensions, respectively, from the
original 100-dimensional activation layer on CIFAR-100. However, when using uniform OCCE
and increasing the value of γ, the reconstructed accuracy shows a more linear relationship with the
dimensionality of the subspace. This suggests that uniform OCCE decouples the classes and enforces
linear independence in the activation layer. For instance, with γ = 10, reconstructing 80%, 90%, and
99% of the accuracy requires 73, 89, and 98 dimensions, respectively. Intuitively, each class ci is
identified by the corresponding activation zi, rather than permitting predictions for ci through linear
combinations of other activations zj , j ̸= i, directly addressing the independence deficit.

(a) Independence Deficit (b) Accuracy (c) Generalization Gap

Figure 5: Sensitivity analysis of the uniform OCCE objective weighting. In (a), the reconstructed accuracy is
plotted based on the top-K eigenvectors of the activations layer, with ◦, ×, and ⋄ indicating the points where
80%, 95%, and 99% of the original accuracy is reconstructed, respectively. (b) and (c) illustrate the impact of
varying γ on validation accuracy and the generalization gap. The configuration used for these experiments is a
ResNet18v2 trained on CIFAR-100, and all reported values are the average results from 10 different seeds.

Impact on Generalization. In Figure 5c, we observe that increasing the value of γ consistently
reduces the generalization gap between train and test accuracy. However, as γ becomes large, it
also constrains the achievable training accuracy, as the total objective becomes more challenging
to optimize, due to the increased contribution of uniform OCCE. Consequently, the network tends
to converge to solutions that trade off accuracy for greater alignment of complementary classes.
This suggests that there is an optimal range for γ, which depends on the dataset’s difficulty and the
model’s complexity. For instance, in Figure 5b, a value of γ = 1 achieves the highest accuracy for
ResNet18v2 on CIFAR-100. Even though this may not be the optimal value for all tasks, to maintain
consistency across our following experiments, we use a value of γ = 1, unless otherwise noted.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2 CLOSED SET CLASSIFICATION EXPERIMENTS

In this section, we present the details and results of our closed-set image classification experiments,
including base training and transfer learning from pretrained models.

Base Training. We train the following architectures: a ResNet18v2 (He et al., 2016), a MobileNetv2
(Sandler et al., 2018) and a DenseNet121 (Huang et al., 2016) on CIFAR-100 (Krizhevsky, 2009) and
TinyImageNet (Le & Yang, 2015) datasets, containing 100 and 200 classes respectively. We follow a
standard hyperparameter configuration across all experiments from He et al. (2015a), which involves
employing an SGD optimizer with momentum of 0.9, mini-bacthes of 128 samples, weight decay
of 0.0001, no dropout and a total of 150 epochs for CIFAR-100 and 90 epochs for TinyImageNet.
The learning rate starts from the base value of 0.1 and is divided by 0.1 at 50 and 100 epochs for
CIFAR-100, and at 30, 60 and 80 epochs for TinyImageNet. For augmentation, we follow a universal
approach of normalization, random horizontal flipping and random cropping in the train set, while
only normalizing and center cropping the images in the test set.

We consider different baseline losses and add the weighted uniform OCCE objective on top of
them. Specifically we consider: Cross entropy loss, reverse cross entropy (Pang et al., 2017), label
smoothing with ϵ = 0.1 (Szegedy et al., 2015), CE combined with Negative Log loss (Kim et al.,
2019), complement objective training methods (Chen et al., 2019; Kim et al., 2021), assymetric loss
(Baruch et al., 2020) and a series of focal losses (Lin et al., 2017; Smith, 2022; Ghosh et al., 2024).
The differentiation of our proposed approach with these competitors is presented in Section 4.

Results. Table 1 presents the results of base train-
ing experiments, showing pairwise comparisons be-
tween the baseline losses without and with the uni-
form OCCE objective. While RCE is not competitive
in any of the settings, it is evident that the proposed
method leads to consistent improvements along al-
most all baselines and models combinations, suggest-
ing that uniform OCCE offers additional gains on top
of other competitors, when used as a complementary
loss. This is also visible in Figure 6, where adding
OCCE improves the validation accuracy, especially
after the first learning rate decay.

Figure 6: CIFAR-100 validation curves. Dashed
lines correspond to baseline accuracy and solid
lines to proposed.

Table 1: Test errors from base training using different loss functions. For each loss function, results are presented
as "without OCCE (γ = 0)" (left) and "with uniform OCCE (γ = 1)" (right) separated by a slash.

Dataset Loss ResNet18v2 MobileNetv2 DenseNet121

CIFAR-100

RCE (Pang et al., 2017) 25.19±0.23 50.93±0.75 29.46±0.12

CE (Baseline) 24.98±0.20 / 23.92±0.23 30.03±0.35 / 28.83±0.25 25.06±0.20 / 24.19±0.12

LSCE (Szegedy et al., 2015) 23.26±0.14 / 22.97±0.16 29.26±0.16 / 29.14±0.30 23.59±0.21 / 23.43±0.06

CE+NL (Kim et al., 2019) 25.10±0.14 / 23.90±0.33 29.95±0.22 / 28.89±0.37 25.48±0.81 / 24.71±0.44

COT (Chen et al., 2019) 24.52±0.19 / 23.21±0.26 29.57±0.11 / 28.52±0.32 23.70±0.75 / 22.27±0.26

CCE (Kim et al., 2021) 25.36±0.29 / 23.57±0.22 29.81±0.25 / 28.72±0.31 25.29±0.34 / 23.80±0.38

FL (Lin et al., 2017) 25.60±0.14 / 23.60±0.45 30.98±0.20 / 29.45±0.23 26.13±0.05 / 24.16±0.19

ASL (Baruch et al., 2020) 24.81±0.11 / 23.75±0.18 29.76±0.06 / 29.10±0.33 24.13 ±0.09 / 23.80±0.20

CFL (Smith, 2022) 23.69 ±0.27 / 23.57±0.20 29.55±0.38 / 29.29±0.20 24.33±0.42 / 23.81±0.15

ADAFL (Ghosh et al., 2024) 24.21±0.23 / 23.55±0.11 34.03±0.50 / 32.86±0.36 22.78±0.27 / 22.48±0.10

TinyImageNet

RCE (Pang et al., 2017) 45.22±0.24 73.34±0.15 64.18±0.48

CE (Baseline) 36.80±0.20 / 35.61±0.13 39.69±0.49 / 38.79±0.22 38.71±0.63 / 36.49±0.52

LSCE (Szegedy et al., 2015) 36.98±0.13 / 36.01±0.18 39.10±0.07 / 39.08±0.16 38.06±0.50 / 37.52±0.66

CE+NL (Kim et al., 2019) 36.40±0.10 / 35.28±0.12 39.16±0.10 / 38.41±0.28 38.75±1.21 / 38.66±1.09

COT (Chen et al., 2019) 35.40±0.15 / 34.74±0.12 40.14±0.26 / 39.21±0.26 37.60±0.21 / 35.11±0.17

CCE (Kim et al., 2021) 36.88±0.02 / 35.45±0.04 39.19±0.35 / 38.81±0.04 39.22±0.17 / 37.47±0.15

FL (Lin et al., 2017) 37.52±0.62 / 35.93±0.19 40.35±0.29 / 39.41±0.10 39.74±1.06 / 38.40±0.68

ASL (Baruch et al., 2020) 36.80±0.04 / 35.03±0.12 39.27±0.35 / 38.35±0.16 38.03±0.88 / 37.88±0.31

CFL (Smith, 2022) 36.69±0.33 / 35.14±0.24 38.56±0.33 / 38.46±0.25 37.89±0.39 / 36.74±0.41

ADAFL (Ghosh et al., 2024) 37.90±0.21 / 37.61±0.17 45.58±0.32 / 45.34±0.25 36.63±0.19 / 37.16±0.23
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Table 2: Test errors from transfer learning. Results
are presented as "CE only (γ = 0)" (left) and "CE w/
uniform OCCE (γ = 1)" (right) separated by a slash.

Model Dataset Test Errors (↓)

WideResNet50

STL-10 1.87±0.07 / 1.76±0.08

CIFAR-100 13.58±0.19 / 13.35±0.08

TinyImageNet 17.33±0.14 / 16.92±0.24

ImageNet 21.90±0.22 / 21.15±0.12

Swin-T

STL-10 2.27 ±0.05 / 2.07±0.07

CIFAR-100 12.69±0.07 / 12.41±0.12

TinyImageNet 14.45±0.05 / 14.31±0.02

ImageNet 19.69±0.02 / 19.33±0.04

Figure 7: CIFAR-100 transfer learning validation
accuracy and loss curves.

We finetune a WideResNet50 (Zagoruyko & Komodakis, 2016) and a Swin-T vision Transformer
(Liu et al., 2021) on STL-10 (Coates et al., 2011), CIFAR-100, TinyImageNet and ImageNet-1k
(Deng et al., 2009). We use the pretrained weights for these models provided by PyTorch, remove the
classification head and initialize a new one. For hyperparameters, we use the configuration suggested
by Kolesnikov et al. (2019), which involves performing 10,000 updates all medium-sized datasets,
except for ImageNet where 20,000 updates are performed. SGD optimizer is employed with 0.9
momentum and a base learning rate of 0.01 and learning rate decay with a factor of 10 at 30%, 60%
and 90% of the training steps. We use no weight decay and no dropout.

Results. Table 2 presents the results of transfer learning, while in Figure 7, we present the average
performance curves for CIFAR-100 during finetuning. The loss curves reflect only the cross entropy
loss in both cases. These results indicate that even though the uniform OCCE objective makes the
learning task more difficult (supported by the worse performance on the training set), it results in
improved generalization of the model and improved validation performance. Similar findings are
reported for finetuning LLM transformers (see A.6.1).

3.3 OPEN SET RECOGNITION (OSR) EXPERIMENTS

In Open Set Recognition (OSR), we train the network on K known classes and test with samples from
both known and U unknown classes. The most straightforward way to enable the reject option for the
unknown classes, is through Maximum over Softmax Probabilities (MSP) (Yang et al., 2024a), where
the goal is to assign lower confidence to unknown instances and higher to known ones, enabling
unknown rejection by threshold.

Decoupled Architecture. To gain deeper insights into OCCE’s
behavior, we propose using decoupled projection heads for CE
and OCCE. This approach allows for diversified predictions,
as each head has its own projection weights, while the shared
backbone is optimized by gradients from both losses (see Figure
8). This setup enables a direct comparison of linear probing under
each loss within a shared representation space. We compare the
results from the CE head, OCCE head, and a combination of
both ŷcomb, by subtracting the normalized anti-class prediction
ˆ̄yi/maxj ˆ̄yj from each class prediction ŷi. Figure 8: Decoupled architecture.

Configuration. We train a ResNet18v2 on FashionMNIST, CIFAR-100, and TinyImageNet for our
OSR experiments. For each dataset, we split the classes into a set of known and unknown classes,
denoted as K/U . We run each experiment 5 times with random selection of the K/U classes.

Evaluation Metrics. Since the rarity of unknown samples is not known, OSR evaluation approaches
requiring arbitrary thresholds are impractical. We use the following OSR metrics: 1. Error Rate (ER):
closed-set test errors 2. Open Set Classification Rate (OSCR): trade-off between correctly classified
knowns and misclassified unknowns across MSP thresholds (Chen et al., 2022). 3. Area Under the
ROC curve (AUROC): the probability that knowns have higher MSP scores than unknowns.
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Table 3: Average error rates, open set classification rates, and AUROC across 5 runs of our OSR configurations
on FashionMNIST, CIFAR-100, and TinyImageNet datasets.

FashionMNIST (4/6) CIFAR-100 (20/80) TinyImageNet (40/160)

Method ER (↓) OSCR (↑) AUROC (↑) ER (↓) OSCR (↑) AUROC (↑) ER (↓) OSCR (↑) AUROC (↑)

BCE 9.66 68.67 75.93 13.66 71.19 80.01 28.99 59.59 73.63
CE 8.04 71.56 77.39 14.41 70.09 77.89 28.41 59.37 72.78
RCE 9.85 70.62 75.04 23.52 64.47 75.80 55.18 37.50 64.80

CE+OCCE 8.04 73.93 78.62 13.26 72.46 80.12 26.83 61.94 75.31

Dual (CE head) 8.26 72.77 78.48 13.51 71.09 78.96 27.58 60.35 73.72
Dual (OCCE head) 7.11 75.33 78.69 13.61 74.02 80.52 27.88 60.78 74.59
Dual (Combined) 8.22 74.11 78.51 13.58 73.75 80.04 27.38 61.50 74.51

Results. Table 3 presents the results of our OSR
experiments. Employing a decoupled heads architec-
ture enables uniform OCCE head to remain competi-
tive across all datasets, consistently outperforming
single-head CE, especially in the open-set OSCR and
AUROC metrics. The CE head also benefits from the
dual architecture, which indicates an improvement in
the learned representations in the feature space. This
is further illustrated in Figure 9, where the dual head
architecture leads to tighter known class clusters and
better separation from unknown classes.

(a) CE (b) Proposed
Figure 9: t-SNE visualization of features for
CIFAR-100 validation set (K=10, U=90). Known
classes are colored, while unknowns are in grey.

3.4 OUT-OF-DISTRIBUTION (OOD) EXPERIMENTS

We conduct additional experiments on out-of-distribution (OOD) detection, to examine if the shown
improvements are agnostic to the choice of the unknown rejection algorithm. The goal here is similar
to OSR, with the distinction that instead of differentiating between known and unknown classes
from the same dataset, we treat all classes from an in-distribution (ID) dataset as known, while other
datasets represent out-of-distribution samples.

Configuration. For the in-distribution datasets, we use CIFAR-100 and ImageNet-200 (full
224×224 image resolution). For out-of-distribution datasets, we employ CIFAR-10, TinyIma-
geNet and SVHN for CIFAR-100, while SSB Hard, NINCO, and iNaturalist for ImageNet-200. All
experiments are conducted using a standard ResNet-18 model. We select 10 competitive post-hoc
OOD detection methods from the literature and utilized their implementations from the OpenOOD
library (Yang et al., 2024a). We compare the performance of training with CE versus CE plus uniform
OCCE with (γ = 0.1).

Results. As shown in Table 4, adding the uniform OCCE to the objective improves AUROC across
all ID/OOD dataset combinations. Furthermore, CE+OCCE leads to higher accuracy on the ID
datasets, achieving 77.48% for CIFAR-100 and 85.05% for ImageNet-200, compared to 76.83% and
84.28% with CE. Figure 10 illustrates that CE+OCCE outperforms CE in 9 out of 10 OOD methods
on CIFAR-100 and in 8 out of 10 methods on ImageNet-200, demonstrating consistent improvements,
largely agnostic to the specific post-hoc OOD method used. The full results are provided in A.7.

ID Dataset OOD Dataset AUROC (↑)

CIFAR100
CIFAR10 77.49 / 78.23
TinyImageNet 81.25 / 82.34
SVHN 81.52 / 83.30

ImageNet200
SSB Hard 77.11 / 78.01
NINCO 82.97 / 83.56
iNaturalist 92.27 / 92.51

Table 4: Average AUROC across 10 post-hoc
OOD methods and 3 runs. Comparisons of
CE w/o and w/ OCCE (γ = 0.1) are reported,
seperated with a slash.

(a) CIFAR-100 (b) ImageNet-200

Figure 10: Pairwise comparisons between CE w/o OCCE (left
sub-bars) and w/ OCCE (right sub-bars) across different post-hoc
OOD methods. Bars represent averages over all OOD datasets
and 3 runs.
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4 RELATED WORK

Complement Entropy. Complement Objective Training (COT) (Chen et al., 2019) alternatively
optimizes the primary cross entropy loss and a complement objective, to maximize the Shannon’s
entropy of complementary classes, including two updates per batch, which increases training time
by 1.6-fold. Later, Kim et al. (2021) unified these objectives into Complementary Cross Entropy
(CCE) loss. OCCE, unlike COT and CCE which are narrowed down to Shannon’s entropy in the
complementary classes, optimizes a specified anti-class distribution. As a result, OCCE can be
naturally integrated with soft labels and knowledge distillation (see A.1.1).

RCE and Label Smoothing. Szegedy et al. (2015) introduced label smoothing to mitigate the
overconfidence of neural networks, by assigning small targets to the complementary classes. However,
this introduces global bias to the correct class. Pang et al. (2017) introduced RCE training procedure
as a solution to this problem. RCE is an extreme case of label smoothing, when λ → inf , and can be
seen as the stand-alone uniform OCCE objective in our framework, while our proposed approach
combines class and anti-class learning, outperforming both RCE and label smoothing (see Table 1).

ETF Simplex Classifiers. Inspired from neural collapse, in Zhu et al. (2024), the authors fix the
last layer classifier to be a Simplex ETF, demonstrating time and memory gains without performance
loss. Furthermore, Simplex ETF structure has been used to mitigate minority collapse in imbalanced
training (Yang et al., 2024b) and few-shot incremental learning (Yang et al., 2023). OCCE diversifies
from these approaches, because it induces the Simplex ETF structure in an end-to-end learnable
manner, rather than predefining the structure of the classifier.

Hierarchical Classification. Hierarchical classification methods have been proposed to structure
class activations by leveraging parent-child relationships in predefined hierarchies (Wu et al., 2020;
Valmadre, 2022; Liang & Davis, 2023). While these approaches address hierarchical relationships
(vertical in a hierarchy tree), our method focuses on the flat structure, emphasizing relationships
between classes at the same hierarchy level. The proposed method can be employed at multiple
hierarchical levels in a similar fashion.

Focal Approaches. Focal Loss (Lin et al., 2017) scales the loss of well-classified samples with
(1 − ŷc)

γ , where ŷc is the predicted probability for the correct class, and γ > 0 emphasizes hard
samples. Variants like Cyclic Focal Loss (Smith, 2022) and AdaFocal (Ghosh et al., 2024) dynamically
adjust γ. These methods focus on instance-level difficulty, but they assign zero probabilities to
complementary classes, effectively ignoring their structure. Introducing target anti-class distributions
operates orthogonally to focal approaches and can be readily combined with them.

Supervised Contrastive Learning. Supervised Contrastive Learning (SupCon) (Khosla et al.,
2020) extends cross entropy to the feature space by pulling positive pairs closer and pushing negative
pairs farther apart. Even though it normalizes distances among both positive and negative pairs in
the softmax denominator to prevent collapse, SupCon does not explicitly optimize the relationships
among the complementary classes, treating them only as a normalization mechanism. This represents
a fundamental difference from our proposed approach.

Reciprocal Points Learning. Reciprocal Points Learning (RPL) models "otherness" by positioning
reciprocal points in latent space (Chen et al., 2020). Adversarial RPL (ARPL) reduces open space
risk using an adversarial margin constraint (Chen et al., 2022), while ARPL + CS adds adversarial
samples equidistant from all reciprocal points to simulate unseen classes. OCCE objective aligns the
activations of the complementary classes for each instance, rather than relying on a single anti-class
prototype for each class in the latent space.

5 CONCLUSIONS

In this paper, we highlight the importance of controlling the relationships between complementary
classes. To this end, we introduce the concept of anti-classes as a complementary approach to
modeling classification problems. By representing anti-classes using one-cold encoding, we optimize
neural networks to directly learn target anti-class probability distributions through one-cold cross
entropy loss. While we mainly focus on a uniform one-cold encoding, inspired by the phenomenon of
neural collapse, our proposed framework can be naturally extended to non-uniform target distributions
to address limitations, for example to account for inter-class relationships (see A.1.1).
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A APPENDIX

A.1 LIMITATIONS OF UNIFORM OCCE

In our main experimental evaluation, we demonstrate that adding the uniform OCCE objective
consistently improves performance across various settings and learning scenarios. However, this
raises a natural question: should the network treat all non-target classes equally, ignoring their
inherent similarities while enforcing uniformity and the Simplex ETF structure? To address this
question, we explore assigning soft target anti-class distributions, that consider class similarities. Our
results indicate further improvements on top of uniform OCCE, proving that our proposed framework
can also efficiently support non-uniform distributions.

A.1.1 EXTENDING TO NON-UNIFORM ANTI-CLASS DISTRIBUTIONS

We experiment with two types of self distillation scenarios, to provide softer anti-class distributions:
1. Instance-based and 2. Class-based self-distillation.

Instance-based self-distillation. The new target anti-class probability distribution ȳ′ for each
instance is defined as a weighted combination of the uniform one-cold encoding and the network’s
previous predictions, as:

ȳ
′

i = (1− α) · ȳi + α · ˆ̄yi, (9)
where α ∈ [0, 1] controls the contribution of the self-distillation. When α = 0, the target reduces to
the uniform one-cold encoding, while α = 1 fully relies on the network’s previous predictions.

Class-based self-distillation. In this variation, the target anti-class probability distribution ȳ
incorporates class-specific self-distillation. During each epoch, we calculate the average predicted
anti-class probabilities ˆ̄y across the entire dataset for each class. This results in a class-specific
weighted matrix, C, where we set the diagonal elements Ci,i = 0 and normalize row-wise. Here
Ci,j represents the normalized similarity of class i to each complementary class j. The new target
distribution for a sample belonging to class i is a weighted combination of the uniform one-cold
encoding and the class-specific weights:

ȳ
′

j = (1− α) · ȳj + α · Ci,j , (10)

where α ∈ [0, 1] controls the contribution of the class-specific self-distillation. When α = 0, the tar-
get reverts to the uniform one-cold encoding, while α = 1 incorporates only the class-specific weights.

We train ResNet18v2 on MNIST, CIFAR-10, CIFAR-100, and TinyImageNet to compare the per-
formance of cross-entropy (CE), reverse cross-entropy (RCE), our proposed approach with uniform
OCCE, and our proposed approaches using soft anti-class distributions (in Table 5). Specifically, we
employ instance-based and class-based knowledge distillation techniques in the latter. The results
demonstrate that while uniform OCCE consistently improves performance across all datasets, the
incorporation of soft anti-class distributions provides additional improvements on top of uniform
OCCE. This highlights the flexibility of OCCE, which extends beyond the uniform case to address
for specific optimization objectives.

Table 5: Classification test errors of ResNet18v2. Configurations that improve upon the baseline are underlined,
and the best performance for each dataset is highlighted in bold.

Loss MNIST CIFAR-10 CIFAR-100 TinyImageNet

CE (Baseline) 0.40±0.04 5.45±0.18 24.98±0.40 36.80±0.20

RCE (Pang et al., 2017) 0.40±0.05 5.55±0.16 25.19±0.23 45.22±0.24

Proposed (Uniform OCCE) 0.38±0.01 5.40±0.09 23.92±0.23 35.61±0.13

Proposed (Instance-based self-KD, a=0.1) 0.36±0.02 5.38±0.08 23.60±0.32 35.40±0.10

Proposed (Class-based self-KD, a=0.5) 0.33±0.03 5.28±0.09 23.71±0.10 35.12±0.16
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A.1.2 JUSTIFICATION OF UNIFORM OCCE

Although the uniform OCCE loss does not account for the inherent relationships between classes and
enforces uniformity, it still delivers consistent improvements. In this section, we analyze the uniform
OCCE loss from a theoretical perspective to justify its effectiveness.

Fisher Discriminant Ratio (FDR). Uniform OCCE minimizes the Fisher discriminant ratio,
defined as FDR = tr(SB)/tr(SW ), where SB and SW are the between-class and within-class scatter
matrices, respectively. By minimizing within-class scatter (SW ) and maximizing between-class
scatter (SB), the loss improves class separability in the feature space.

Information-Theoretic Perspective. Uniform OCCE encourages the class means to form a Simplex
ETF, aligning with principles of optimal coding. Observations are modeled as h = µc + z, where
z ∼ N (0, σ2I) and µc represents the class means. The Simplex ETF structure maximizes the
minimum pairwise distance between class means, reducing misclassification under Gaussian noise
and maximizing the mutual information between the class index c and the signal h.

Maximum Entropy Principle. Uniform OCCE aligns with the maximum entropy principle by as-
signing uniform probabilities ( 1

N−1 ) to non-target classes, which enforces the least biased distribution
consistent with the constraints.

A.2 GRADIENT DERIVATION AND CONVERGENCE BEHAVIOUR

The general cross entropy loss is given by:

L = −
N∑
i=1

yi log(ŷi) (11)

where y is the target distribution and ŷi is the predicted probability for class i, defined by the softmax
function:

ŷi =
exp(zi)∑N

k=1 exp(zk)
(12)

with zi being the activation for class i.
The partial derivative of the loss with respect to ŷi is:

∂L

∂ŷi
= −yi

ŷi
(13)

The softmax derivative has two cases:

∂ŷi
∂zj

=

{
ŷi(1− ŷi) if i = j,

−ŷiŷj if i ̸= j
(14)

Using the chain rule and substituting we get:

∂L

∂zj
=

N∑
i=1

∂L

∂ŷi
· ∂ŷi
∂zj

=
∑
i ̸=j

−yi
ŷi

· (−ŷiŷj)︸ ︷︷ ︸
i ̸=j

+

(
−yj
ŷj

· ŷj(1− ŷj)

)
︸ ︷︷ ︸

i=j

=
∑
i ̸=j

yiŷj + yj(ŷj − 1) (15)

Substituting the target distributions for the standard one-hot encoding y and our proposed one-cold
encoding ȳ defined for a correct class c as:

yi =

{
1 if i = c

0 if i ̸= c
and ȳi =

{
0 if i = c

1
N−1 if i ̸= c
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we get the derivatives of the standard cross entropy LCE and one-cold cross entropy LOCCE as:

∂LCE

∂zi
=

{
ŷi − 1 if i = c,

ŷi if i ̸= c,
(16)

and
∂LOCCE

∂z̄i
=

{
ˆ̄yi if i = c,
ˆ̄yi − 1

N−1 if i ̸= c.
(17)

For the asymptotic behavior of cross entropy, as ∇zLCE → 0, under no other constraints, we obtain:

ŷc =
exp(zc)∑
j exp(zj)

→ 1 =⇒ zc → +∞, for the correct class c and

ŷk =
exp(zk)∑
j exp(zj)

→ 0 =⇒ zk → −∞, for any complementary class k.

In the case of one-cold cross entropy, when ∇z̄LOCCE → 0 and under no other constraints, we obtain:

ˆ̄yc =
exp(−zc)∑N
j=1 exp(−zj)

→ 0 =⇒ exp(−zc) → 0

=⇒ zc → +∞, for the correct class c and

ˆ̄yk =
exp(−zk)∑N
j=1 exp(−zj)

→ 1

N − 1

=⇒ exp(−zk) →
1

N − 1

N∑
j=1

exp(−zj) ≈
1

N − 1

N∑
j=1
j ̸=c

exp(−zj)

=⇒ zk → − log

(∑
j ̸=c exp(−zj)

N − 1

)
, for any complementary class k.

This suggests that the activations for all complementary classes k converge to the same value, i.e.,
zk1

→ zk2
for any k1, k2 ̸= c.

A.3 EMPIRICAL EVALUATION OF ACTIVATIONS

While the previous theoretical analysis describes the asymptotic behavior of activations under ideal
conditions, in practice, the activations of a neural network often behave differently due to various
factors. These include the influence of regularization methods like weight decay, which penalize large
weights, and the complexity of the optimization process. Here, we provide an empirical evaluation of
the distribution of activations in a converged ResNet-18 network.
In Figure 11, we present the activation distributions for both the correct classes and the complementary
classes across three different training losses: a cross entropy (CE) trained network (first column), a
CE+OCCE with γ = 1 trained network (second column), and an OCCE-only trained network (third
column). It is evident that while the cross entropy loss results in Gaussian-like distributions for the
activations of the complementary classes, similar to those of the correct classes, the introduction
of the OCCE objective alters this behavior. Specifically, with uniform OCCE, all activations of the
complementary classes converge to the same value. This uniformity is the primary mechanism that
drives neural collapse. For each instance, the activations corresponding to its complementary classes
must be equal, indicating that the instance is equidistant from all their class means. Consequently, this
forces the instances within each class to collapse toward their respective class means, while ensuring
that the class means themselves are equidistant in the final feature manifold.
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(a) CIFAR-10: CE (b) CIFAR-10: Proposed (CE+OCCE) (c) CIFAR-10: RCE (Stand-alone uniform OCCE)

(d) CIFAR-100: CE (e) CIFAR-100: Proposed (CE+OCCE) (f) CIFAR-100: RCE (Stand-alone uniform
OCCE)

Figure 11: Activations distributions for CIFAR-10 (top row) and CIFAR-100 (bottom row), when training with
CE, CE+OCCE and RCE (Stand-alone uniform OCCE). The model architecture is ResNet18v2.

A.4 T-SNE VISUALIZATION OF FEATURE MANIFOLDS

Figure 12 presents the t-SNE visualization of the learned feature space for CIFAR-10 and CIFAR-100.
Cross entropy loss (CE) appears to create Gaussian-like classes in the feature space, with some
outliers scattered throughout. In contrast, RCE clusters classes in a highly specific manner. This is
reflected in the t-SNE visualization, showing highly discriminative clusters for each class, where
its class is forced to be equally distant from all other classes in the high-dimensional feature space.
However, for the most challenging samples, RCE struggles to identify the single anti-class they do
not belong to. This issue is more pronounced as the scale of the dataset increases.

(a) CIFAR-10: CE (b) CIFAR-10: Proposed (CE+OCCE) (c) CIFAR-10: RCE (Stand-alone uniform OCCE)

(d) CIFAR-100: CE (e) CIFAR-100: Proposed (CE+OCCE)
(f) CIFAR-100: RCE (Stand-alone uniform
OCCE)

Figure 12: 2D t-SNE visualizations of the learned feature space for CIFAR-10 (first row) and CIFAR-100
(second row), when training with CE, CE+OCCE and RCE (Stand-alone uniform OCCE). For CIFAR-100 only
20 classes are shown for visualization purposes.
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A.5 CONNECTION BETWEEN OCCE AND LOW RANK REPRESENTATIONS

Empirically, we observe that uniform OCCE influences the numerical rank of each layer. Early layers
exhibit higher ranks with larger γ values, indicating more information preservation compared to CE.
In contrast, the final layers have significantly lower ranks, suggesting that uniform OCCE promotes
sparse, linearly independent representations for each class in the last layer.
We compute the rank of a layer function fi by calculating its Jacobian matrix Jf = (∂fi/∂xj)i,j ∈
Rd×n for each layer i over the validation set, where d is the layer’s output dimension and n is the
input dimension (Feng et al., 2024). The numerical rank is estimated by counting the singular values
larger than a threshold ϵ = 1.19× 10−7. Figures 13 (left, linear scale) and (right, log scale) show the
rank progression, with the linear scale revealing trends in higher ranks, and the log scale highlighting
differences in lower ranks.

(a) Linear scale for higher ranks. (b) Log scale for lower ranks.

Figure 13: Numerical rank approximation per layer across a ResNet18 trained on CIFAR-100, with different γ
values.

A.6 TRANSFORMERS EXPERIMENTS

A.6.1 NATURAL LANGUAGE PROCESSING

To further evaluate the effectiveness of OCCE as a regularizer, we apply it to a Natural Language
Processing (NLP) downstream task, specifically to Named Entity Recognition (NER). We consider
the CoNLL-2003 dataset, which contains 4 entity and 1 non-entity classes (Kim et al., 2003).
For finetuning pretrained language models, we employ
a standard hyperparameter configuration. This involves
AdamW as optimizer, a sweep of learning rates (lr ∈
10−4 · [1, 2, 4]), a batch size of 32, and a total of 3 epochs
of finetuning with 5 different seeds per experiment. We
evaluate the overall F1-score to ensure fairness across
entities. The results are shown in Table 6, where uniform
OCCE consistently improves performance. Due to the
small magnitude of the gains, we performed a Wilcoxon
signed-rank test, which indicated the rejection of the null
hypothesis with a p-value of 0.009.

Table 6: NER F-score test errors
Backbone CE CE+OCCE

RoBERTa 4.38±0.05 4.23±0.07

BERT 5.60±0.14 5.58±0.18

DistilBERT 6.34±0.13 6.26±0.20

GPT-2 23.63±0.41 23.26±0.38

Figure 14: LLMs accuracy and loss curves dur-
ing finetuning on NER downstream task.
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A.6.2 VISION TRANSFORMERS

The observed behaviors of Swin-T vision Transformer concerning neural collapse and independence
deficit remain consistent with those of ResNets, supporting the architecture-agnostic nature of our
findings regarding the uniform OCCE loss. Figure 15 illustrates the degree of neural collapse
during training. Meanwhile, Figure 16 presents the results related to the independence deficit. The
conclusions drawn are in line with our main results in Section 3.1.

(a) NC1 (b) NC2

(c) NC3 (d) NC4

Figure 15: Neural Collapse (Swin-T). Figure 16: Independence deficit (Swin-T).

A.7 OUT-OF-DISTRIBUTION FULL RESULTS

In this section we present the full results of our out-of-distribution experiments, where uniform OCCE
leads to consistent improvements in the vast majority of ID dataset, OOD dataset and OOD method
combinations. These experiments were performed using the openOOD library (Yang et al., 2024a).

Table 7: Full out-of-distribution results for ID: CIFAR-100 and OOD: CIFAR-10, TIN, SVHN. The reported
values are averages of 3 runs of a ResNet18 model trained without OCCE and with uniform OCCE, separated by
a slash.

AUROC (↑) In Distribution: CIFAR-100

OOD Method CIFAR-10 TIN SVHN Average ∆

msp 77.89 ±0.27 / 78.54 ±0.27 81.28 ±0.17 / 81.98 ±0.05 78.58 ±1.76 / 81.98 ±0.54 79.25 / 80.83 +1.58
odin 76.95 ±0.32 / 77.53 ±0.32 80.24 ±0.17 / 80.51 ±0.14 71.96 ±3.12 / 76.72 ±2.74 76.38 / 78.25 +1.87
rmds 78.20 ±0.40 / 78.52 ±0.39 82.91 ±0.30 / 82.78 ±0.03 84.92 ±1.11 / 85.61 ±1.55 82.01 / 82.30 +0.29
ebo 78.67 ±0.10 / 79.04 ±0.24 82.10 ±0.28 / 82.72 ±0.17 81.85 ±2.10 / 83.60 ±1.08 80.87 / 81.79 +0.92
vim 75.24 ±0.51 / 76.00 ±0.42 80.58 ±0.27 / 81.85 ±0.02 87.84 ±0.75 / 84.67 ±3.79 81.22 / 80.84 -0.38
knn 77.65 ±0.21 / 78.03 ±0.29 83.32 ±0.17 / 83.57 ±0.08 84.17 ±1.45 / 84.10 ±2.01 81.71 / 81.90 +0.19
dice 77.20 ±0.28 / 79.15 ±0.49 79.44 ±0.40 / 82.09 ±0.18 83.28 ±1.88 / 85.63 ±1.60 79.97 / 82.29 +2.32
she 76.90 ±0.24 / 78.37 ±0.52 77.59 ±0.35 / 81.71 ±0.26 77.52 ±3.08 / 82.51 ±1.63 77.34 / 80.86 +3.52

relation 77.43 ±0.20 / 77.83 ±0.20 82.99 ±0.25 / 83.35 ±0.13 82.20 ±2.19 / 82.99 ±1.09 80.87 / 81.39 +0.52
scale 78.75 ±0.25 / 79.30 ±0.29 82.01 ±0.20 / 82.86 ±0.06 82.89 ±1.58 / 85.15 ±0.71 81.22 / 82.44 +1.22

Average 77.49 / 78.23 81.25 / 82.34 81.52 / 83.30 80.09 / 81.29 +1.20

Table 8: Full out-of-distribution results for ID: ImageNet-200 and OOD: SSB-Hard, NINCO, iNaturalist. The
reported values are averages of 3 runs of a ResNet18 model trained without OCCE and with uniform OCCE,
separated by a slash.

AUROC (↑) In Distribution: ImageNet-200

OOD Method SSB-Hard NINCO iNaturalist Average ∆

msp 79.29 ±0.44 / 79.60 ±0.22 84.51 ±0.52 / 85.13 ±0.33 91.70 ±0.17 / 91.66 ±0.19 85.17 / 85.46 +0.30
odin 76.54 ±0.51 / 76.78 ±0.37 81.49 ±0.13 / 81.84 ±0.55 93.55 ±0.09 / 93.13 ±0.67 83.86 / 83.92 +0.06
rmds 78.36 ±0.24 / 79.29 ±0.18 81.42 ±0.82 / 83.36 ±0.11 85.99 ±0.77 / 88.89 ±0.43 81.92 / 83.85 +1.92
ebo 78.40 ±0.48 / 79.35 ±0.28 83.56 ±0.19 / 84.07 ±0.44 93.11 ±0.24 / 92.63 ±0.33 85.02 / 85.35 +0.33
vim 75.20 ±0.26 / 76.11 ±0.34 82.61 ±0.31 / 83.44 ±0.41 89.09 ±0.79 / 89.79 ±0.90 82.30 / 83.11 +0.81
knn 74.30 ±0.47 / 75.30 ±0.43 82.87 ±0.20 / 84.04 ±0.36 91.25 ±0.67 / 93.63 ±0.12 82.81 / 84.32 +1.52
dice 77.02 ±0.52 / 78.89 ±0.43 81.96 ±0.26 / 82.83 ±0.33 93.60 ±0.48 / 93.54 ±0.14 84.19 / 85.09 +0.89
she 74.31 ±0.45 / 75.13 ±0.30 79.27 ±0.98 / 77.79 ±0.37 93.13 ±0.96 / 91.46 ±0.59 82.24 / 81.46 -0.78

relation 76.85 ±0.79 / 78.26 ±0.18 84.92 ±0.78 / 85.98 ±0.20 94.41 ±0.05 / 94.24 ±0.24 85.39 / 86.16 +0.77
scale 80.78 ±0.51 / 81.36 ±0.24 87.05 ±0.16 / 87.16 ±0.19 96.88 ±0.28 / 96.10 ±0.11 88.24 / 88.21 -0.03

Average 77.11 / 78.01 82.97 / 83.56 92.27 / 92.51 84.11 / 84.69 +0.58
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A.8 CENTERED KERNEL ALIGNMENT (CKA) SIMILARITY MATRIX

To demonstrate the diversity introduced by our proposed loss function, we use the Centered Kernel
Alignment (CKA) similarity matrix to compare the representations learned by networks trained with
different loss functions (Kornblith et al., 2019). CKA effectively measures the similarity between
neural network representations, offering insights into how different training objectives affect the
learned features.

Centered Kernel Alignment (CKA). CKA is computed using the formula:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) · HSIC(L,L)

where HSIC(K,L) is the Hilbert-Schmidt Independence Criterion given by:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH)

and H is the centering matrix defined as:

H = In − 1

n
11T

with K and L being the kernel matrices of two sets of representations, and In being the identity
matrix of size n. Following observations from (Kornblith et al., 2019), we use a linear kernel for our
experiments.

Similarity matrix results. Our experiments show significant divergence between the final layer
representations of a network trained with cross entropy loss and one trained with our proposed loss,
indicating that our loss function leads to more diverse representations. In Figure 17, we compare the
similarity matrices between (a) two networks trained with cross entropy with different initialization
(CE vs. CE), (b) a network trained with cross entropy versus one trained with SCL-NL loss Kim
et al. (2019)(CE vs. SCL-NL), and (c) a network trained with cross entropy versus one trained with
uniform OCCE (CE vs. uniform OCCE).

(a) CE vs CE (b) CE vs SCL-NL (c) CE vs uniform OCCE

Figure 17: CKA similarity matrices between cross entropy and other losses. The architecture is
ResNet18v2 and the dataset is CIFAR-100. The one-cold cross entropy loss shows the most diversified
representations between the compared losses.

Two CE networks with different initialization have high similarity in their internal representations
across all layers, which is showcased by the diagonal line. SCL-NL loss also have high correlation
even in the final layers, because as mentioned in 4, it indirectly focuses on the correct classes.
Conversely, uniform OCCE loss learns highly diversified representations towards the final layers of
the networks.
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A.9 NEURAL COLLAPSE MEASUREMENT METRICS

For completeness and easy reference, we detail the metrics used to evaluate the degree of neural
collapse during network training. These metrics are adapted from the seminal work presented in Zhu
et al. (2024).
The global mean hG and class means hk of the last-layer features {hk,i} are defined as follows:

hG =
1

nK

K∑
k=1

n∑
i=1

hk,i, hk =
1

n

n∑
i=1

hk,i for 1 ≤ k ≤ K.

Within-class and Between-class Variability (NC1). The within-class (ΣW ) and between-class
(ΣB) covariance matrices are given by:

ΣW =
1

nK

K∑
k=1

n∑
i=1

(hk,i − hk)(hk,i − hk)
⊤, ΣB =

1

K

K∑
k=1

(hk − hG)(hk − hG)
⊤.

Neural collapse within-class variability is quantified by the ratio of the trace of ΣW to the pseudo-
inverse of ΣB :

NC1 =
1

K
trace(ΣWΣ†

B).

Simplex ETF Convergence (NC2). The alignment of the learned classifier W with a Simplex ETF
is assessed by:

NC2 =:=

∥∥∥∥ WW⊤

∥WW⊤∥F
− 1√

K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥
F

,

where the ETF is rescaled so that
√

1
K−1

∥∥IK − 1
K1K1⊤

K

∥∥
F

has unit energy (in Frobenius norm).

Convergence to Self-duality (NC3). We measure the alignment between the classifiers W and the
centered class-means H to quantify the extent to which the learned features exhibit self-duality.
The centered class-mean feature matrix as:

H := [h1 − hG . . .hK − hG] ∈ Rd×K .

Thus, the duality between the classifiers W and the centered class-means H is measured by:

NC3 :=

∥∥∥∥ WH

∥WH∥F
− 1√

K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥
F

.

Collapse of the Bias. (NC4) In scenarios where the global mean hG of the features is not zero, the
bias term b may adjust to compensate for this global mean, effectively collapsing towards a specific
direction. This phenomenon is measured by:

NC4 = ∥b+WhG∥2.
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